
Big Java
Late Objects

Big Java Late Objects

Cay Horstmann

H
o

r
stm

a
n

n
Compatible with Java 5, 6, & 7

BIG JAVA + LATE OBJECTS = A GREAT INTRODUCTION TO JAVA PROGRAMMING

Nobody supports your desire to teach students good programming skills like Cay Horstmann. Active in both the classroom and the
software industry, Horstmann knows that meticulous coding—not shortcuts—is the base upon which great programmers are made.
Using an innovative visual design that leads students step-by-step through the intricacies of Java programming, Big Java: Late
Objects instills confidence in beginning programmers, and confidence leads to success.

Key Features
• This new text provides the Horstmann approach for an objects-late, one, two or three term comprehensive
introduction to Java. The text includes a full range of topics including GUI, Data Structures, Web Applications, and many others.
• Presents fundamentals first:

 Big Java: Late Objects takes a traditional path through the material, stressing control structures, methods, and procedural
decomposition before object-oriented programming. Objects are used when appropriate in the early chapters. Students start
designing and implementing their own classes in Chapter 8.

• A focus on problem solving:
The text includes practical, step-by-step illustrations of techniques that can help students devise and evaluate solutions to
programming problems. Introduced within the chapters where they are most relevant, these strategies include:

• Algorithm design (using pseudocode)
• Hand-tracing
• Storyboards
• Stepwise refinement

Video Examples feature Cay Horstmann explaining the steps he is taking and showing his work as he solves a programming
problem.

• Practice makes perfect:
Before students begin to implement nontrivial programs, they need to have the confidence to succeed. Each section concludes
with self-check questions and Practice It pointers that suggest exercises to try. A wealth of programming assignments, plus
online practice opportunities such as guided lab exercises, code completion questions, and skill-oriented multiple-choice
questions provide ample opportunity for student practice.

• A visual approach motivates the reader and eases navigation
Photographs present visual analogies that explain the nature and behavior of computer concepts. Step-by-step figures illustrate
complex programming operations. Syntax boxes and example tables clearly present a variety of typical and special cases in a
compact format. Visuals can be browsed by students prior to focusing on the textual material.

• Guidance and worked examples help students succeed
Beginning programmers often ask “How do I start?” and “Now what do I do?” While an activity as complex as programming
cannot be reduced to cookbook-style instructions, step-by-step guidance is immensely helpful for building confidence and
providing an outline for tasks at hand. The book contains a large number of How To guides for common tasks, together with
additional worked examples and videos on the web.

Cay S. Horstmann is a Professor of Computer Science in the Department of Computer Science at San Jose State University.
He is an experienced professional programmer and was Vice President and Chief Technology Officer for Preview Systems, Inc. He
is also a consultant for major corporations, universities, and organizations on Java, C++, Windows, and Internet programming.
Horstmann is the author of many successful professional and academic books, including Big C++, C++ for Everyone, Big Java,
and Big Java: Late Objects—all with John Wiley & Sons, Inc.

www.wiley.com/college/horstmann

For more information, visit www.wileyplus.com

WileyPLUS builds students’ confidence because it takes the guesswork
out of studying by providing students with a clear roadmap:

•	 what to do
•	 how to do it
•	 if they did it right

It offers interactive resources along with a complete digital textbook that help
students learn more. With WileyPLUS, students take more initiative so you’ll have

greater impact on their achievement in the classroom and beyond.

WileyPLUS is a research-based online environment
for effective teaching and learning.

ALL THE HELP, RESOURCES, AND PERSONAL
SUPPORT YOU AND YOUR STUDENTS NEED!

www.wileyplus.com/resources

Technical Support 24/7
FAQs, online chat,
and phone support

www.wileyplus.com/support

Student support from an
experienced student user

Collaborate with your colleagues,
find a mentor, attend virtual and live

events, and view resources

2-Minute Tutorials and all
of the resources you and your
students need to get started

Your WileyPLUS Account Manager,
providing personal training

and support

www.WhereFacultyConnect.com

Pre-loaded, ready-to-use
assignments and presentations

created by subject matter experts

Big Java
Late Objects
Cay Horstmann

San Jose State University

John Wiley & Sons, Inc.

VICE PRESIDENT AND EXECUTIVE PUBLISHER	 Don Fowley
EXECUTIVE EDITOR	 Beth Lang Golub
CONTENT MANAGER	 Kevin Holm
SENIOR PRODUCTION EDITOR	 John Curley
EXECUTIVE MARKETING MANAGER	 Christopher Ruel
CREATIVE DIRECTOR	 Harry Nolan
SENIOR DESIGNER	 Madelyn Lesure
SENIOR PHOTO EDITOR	 Lisa Gee	
PRODUCT Designer	 Thomas Kulesa
Content Editor	 Wendy Ashenberg
Editorial PROGRAM assistant	 Elizabeth Mills
Media Specialist	 Lisa Sabatini
PRODUCTION SERVICES 	 Cindy Johnson
COVER PHOTOS 	 © Robbie Taylor/Alamy;
	 © FLPA/John Holmes/Age Fotostock;
	 © frans lemmens/Alamy

This book was set in Stempel Garamond by Publishing Services, and printed and bound by R.R. Donnelley &
Sons Company. The cover was printed by R.R. Donnelley & Sons, Jefferson City.

This book is printed on acid-free paper. ∞

Copyright © 2013, 2010  John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774,
(201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the
United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data:
Horstmann, Cay S., 1959-
 Big Java : late objects / Cay Horstmann.
 p. cm.
 Includes index.
 ISBN 978-1-118-08788-6 (pbk. : acid-free paper)
 1. Java (Computer program language) I. Title.
 QA76.73.J38H67 2012
 005.2'762--dc23
 2011043315

ISBN 978-1-118-08788-6 (Main Book)
ISBN 978-1-118-12942-5 (Binder-Ready Version)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

Preface

v

This book is an introduction to Java and computer programming that focuses on the
essentials—and on effective learning. The book is designed to serve a wide range of
student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed. Here are the key features of this book:

Present fundamentals first.
The book takes a traditional route, first stressing control structures, methods, pro-
cedural decomposition, and arrays. Objects are used when appropriate in the early
chapters. Students start designing and implementing their own classes in Chapter 8.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Additional Worked Examples are available online.

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains
a substantial number of self-check questions at the end of each section. “Practice It”
pointers suggest exercises to try after each section. And additional practice opportu-
nities, including code completion questions, guided lab exercises, and skill-oriented
multiple-choice questions are available online.

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information.
You will not find artificial over-simplifications that give an illusion of knowledge.

Visual features help the reader
with navigation.

vi  Preface 

A Tour of the Book
This book is intended for a two-semester introduction to programming that may also
include algorithms, data structures, and/or applications.

The first seven chapters follow a traditional approach to basic programming
concepts. Students learn about control structures, stepwise refinement, and arrays.
Objects are used only for input/output and string processing. Input/output is cov-
ered in Chapter 7, but Sections 7.1 and 7.2 can be covered with Chapter 4; in that way,
students can practice writing loops that process text files. Chapter 4 also provides an

Figure 1 
Chapter
Dependencies

19. Streams and
Binary I/O

9. Inheritance
and Interfaces

20.
Multithreading

12. Object-
Oriented Design

22. Database
Programming

13. Recursion

14. Sorting
and Searching

15. The Java
Collections
Framework

16. Basic
Data Structures

18. Generic
Programming

21. Internet
Networking

23. XML

24. Web
Programming

6. Iteration

8. Objects and
Classes

17. Tree
Structures

Fundamentals

Object-Oriented Design

Graphical User Interfaces

Data Structures & Algorithms

Applied Topics

Web / WileyPLUS

10. Graphical
User Interfaces

1. Introduction

2. Fundamental
Data Types

3. Decisions

4. Loops

5. Methods

6. Arrays
and Array Lists

7. Input/Output
and Exception

Handling

11. Advanced
User Interfaces

A gentle
introduction to recursion

is optional.

Sections 7.1 and 7.2
(text file processing) can be

covered with Chapter 4.

Preface  vii

•	 Algorithm Design (with pseudocode)
•	 First Do It By Hand (doing sample

calculations by hand)
•	 Flowcharts
•	 Test Cases
•	 Hand-Tracing
•	 Storyboards
•	 Reusable Methods
•	 Stepwise Refinement

•	 Adapting Algorithms
•	 Discovering Algorithms by

Manipulating Physical Objects
•	 Tracing Objects (identifying state and

behavior)
•	 Patterns for Object Data
•	 Thinking Recursively
•	 Estimating the Running Time of an

Algorithm

optional introduction to programming drawings that consist of lines, rectangles, and
ovals, with an emphasis on reinforcing loops.

After students have gained a solid foundation, they are ready to tackle the imple-
mentation of classes in Chapter 8. Chapter 9 covers inheritance and interfaces. A
simple methodology for object-oriented design is presented in Chapter 12. Object-
oriented design may also be covered immediately after Chapter 9 by omitting the
GUI versions of the sample programs. By the end of these chapters, students will be
able to implement programs with multiple interacting classes.

Graphical user interfaces are presented in Chapters 10 and 11. The first of these
chapters enables students to write programs with buttons, text components, and sim-
ple drawings. If you want to go deeper, you will find layout management and addi-
tional user-interface components in the second chapter.

Chapters 13–18 cover algorithms and data structures at a level suitable for begin-
ning students. Recursion, in Chapter 13, starts with simple examples and progresses
to meaningful applications that would be difficult to implement iteratively. Chapter
14 covers quadratic sorting algorithms as well as merge sort, with an informal intro-
duction to big-Oh notation. In Chapter 15, the Java Collections Framework is pre-
sented from the perspective of a library user, without revealing the implementations
of lists and maps. You can cover this chapter anytime after Chapter 8. In Chapters 16
and 17, students learn how to implement linear and tree-based data structures, and
how to analyze the efficiency of operations on these data structures. Finally, Chapter
18 covers programming with Java generics.

Chapters 19–24 feature applied topics: binary input/output, concurrent program-
ming, networking, database programming, XML processing, and the development of
web applications. Chapters 20–24 are available in electronic form on the Web and in
WileyPLUS.

Any subset of these chapters can be incorporated into a custom print version of
this text; ask your Wiley sales representative for details.

Problem Solving Strategies
This book provides practical, step-by-step illustrations of techniques that can help
students devise and evaluate solutions to programming problems. Introduced where
they are most relevant, these strategies address barriers to success for many students.
Strategies included are:

Optional Science and Business Exercises
End-of-chapter exercises include problems from scientific and business domains.
Designed to engage students, the exercises illustrate the value of programming in
applied fields.

viii  Preface 

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix L conflicts with instructor sentiment or local
customs, however, it is available in electronic form so that it can be modified.

A.	The Basic Latin and Latin-1 Subsets of Unicode
B.	Java Operator Summary
C.	Java Reserved Word Summary
D.	The Java Library
E.	 Java Syntax Summary
F.	 HTML Summary
G.	Tool Summary
H.	Javadoc Summary
I.	 Number Systems
J.	 Bit and Shift Operations
K.	UML Summary
L.	 Java Language Coding Guidelines

Web Resources
This book is complemented by a complete suite of online resources and a robust
WileyPLUS course. Go to www.wiley.com/college/horstmann to visit the online compan-
ion sites, which include

•	 Source code for all example programs in the book and in online examples.
•	 Worked Examples that apply the problem-solving steps in the book to other

realistic examples.
•	 Video Examples in which the author explains the steps he is taking and shows his

work as he solves a programming problem.
•	 Lab exercises that apply chapter concepts (with solutions for instructors only).
•	 Lecture presentation slides (in PowerPoint format).
•	 Solutions to all review and programming exercises (for instructors only).
•	 A test bank that focuses on skills, not just terminology (for instructors only).

WileyPLUS
WileyPLUS is an online teaching and learning environment that integrates the digital
textbook with instructor and student resources. See pages xiii–xiv for details.

O N L I N E E X A M P L E

A program using
common loop
algorithms.

VIDEO EXAMPLE 4.2 Drawing a Spiral

In this Video Example, you will see how to develop a program
that draws a spiral.

Pointers in the book
describe what students
will find on the Web.

Walkthrough  ix

A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

O N L I N E E X A M P L E

A program using
common loop
algorithms.

4.2 The for Loop 135

It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
 System.out.println(counter);
 counter++; // Update the counter
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 4.2).

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance
reaches the target. Another commonly used term
for a count-controlled loop is definite. You know
from the outset that the loop body will be executed
a definite number of times; ten times in our exam-
ple. In contrast, you do not know how many itera-
tions it takes to accumulate a target balance. Such a
loop is called indefinite.

4.2 The for Loop
The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

You can visualize the for loop as
an orderly sequence of steps.

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

Syntax 4.2 for Statement

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

This loop executes 6 times.
 See page 164.

This initialization
happens once
before the loop starts.

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The variable i is
defined only in this for loop.

See page 161.

These three
expressions should be related.

 See page 163.

for (initialization; condition; update)
{
 statements
}

Syntax

Additional online example code
provides complete programs for
students to run and modify.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

x  Walkthrough 

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 277

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Next, we swap the coins in positions 1 and 5:

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
• purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English.

For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car for
ten years. Assume a price of $4 per gallon of gas and usage of
15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal?

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

Table 1 Variable Declarations in Java

tnemmoCemaN elbairaV

int cans = 6; Declares an integer variable and initializes it with 6.

int total = cans + bottles; The initial value need not be a constant. (Of course, cans and bottles
must have been previously declared.)

bottles = 1; Error: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable—see Section 2.1.4.

int bottles = "10"; Error: You cannot initialize a number with a string.

int bottles; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 37.

int cans, bottles; Declares two integer variables in a single statement. In this book, we
will declare each variable in a separate statement.

Memorable photos reinforce
analogies and help students
remember the concepts.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Worked Examples and
Video Examples apply the
steps in the How To to a
different example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

Walkthrough  xi

•

Figure 3 Parameter Passing

1 Method call result1 =

sideLength =

2 Initializing method parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After method call result1 = 8

double result1 = cubeVolume(2);

double volume = sideLength * sideLength * sideLength;
return volume;

double result1 = cubeVolume(2);

double result1 = cubeVolume(2);

The parameter variable sideLength of the cubeVolume method is created when the
method is called. 1

• The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. 2

• The method computes the expression sideLength * sideLength * sideLength, which
has the value 8. That value is stored in the variable volume. 3

• The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubeVolume method. The caller
puts the return value in the result1 variable. 4

A N I M AT I O N
Parameter Passing

Figure 3
Execution of
a for Loop

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{

System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Progressive figures trace code
segments to help students visualize
the program flow. Color is used
consistently to make variables and
other elements easily recognizable.

Students can view animations
of key concepts on the Web.

section_1/DoubleInvestment.java

1 /**
2 This program computes the time required to double an investment.
3 */
4 public class DoubleInvestment
5 {
6 public static void main(String[] args)
7 {
8 final double RATE = 5;
9 final double INITIAL_BALANCE = 10000;

10 final double TARGET = 2 * INITIAL_BALANCE;
11
12 double balance = INITIAL_BALANCE;
13 int year = 0;
14
15 // Count the years required for the investment to double
16
17 while (balance < TARGET)
18 {
19 year++;
20 double interest = balance * RATE / 100;
21 balance = balance + interest;
22 }
23
24 System.out.println("The investment doubled after "
25 + year + " years.");
26 }
27 }

6. Write the for loop of the InvestmentTable.java program as a while loop.
7. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{
 System.out.println(n);
}

8. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
9. Write a for loop that computes the sum of the integers from 1 to n.

10. How would you modify the for loop of the InvestmentTable.java program to
print all balances until the investment has doubled?

Now you can try these exercises at the end of the chapter: R4.3, R4.8, P4.8, P4.13.

S E L F C H E C K

Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

Optional science and business
exercises engage students with
realistic applications of Java.

•• Science P6.32 Sounds can be represented by an array of “sample
val ues” that describe the intensity of the sound at a
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a
method process for processing the sample values, and
saves the sound file. Your task is to implement the
process method by introducing an echo. For each
sound value, add the value from 0.2 seconds ago.
Scale the result so that no value is larger than 32767. •• Business P9.21 Implement a superclass Appointment and sub-

classes Onetime, Daily, and Monthly. An appoint-
ment has a description (for example, “see the
dentist”) and a date and time. Write a method
occursOn(int year, int month, int day) that checks
whether the appointment occurs on that date.
For example, for a monthly appointment, you
must check whether the day of the month
matches. Then fill an array of Appointment objects
with a mixture of appointments. Have the user enter a date and print out all appoint-
ments that occur on that date.

Program listings are carefully
designed for easy reading,
going well beyond simple
color coding. Methods are set
off by a subtle outline.

xii  Walkthrough 

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the tax program with the data
from the program run on page 102. In lines 15 and 16, tax1 and
tax2 are initialized to 0.

8 public static void main(String[] args)
9 {

10 final double RATE1 = 0.10;
11 final double RATE2 = 0.25;
12 final double RATE1_SINGLE_LIMIT = 32000;
13 final double RATE1_MARRIED_LIMIT = 64000;
14
15 double tax1 = 0;
16 double tax2 = 0;
17

In lines 22 and 25, income and maritalStatus are
initialized by input statements.

20 Scanner in = new Scanner(System.in);
21 System.out.print("Please enter your income: ");
22 double income = in.nextDouble();
23
24 System.out.print("Please enter s for single, m for married: ");
25 String maritalStatus = in.next();

Programming Tip 3.5

Hand-tracing helps you
understand whether a
program works correctly.

 marital
 tax1 tax2 income status

 0 0

 marital
 tax1 tax2 income status

 0 0 80000 m

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the fig ure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{
 File selectedFile = chooser.getSelectedFile();
 in = new Scanner(selectedFile);
 . . .
}

Special Topic 7.2

O N L I N E E X A M P L E

A program that
demonstrates how to
use a file chooser.

A JFileChooser Dialog Box

Call with
showOpenDialog

method

Button is “Save” when
showSaveDialog method

is called

According to legend,
the first bug was

found in the Mark II, a huge electrome-
chanical computer at Harvard Univer-
sity. It really was caused by a bug—a
moth was trapped in a relay switch.

Actually, from the note that the
operator left in the log book next to
the moth (see the figure), it appears as
if the term “bug” had already been in
active use at the time.

The First Bug

The pioneering computer scientist
Maurice Wilkes wrote, “Somehow, at
the Moore School and afterwards, one
had always assumed there would be
no particular difficulty in getting pro-

grams right. I can remember the exact
instant in time at which it dawned on
me that a great part of my future life
would be spent finding mistakes in
my own programs.”

Random Fact 4.1 The First Bug

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Length and Size

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax
for every data type.

Common Error 6.4

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Special Topics present optional
topics and provide additional
explanation of others. New
features of Java 7 are also
covered in these notes.

Random Facts provide historical and
social information on computing—for
interest and to fulfill the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

Walkthrough  xiii

WileyPLUS
WileyPLUS is an online environment that supports students and instructors. This
book’s WileyPLUS course can complement the printed text or replace it altogether.

For Students
Different learning styles, different levels of proficiency, different levels of prepara-
tion—each student is unique. WileyPLUS empowers all students to take advantage
of their individual strengths.

Integrated, multi-media resources—including audio and visual exhibits and demon-
stration problems—encourage active learning and provide multiple study paths to
fit each student’s learning preferences.

•	 Worked Examples apply the problem-solving steps in the book to another realis-
tic example.

•	 Video Examples present the author explaining the steps he is taking and showing
his work as he solves a programming problem.

•	 Animations of key concepts allow students to replay dynamic explanations that
instructors usually provide on a whiteboard.

Self-assessments are linked to relevant portions of the text. Students can take control
of their own learning and practice until they master the material.

•	 Practice quizzes can reveal areas where students need to focus.
•	 “Learn by doing” lab exercises can be assigned for self-study or for use in the lab.
•	 “Code completion” questions enable students to practice programming skills by

filling in small code snippets and getting immediate feedback.

For Instructors
WileyPLUS includes all of the instructor resources found on the companion site,
and more.

WileyPLUS gives you tools for identifying those students who are falling behind,
allowing you to intervene accordingly, without having to wait for them to come to
office hours.

•	 Practice quizzes for pre-reading assessment, self-quizzing, or additional practice
can be used as-is or modified for your course needs.

•	 Multi-step laboratory exercises can be used in lab or assigned for extra student
practice.

WileyPLUS simplifies and automates student performance assessment, making
assignments, and scoring student work.

•	 An extensive set of multiple-choice questions for quizzing and testing have been
developed to focus on skills, not just terminology.

•	 “Code completion” questions can also be added to online quizzes.
•	 Solutions to all review and programming exercises are provided.

To order Big Java, Late Objects, with its WileyPLUS course for your students, use isbn 978-1-118-28906-8.

xiv  Walkthrough 

Students can read the book online
and take advantage of searching
and cross-linking.

With WileyPLUS …

Students can practice programming
by filling in small code snippets
and getting immediate feedback.

Instructors can assign drill-and-practice
questions to check that students did
their reading and grasp basic concepts.

Students can play and replay
dynamic explanations of
concepts and program flow.

Students can watch and listen as the author
solves a problem step-by-step.

Acknowledgments  xv

Acknowledgments
Many thanks to Beth Lang Golub, Don Fowley, Elizabeth Mills, Thomas Kulesa,
Wendy Ashenberg, Lisa Gee, Andre Legaspi, Kevin Holm, and John Curley at John
Wiley & Sons, and Vickie Piercey at Publishing Services for their help with this proj-
ect. An especially deep acknowledgment and thanks goes to Cindy Johnson for her
hard work, sound judgment, and amazing attention to detail.

I am grateful to Jose Cordova, University of Louisiana, Monroe, Rick Giles, Aca-
dia University, Amitava Karmaker, University of Wisconsin, Stout, Khaled Mansour,
Washtenaw Community College, Patricia McDermott-Wells, Florida International
University, Brent Seales, University of Kentucky, Donald Smith, Columbia College,
and David Woolbright, Columbus State University, for their excellent work on the
supplemental material. Thank you also to Jose-Arturo Mora-Soto, Jesica Rivero-
Espinosa, and Julio-Angel Cano-Romero of the University of Madrid for their con-
tribution of business exercises.

Many thanks to the individuals who provided feedback, reviewed the manuscript,
made valuable suggestions, and brought errors and omissions to my attention. They
include:

Lynn Aaron, SUNY Rockland
Community College

Karen Arlien, Bismarck State College
Jay Asundi, University of Texas, Dallas
Eugene Backlin, DePaul University
William C. Barge, Trine University
Bruce J. Barton, Suffolk County

Community College
Sanjiv K. Bhatia, University of Missouri,

St. Louis
Anna Bieszczad, California State

University, Channel Islands
Jackie Bird, Northwestern University
Eric Bishop, Northland Pioneer College
Paul Bladek, Edmonds Community

College
Paul Logasa Bogen II, Texas A&M

University
Irene Bruno, George Mason University
Paolo Bucci, Ohio State University
Joe Burgin, College of Southern

Maryland
Robert P. Burton, Brigham Young

University
Leonello Calabresi, University of

Maryland University College
Martine Ceberio, University of Texas,

El Paso

Uday Chakraborty, University of
Missouri, St. Louis

Suchindran Chatterjee, Arizona State
University

Xuemin Chen, Texas Southern
University

Haiyan Cheng, Willamette University
Chakib Chraibi, Barry University
Ta-Tao Chuang, Gonzaga University
Vincent Cicirello, Richard Stockton

College
Mark Clement, Brigham Young

University
Gerald Cohen, St. Joseph’s College
Ralph Conrad, San Antonio College
Dave Cook, Stephen F. Austin State

University
Rebecca Crellin, Community College

of Allegheny County
Leslie Damon, Vermont Technical

College
Geoffrey D. Decker, Northern Illinois

University
Khaled Deeb, Barry University, School

of Adult and Continuing Education
Akshaye Dhawan, Ursinus College
Julius Dichter, University of Bridgeport
Mike Domaratzki, University of

Manitoba

xvi A cknowledgments 

Philip Dorin, Loyola Marymount
University

Anthony J. Dos Reis, SUNY New Paltz
Elizabeth Drake, Santa Fe College
Tom Duffy, Norwalk Community

College
Michael Eckmann, Skidmore College
Sander Eller, California State

Polytechnic University, Pomona
Amita Engineer, Valencia Community

College
Dave Evans, Pasadena Community

College
James Factor, Alverno College
Chris Fietkiewicz, Case Western

Reserve University
Terrell Foty, Portland Community

College
Valerie Frear, Daytona State College
Ryan Garlick, University of North Texas
Aaron Garrett, Jacksonville State

University
Stephen Gilbert, Orange Coast College
Peter van der Goes, Rose State College
Billie Goldstein, Temple University
Michael Gourley, University of Central

Oklahoma
Grigoriy Grinberg, Montgomery

College
Linwu Gu, Indiana University
Sylvain Guinepain, University of

Oklahoma, Norman
Bruce Haft, Glendale Community

College
Nancy Harris, James Madison

University
Allan M. Hart, Minnesota State

University, Mankato
Ric Heishman, George Mason

University
Guy Helmer, Iowa State University
Katherin Herbert, Montclair State

University
Rodney Hoffman, Occidental College
May Hou, Norfolk State University
John Houlihan, Loyola University

Andree Jacobson, University of New
Mexico

Eric Jiang, University of San Diego
Christopher M. Johnson, Guilford

College
Jonathan Kapleau, New Jersey Institute

of Technology
Amitava Karmaker, University of

Wisconsin, Stout
Rajkumar Kempaiah, College of Mount

Saint Vincent
Mugdha Khaladkar, New Jersey

Institute of Technology
Richard Kick, Newbury Park High

School
Julie King, Sullivan University,

Lexington
Samuel Kohn, Touro College
April Kontostathis, Ursinus College
Ron Krawitz, DeVry University
Nat Kumaresan, Georgia Perimeter

College
Debbie Lamprecht, Texas Tech

University
Jian Lin, Eastern Connecticut State

University
Hunter Lloyd, Montana State

University
Cheng Luo, Coppin State University
Kelvin Lwin, University of California,

Merced
Frank Malinowski, Dalton College
John S. Mallozzi, Iona College
Khaled Mansour, Washtenaw

Community College
Kenneth Martin, University of North

Florida
Deborah Mathews, J. Sargeant

Reynolds Community College
Louis Mazzucco, State University of

New York at Cobleskill and
Excelsior College

Drew McDermott, Yale University
Hugh McGuire, Grand Valley State

University
Michael L. Mick, Purdue University,

Calumet

Acknowledgments  xvii

Jeanne Milostan, University of
California, Merced

Sandeep Mitra, SUNY Brockport
Michel Mitri, James Madison University
Kenrick Mock, University of Alaska

Anchorage
Namdar Mogharreban, Southern

Illinois University
Shamsi Moussavi, Massbay Community

College
Nannette Napier, Georgia Gwinnett

College
Tony Tuan Nguyen, De Anza College
Michael Ondrasek, Wright State

University
K. Palaniappan, University of Missouri
James Papademas, Oakton Community

College
Gary Parker, Connecticut College
Jody Paul, Metropolitan State College

of Denver
Mark Pendergast, Florida Gulf Coast

University
James T. Pepe, Bentley University
Jeff Pittges, Radford University
Tom Plunkett, Virginia Tech
Linda L. Preece, Southern Illinois

University
Vijay Ramachandran, Colgate

University
Craig Reinhart, California Lutheran

University
Jonathan Robinson, Touro College
Chaman Lal Sabharwal, Missouri

University of Science & Technology
Katherine Salch, Illinois Central

College
Namita Sarawagi, Rhode Island College
Ben Schafer, University of Northern

Iowa
Walter Schilling, Milwaukee School of

Engineering
Jeffrey Paul Scott, Blackhawk Technical

College
Amon Seagull, NOVA Southeastern

University
Linda Seiter, John Carroll University

Kevin Seppi, Brigham Young University
Ricky J. Sethi, UCLA, USC ISI, and

DeVry University
Ali Shaykhian, Florida Institute of

Technology
Lal Shimpi, Saint Augustine’s College
Victor Shtern, Boston University
Rahul Simha, George Washington

University
Jeff Six, University of Delaware
Donald W. Smith, Columbia College
Derek Snow, University of Southern

Alabama
Peter Spoerri, Fairfield University
David R. Stampf, Suffolk County

Community College
Peter Stanchev, Kettering University
Ryan Stansifer, Florida Institute of

Technology
Stu Steiner, Eastern Washington

University
Robert Strader, Stephen F. Austin

State University
David Stucki, Otterbein University
Ashok Subramanian, University of

Missouri, St Louis
Jeremy Suing, University of Nebraska,

Lincoln
Dave Sullivan, Boston University
Vaidy Sunderam, Emory University
Hong Sung, University of Central

Oklahoma
Monica Sweat, Georgia Tech University
Joseph Szurek, University of Pittsburgh,

Greensburg
Jack Tan, University of Wisconsin
Cynthia Tanner, West Virginia

University
Russell Tessier, University of

Massachusetts, Amherst
Krishnaprasad Thirunarayan, Wright

State University
Megan Thomas, California State

University, Stanislaus
Timothy Urness, Drake University
Eliana Valenzuela-Andrade, University

of Puerto Rico at Arecibo

xviii A cknowledgments 

Tammy VanDeGrift, University of
Portland

Philip Ventura, Broward College
David R. Vineyard, Kettering

University
Qi Wang, Northwest Vista College
Jonathan Weissman, Finger Lakes

Community College
Reginald White, Black Hawk

Community College
Ying Xie, Kennesaw State University
Arthur Yanushka, Christian Brothers

University

Chen Ye, University of Illinois, Chicago
Wook-Sung Yoo, Fairfield University
Steve Zale, Middlesex County College
Bahram Zartoshty, California State

University, Northridge
Frank Zeng, Indiana Wesleyan

University
Hairong Zhao, Purdue University

Calumet
Stephen Zilora, Rochester Institute of

Technology

And a special thank you to our class testers:

Eugene Backlin and the students of DePaul University, Loop
Debra M. Duke and the students of J. Sargeant Reynolds Community College
Gerald Gordon and the students of DePaul University, Loop
Mike Gourley and the students of the University of Central Oklahoma
Mohammad Morovati and the students of the College of DuPage
Mutsumi Nakamura and the students of Arizona State University
George Novacky and the students of the University of Pittsburgh
Darrin Rothe and the students of the Milwaukee School of Engineering
Paige Rutner and the students of Georgia Southern University
Narasimha Shashidhar and the students of Sam Houston State University
Mark Sherriff and the students of the University of Virginia
Frank Zeng and the students of Indiana Wesleyan University

CONTENTS

xix

Preface  v

Special Features  xxvi

Introduction  1

1.1	 Computer Programs   2

1.2	 The Anatomy of a Computer   3

1.3	 The Java Programming Language   5

1.4	 Becoming Familiar with Your Programming Environment   8

1.5	 Analyzing Your First Program   12

1.6	 Errors   15

1.7	 Problem Solving: Algorithm Design   16

Fundamental Data Types  29

2.1	 Variables   30

2.2	 Arithmetic   41

2.3	 Input and Output   48

2.4	 Problem Solving: First Do It By Hand   57

2.5	 Strings   59

Decisions  81

3.1	 The if Statement   82

3.2	 Comparing Numbers and Strings   88

3.3	 Multiple Alternatives   96

3.4	 Nested Branches   100

3.5	 Problem Solving: Flowcharts   105

3.6	 Problem Solving: Test Cases   108

3.7	 Boolean Variables and Operators   111

3.8	 Application: Input Validation   116

Loops  139

4.1	 The while Loop   140

4.2	 Problem Solving: Hand-Tracing   147

4.3	 The for Loop   150

4.4	 The do Loop   156

4.5	 Application: Processing Sentinel Values   158

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

xx C ontents 

4.6	 Problem Solving: Storyboards   162

4.7	 Common Loop Algorithms   165

4.8	 Nested Loops   172

4.9	 Application: Random Numbers and Simulations   176

methods  201

5.1	 Methods as Black Boxes   202

5.2	 Implementing Methods   204

5.3	 Parameter Passing   207

5.4	 Return Values   210

5.5	 Methods Without Return Values   214

5.6	 Problem Solving: Reusable Methods   215

5.7	 Problem Solving: Stepwise Refinement   218

5.8	 Variable Scope   225

5.9	 Recursive Methods (Optional)   228

Arrays and Array lists  249

6.1	 Arrays   250

6.2	 The Enhanced for Loop   257

6.3	 Common Array Algorithms   258

6.4	 Using Arrays with Methods   268

6.5	 Problem Solving: Adapting Algorithms   272

6.6	 Problem Solving: Discovering Algorithms by Manipulating

Physical Objects   279

6.7	 Two-Dimensional Arrays   282

6.8	 Array Lists   289

Input/output and exception handling  317

7.1	 Reading and Writing Text Files   318

7.2	 Text Input and Output   323

7.3	 Command Line Arguments   330

7.4	 Exception Handling   337

7.5	 Application: Handling Input Errors   347

Objects and Classes  361

8.1	 Object-Oriented Programming   362

8.2	 Implementing a Simple Class   364

8.3	 Specifying the Public Interface of a Class   367

8.4	 Designing the Data Representation   371

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Contents  xxi

8.5	 Implementing Instance Methods   372

8.6	 Constructors   375

8.7	 Testing a Class   380

8.8	 Problem Solving: Tracing Objects    386

8.9	 Problem Solving: Patterns for Object Data   388

8.10	 Object References   395

8.11	 Static Variables and Methods   400

Inheritance and Interfaces  415

9.1	 Inheritance Hierarchies   416

9.2	 Implementing Subclasses   420

9.3	 Overriding Methods   424

9.4	 Polymorphism   430

9.5	 Object: The Cosmic Superclass   441

9.6	 Interface Types   448

Graphical User Interfaces  465

10.1	 Frame Windows   466

10.2	 Events and Event Handling   470

10.3	 Processing Text Input   481

10.4	 Creating Drawings   487

Advanced user Interfaces  507

11.1	 Layout Management   508

11.2	 Choices   510

11.3	 Menus   521

11.4	 Exploring the Swing Documentation   528

11.5	 Using Timer Events for Animations   533

11.6	 Mouse Events   536

Object-Oriented Design  549

12.1	 Classes and Their Responsibilities   550

12.2	 Relationships Between Classes   554

12.3	 Application: Printing an Invoice   562

12.4	 Packages   574

Chapter 9 

Chapter 10 

Chapter 11 

Chapter 12 

xxii C ontents 

RECURSION  585

13.1	 Triangle Numbers Revisited   586

13.2	 Problem Solving: Thinking Recursively   590

13.3	 Recursive Helper Methods   594

13.4	 The Efficiency of Recursion   596

13.5	 Permutations   601

13.6	 Mutual Recursion   606

13.7	 Backtracking   612

Sorting and searching  627

14.1	 Selection Sort   628

14.2	 Profiling the Selection Sort Algorithm   631

14.3	 Analyzing the Performance of the Selection Sort Algorithm   634

14.4	 Merge Sort   639

14.5	 Analyzing the Merge Sort Algorithm   642

14.6	 Searching   646

14.7	 Problem Solving: Estimating the Running Time of an Algorithm   651

14.8	 Sorting and Searching in the Java Library   656

The Java Collections Framework  669

15.1	 An Overview of the Collections Framework   670

15.2	 Linked Lists   672

15.3	 Sets   679

15.4	 Maps   684

15.5	 Stacks, Queues, and Priority Queues   690

15.6	 Stack and Queue Applications   693

Basic Data Structures  713

16.1	 Implementing Linked Lists   714

16.2	 Implementing Array Lists   728

16.3	 Implementing Stacks and Queues   733

16.4	 Implementing a Hash Table   739

tree Structures  759

17.1	 Basic Tree Concepts   760

17.2	 Binary Trees   764

17.3	 Binary Search Trees   769

Chapter 13 

Chapter 14 

Chapter 15 

Chapter 16 

Chapter 17 

Contents  xxiii

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

17.4	 Tree Traversal   778

17.5	 Red-Black Trees   784

17.6	 Heaps   791

17.7	 The Heapsort Algorithm   802

Generic Classes  817

18.1	 Generic Classes and Type Parameters   818

18.2	 Implementing Generic Types   819

18.3	 Generic Methods   823

18.4	 Constraining Type Parameters   825

18.5	 Type Erasure   829

Streams and Binary Input/Output  839

19.1	 Readers, Writers, and Streams   840

19.2	 Binary Input and Output   841

19.3	 Random Access   845

19.4	 Object Streams   851

Multithreading  (Web Only) 

20.1	 Running Threads  

20.2	 Terminating Threads  

20.3	 Race Conditions  

20.4	 Synchronizing Object Access  

20.5	 Avoiding Deadlocks  

20.6	 Application: Algorithm Animation  

Internet Networking  (Web Only) 

21.1	 The Internet Protocol  

21.2	 Application Level Protocols  

21.3	 A Client Program  

21.4	 A Server Program  

21.5	 URL Connections  

Relational databases  (Web Only) 

22.1	 Organizing Database Information  

22.2	 Queries  

22.3	 Installing a Database  

Chapter 18 

Chapter 19 

Chapter 20 

Chapter 21 

Chapter 22 

xxiv C ontents 

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

22.4	 Database Programming in Java

22.5	 Application: Entering an Invoice

XML  (Web Only) 

23.1	 XML Tags and Documents

23.2	 Parsing XML Documents

23.3	 Creating XML Documents

23.4	 Validating XML Documents

Web Applications  (Web Only) 

24.1	 The Architecture of a Web Application

24.2	 The Architecture of a JSF Application

24.3	 JavaBeans Components

24.4	 Navigation Between Pages

24.5	 JSF Components

24.6	 A Three-Tier Application

Appendix A	 THE BASIC LATIN AND LATIN-1 SUBSETS OF UNICODE    861

Appendix B	 JAVA Operator Summary   865

Appendix C	 JAVA Reserved Word Summary   867

Appendix D	 THE JAVA LIBRARY   869

Appendix E	 JAVA SYNTAX SUMMARY  913

Appendix F	 HTML SUMMARY  925

Appendix G	 TOOL SUMMARY  931

Appendix H	 JAVADOC SUMMARY  933

Appendix I	 NUMBER SYSTEMS  935

Appendix J	 BIT AND SHIFT OPERATIONS  941

Appendix K	 UML SUMMARY  943

Appendix L	 JAVA LANGUAGE CODING GUIDELINES  947

Glossary   955

Index   969

Credits   1011

Chapter 23 

Chapter 24 

Appendices

Contents  xxv

  Syntax Boxes

Arrays    251
Array Lists    290
Assignment    34

Cast   44
Catching Exceptions    341
Comparisons    89
Constant Declaration   35
Constructor with Superclass Initializer   430
Constructors    376

Declaring a Generic Class    820
Declaring a Generic Method    824

for Statement    152

if Statement    84
Input Statement    49
Instance Methods    373
Instance Variable Declaration   365
Interface Types    449

Java Program   13

Static Method Declaration   205
Subclass Declaration   422

The Enhanced for Loop   258
The finally Clause   344
The instanceof Operator   445
The throws Clause   343
Throwing an Exception   338
Two-Dimensional Array Declaration   283

while Statement   141

Variable Declaration   31

Alphabetical list of

xxvi  Special Features

CHAPTER

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Common
Errors

How Tos
 and

Worked Examples

1	 Introduction Omitting Semicolons	 14
Misspelling Words	 16

Describing an Algorithm
with Pseudocode	 20

Compiling and Running
a Program	

Writing an Algorithm for
Tiling a Floor	

Dividing Household Expenses	

2	Fundamental
Data Types

Using Undeclared or
Uninitialized Variables	 37

Overflow	 38
Roundoff Errors	 38
Unintended Integer Division	 46
Unbalanced Parentheses	 46

Using Integer Division	
Carrying out Computations	 54
Computing the Cost

of Stamps	
Computing Travel Time	
Computing Distances on Earth	

3	Decisions A Semicolon After the
if Condition	 86

Exact Comparison of
Floating-Point Numbers	 91

Using == to Compare Strings	 92
The Dangling else Problem	 104
Combining Multiple

Relational Operators	 113
Confusing && and ||

Conditions	 114

Implementing an
if Statement 	 93

Extracting the Middle	
Computing the Plural of

an English Word	
The Genetic Code	

4	Loops Don’t Think “Are We
There Yet?”	 144

Infinite Loops	 145
Off-by-One Errors	 145

Evaluating a Cell Phone Plan 	
Writing a Loop	 169
Credit Card Processing	
Manipulating the Pixels

in an Image	
Drawing a Spiral	

5	Methods Trying to Modify Arguments	 209
Missing Return Value	 212

Implementing a Method	 212
Generating Random

Passwords	
Calculating a Course Grade	
Debugging	
Thinking Recursively	 231
Fully Justified Text	

Special Features  xxvii

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming
Tips Special Topics Random Facts

Backup Copies	 11

The ENIAC and the Dawn
of Computing	 5

Choose Descriptive Variable
Names	 38

Do Not Use Magic Numbers	 39
Spaces in Expressions	 47
Use the API Documentation	 53

Numeric Types in Java	 39
Big Numbers 	 40
Combining Assignment

and Arithmetic	 47
Instance Methods and

Static Methods	 64
Using Dialog Boxes for Input

and Output	 65

The Pentium
Floating-Point Bug	 48

International Alphabets
and Unicode	 66

Brace Layout	 86
Always Use Braces	 86
Tabs	 87
Avoid Duplication in Branches	88
Hand-Tracing	 103
Make a Schedule and Make

Time for Unexpected
Problems	 109

The Conditional Operator	 87
Lexicographic Ordering

of Strings	 92
The switch Statement	 99
Enumeration Types	 105
Logging	 110
Short-Circuit Evaluation

of Boolean Operators	 114
De Morgan’s Law	 115

The Denver Airport
Luggage Handling System	 95

Artificial Intelligence	 119

Use for Loops for Their
Intended Purpose Only	 155

Choose Loop Bounds That
Match Your Task	 155

Count Iterations	 156

The Loop-and-a-Half Problem
and the break Statement	 160

Redirection of Input
and Output	 161

Drawing Graphical Shapes	 179

The First Bug	 146
Software Piracy	 182

Method Comments	 207
Do Not Modify Parameter

Variables	 209
Keep Methods Short	 223
Tracing Methods	 223
Stubs	 224

The Explosive Growth of
Personal Computers	 232

xxviii  Special Features

CHAPTER

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming
Tips Special Topics Random Facts

Use Arrays for Sequences
of Related Items	 256

Reading Exception Reports	 274

Sorting with the Java Library	 267
Binary Search	 267
Methods with a Variable

Number of Parameters 	 272
Two-Dimensional Arrays with

Variable Row Lengths 	 288
Multidimensional Arrays 	 289
The Diamond Syntax in

Java 7	 299

An Early Internet Worm	 256

Throw Early, Catch Late	 345
Do Not Squelch Exceptions	 345
Do Not Use catch and finally

in the Same try Statement	 346

Reading Web Pages	 321
File Dialog Boxes	 321
Reading and Writing

Binary Data	 322
Regular Expressions	 330
Automatic Resource

Management in Java 7	 346

Encryption Algorithms	 336
The Ariane Rocket Incident	 347

All Data Variables Should
Be Private; Most Methods
Should Be Public	 374

The javadoc Utility 	  370
Overloading 	  380
Calling One Constructor

from Another 	  399

Electronic Voting Machines 	  394
Open Source and

Free Software 	  402

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior	 420

Calling the Superclass
Constructor	 429

Dynamic Method Lookup and
the Implicit Parameter 	 433

Abstract Classes 	 434
Final Methods and Classes 	 435
Protected Access 	 436
Inheritance and the
toString Method 	 446

Inheritance and the
equals Method 	 447

Constants in Interfaces	 453
Function Objects 	 454

Common
Errors

How Tos
 and

Worked Examples

6	Arrays and Array Lists Bounds Errors	 255
Uninitialized Arrays	 255
Underestimating the Size

of a Data Set	 267
Length and Size	 299

Working with Arrays	 275
Rolling the Dice	
Removing Duplicates from

an Array	
A World Population Table	
Game of Life	

7	 Input/Output and
Exception Handling

Backslashes in File Names	 321
Constructing a Scanner with

a String	 321

Computing a Document’s
Readability	

Processing Text Files	 333
Analyzing Baby Names	
Detecting Accounting Fraud	

8	Objects and Classes Forgetting to Initialize
Object References
in a Constructor 	 378

Trying to Call a Constructor	 379
Declaring a Constructor

as void	  379

Implementing a Class	 382
Implementing a

Bank Account Class	
Paying Off a Loan	
Modeling a Robot Escaping

from a Maze	

9	 Inheritance and
Interfaces

Replicating Instance Variables
from the Superclass	 423

Confusing Super- and
Subclasses	  424

Accidental Overloading	  428
Forgetting to Use super

When Invoking a
Superclass Method	  429

Don’t Use Type Tests 	 446
Forgetting to Declare Implement-

ing Methods as Public 	 453

Developing an
Inheritance Hierarchy	 436

Implementing an
Employee Hierarchy for
Payroll Processing	

Building a Discussion Board	
Drawing Geometric Shapes	

Special Features  xxix

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming
Tips Special Topics Random Facts

Use Arrays for Sequences
of Related Items	 256

Reading Exception Reports	 274

Sorting with the Java Library	 267
Binary Search	 267
Methods with a Variable

Number of Parameters 	 272
Two-Dimensional Arrays with

Variable Row Lengths 	 288
Multidimensional Arrays 	 289
The Diamond Syntax in

Java 7	 299

An Early Internet Worm	 256

Throw Early, Catch Late	 345
Do Not Squelch Exceptions	 345
Do Not Use catch and finally

in the Same try Statement	 346

Reading Web Pages	 321
File Dialog Boxes	 321
Reading and Writing

Binary Data	 322
Regular Expressions	 330
Automatic Resource

Management in Java 7	 346

Encryption Algorithms	 336
The Ariane Rocket Incident	 347

All Data Variables Should
Be Private; Most Methods
Should Be Public	 374

The javadoc Utility 	  370
Overloading 	  380
Calling One Constructor

from Another 	  399

Electronic Voting Machines 	  394
Open Source and

Free Software 	  402

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior	 420

Calling the Superclass
Constructor	 429

Dynamic Method Lookup and
the Implicit Parameter 	 433

Abstract Classes 	 434
Final Methods and Classes 	 435
Protected Access 	 436
Inheritance and the
toString Method 	 446

Inheritance and the
equals Method 	 447

Constants in Interfaces	 453
Function Objects 	 454

xxx  Special Features

CHAPTER

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming
Tips Special Topics Random Facts

Don’t Use a Frame
as a Listener	 478

Adding the main Method to the
Frame Class	 470

Local Inner Classes	 479
Anonymous Inner Classes	 480

Use a GUI Builder	 520 Keyboard Events	 539
Event Adapters	 540

Make Parallel Arrays into
Arrays of Objects	 561

Consistency	 562

Attributes and Methods in
UML Diagrams	 559

Multiplicities	 560
Aggregation, Association,

and Composition	 560

The Limits of Computation	 604

Oh, Omega, and Theta	 636
Insertion Sort	 637
The Quicksort Algorithm	 644
The Parameterized
Comparable Interface	 658

The Comparator Interface	 659

The First Programmer	 650

Use Interface References to
Manipulate Data Structures	683

Hash Functions	 688 Standardization	 678
Reverse Polish Notation	 701

Common
Errors

How Tos
 and

Worked Examples

10	 Graphical User
Interfaces

Modifying Parameter Types
in the Implementing
Method	 478

Forgetting to Attach
a Listener	 478

Forgetting to Repaint	 496
By Default, Components Have

Zero Width and Height	 497

Drawing Graphical Shapes 	 497
Coding a Bar Chart Creator	
Solving Crossword Puzzles	

11	 Advanced User
Interfaces

Laying Out a User Interface	 518
Programming a Working

Calculator	
Adding Mouse and

Keyboard Support to the
Bar Chart Creator	

Designing a Baby
Naming Program	

12	 Object-Oriented Design Using CRC Cards and
UML Diagrams in
Program Design	 558

Simulating an Automatic
Teller Machine	

13	 Recursion Infinite Recursion	 590 Finding Files	
Towers of Hanoi	

14	 Sorting and Searching The compareTo Method Can
Return Any Integer,
Not Just –1, 0, and 1	 658

Enhancing the Insertion Sort
Algorithm	

15	 The Java Collections
Framework

Choosing a Collection	 686
Word Frequency	
Simulating a Queue of

Waiting Customers	
Building a Table of Contents	

Special Features  xxxi

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming
Tips Special Topics Random Facts

Don’t Use a Frame
as a Listener	 478

Adding the main Method to the
Frame Class	 470

Local Inner Classes	 479
Anonymous Inner Classes	 480

Use a GUI Builder	 520 Keyboard Events	 539
Event Adapters	 540

Make Parallel Arrays into
Arrays of Objects	 561

Consistency	 562

Attributes and Methods in
UML Diagrams	 559

Multiplicities	 560
Aggregation, Association,

and Composition	 560

The Limits of Computation	 604

Oh, Omega, and Theta	 636
Insertion Sort	 637
The Quicksort Algorithm	 644
The Parameterized
Comparable Interface	 658

The Comparator Interface	 659

The First Programmer	 650

Use Interface References to
Manipulate Data Structures	683

Hash Functions	 688 Standardization	 678
Reverse Polish Notation	 701

xxxii  Special Features

CHAPTER

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Common
Errors

How Tos
 and

Worked Examples

16	 Basic Data Structures Implementing a
Doubly-Linked List	

17	 Tree Structures Building a Huffman Tree	
Implementing a

Red-Black Tree	

18	 Generic Classes Genericity and Inheritance	 827
The Array Store Exception	 827
Using Generic Types in a

Static Context	 832

Making a Generic Binary
Search Tree Class	

19	 Streams and Binary
Input/Output

Negative byte Values	 845 Choosing a File Format	 854

20	 Multithreading
(WEB ONLY) 

Calling await Without
Calling signalAll	

Calling signalAll Without
Locking the Object	

21	 Internet Networking
(WEB ONLY) 

Designing Client/Server
Programs	

22	 Relational Databases
(WEB ONLY) 

Joining Tables Without
Specifying a Link Condition	

Constructing Queries from
Arbitrary Strings	

Programming a Bank
Database	

23	 XML
(WEB ONLY) 

XML Elements Describe
Objects, Not Classes	

Designing an XML
Document Format	

Writing an XML Document	
Writing a DTD	

24	 Web Applications
(WEB ONLY) 

Designing a Managed Bean	

Special Features  xxxiii

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Programming
Tips Special Topics Random Facts

Static Classes	 728
Open Addressing	 747

Wildcard Types	 828
Reflection	 832

Use the Runnable Interface	
Check for Thread Interruptions

in the run Method
of a Thread	

Thread Pools 	
Object Locks and

Synchronized Methods 	
The Java Memory Model 	

Embedded Systems 	

Use High-Level Libraries	

Stick with the Standard	
Avoid Unnecessary Data

Replication	
Don’t Replicate Columns

in a Table	
Don’t Hardwire Database

Connection Parameters
into Your Program	

Let the Database Do the Work	

Primary Keys and Indexes	
Transactions	
Object-Relational Mapping	

Databases and Privacy	

Prefer XML Elements over
Attributes	

Avoid Children with Mixed
Elements and Text	

Schema Languages	
Other XML Technologies	

Word Processing and
Typesetting Systems	

Grammars, Parsers, and
Compilers	

Session State and Cookies	
AJAX	

1C h a p t e r

1

Introduction

To learn about computers
and programming

To compile and run your first Java program

To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

1.1  Computer Programs  2

1.2  The Anatomy of a Computer  3

Random Fact 1.1: The ENIAC and the Dawn of
Computing  5

1.3  The Java Programming
Language  5

1.4  Becoming Familiar with Your
Programming Environment  8

Programming Tip 1.1: Backup Copies  11
Video Example 1.1: Compiling and Running

a Program 

1.5  Analyzing Your First
Program  12

Syntax 1.1:  Java Program  13
Common Error 1.1: Omitting Semicolons  14

1.6  Errors  15

Common Error 1.2: Misspelling Words  16

1.7  Problem Solving:
Algorithm Design  16

How To 1.1: Describing an Algorithm with
Pseudocode  20

Worked Example 1.1: Writing an Algorithm for
Tiling a Floor 

Video Example 1.2: Dividing Household
Expenses 

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Java program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1  Computer Programs
You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much narrower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and peripheral devices are collectively
called the hardware. The programs the computer executes are called the software.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

•	 Put a red dot at a given screen position.
•	 Add up two numbers.
•	 If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophisticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in simple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers execute
very basic
instructions in
rapid succession.

A computer program
is a sequence
of instructions
and decisions.

Programming is the
act of designing and
implementing
computer programs.

1.2 T he Anatomy of a Computer   3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.	 What is required to play music on a computer?
2.	 Why is a CD player less flexible than a computer?
3.	 What does a computer user need to know about programming in order to play a

video game?

1.2  The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure
1). The inside wiring of the CPU is enormously complicated. For example, the Intel
Core processor (a popular CPU for personal computers at the time of this writing) is
composed of several hundred million structural elements, called transistors.

The CPU performs program control and data processing. That is, the CPU locates
and executes the program instructions; it carries out arithmetic operations such as
addition, subtraction, multiplication, and division; it fetches data from external mem-
ory or devices and places processed data into storage.

There are two kinds of storage. Primary storage is made from memory chips:
electronic circuits that can store data, provided they are supplied with electric power.
Secondary storage, usually a hard disk (see Figure 2), provides slower and less
expensive storage that persists without electricity. A hard disk consists of rotating
platters, which are coated with a magnetic material, and read/write heads, which can
detect and change the magnetic flux on the platters.

The computer stores both data and programs. They are located in secondary stor-
age and loaded into memory when the program starts. The program then updates the
data in memory and writes the modified data back to secondary storage.

S e l f C h e c k

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

Figure 1  Central Processing Unit Figure 2  A Hard Disk

4  Chapter 1  Introduction

Figure 3  Schematic Design of a Personal Computer

Printer

Mouse

Keyboard

Ports

CPU

Memory

Disk
Controller

Hard disk

CD/DVD drive

Monitor

Speakers

Internet

Graphics
card

Sound
card

Network
card

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits information (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) are stored on
the hard disk, on a compact disk (or DVD), or elsewhere on the network. When a
program is started, it is brought into memory, where the CPU can read it. The CPU
reads the program one instruction at a time. As directed by these instructions, the
CPU reads data, modifies it, and writes it back to memory or the hard disk. Some pro-
gram instructions will cause the CPU to place dots on the display screen or printer or
to vibrate the speaker. As these actions happen many times over and at great speed,
the human user will perceive images and sound. Some program instructions read user
input from the keyboard or mouse. The program analyzes the nature of these inputs
and then executes the next appropriate instruction.

4.	 Where is a program stored when it is not currently running?
5.	 Which part of the computer carries out arithmetic operations, such as addition

and multiplication?

Practice It	 Now you can try these exercises at the end of the chapter: R1.2, R1.3.

S e l f C h e c k

1.3 T he Java Programming Language   5

1.3  The Java Programming Language
In order to write a computer program, you need
to provide a sequence of instructions that the CPU
can execute. A computer program consists of a large
number of simple CPU instructions, and it is tedious
and error-prone to specify them one by one. For that
reason, high-level programming languages have
been created. In a high-level language, you specify
the actions that your program should carry out. A
compiler translates the high-level instructions into
the more detailed instructions required by the CPU.
Many different programming languages have been
designed for different purposes.

In 1991, a group led by James Gosling and Patrick
Naughton at Sun Microsystems designed a program-
ming language, code-named “Green”, for use in

The ENIAC (electronic
numerical integrator
and computer) was

the first usable electronic computer. It
was designed by J. Presper Eckert and
John Mauchly at the University of Penn-
sylvania and was completed in 1946—
two years before transistors were
invented. The computer was housed in
a large room and consisted of many
cabinets containing about 18,000 vac-
uum tubes (see Figure 4). Vacuum
tubes burned out at the rate of several
tubes per day. An attendant with a
shopping cart full of tubes constantly
made the rounds and replaced defec-
tive ones. The computer was pro-
grammed by connecting wires on pan-
els. Each wiring configuration would
set up the computer for a particular
problem. To have the computer work
on a different problem, the wires had to
be replugged.

Work on the ENIAC was supported
by the U.S. Navy, which was interested
in computations of ballistic tables that
would give the trajectory of a projec
tile, depending on the wind resistance,
initial velocity, and atmospheric con-
ditions. To compute the trajectories,

one must find the numerical solu
tions of certain differential equations;
hence the name “numerical integra
tor”. Before machines like the ENIAC
were developed, humans did this kind

of work, and until the 1950s the word
“computer” referred to these people.
The ENIAC was later used for peace-
ful purposes, such as the tabulation of
U.S. Census data.

Figure 4  The ENIAC

Random Fact 1.1  The ENIAC and the Dawn of Computing

James Gosling

6  Chapter 1  Introduction

consumer devices, such as intelligent television “set-top” boxes. The language was
designed to be simple, secure, and usable for many different processor types. No cus-
tomer was ever found for this technology.

Gosling recounts that in 1994 the team realized, “We could write a really cool
browser. It was one of the few things in the client/server mainstream that needed
some of the weird things we’d done: architecture neutral, real-time, reliable, secure.”
Java was introduced to an enthusiastic crowd at the SunWorld exhibition in 1995,
together with a browser that ran applets—Java code that can be located anywhere on
the Internet. Figure 5 shows a typical example of an applet.

Since then, Java has grown at a phenomenal rate. Programmers have embraced the
language because it is easier to use than its closest rival, C++. In addition, Java has a
rich library that makes it possible to write portable programs that can bypass pro-
prietary operating systems—a feature that was eagerly sought by those who wanted
to be independent of those proprietary systems and was bitterly fought by their ven
dors. A “micro edition” and an “enterprise edition” of the Java library allow Java
programmers to target hardware ranging from smart cards and cell phones to the
largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for beginners: safety and portability.

The safety features of the Java language make it possible to run Java programs in
a browser without fear that they might attack your computer. As an added benefit,
these features also help you to learn the language faster. When you make an error that
results in unsafe behavior, you receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine,

Java was originally
designed for
programming
consumer devices,
but it was first
successfully used
to write Internet
applets.

Figure 5  An Applet for Visualizing Molecules Running in
a Browser Window (http://jmol.sourceforge.net/)

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

1.3 T he Java Programming Language   7

a program that simulates a real CPU. Portability is another benefit for the beginning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose programming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given
to making it really simple to write basic programs. A certain amount of technical
machinery is necessary in Java to write even the simplest programs. This is not a prob-
lem for professional programmers, but it can be a nuisance for beginning students. As
you learn how to program in Java, there will be times when you will be asked to be
satisfied with a preliminary explanation and wait for more complete detail in a later
chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 5 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required
to write useful programs. There are packages for graphics, user-interface design,
cryptography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

Table 1 Java Versions

Version Year Important New Features

1.0 1996

1.1 1997 Inner classes

1.2 1998 Swing, Collections framework

1.3 2000 Performance enhancements

1.4 2002 Assertions, XML support

5 2004 Generic classes, enhanced for loop, auto-boxing, enumerations, annotations

6 2006 Library improvements

7 2011 Small language changes and library improvements

6.	 What are the two most important benefits of the Java language?
7.	 How long does it take to learn the entire Java library?

Practice It	 Now you can try this exercise at the end of the chapter: R1.5.

Java programs are
distributed as
instructions for a
virtual machine,
making them
platform-
independent.

Java has a very large
library. Focus on
learning those parts
of the library that
you need for your
programming
projects.

S e l f C h e c k

8  Chapter 1  Introduction

1.4  Becoming Familiar with Your
Programming Environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a
tour.

Step 1	 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch an editor, a program that functions like a word
processor, in which you can enter your Java instructions; you then open a console
window and type commands to execute your program. You need to find out how to
get started with your environment.

Step 2	 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that displays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” program in Java:

public class HelloPrinter
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program statements into an editor window.
Create a new file and call it HelloPrinter.java, using the steps that are appropriate

for your environment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

Set aside some time
to become familiar
with the
programming
environment that
you will use for your
class work.

An editor is a
program for entering
and modifying text,
such as a
Java program.

Figure 6  Running the HelloPrinter Program in a Console Window

1.4  Becoming Familiar with Your Programming Environment   9

Figure 7 
Running the
HelloPrinter
Program in an
Integrated
Development
Environment

As you write this program, pay careful attention to the various symbols, and keep
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not
careful, you will run into problems—see Common Error 1.2 on page 16.

Step 3	 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 6 and 7).
In order to run your program, the Java compiler translates your source code (that

is, the statements that you wrote) into class files. (A class file contains instructions for
the Java virtual machine.) After the compiler has translated your program into virtual
machine instructions, the virtual machine executes them. Figure 8 summarizes the
process of creating and running a Java program. In some programming environments,

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

The Java compiler
translates source
code into class files
that contain
instructions for the
Java virtual machine.

Figure 8  From Source Code to Running Program

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class files

10  Chapter 1  Introduction

the compiler and virtual machine are essentially invisible to the programmer—they
are automatically executed whenever you ask to run a Java program. In other envi-
ronments, you need to launch the compiler and virtual machine explicitly.

Step 4	 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files are stored in folders or directories. A folder can contain
files as well as other folders, which themselves can contain more files and folders (see
Figure 9). This hierarchy can be quite large, and you need not be concerned with all
of its branches. However, you should create folders for organizing your work. It is
a good idea to make a separate folder for your programming class. Inside that folder,
make a separate folder for each program.

Some programming environments place your programs into a default location if
you don’t specify a folder yourself. In that case, you need to find out where those files
are located.

Be sure that you understand where your files are located in the folder hierarchy.
This information is essential when you submit files for grading, and for making
backup copies (see Programming Tip 1.1).

A N I M AT I O N
Compilation Process

Figure 9  A Folder Hierarchy

1.4  Becoming Familiar with Your Programming Environment   11

8.	 Where is the HelloPrinter.java file stored on your computer?
9.	 What do you do to protect yourself from data loss when you work on program-

ming projects?

Practice It	 Now you can try this exercise at the end of the chapter: R1.6.

Backup Copies

You will spend many hours creating and improving Java pro-
grams. It is easy to delete a file by accident, and occasionally files
are lost because of a computer malfunction. Retyping the contents
of lost files is frustrating and time-consuming. It is therefore cru-
cially important that you learn how to safeguard files and get in
the habit of doing so before disaster strikes. Backing up files on a
memory stick is an easy and convenient storage method for many
people. Another increasingly popular form of backup is Internet
file storage. Here are a few pointers to keep in mind:
•	 Back up often. Backing up a file takes only a few seconds, and you will hate yourself if you

have to spend many hours recreating work that you could have saved easily. I recommend
that you back up your work once every thirty minutes.

•	 Rotate backups. Use more than one directory for backups, and
rotate them. That is, first back up onto the first directory. Then
back up onto the second directory. Then use the third, and then
go back to the first. That way you always have three recent
backups. If your recent changes made matters worse, you can
then go back to the older version.

•	 Pay attention to the backup direction. Backing up involves copying files from one place to
another. It is important that you do this right—that is, copy from your work location to
the backup location. If you do it the wrong way, you will overwrite a newer file with an
older version.

•	 Check your backups once in a while. Double-check that your backups are where you think
they are. There is nothing more frustrating than to find out that the backups are not there
when you need them.

•	 Relax, then restore. When you lose a file and need to restore it from a backup, you are
likely to be in an unhappy, nervous state. Take a deep breath and think through the
recovery process before you start. It is not uncommon for an agitated computer user to
wipe out the last backup when trying to restore a damaged file.

S e l f C h e c k

Programming Tip 1.1

Develop a strategy
for keeping backup
copies of your
work before
disaster strikes.

Video Example 1.1	 Compiling and Running a Program

This Video Example shows how to compile and run a simple Java
program.

12  Chapter 1  Introduction

1.5  Analyzing Your First Program
In this section, we will analyze the first Java program in detail. Here again is the
source code:

section_5/HelloPrinter.java

1 public class HelloPrinter
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("Hello, World!");
6 }
7 }

The line
public class HelloPrinter

indicates the declaration of a class called HelloPrinter.
Every Java program consists of one or more classes. Classes are the fundamental

building blocks of Java programs. You will have to wait until Chapter 8 for a full
explanation of classes.

The word public denotes that the class is usable by the “public”. You will later
encounter private features.

In Java, every source file can contain at most one public class, and the name of the
public class must match the name of the file containing the class. For example, the
class HelloPrinter must be contained in a file named HelloPrinter.java.

The construction

public static void main(String[] args)
{
 . . .
}

declares a method called main. A method contains a collection of programming
instructions that describe how to carry out a particular task. Every Java application
must have a main method. Most Java programs contain other methods besides main,
and you will see in Chapter 5 how to write other methods.

The term static is explained in more detail in Chapter 8, and the meaning of
String[] args is covered in Chapter 7. At this time, simply consider

public class ClassName
{
 public static void main(String[] args)
 {
 . . .
 }
}

as a part of the “plumbing” that is required to create a Java program. Our first pro-
gram has all instructions inside the main method of the class.

The main method contains one or more instructions called statements. Each state-
ment ends in a semicolon (;). When a program runs, the statements in the main method
are executed one by one.

Classes are the
fundamental
building blocks of
Java programs.

Every Java
application contains
a class with a main
method. When the
application starts,
the instructions in
the main method
are executed.

Each class contains
declarations of
methods. Each
method contains
a sequence
of instructions.

1.5 A nalyzing Your First Program   13

Syntax 1.1	 Java Program

public class HelloPrinter
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

Every program contains at least one class.
Choose a class name that describes
the program action.

The statements inside the
main method are executed
when the program runs.

Every Java program
contains a main method
with this header.

Replace this
statement when you

write your own
programs.

Be sure to match the
opening and closing braces.

Each statement
ends in a semicolon.
 See page 14.

In our example program, the main method has a single statement:
System.out.println("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. In this statement, we call
a method which, for reasons that we will not explain here, is specified by the rather
long name System.out.println.

We do not have to implement this method—the programmers who wrote the Java
library already did that for us. We simply want the method to perform its intended
task, namely to print a value.

Whenever you call a method in Java, you need to specify

1.	The method you want to use (in this case, System.out.println).
2.	Any values the method needs to carry out its task (in this case, "Hello, World!").

The technical term for such a value is an argument. Arguments are enclosed in
parentheses. Multiple arguments are separated by commas.

A sequence of characters enclosed in quotation marks
"Hello, World!"

is called a string. You must enclose the contents of the string inside quotation marks
so that the compiler knows you literally mean "Hello, World!". There is a reason for
this requirement. Suppose you need to print the word main. By enclosing it in quota-
tion marks, "main", the compiler knows you mean the sequence of characters m a i n,
not the method named main. The rule is simply that you must enclose all text strings
in quotation marks, so that the compiler considers them plain text and does not try to
interpret them as program instructions.

You can also print numerical values. For example, the statement
System.out.println(3 + 4);

evaluates the expression 3 + 4 and displays the number 7.

A method is called
by specifying the
method and
its arguments.

A string is a sequence
of characters
enclosed in
quotation marks.

14  Chapter 1  Introduction

The System.out.println method prints a string or a number and then starts a new
line. For example, the sequence of statements

System.out.println("Hello");
System.out.println("World!");

prints two lines of text:
Hello
World!

There is a second method, System.out.print, that you can use to print an item without
starting a new line. For example, the output of the two statements

System.out.print("00");
System.out.println(3 + 4);

is the single line
007

10.	 How do you modify the HelloPrinter program to greet you instead?
11.	 How would you modify the HelloPrinter program to print the word “Hello”

vertically?
12.	 Would the program continue to work if you replaced line 5 with this statement?

System.out.println(Hello);

13.	 What does the following set of statements print?
System.out.print("My lucky number is");
System.out.println(3 + 4 + 5);

14.	 What do the following statements print?
System.out.println("Hello");
System.out.println("");
System.out.println("World");

Practice It	 Now you can try these exercises at the end of the chapter: R1.7, R1.8, P1.5, P1.7.

Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a common
error. It confuses the compiler, because the compiler uses the semicolon to find where one
statement ends and the next one starts. The compiler does not use line breaks or closing braces
to recognize the end of statements. For example, the compiler considers

System.out.println("Hello")
System.out.println("World!");

a single statement, as if you had written

System.out.println("Hello") System.out.println("World!");

Then it doesn’t understand that statement, because it does not expect the word System follow-
ing the closing parenthesis after "Hello".

The remedy is simple. Scan every statement for a terminating semicolon, just as you would
check that every English sentence ends in a period.

O n l i n e E x a m p l e

A program to
demonstrate print
commands.

S e l f C h e c k

Common Error 1.1

1.6 E rrors   15

1.6  Errors
Experiment a little with the HelloPrinter program.
What happens if you make a typing error such as

System.ou.println("Hello, World!");
System.out.println("Hello, Word!");

In the first case, the compiler will complain. It will
say that it has no clue what you mean by ou. The
exact wording of the error message is dependent
on your development environment, but it might
be something like “Cannot find symbol ou”.
This is a compile-time error. Something is wrong
according to the rules of the language and the com-
piler finds it. For this reason, compile-time errors
are often called syntax errors. When the compiler
finds one or more errors, it refuses to translate the program into Java virtual machine
instructions, and as a consequence you have no program that you can run. You must
fix the error and compile again. In fact, the compiler is quite picky, and it is common
to go through several rounds of fixing compile-time errors before compilation suc-
ceeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once.

Sometimes, an error throws the compiler off track. Suppose, for example, you
forget the quotation marks around a string: System.out.println(Hello, World!). The
compiler will not complain about the missing quotation marks. Instead, it will report
“Cannot find symbol Hello”. Unfortunately, the compiler is not very smart and it
does not realize that you meant to use a string. It is up to you to realize that you need
to enclose strings in quotation marks.

The error in the second line above is of a different kind. The program will compile
and run, but its output will be wrong. It will print

Hello, Word!

This is a run-time error. The program is syntactically correct and does something,
but it doesn’t do what it is supposed to do. Because run-time errors are caused by
logical flaws in the program, they are often called logic errors.

This particular run-time error did not include an error message. It simply pro-
duced the wrong output. Some kinds of run-time errors are so severe that they gen-
erate an exception: an error message from the Java virtual machine. For example, if
your program includes the statement

System.out.println(1 / 0);

you will get a run-time error message “Division by zero”.
During program development, errors are unavoidable. Once a program is longer

than a few lines, it would require superhuman concentration to enter it correctly
without slipping up once. You will find yourself omitting semicolons or quotation
marks more often than you would like, but the compiler will track down these prob-
lems for you.

Run-time errors are more troublesome. The compiler will not find them—in fact,
the compiler will cheerfully translate any program as long as its syntax is correct—

Programmers spend a fair amount
of time fixing compile-time and run-
time errors.

A compile-time error
is a violation of
the programming
language rules that
is detected by
the compiler.

A run-time error
causes a program to
take an action that
the programmer did
not intend.

ON L INE E x a m p l e

Three programs to
illustrate errors.

16  Chapter 1  Introduction

but the resulting program will do something wrong. It is the responsibility of the
program author to test the program and find any run-time errors.

15.	 Suppose you omit the "" characters around Hello, World! from the HelloPrinter.
java program. Is this a compile-time error or a run-time error?

16.	 Suppose you change println to printline in the HelloPrinter.java program. Is this
a compile-time error or a run-time error?

17.	 Suppose you change main to hello in the HelloPrinter.java program. Is this a
compile-time error or a run-time error?

18.	 When you used your computer, you may have experienced a program that
“crashed” (quit spontaneously) or “hung” (failed to respond to your input). Is
that behavior a compile-time error or a run-time error?

19.	 Why can’t you test a program for run-time errors when it has compiler errors?

Practice It	 Now you can try these exercises at the end of the chapter: R1.9, R1.10, R1.11.

Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not always be
completely obvious from the error messages what went wrong. Here is a good example of how
simple spelling errors can cause trouble:

public class HelloPrinter
{
 public static void Main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

This class declares a method called Main. The compiler will not consider this to be the same as
the main method, because Main starts with an uppercase letter and the Java language is case sen-
sitive. Upper- and lowercase letters are considered to be completely different from each other,
and to the compiler Main is no better match for main than rain. The compiler will cheerfully
compile your Main method, but when the Java virtual machine reads the compiled file, it will
complain about the missing main method and refuse to run the program. Of course, the mes-
sage “missing main method” should give you a clue where to look for the error.

If you get an error message that seems to indicate that the compiler or virtual machine is on
the wrong track, it is a good idea to check for spelling and capitalization. If you misspell the
name of a symbol (for example, ou instead of out), the compiler will produce a message such as
“cannot find symbol ou”. That error message is usually a good clue that you made a spelling
error.

1.7  Problem Solving: Algorithm Design
You will soon learn how to program calculations and decision making in Java. But
before we look at the mechanics of implementing computations in the next chapter,
let’s consider how you can describe the steps that are necessary for finding the solu-
tion for a problem.

S e l f C h e c k

Common Error 1.2

1.7 P roblem Solving: Algorithm Design   17

You may have run across advertisements that encourage you to pay for a comput-
erized service that matches you up with a love partner. Think how this might work.
You fill out a form and send it in. Others do the same. The data are processed by a
computer program. Is it reasonable to assume that
the computer can perform the task of finding the best
match for you? Suppose your younger brother, not
the computer, had all the forms on his desk. What
instructions could you give him? You can’t say, “Find
the best-looking person who likes inline skating and
browsing the Internet”. There is no objective stan-
dard for good looks, and your brother’s opinion (or
that of a computer program analyzing the digitized
photo) will likely be different from yours. If you
can’t give written instructions for someone to solve
the problem, there is no way the computer can magi-
cally find the right solution. The computer can only
do what you tell it to do. It just does it faster, without
getting bored or exhausted.

For that reason, a computerized match-making service cannot guarantee to find
the optimal match for you. Instead, you may be presented with a set of potential part-
ners who share common interests with you. That is a task that a computer program
can solve.

Now consider the following investment problem:

You put $10,000 into a bank account that earns 5 percent interest per year. How many
years does it take for the account balance to be double the original?

Could you solve this problem by hand? Sure, you could. You figure out the balance
as follows:

 year interest balance
 0 10000
 1 10000.00 x 0.05 = 500.00 10000.00 + 500.00 = 10500.00
 2 10500.00 x 0.05 = 525.00 10500.00 + 525.00 = 11025.00
 3 11025.00 x 0.05 = 551.25 11025.00 + 551.25 = 11576.25
 4 11576.25 x 0.05 = 578.81 11576.25 + 578.81 = 12155.06

You keep going until the balance is at least $20,000. Then the last number in the year
column is the answer.

Of course, carrying out this computation is intensely boring to you or your
younger brother. But computers are very good at carrying out repetitive calcula-
tions quickly and flawlessly. What is important to the computer is a description of the
steps for finding the solution. Each step must be clear and unambiguous, requiring no
guesswork. Here is such a description:

Start with a year value of 0, a column for the interest, and a balance of $10,000.

 year interest balance
 0 10000

Finding the perfect partner
is not a problem that a
computer can solve.

18  Chapter 1  Introduction

Repeat the following steps while the balance is less than $20,000
	 Add 1 to the year value.
	 Compute the interest as balance x 0.05 (i.e., 5 percent interest).
	 Add the interest to the balance.

 year interest balance
 0 10000
 1 500.00 10500.00

 14 942.82 19799.32
 15 989.96 20789.28

Report the final year value as the answer.

Of course, these steps are not yet in a language that a computer can understand, but
you will soon learn how to formulate them in Java. This informal description is called
pseudocode.

There are no strict requirements for pseudocode because it is read by human read-
ers, not a computer program. Here are the kinds of pseudocode statements that we
will use in this book:

•	 Use statements such as the following to describe how a value is set or changed:

total cost = purchase price + operating cost
Multiply the balance value by 1.05.
Remove the first and last character from the word.

•	 You can describe decisions and repetitions as follows:

If total cost 1 < total cost 2
While the balance is less than $20,000
For each picture in the sequence

Use indentation to indicate which statements should be selected or repeated:

For each car
	 operating cost = 10 x annual fuel cost
	 total cost = purchase price + operating cost

Here, the indentation indicates that both statements should be executed for
each car.

•	 Indicate results with statements such as:

Choose car1.
Report the final year value as the answer.

The exact wording is not important. What is important is that pseudocode describes
a sequence of steps that is

•	 Unambiguous
•	 Executable
•	 Terminating

Pseudocode is an
informal description
of a sequence of
steps for solving
a problem.

1.7 P roblem Solving: Algorithm Design   19

The step sequence is unambiguous when there are
precise instructions for what to do at each step and
where to go next. There is no room for guesswork
or personal opinion. A step is executable when it
can be carried out in practice. Had we said to use
the actual interest rate that will be charged in years
to come, and not a fixed rate of 5 percent per year,
that step would not have been executable, because
there is no way for anyone to know what that
interest rate will be. A sequence of steps is termi-
nating if it will eventually come to an end. In our
example, it requires a bit of thought to see that the
sequence will not go on forever: With every step,
the balance goes up by at least $500, so eventually
it must reach $20,000.

A sequence of steps that is unambiguous, executable, and terminating is called an
algorithm. We have found an algorithm to solve our investment problem, and thus
we can find the solution by programming a computer. The existence of an algorithm
is an essential prerequisite for programming a task. You need to first discover and
describe an algorithm for the task that you want to solve before you start program-
ming (see Figure 10).

Figure 10  The Software Development Process

20.	 Suppose the interest rate was 20 percent. How long would it take for the invest-
ment to double?

21.	 Suppose your cell phone carrier charges you $29.95 for up to 300 minutes of
calls, and $0.45 for each additional minute, plus 12.5 percent taxes and fees. Give
an algorithm to compute the monthly charge from a given number of minutes.

22.	 Consider the following pseudocode for finding the most attractive photo from a
sequence of photos:

Pick the first photo and call it "the best so far".
For each photo in the sequence
	 If it is more attractive than the "best so far"
		 Discard "the best so far".
		 Call this photo "the best so far".
The photo called "the best so far" is the most attractive photo in the sequence.

Is this an algorithm that will find the most attractive photo?

An algorithm for
solving a problem is
a sequence of steps
that is unambiguous,
executable, and
terminating.

An algorithm is a recipe for
finding a solution.

Understand
the problem

Develop and
describe an
algorithm

Translate
the algorithm

into Java

Test the
algorithm with
simple inputs

Compile and test
your program

S e l f C h e c k

20  Chapter 1  Introduction

23.	 Suppose each photo in Self Check 22 had a price tag. Give an algorithm for find-
ing the most expensive photo.

24.	 Suppose you have a random sequence of black and white marbles and want to
rearrange it so that the black and white marbles are grouped together. Consider
this algorithm:

Repeat until sorted
	 Locate the first black marble that is preceded by a white marble, and switch them.

What does the algorithm do with the sequence mlmll? Spell out the steps
until the algorithm stops.

25.	 Suppose you have a random sequence of colored marbles. Consider this pseudo-
code:

Repeat until sorted
	 Locate the first marble that is preceded by a marble of a different color, and switch them.

Why is this not an algorithm?

Practice It	 Now you can try these exercises at the end of the chapter: R1.15, R1.17, P1.4.

Step 1	 Determine the inputs and outputs.

In our sample problem, we have these inputs:
•	 purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
•	 purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

Step 2	 Break down the problem into smaller tasks.

For each car, we need to know the total cost of driving it. Let’s do this computation separately
for each car. Once we have the total cost for each car, we can decide which car is the better deal.

The total cost for each car is purchase price + operating cost.

We assume a constant usage and gas price for ten years, so the operating cost depends on the
cost of driving the car for one year.

The operating cost is 10 x annual fuel cost.
The annual fuel cost is price per gallon x annual fuel consumed.

How To 1.1	 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code: a sequence of precise steps formulated in English.

For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car
for ten years. Assume a price of $4 per gallon of gas and usage
of 15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal?

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

1.7 P roblem Solving: Algorithm Design   21

The annual fuel consumed is annual miles driven / fuel efficiency. For example, if you drive the car
for 15,000 miles and the fuel efficiency is 15 miles/gallon, the car consumes 1,000 gallons.

Step 3	 Describe each subtask in pseudocode.

In your description, arrange the steps so that any intermediate values are computed before
they are needed in other computations. For example, list the step

total cost = purchase price + operating cost

after you have computed operating cost.
Here is the algorithm for deciding which car to buy:

For each car, compute the total cost as follows:
	 annual fuel consumed = annual miles driven / fuel efficiency
	 annual fuel cost = price per gallon x annual fuel consumed
	 operating cost = 10 x annual fuel cost
	 total cost = purchase price + operating cost
If total cost1 < total cost2
	 Choose car1.
Else
	 Choose car2.

Step 4	 Test your pseudocode by working a problem.

We will use these sample values:

Car 1: $25,000, 50 miles/gallon
Car 2: $20,000, 30 miles/gallon

Here is the calculation for the cost of the first car:

annual fuel consumed = annual miles driven / fuel efficiency = 15000 / 50 = 300
annual fuel cost = price per gallon x annual fuel consumed = 4 x 300 = 1200
operating cost = 10 x annual fuel cost = 10 x 1200 = 12000
total cost = purchase price + operating cost = 25000 + 12000 = 37000

Similarly, the total cost for the second car is $40,000. Therefore, the output of the algorithm is
to choose car 1.

Worked Example 1.1	 Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors.

Video Example 1.2	 Dividing Household Expenses

This Video Example shows how to develop an algorithm for
dividing household expenses among roommates.

22  Chapter 1  Introduction

Define “computer program” and programming.

•	 Computers execute very basic instructions in rapid succession.
•	 A computer program is a sequence of instructions and decisions.
•	 Programming is the act of designing and implementing computer programs.

Describe the components of a computer.

•	 The central processing unit (CPU) performs program control and data
processing.

•	 Storage devices include memory and secondary storage.

Describe the process of translating high-level languages to machine code.

•	 Java was originally designed for programming consumer devices, but it was first
successfully used to write Internet applets.

•	 Java was designed to be safe and portable, benefiting both Internet users and
students.

•	 Java programs are distributed as instructions for a virtual machine, making them
platform-independent.

•	 Java has a very large library. Focus on learning those parts of the library that you
need for your programming projects.

Become familiar with your Java programming environment.

•	 Set aside some time to become familiar with the programming environment that
you will use for your class work.

•	 An editor is a program for entering and modifying text, such as a Java program.
•	 Java is case sensitive. You must be careful about distinguishing between upper-

and lowercase letters.
•	 The Java compiler translates source code into class files that contain instructions

for the Java virtual machine.
•	 Develop a strategy for keeping backup copies of your

work before disaster strikes.

Describe the building blocks of a simple program.

•	 Classes are the fundamental building blocks of Java programs.
•	 Every Java application contains a class with a main method. When the application

starts, the instructions in the main method are executed.
•	 Each class contains declarations of methods. Each method contains a sequence of

instructions.
•	 A method is called by specifying the method and its arguments.
•	 A string is a sequence of characters enclosed in quotation marks.

C h a p t e r S u mm a r y

Review Exercises  23

Classify program errors as compile-time and run-time errors.

•	 A compile-time error is a violation of the programming language rules that is
detected by the compiler.

•	 A run-time error causes a program to take an action that the programmer did not
intend.

Write pseudocode for simple algorithms.

•	 Pseudocode is an informal description of a sequence of steps
for solving a problem.

•	 An algorithm for solving a problem is a sequence of steps that
is unambiguous, executable, and terminating.

• R1.1	 Explain the difference between using a computer program and programming a
computer.

• R1.2	 Which parts of a computer can store program code? Which can store user data?

• R1.3	 Which parts of a computer serve to give information to the user? Which parts take
user input?

••• R1.4	 A toaster is a single-function device, but a computer can be programmed to carry out
different tasks. Is your cell phone a single-function device, or is it a programmable
computer? (Your answer will depend on your cell phone model.)

• R1.5	 Explain two benefits of using Java over machine code.

•• R1.6	 On your own computer or on a lab computer, find the exact location (folder or
directory name) of

a.	The sample file HelloPrinter.java, which you wrote with the editor
b.	The Java program launcher java.exe or java
c.	The library file rt.jar that contains the run-time library

•• R1.7	 What does this program print?
public class Test
{
 public static void main(String[] args)
 {
 System.out.println("39 + 3");
 System.out.println(39 + 3);
 }
}

S ta n d a r d Lib r a r y I t e m s I n t r o d u c e d i n t h i s C h a p t e r

java.io.PrintStream
 print
 println

java.lang.System
 out

R e vi e w E x e r ci s e s

24  Chapter 1  Introduction

•• R1.8	 What does this program print? Pay close attention to spaces.
public class Test
{
 public static void main(String[] args)
 {
 System.out.print("Hello");
 System.out.println("World");
 }
}

•• R1.9	 What is the compile-time error in this program?
public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Hello", "World!");
 }
}

•• R1.10	 Write three versions of the HelloPrinter.java program that have different compile-
time errors. Write a version that has a run-time error.

• R1.11	 How do you discover syntax errors? How do you discover logic errors?

•• R1.12	 Write an algorithm to settle the following question: A bank account starts out with
$10,000. Interest is compounded monthly at 6 percent per year (0.5 percent per
month). Every month, $500 is withdrawn to meet college expenses. After how many
years is the account depleted?

••• R1.13	 Consider the question in Exercise R1.12. Suppose the numbers ($10,000, 6 percent,
$500) were user selectable. Are there values for which the algorithm you developed
would not terminate? If so, change the algorithm to make sure it always terminates.

••• R1.14	 In order to estimate the cost of painting a house, a painter needs to know the surface
area of the exterior. Develop an algorithm for computing that value. Your inputs are
the width, length, and height of the house, the number of windows and doors, and
their dimensions. (Assume the windows and doors have a uniform size.)

•• R1.15	 You want to decide whether you should drive your car to work or take the train.
You know the one-way distance from your home to your place of work, and the
fuel efficiency of your car (in miles per gallon). You also know the one-way price of
a train ticket. You assume the cost of gas at $4 per gallon, and car maintenance at 5
cents per mile. Write an algorithm to decide which commute is cheaper.

•• R1.16	 You want to find out which fraction of your car’s use is for commuting to work,
and which is for personal use. You know the one-way distance from your home to
work. For a particular period, you recorded the beginning and ending mileage on the
odometer and the number of work days. Write an algorithm to settle this question.

• R1.17	 In How To 1.1, you made assumptions about the price of gas and annual usage to
compare cars. Ideally, you would like to know which car is the better deal without
making these assumptions. Why can’t a computer program solve that problem?

••• R1.18	 The value of p can be computed according to the following formula:

π
4

1
1
3

1
5

1
7

1
9

= − + − + −�

Programming Exercises  25

Write an algorithm to compute p. Because the formula is an infinite series and an
algorithm must stop after a finite number of steps, you should stop when you have
the result determined to six significant digits.

•• R1.19	 Suppose you put your younger brother in charge of backing up your work. Write a
set of detailed instructions for carrying out his task. Explain how often he should do
it, and what files he needs to copy from which folder to which location. Explain how
he should verify that the backup was carried out correctly.

• Business R1.20	 Imagine that you and a number of friends go to a luxury restaurant, and when you
ask for the bill you want to split the amount and the tip (15 percent) between all.
Write pseudocode for calculating the amount of money that everyone has to pay.
Your program should print the amount of the bill, the tip, the total cost, and the
amount each person has to pay. It should also print how much of what each person
pays is for the bill and for the tip.

• P1.1	 Write a program that prints a greeting of your choice, perhaps in a language other
than English.

•• P1.2	 Write a program that prints the sum of the first ten positive integers, 1 + 2 + … + 10.

•• P1.3	 Write a program that prints the product of the first ten positive integers, 1 × 2 × … ×
10. (Use * to indicate multiplication in Java.)

•• P1.4	 Write a program that prints the balance of an account after the first, second, and
third year. The account has an initial balance of $1,000 and earns 5 percent interest
per year.

• P1.5	 Write a program that displays your name inside a box on the screen, like this:

Dave

Do your best to approximate lines with characters such as | - +.

••• P1.6	 Write a program that prints your name in large letters, such as
* * ** **** **** * *
* * * * * * * * * *
***** * * **** **** * *
* * ****** * * * * *
* * * * * * * * *

•• P1.7	 Write a program that prints a face similar to (but different from) the following:
 /////
 +"""""+
 (| o o |)
 | ^ |
 | ‘-’ |
 +-----+

•• P1.8	 Write a program that prints an imitation of a Piet Mondrian painting. (Search the
Internet if you are not familiar with his paintings.) Use character sequences such as
@@@ or ::: to indicate different colors, and use - and | to form lines.

P r o g r a mmi n g E x e r ci s e s

26  Chapter 1  Introduction

•• P1.9	 Write a program that prints a house that looks exactly like the following:
 +
 + +
 + +
 +-----+
 | .-. |
 | | | |
 +-+-+-+

••• P1.10	 Write a program that prints an animal speaking a greeting, similar to (but different
from) the following:

 /_/\ -----
(‘ ’) / Hello \'
(-) < Junior |
 | | | \ Coder!/
(__|__) -----

• P1.11	 Write a program that prints three items, such as the names of your three best friends
or favorite movies, on three separate lines.

• P1.12	 Write a program that prints a poem of your choice. If you don’t have a favorite
poem, search the Internet for “Emily Dickinson” or “e e cummings”.

•• P1.13	 Write a program that prints the United States flag, using * and = characters.

•• P1.14	 Type in and run the following program:
import javax.swing.JOptionPane;

public class DialogViewer
{
 public static void main(String[] args)
 {
 JOptionPane.showMessageDialog(null, "Hello, World!");
 }
}

Then modify the program to show the message “Hello, your name!”.

•• P1.15	 Type in and run the following program:
import javax.swing.JOptionPane;

public class DialogViewer
{
 public static void main(String[] args)
 {
 String name = JOptionPane.showInputDialog("What is your name?");
 System.out.println(name);
 }
}

Then modify the program to print “Hello, name!”, displaying the name that the user
typed in.

••• P1.16	 Modify the program from Exercise P1.15 so that the dialog continues with the mes-
sage “My name is Hal! What would you like me to do?” Discard the user’s input and
display a message such as

I'm sorry, Dave. I'm afraid I can't do that.

Replace Dave with the name that was provided by the user.

Answers to Self-Check Questions  27

•• P1.17	 Type in and run the following program:
import java.net.URL;
import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class Test
{
 public static void main(String[] args) throws Exception
 {
 URL imageLocation = new URL(
 "http://horstmann.com/java4everyone/duke.gif");
 JOptionPane.showMessageDialog(null, "Hello", "Title",
 JOptionPane.PLAIN_MESSAGE, new ImageIcon(imageLocation));
 }
}

Then modify it to show a different greeting and image.

• Business P1.18	 Write a program that prints a two-column list of your friends’ birthdays. In the
first column, print the names of your best friends; in the second column, print their
birthdays.

• Business P1.19	 In the United States there is no federal sales tax, so every state may impose its own
sales taxes. Look on the Internet for the sales tax charged in five U.S. states, then
write a program that prints the tax rate for five states of your choice.

Sales Tax Rates

Alaska: 0%
Hawaii: 4%
. . .

• Business P1.20	 To speak more than one language is a valuable skill in the labor market today. One of
the basic skills is learning to greet people. Write a program that prints a two-column
list with the greeting phrases shown in the following table; in the first column, print
the phrase in English, in the second column, print the phrase in a language of your
choice. If you don’t speak any language other than English, use an online translator
or ask a friend.

List of Phrases to Translate

Good morning.

It is a pleasure to meet you.

Please call me tomorrow.

Have a nice day!

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 A program that reads the data on the CD and
sends output to the speakers and the screen.

2.	 A CD player can do one thing—play music
CDs. It cannot execute programs.

3.	 Nothing.
4.	 In secondary storage, typically a hard disk.
5.	 The central processing unit.

28  Chapter 1  Introduction

6.	 Safety and portability.
7.	 No one person can learn the entire library—it

is too large.
8.	 The answer varies among systems. A typical

answer might be /home/dave/cs1/hello/Hello-
Printer.java or c:\Users\Dave\Workspace\hello\
HelloPrinter.java

9.	 You back up your files and folders.
10.	 Change World to your name (here, Dave):

System.out.println("Hello, Dave!");

11.	 System.out.println("H");
System.out.println("e");
System.out.println("l");
System.out.println("l");
System.out.println("o");

12.	 No. The compiler would look for an
item whose name is Hello. You need to
enclose Hello in quotation marks:
System.out.println("Hello");

13.	 The printout is My lucky number is12. It would
be a good idea to add a space after the is.

14.	 Hello
a blank line
World

15.	 This is a compile-time error. The compiler will
complain that it does not know the meanings
of the words Hello and World.

16.	 This is a compile-time error. The compiler
will complain that System.out does not have a
method called printline.

17.	 This is a run-time error. It is perfectly legal to
give the name hello to a method, so the com-
piler won’t complain. But when the program
is run, the virtual machine will look for a main
method and won’t find one.

18.	 It is a run-time error. After all, the program
had been compiled in order for you to run it.

19.	 When a program has compiler errors, no class
file is produced, and there is nothing to run.

20.	 4 years:
0 10,000
1 12,000
2 14,400
3 17,280
4 20,736

21.	 Is the number of minutes at most 300?
a.	If so, the answer is $29.95 × 1.125 = $33.70.
b.	If not,

1.	Compute the difference: (number of
minutes) – 300.

2.	Multiply that difference by 0.45.
3.	Add $29.95.
4.	Multiply the total by 1.125. That is the

answer.
22.	 No. The step If it is more attractive than the "best

so far" is not executable because there is no
objective way of deciding which of two photos
is more attractive.

23.	 Pick the first photo and call it "the most expensive so far".
For each photo in the sequence
	 If it is more expensive than "the most expensive so far"
		 Discard "the most expensive so far".
		 Call this photo "the most expensive so far".
The photo called "the most expensive so far" is the most

expensive photo in the sequence.

24.	 The first black marble that is preceded by a
white one is marked in blue:
mlmll

Switching the two yields
lmmll

The next black marble to be switched is
lmmll

yielding
lmlml

The next steps are
llmml

llmlm

lllmm

Now the sequence is sorted.
25.	 The sequence doesn’t terminate. Consider the

input mlmlm. The first two marbles keep
getting switched.

2C h a p t e r

29

Fundamental
Data Types

To declare and initialize variables
and constants

To understand the properties and limitations of integers and floating-point numbers

To appreciate the importance of comments and good code layout

To write arithmetic expressions and assignment statements

To create programs that read and process inputs, and display the results

To learn how to use the Java String type

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

2.1  Variables  30

Syntax 2.1: Variable Declaration  31
Syntax 2.2: Assignment  34
Syntax 2.3: Constant Declaration  35
Common Error 2.1: Using Undeclared or

Uninitialized Variables  37
Programming Tip 2.1: Choose Descriptive

Variable Names  38
Common Error 2.2: Overflow  38
Common Error 2.3: Roundoff Errors  38
Programming Tip 2.2: Do Not Use

Magic Numbers  39
Special Topic 2.1: Numeric Types in Java  39
Special Topic 2.2: Big Numbers  40

2.2  Arithmetic  41

Syntax 2.4: Cast  44
Common Error 2.4: Unintended

Integer Division  46
Common Error 2.5: Unbalanced Parentheses  46
Programming Tip 2.3: Spaces in Expressions  47
Special Topic 2.3: Combining Assignment

and Arithmetic  47
Video Example 2.1: Using Integer Division 

Random Fact 2.1: The Pentium
Floating-Point Bug  48

2.3  Input and Output  48

Syntax 2.5:  Input Statement  49
Programming Tip 2.4: Use the API

Documentation  53
How To 2.1: Carrying out Computations  54
Worked Example 2.1: Computing the Cost

of Stamps 

2.4  Problem Solving: First
Do It By Hand  57

Worked Example 2.2: Computing Travel Time 

2.5  Strings  59

Special Topic 2.4:  Instance Methods and
Static Methods  64

Special Topic 2.5: Using Dialog Boxes for
Input and Output  65

Video Example 2.2: Computing Distances
on Earth 

Random Fact 2.2:  International Alphabets
and Unicode  66

30

Numbers and character strings (such as the ones on this
display board) are important data types in any Java program.
In this chapter, you will learn how to work with numbers
and text, and how to write simple programs that perform
useful tasks with them.

2.1  Variables
When your program carries out computations, you will want to store values so that
you can use them later. In a Java program, you use variables to store values. In this
section, you will learn how to declare and use variables.

To illustrate the use of variables, we
will develop a program that solves the
following problem. Soft drinks are sold
in cans and bottles. A store offers a six-
pack of 12-ounce cans for the same price
as a two-liter bottle. Which should you
buy? (Twelve fluid ounces equal approx-
imately 0.355 liters.)

In our program, we will declare vari-
ables for the number of cans per pack
and for the volume of each can. Then we
will compute the volume of a six-pack in
liters and print out the answer.

2.1.1  Variable Declarations

The following statement declares a variable named cansPer­Pack:
int cansPerPack = 6;

A variable is a storage location in a computer program. Each variable has a name and
holds a value.

A variable is similar to a parking space in a parking garage. The parking space has
an identifier (such as “J 053”), and it can hold a vehicle. A variable has a name (such as
cansPerPack), and it can hold a value (such as 6).

What contains more soda? A six-pack of
12-ounce cans or a two-liter bottle?

A variable is a
storage location
with a name.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

2.1  Variables   31

Syntax 2.1	 Variable Declaration

int cansPerPack = 6;
A variable declaration ends
with a semicolon.

Types introduced in
this chapter are
the number types
int and double
(page 32)
and the String type
(page 59).

Supplying an initial value is optional,
but it is usually a good idea.
 See page 37.

See page 33 for rules and
examples of valid names.

Use a descriptive
 variable name.

 See page 38.

typeName variableName = value;
or
typeName variableName;

Syntax

When declaring a variable, you usually want to initialize it. That is, you specify the
value that should be stored in the variable. Consider again this variable declaration:

int cansPerPack = 6;

The variable cansPerPack is initialized with the value 6.
Like a parking space that is restricted to a certain type of vehicle (such as a compact

car, motorcycle, or electric vehicle), a variable in Java stores data of a specific type.
Java supports quite a few data types: numbers, text strings, files, dates, and many oth-
ers. You must specify the type whenever you declare a variable (see Syntax 2.1).

The cansPerPack variable is an integer, a whole number without a fractional part. In
Java, this type is called int. (See the next section for more information about number
types in Java.)

Note that the type comes before the variable name:
int cansPerPack = 6;

After you have declared and initialized a variable, you can use it. For example,
int cansPerPack = 6;
System.out.println(cansPerPack);
int cansPerCrate = 4 * cansPerPack;

Table 1 shows several examples of variable
declarations.

Each parking space is suitable for a particular type of vehicle,
just as each variable holds a value of a particular type.

When declaring a
variable, you
usually specify an
initial value.

When declaring a
variable, you also
specify the type of
its values.

32  Chapter 2  Fundamental Data Types

Table 1 Variable Declarations in Java

Variable Name Comment

int cans = 6; Declares an integer variable and initializes it with 6.

int total = cans + bottles; The initial value need not be a fixed value. (Of course, cans and
bottles must have been previously declared.)

bottles = 1; Error: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable—see Section 2.1.4.

int volume = "2"; Error: You cannot initialize a number with a string.

int cansPerPack; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 37.

int dollars, cents; Declares two integer variables in a single statement. In this book, we
will declare each variable in a separate statement.

2.1.2  Number Types

In Java, there are several different types of numbers. You use the int type to denote a
whole number without a fractional part. For example, there must be an integer num-
ber of cans in any pack of cans—you cannot have a fraction of a can.

When a fractional part is required (such as in the number 0.335), we use floating-
point numbers. The most commonly used type for floating-point numbers in Java is
called double. (If you want to know the reason, read Special Topic 2.1 on page 39 .) Here
is the declaration of a floating-point variable:

double canVolume = 0.335;

Table 2 Number Literals in Java

Number Type Comment

6 int An integer has no fractional part.

–6 int Integers can be negative.

0 int Zero is an integer.

0.5 double A number with a fractional part has type double.

1.0 double An integer with a fractional part .0 has type double.

1E6 double A number in exponential notation: 1 × 106 or 1000000.
Numbers in exponential notation always have type double.

2.96E-2 double Negative exponent: 2.96 × 10–2 = 2.96 / 100 = 0.0296

100,000 Error: Do not use a comma as a decimal separator.

3 1/2 Error: Do not use fractions; use decimal notation: 3.5

Use the int type
for numbers that
cannot have a
fractional part.

2.1  Variables   33

When a value such as 6 or 0.335 occurs in a Java program, it is called a number literal.
If a number literal has a decimal point, it is a floating-point number; otherwise, it is an
integer. Table 2 shows how to write integer and floating-point literals in Java.

2.1.3  Variable Names

When you declare a variable, you should pick a name that explains its purpose. For
example, it is better to use a descriptive name, such as canVolume, than a terse name,
such as cv.

In Java, there are a few simple rules for variable names:

1.	Variable names must start with a letter or the underscore (_) character, and the
remaining characters must be letters, numbers, or underscores. (Technically,
the $ symbol is allowed as well, but you should not use it—it is intended for
names that are automatically generated by tools.)

2.	You cannot use other symbols such as ? or %. Spaces are not permitted inside
names either. You can use uppercase letters to denote word boundaries, as in
cansPerPack. This naming convention is called camel
case because the uppercase letters in the middle of the
name look like the humps of a camel.)

3.	Variable names are case sensitive, that is, canVolume and
canvolume are different names.

4.	You cannot use reserved words such as double or class
as names; these words are reserved exclusively for their
special Java meanings. (See Appendix C for a listing of all reserved words in
Java.)

It is a convention among Java programmers that variable names should start with a
lowercase letter (such as canVolume) and class names should start with an uppercase
letter (such as HelloPrinter). That way, it is easy to tell them apart.

Table 3 shows examples of legal and illegal variable names in Java.

Table 3 Variable Names in Java

Variable Name Comment

canVolume1 Variable names consist of letters, numbers, and the underscore character.

x In mathematics, you use short variable names such as x or y. This is legal in Java, but not
very common, because it can make programs harder to understand (see Programming Tip
2.1 on page 38).

! CanVolume Caution: Variable names are case sensitive. This variable name is different from canVolume,
and it violates the convention that variable names should start with a lowercase letter.

6pack Error: Variable names cannot start with a number.

can volume Error: Variable names cannot contain spaces.

double Error: You cannot use a reserved word as a variable name.

ltr/fl.oz Error: You cannot use symbols such as / or.

Use the double
type for floating-
point numbers.

By convention,
variable names
should start with a
lowercase letter.

34  Chapter 2  Fundamental Data Types

2.1.4  The Assignment Statement

You use the assignment statement to place a new value into a variable. Here is an
example:

cansPerPack = 8;

The left-hand side of an assignment statement consists of a variable. The right-hand
side is an expression that has a value. That value is stored in the variable, overwriting
its previous contents.

There is an important difference between a variable declaration and an assignment
statement:

int cansPerPack = 6;
...
cansPerPack = 8;

The first statement is the declaration of cansPerPack. It is an instruction to create a
new variable of type int, to give it the name cansPerPack, and to initialize it with 6. The
second statement is an assignment statement: an instruction to replace the contents of
the existing variable cansPerPack with another value.

The = sign doesn’t mean that the left-hand side is equal to the right-hand side. The
expression on the right is evaluated, and its value is placed into the variable on the left.

Do not confuse this assignment operation with the = used in algebra to denote
equality. The assignment operator is an instruction to do something—namely, place a
value into a variable. The mathematical equality states that two values are equal.

For example, in Java, it is perfectly legal to write
totalVolume = totalVolume + 2;

It means to look up the value stored in the variable totalVolume, add 2 to it, and place
the result back into totalVolume. (See Figure 1.) The net effect of executing this state-
ment is to increment totalVolume by 2. For example, if totalVolume was 2.13 before
execution of the statement, it is set to 4.13 afterwards. Of course, in mathematics it
would make no sense to write that x = x + 2. No value can equal itself plus 2.

An assignment
statement stores a
new value in a
variable, replacing
the previously
stored value.

A N I M AT I O N
Variable Initialization

and Assignment

Assignment statement

Variable declaration

The assignment
operator = does not
denote mathematical
equality.

Syntax 2.2	 Assignment

double total = 0;
 .
 .
total = bottles * BOTTLE_VOLUME;

 .
 .
 .
total = total + cans * CAN_VOLUME;

The name of a previously
defined variable

The same name
can occur on both sides.

See Figure 1.

The expression that replaces the previous value

This is an initialization
of a new variable,
NOT an assignment.

This is an assignment.

variableName = value;Syntax

2.1  Variables   35

2.1.5 

Figure 1  Executing the Assignment totalVolume = totalVolume + 2

1

totalVolume =

totalVolume + 2

2.13

2

totalVolume =

4.13

4.13

totalVolume + 2

Constants

When a variable is defined with the reserved word final, its value can never change.
Constants are commonly written using capital letters to distinguish them visually
from regular variables:

final double BOTTLE_VOLUME = 2;

It is good programming style to use named constants in your program to explain the
meanings of numeric values. For example, compare the statements

double totalVolume = bottles * 2;

and
double totalVolume = bottles * BOTTLE_VOLUME;

A programmer reading the first statement may not understand the significance of the
number 2. The second statement, with a named constant, makes the computation
much clearer.

2.1.6  Comments

As your programs get more complex, you should add comments, explanations for
human readers of your code. For example, here is a comment that explains the value
used in a variable initialization:

final double CAN_VOLUME = 0.355; // Liters in a 12-ounce can

This comment explains the significance of the value 0.355 to a human reader. The
compiler does not process comments at all. It ignores everything from a // delimiter
to the end of the line.

You cannot change
the value of a
variable that is
defined as final.

Syntax 2.3	 Constant Declaration

Syntax

final double CAN_VOLUME = 0.355; // Liters in a 12-ounce canThe final reserved word
indicates that this value
cannot be modified.

final typeName variableName = expression;

This comment explains how
the value for the constant
was determined.

Use uppercase letters for constants.

36  Chapter 2  Fundamental Data Types

It is a good practice to provide comments. This helps programmers who read your
code understand your intent. In addition, you will find comments helpful when you
review your own programs.

You use the // delimiter for short comments. If you have a longer comment,
enclose it between /* and */ delimiters. The compiler ignores these delimiters and
everything in between. For example,

/*
 There are approximately 0.335 liters in a 12-ounce can because one ounce
 equals 0.02957353 liter; see The International Systems of Units (SI) - Conversion
 Factors for General Use (NIST Special Publication 1038).
*/

Finally, start a comment that explains the purpose of a program with the /** delimiter
instead of /*. Tools that analyze source files rely on that convention. For example,

/**
 This program computes the volume (in liters) of a six-pack of soda cans.
*/

The following program shows the use of variables, constants, and the assignment
statement. The program displays the volume of a six-pack of cans and the total vol-
ume of the six-pack and a two-liter bottle. We use constants for the can and bottle
volumes. The totalVolume variable is initialized with the volume of the cans. Using an
assignment statement, we add the bottle volume. As you can see from the program
output, the six-pack of cans contains over two liters of soda.

section_1/Volume1.java

1 /**
2 This program computes the volume (in liters) of a six-pack of soda
3 cans and the total volume of a six-pack and a two-liter bottle.
4 */
5 public class Volume1
6 {
7 public static void main(String[] args)
8 {
9 int cansPerPack = 6;

10 final double CAN_VOLUME = 0.355; // Liters in a 12-ounce can
11 double totalVolume = cansPerPack * CAN_VOLUME;
12
13 System.out.print("A six-pack of 12-ounce cans contains ");
14 System.out.print(totalVolume);
15 System.out.println(" liters.");
16
17 final double BOTTLE_VOLUME = 2; // Two-liter bottle
18
19 totalVolume = totalVolume + BOTTLE_VOLUME;
20
21 System.out.print("A six-pack and a two-liter bottle contain ");
22 System.out.print(totalVolume);
23 System.out.println(" liters.");
24 }
25 }

Program Run

A six-pack of 12-ounce cans contains 2.13 liters.
A six-pack and a two-liter bottle contain 4.13 liters.

Use comments to add
explanations for
humans who read
your code. The
compiler ignores
comments.

2.1  Variables   37

1.	

Just as a television commentator explains the news,
you use comments in your program to explain its behavior.

Declare a variable suitable for holding the number of bottles in a case.
2.	 What is wrong with the following variable declaration?

int ounces per liter = 28.35

3.	 Declare and initialize two variables, unitPrice and quantity, to contain the unit
price of a single bottle and the number of bottles purchased. Use reasonable
initial values.

4.	 Use the variables declared in Self Check 3 to display the total purchase price.
5.	 Some drinks are sold in four-packs instead of six-packs. How would you change

the Volume1.java program to compute the total volume?
6.	 What is wrong with this comment?

double canVolume = 0.355; /* Liters in a 12-ounce can //

7.	 Suppose the type of the cansPerPack variable in Volume1.java was changed from int
to double. What would be the effect on the program?

8.	 Why can’t the variable totalVolume in the Volume1.java program be declared as
final?

9.	 How would you explain assignment using the parking space analogy?

Practice It	 Now you can try these exercises at the end of the chapter: R2.1, R2.2, P2.1.

Using Undeclared or Uninitialized Variables

You must declare a variable before you use it for the first time. For example, the following
sequence of statements would not be legal:

double canVolume = 12 * literPerOunce; // ERROR: literPerOunce is not yet declared
double literPerOunce = 0.0296;

In your program, the statements are compiled in order. When the compiler reaches the first
statement, it does not know that literPerOunce will be declared in the next line, and it reports
an error. The remedy is to reorder the declarations so that each variable is declared before it is
used.

S e l f C h e c k

Common Error 2.1

38  Chapter 2  Fundamental Data Types

A related error is to leave a variable uninitialized:

int bottles;
int bottleVolume = bottles * 2; // ERROR: bottles is not yet initialized

The Java compiler will complain that you are using a variable that has not yet been given a
value. The remedy is to assign a value to the variable before it is used.

Choose Descriptive Variable Names

We could have saved ourselves a lot of typing by using shorter variable names, as in

double cv = 0.355;

Compare this declaration with the one that we actually used, though. Which one is easier to
read? There is no comparison. Just reading canVolume is a lot less trouble than reading cv and
then figuring out it must mean “can volume”.

In practical programming, this is particularly important when programs are written by
more than one person. It may be obvious to you that cv stands for can volume and not cur-
rent velocity, but will it be obvious to the person who needs to update your code years later?
For that matter, will you remember yourself what cv means when you look at the code three
months from now?

Overflow

Because numbers are represented in the computer with a limited number of digits, they cannot
represent arbitrary numbers.

The int type has a limited range: It can represent numbers up to a little more than two bil-
lion. For many applications, this is not a problem, but you cannot use an int to represent the
world population.

If a computation yields a value that is outside the int range, the result overflows. No error is
displayed. Instead, the result is truncated, yielding a useless value. For example,

int fiftyMillion = 50000000;
System.out.println(100 * fiftyMillion); // Expected: 5000000000

displays 705032704.
In situations such as this, you can switch to double values. However, read Common Error

2.3 for more information about a related issue: roundoff errors.

Roundoff Errors

Roundoff errors are a fact of life when calculating with floating-point numbers. You probably
have encountered that phenomenon yourself with manual calculations. If you calculate 1 3 to
two decimal places, you get 0.33. Multiplying again by 3, you obtain 0.99, not 1.00.

In the processor hardware, numbers are represented in the binary number system, using
only digits 0 and 1. As with decimal numbers, you can get roundoff errors when binary digits
are lost. They just may crop up at different places than you might expect.

Programming Tip 2.1

Common Error 2.2

Common Error 2.3

2.1  Variables   39

Here is an example:

double price = 4.35;
double quantity = 100;
double total = price * quantity; // Should be 100 * 4.35 = 435
System.out.println(total); // Prints 434.99999999999999

In the binary system, there is no exact representation for 4.35, just as there is no exact repre-
sentation for 1 3 in the decimal system. The representation used by the computer is just a
little less than 4.35, so 100 times that value is just a little less than 435.

You can deal with roundoff errors by rounding to the nearest integer (see Section 2.2.5) or
by displaying a fixed number of digits after the decimal separator (see Section 2.3.2).

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example,

totalVolume = bottles * 2;

Why 2? Are bottles twice as voluminous as cans? No, the reason is that every bottle contains 2
liters. Use a named constant to make the code self-documenting:

final double BOTTLE_VOLUME = 2;
totalVolume = bottles * BOTTLE_VOLUME;

There is another reason for using named constants. Suppose cir-
cumstances change, and the bottle volume is now 1.5 liters. If
you used a named constant, you make a single change, and you
are done. Otherwise, you have to look at every value of 2 in your
program and ponder whether it meant a bottle volume, or some
thing else. In a program that is more than a few pages long, that
is incredibly tedious and error-prone.

Even the most reasonable cosmic constant is going to change
one day. You think there are seven days per week? Your cus-
tomers on Mars are going to be pretty unhappy about your silly
prejudice. Make a constant

final int DAYS_PER_WEEK = 7;

Numeric Types in Java

In addition to the int and double types, Java has several other numeric types.
Java has two floating-point types. The float type uses half the storage of the double type

that we use in this book, but it can only store about 7 decimal digits. (In the computer, num-
bers are represented in the binary number system, using digits 0 and 1.) Many years ago, when
computers had far less memory than they have today, float was the standard type for floating-
point computations, and programmers would indulge in the luxury of “double precision”
only when they needed the additional digits. Today, the float type is rarely used.

By the way, these numbers are called “floating-point” because of their internal representa-
tion in the computer. Consider numbers 29600, 2.96, and 0.0296. They can be represented in
a very similar way: namely, as a sequence of the significant digits—296—and an indication of
the position of the decimal point. When the values are multiplied or divided by 10, only the

Programming Tip 2.2

We prefer programs that
are easy to understand
over those that appear
to work by magic.

Special Topic 2.1

40  Chapter 2  Fundamental Data Types

position of the decimal point changes; it “floats”. Computers use base 2, not base 10, but the
principle is the same.

In addition to the int type, Java has integer types byte, short, and long. Their ranges are
shown in Table 4. (Their strange-looking limits are related to powers of 2, another conse-
quence of the fact that computers use binary numbers.)

Table 4 Java Number Types

Type Description Size

int The integer type, with range
–2,147,483,648 (Integer.MIN_VALUE) . . . 2,147,483,647

(Integer.MAX_VALUE, about 2.14 billion)

4 bytes

byte The type describing a single byte consisting of 8 bits,
with range –128 . . . 127

1 byte

short The short integer type, with range –32,768 . . . 32,767 2 bytes

long The long integer type, with about 19 decimal digits 8 bytes

double The double-precision floating-point type,
with about 15 decimal digits and a range of about ±10308

8 bytes

float The single-precision floating-point type,
with about 7 decimal digits and a range of about ±1038

4 bytes

char The character type, representing code units in the
Unicode encoding scheme (see Random Fact 2.2)

2 bytes

Big Numbers

If you want to compute with really large numbers, you can use big number objects. Big num-
ber objects are objects of the BigInteger and BigDecimal classes in the java.math package. Unlike
the number types such as int or double, big number objects have essentially no limits on their
size and precision. However, computations with big number objects are much slower than
those that involve number types. Perhaps more importantly, you can’t use the familiar arith-
metic operators such as (+ - *) with them. Instead, you have to use methods called add, sub-
tract, and multiply. Here is an example of how to create a BigInteger object and how to call the
multiply method:

BigInteger oneHundred = new BigInteger("100");
BigInteger fiftyMillion = new BigInteger("50000000");
System.out.println(oneHundred.multiply(fiftyMillion)); // Prints 5000000000

The BigDecimal type carries out floating-point computations without roundoff errors. For
example,

BigDecimal price = new BigDecimal("4.35");
BigDecimal quantity = new BigDecimal("100");
BigDecimal total = price.multiply(quantity);
System.out.println(total); // Prints 435.00

Special Topic 2.2

2.2 A rithmetic   41

2.2  Arithmetic
In the following sections, you will learn how to carry out arithmetic calculations
in Java.

2.2.1  Arithmetic Operators

Java supports the same four basic arithmetic operations as a calculator—addition,
subtraction, multiplication, and division—but it uses different symbols for multipli-
cation and division.

You must write a * b to denote multiplication. Unlike in mathematics, you cannot
write a b, a · b, or a × b. Similarly, division is always indicated with a /, never a ÷ or a
fraction bar.

For example,
a b+

2
 becomes (a + b) / 2.

The combination of variables, literals, operators, and/or method calls is called an
expression. For example, (a + b) / 2 is an expression.

Parentheses are used just as in algebra: to indicate in which order the parts of the
expression should be computed. For example, in the expression (a + b) / 2, the sum
a + b is computed first, and then the sum is divided by 2. In contrast, in the expression

a + b / 2

only b is divided by 2, and then the sum of a and b / 2 is formed. As in regular algebraic
notation, multiplication and division have a higher precedence than addition and sub-
traction. For example, in the expression a + b / 2, the / is carried out first, even though
the + operation occurs further to the left.

If you mix integer and floating-point values in an arithmetic expression, the result
is a floating-point value. For example, 7 + 4.0 is the floating-point value 11.0.

2.2.2  Increment and Decrement

Changing a variable by adding or subtracting 1 is so common that there is a special
shorthand for it. The ++ operator increments a variable––see Figure 2:

counter++; // Adds 1 to the variable counter

Similarly, the -- operator decrements a variable:
counter--; // Subtracts 1 from counter

Mixing integers and
floating-point values
in an arithmetic
expression yields a
floating-point value.

The ++ operator adds
1 to a variable; the --
operator subtracts 1.

Figure 2  Incrementing a Variable

1
counter =

counter + 1

3
2

counter =

4

4

counter + 1

42  Chapter 2  Fundamental Data Types

2.2.3  Integer Division and Remainder

Division works as you would expect, as long as at least
one of the numbers involved is a floating-point number.
That is,

7.0 / 4.0
7 / 4.0
7.0 / 4

all yield 1.75. However, if both numbers are integers,
then the result of the division is always an integer, with
the remainder discarded. That is,

7 / 4

evaluates to 1 because 7 divided by 4 is 1 with a remain-
der of 3 (which is discarded). This can be a source of
subtle programming errors—see Common Error 2.4.

If you are interested in the remainder only, use the % operator:
7 % 4

is 3, the remainder of the integer division of 7 by 4. The % symbol has no analog in alge-
bra. It was chosen because it looks similar to /, and the remainder operation is related
to division. The operator is called modulus. (Some people call it modulo or mod.) It
has no relationship with the percent operation that you find on some calculators.

Here is a typical use for the integer / and % operations. Suppose you have an amount
of pennies in a piggybank:

int pennies = 1729;

You want to determine the value in dollars and cents. You obtain the dollars through
an integer division by 100:

int dollars = pennies / 100; // Sets dollars to 17

The integer division discards the remainder. To obtain the remainder, use the % operator:
int cents = pennies % 100; // Sets cents to 29

See Table 5 for additional examples.

Table 5 Integer Division and Remainder

Expression
(where n = 1729)

Value Comment

n % 10 9 n % 10 is always the last digit of n.

n / 10 172 This is always n without the last digit.

n % 100 29 The last two digits of n.

n / 10.0 172.9 Because 10.0 is a floating-point number, the fractional part is not discarded.

–n % 10 -9 Because the first argument is negative, the remainder is also negative.

n % 2 1 n % 2 is 0 if n is even, 1 or –1 if n is odd.

Integer division and the %
operator yield the dollar and
cent values of a piggybank
full of pennies.

If both arguments
of / are integers,
the remainder
is discarded.

The % operator
computes the
remainder of an
integer division.

2.2 A rithmetic   43

2.2.4  Powers and Roots

In Java, there are no symbols for powers and roots. To compute them, you must call
methods. To take the square root of a number, you use the Math.sqrt method. For
example, x is written as Math.sqrt(x). To compute xn, you write Math.pow(x, n).

In algebra, you use fractions, exponents, and roots to arrange expressions in a
compact two-dimensional form. In Java, you have to write all expressions in a linear
arrangement. For example, the mathematical expression

b
r n

× +





1
100

becomes
b * Math.pow(1 + r / 100, n)

Figure 3 shows how to analyze such an expression. Table 6 shows additional mathe-
matical methods.

Table 6 Mathematical Methods

Method Returns

Math.sqrt(x) Square root of x (≥ 0)

Math.pow(x, y) xy (x > 0, or x = 0 and y > 0, or x < 0 and y is an integer)

Math.sin(x) Sine of x (x in radians)

Math.cos(x) Cosine of x

Math.tan(x) Tangent of x

Math.toRadians(x) Convert x degrees to radians (i.e., returns x · π/180)

Math.toDegrees(x) Convert x radians to degrees (i.e., returns x · 180/π)

Math.exp(x) ex

Math.log(x) Natural log (ln(x), x > 0)

The Java library
declares many
mathematical
functions, such as
Math.sqrt (square
root) and Math.pow
(raising to a power).

Figure 3 
Analyzing an Expression

b * Math.pow(1 + r / 100, n)

r
100

r
1 +

100

r n





1 +
100

b
r n

× +





1
100

44  Chapter 2  Fundamental Data Types

Table 6 Mathematical Methods

Method Returns

Math.log10(x) Decimal log (log10 (x), x > 0)

Math.round(x) Closest integer to x (as a long)

Math.abs(x) Absolute value | x |

Math.max(x, y) The larger of x and y

Math.min(x, y) The smaller of x and y

2.2.5  Converting Floating-Point Numbers to Integers

Occasionally, you have a value of type double that you need to convert to the type int.
It is an error to assign a floating-point value to an integer:

double balance = total + tax;
int dollars = balance; // Error: Cannot assign double to int

The compiler disallows this assignment because it is potentially dangerous:

•	 The fractional part is lost.
•	 The magnitude may be too large. (The largest integer is about 2 billion, but a

floating-point number can be much larger.)

You must use the cast operator (int) to convert a convert floating-point value to an
integer. Write the cast operator before the expression that you want to convert:

double balance = total + tax;­
int dollars = (int) balance;

The cast (int) converts the floating-point value balance to an integer by discarding the
fractional part. For example, if balance is 13.75, then dollars is set to 13.

When applying the cast operator to an arithmetic expression, you need to place the
expression inside parentheses:

int dollars = (int) (total + tax);

You use a cast
(typeName) to
convert a value to a
different type.

Syntax 2.4	 Cast

Syntax

(int) (balance * 100)

This is the type of the expression after casting.

These parentheses are a
part of the cast operator.

Use parentheses here if
the cast is applied to an expression

with arithmetic operators.

(typeName) expression

2.2 A rithmetic   45

Discarding the fractional part is not always appropriate. If you want to round a
floating-point number to the nearest whole number, use the Math.round method. This
method returns a long integer, because large floating-point numbers cannot be stored
in an int.

long rounded = Math.round(balance);

If balance is 13.75, then rounded is set to 14.
If you know that the result can be stored in an int and does not require a long, you

can use a cast:
int rounded = (int) Math.round(balance);

Table 7 Arithmetic Expressions

Mathematical
Expression

Java
Expression

Comments

x y+
2

(x + y) / 2 The parentheses are required;
x + y / 2 computes x

y+
2 .

xy
2

x * y / 2 Parentheses are not required; operators with
the same precedence are evaluated left to right.

1
100

+






r
n Math.pow(1 + r / 100, n) Use Math.pow(x, n) to compute xn.

a b2 2+ Math.sqrt(a * a + b * b) a * a is simpler than Math.pow(a, 2).

i j k+ +
3

(i + j + k) / 3.0 If i, j, and k are integers, using a denominator
of 3.0 forces floating-point division.

π Math.PI Math.PI is a constant declared in the Math class.

10.	 A bank account earns interest once per year. In Java, how do you compute the
interest earned in the first year? Assume variables percent and balance of type
double have already been declared.

11.	 In Java, how do you compute the side length of a square whose area is stored in
the variable area?

12.	 The volume of a sphere is given by

V r= 4
3

3π

If the radius is given by a variable radius of type double, write a Java expression
for the volume.

13.	 What is the value of 1729 / 10 and 1729 % 10?
14.	 If n is a positive number, what is (n / 10) % 10?

Practice It	 Now you can try these exercises at the end of the chapter: R2.3, R2.5, P2.4, P2.25.

O n l i n e E x a m p l e

A program
demonstrating casts,
rounding, and the
% operator.

S e l f C h e c k

46  Chapter 2  Fundamental Data Types

Unintended Integer Division

It is unfortunate that Java uses the same symbol, namely /, for both integer and floating-point
division. These are really quite different operations. It is a common error to use integer divi-
sion by accident. Consider this segment that computes the average of three integers.

int score1 = 10;
int score2 = 4;
int score3 = 9;

double average = (score1 + score2 + score3) / 3; // Error
System.out.println("Average score: " + average); // Prints 7.0, not 7.666666666666667

What could be wrong with that? Of course, the average of score1, score2, and score3 is

score1 score2 score3+ +

3

Here, however, the / does not mean division in the mathematical sense. It denotes integer divi-
sion because both score1 + score2 + score3 and 3 are integers. Because the scores add up to 23,
the average is computed to be 7, the result of the integer division of 23 by 3. That integer 7 is
then moved into the floating-point variable average. The remedy is to make the numerator or
denominator into a floating-point number:

double total = score1 + score2 + score3;
double average = total / 3;

or

double average = (score1 + score2 + score3) / 3.0;

Unbalanced Parentheses

Consider the expression

((a + b) * t / 2 * (1 - t)

What is wrong with it? Count the parentheses. There are three (and two). The parenthe-
ses are unbalanced. This kind of typing error is very common with complicated expressions.
Now consider this expression.

(a + b) * t) / (2 * (1 - t)

This expression has three (and three), but it still is not correct. In the middle of the
expression,

(a + b) * t) / (2 * (1 - t)
 ↑

there is only one (but two), which is an error. In the middle of an expression, the count of (
must be greater than or equal to the count of), and at the end of the expression the two counts
must be the same.

Here is a simple trick to make the counting easier without using
pencil and paper. It is difficult for the brain to keep two counts
simultaneously. Keep only one count when scanning the expres-
sion. Start with 1 at the first opening parenthesis, add 1 whenever
you see an opening parenthesis, and subtract one whenever you
see a closing parenthesis. Say the numbers aloud as you scan the

Common Error 2.4

Common Error 2.5

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

2.2 A rithmetic   47

expression. If the count ever drops below zero, or is not zero at the end, the parentheses are
unbalanced. For example, when scanning the previous expression, you would mutter

(a + b) * t) / (2 * (1 - t)
1 0 -1

and you would find the error.

Spaces in Expressions

It is easier to read

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);

than

x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

Simply put spaces around all operators + - * / % =. However, don’t put a space after a unary
minus: a – used to negate a single quantity, such as -b. That way, it can be easily distinguished
from a binary minus, as in a - b.

It is customary not to put a space after a method name. That is, write Math.sqrt(x) and not
Math.sqrt (x).

Combining Assignment and Arithmetic

In Java, you can combine arithmetic and assignment. For example, the instruction

total += cans;

is a shortcut for

total = total + cans;

Similarly,

total *= 2;

is another way of writing

total = total * 2;

Many programmers find this a convenient shortcut. If you like it, go ahead and use it in your
own code. For simplicity, we won’t use it in this book, though.

Programming Tip 2.3

Special Topic 2.3

Video Example 2.1	 Using Integer Division

A punch recipe calls for a given amount of orange soda. In this
Video Example, you will see how to compute the required number
of 12-ounce cans, using integer division.

48  Chapter 2  Fundamental Data Types

2.3  Input and Output
In the following sections, you will see how to read user input and how to control the
appearance of the output that your programs produce.

2.3.1  Reading Input

You can make your programs more flexible if you ask the program user for inputs
rather than using fixed values. Consider, for example, a program that processes prices

In 1994, Intel Corporation released what
was then its most powerful processor, the

Pentium. Unlike previous generations of its processors, it
had a very fast floating-point unit. Intel’s goal was to com
pete aggressively with the makers of higher-end processors
for engineering workstations. The Pentium was a huge suc-
cess immediately.

In the summer of 1994, Dr. Thomas Nicely of Lynchburg
College in Virginia ran an extensive set of computations
to analyze the sums of reciprocals of certain sequences of
prime numbers. The results were not always what his the
ory predicted, even after he took into account the inevitable
roundoff errors. Then Dr. Nicely noted that the same pro-
gram did produce the correct results when running on the
slower 486 processor that preceded the Pentium in Intel’s
lineup. This should not have happened. The optimal round-
off behavior of floating-point calculations has been stan-
dardized by the Institute for Electrical and Electronic Engi-
neers (IEEE) and Intel claimed to adhere to the IEEE standard
in both the 486 and the Pentium processors. Upon further
checking, Dr. Nicely discovered that indeed there was a very
small set of numbers for which the product of two num-
bers was computed differently on the two processors. For
example,

4195 835 4195 835 3145727 3145727, , , , , , , ,− () ×()
is mathematically equal to 0, and it did compute as 0 on a
486 processor. On his Pentium processor the result was
256.

As it turned out, Intel had independently discovered
the bug in its testing and had started to produce chips that
fixed it. The bug was caused by an error in a table that was
used to speed up the floating-point multiplication algorithm
of the processor. Intel determined that the problem was
exceedingly rare. They claimed that under normal use, a
typical consumer would only notice the problem once every
27,000 years. Unfortunately for Intel, Dr. Nicely had not
been a normal user.

Now Intel had a real problem on its hands. It figured that
the cost of replacing all Pentium processors that it had sold
so far would cost a great deal of money. Intel already had
more orders for the chip than it could produce, and it would
be particularly galling to have to give out the scarce chips
as free replacements instead of selling them. Intel’s man-
agement decided to punt on the issue and initially offered
to replace the processors only for those customers who
could prove that their work required absolute precision in
mathematical calculations. Naturally, that did not go over
well with the hundreds of thousands of customers who had
paid retail prices of $700 and more for a Pentium chip and
did not want to live with the nagging feeling that perhaps,
one day, their income tax program would produce a faulty
return.

Ultimately, Intel caved in to public demand and replaced
all defective chips, at a cost of about 475 million dollars.

1.
40

1.
20

1.
00

0.
80

0.
60

0.
40

0.
20

0.
00

-0
.2

0

-0
.4

0

-0
.6

0

-0
.8

0

-1
.0

0

-1
.2

0

-1
.4

0

-1
.6

0

-1
.8

0

-2
.0

0

1.40

1.10

0.80

0.50

0.20

-0.10

-0.40

-0.70
-1.00

-1.30

1.333680000

1.333700000

1.333720000

1.333740000

1.333760000

1.333780000

1.333800000

1.333820000

1.333840000

x/
y

4195835+

3145727+

Pentium FDIV error

This graph shows a set of numbers for which the original
Pentium processor obtained the wrong quotient.

Random Fact 2.1  The Pentium Floating-Point Bug

2.3  Input and Output   49

and quantities of soda containers. Prices and quantities are likely to fluctuate. The
program user should provide them as inputs.

When a program asks for user input, it should first print a message that tells the
user which input is expected. Such a message is called a prompt.

System.out.print("Please enter the number of bottles: "); // Display prompt

Use the print method, not println, to display the prompt. You want the input to
appear after the colon, not on the following line. Also remember to leave a space after
the colon.

Because output is sent to System.out, you might think that you use System.in for
input. Unfortunately, it isn’t quite that simple. When Java was first designed, not
much attention was given to reading keyboard input. It was assumed that all pro-
grammers would produce graphical user interfaces with text fields and menus.
System.in was given a minimal set of features and must be combined with other classes
to be useful.

To read keyboard input, you use a class called Scanner. You obtain a Scanner object
by using the following statement:

Scanner in = new Scanner(System.in);

You will learn more about objects and classes in Chapter 8. For now, simply include
this statement whenever you want to read keyboard input.

When using the Scanner class, you need to carry out another step: import the class
from its package. A package is a collection of classes with a related purpose. All
classes in the Java library are contained in packages. The System class belongs to the
package java.lang. The Scanner class belongs to the package java.util.

Only the classes in the java.lang package are automatically available in your pro-
grams. To use the Scan­ner class from the java.util package, place the following decla-
ration at the top of your program file:

import java.util.Scanner;

Once you have a scanner, you use its nextInt method to read an integer value:
System.out.print("Please enter the number of bottles: ");
int bottles = in.nextInt();

A supermarket
scanner reads bar
codes. The Java
Scanner reads
numbers and text.

Java classes are
grouped into
packages. Use the
import statement
to use classes
from packages.

Syntax 2.5	 Input Statement

import java.util.Scanner;
.
.

Scanner in = new Scanner(System.in);
.
.

System.out.print("Please enter the number of bottles: ");
int bottles = in.nextInt();

Display a prompt in the console window.

The program waits for user input,
then places the input into the variable.

Define a variable to hold the input value.

Don't use println here.

Create a Scanner object
to read keyboard input.

Include this line so you can
use the Scanner class.

50  Chapter 2  Fundamental Data Types

When the nextInt method is called, the program waits until the user types a number
and presses the Enter key. After the user supplies the input, the number is placed into
the bottles variable, and the program continues.

To read a floating-point number, use the nextDouble method instead:
System.out.print("Enter price: ");
double price = in.nextDouble();

2.3.2  Formatted Output

When you print the result of a computation, you often want to control its appear-
ance. For example, when you print an amount in dollars and cents, you usually want
it to be rounded to two significant digits. That is, you want the output to look like

Price per liter: 1.22

instead of
Price per liter: 1.215962441314554

The following command displays the price with two digits after the decimal point:
System.out.printf("%.2f", price);

You can also specify a field width:
System.out.printf("%10.2f", price);

The price is printed using ten characters: six spaces followed by the four characters
1.22.

1 . 2 2

The construct %10.2f is called a format specifier: it describes how a value should be for-
matted. The letter f at the end of the format specifier indicates that we are displaying a
floating-point number. Use d for an integer and s for a string; see Table 8 for examples.

Table 8 Format Specifier Examples

Format String Sample Output Comments

"%d" 24 Use d with an integer.

"%5d" 24 Spaces are added so that the field width is 5.

"Quantity:%5d" Quantity: 24 Characters inside a format string but outside a
format specifier appear in the output.

"%f" 1.21997 Use f with a floating-point number.

"%.2f" 1.22 Prints two digits after the decimal point.

"%7.2f" 1.22 Spaces are added so that the field width is 7.

"%s" Hello Use s with a string.

"%d %.2f" 24 1.22 You can format multiple values at once.

Use the Scanner class
to read keyboard
input in a
console window.

Use the printf
method to specify
how values should
be formatted.

2.3  Input and Output   51

You use the printf method to line
up your output in neat columns.

A format string contains format specifiers and literal characters. Any characters that
are not format specifiers are printed verbatim. For example, the command

System.out.printf("Price per liter:%10.2f", price);

prints
Price per liter: 1.22

You can print multiple values with a single call to the printf method. Here is a typical
example:

System.out.printf("Quantity: %d Total: %10.2f", quantity, total);

The printf method, like the print method, does not start a new line after the output.
If you want the next output to be on a separate line, you can call System.out.println().
Alternatively, Section 2.5.4 shows you how to add a newline character to the format
string.

Our next example program will prompt for the price of a six-pack and the volume
of each can, then print out the price per ounce. The program puts to work what you
just learned about reading input and formatting output.

section_3/Volume2.java

1 import java.util.Scanner;
2
3 /**
4 This program prints the price per ounce for a six-pack of cans.
5 */
6 public class Volume2
7 {
8 public static void main(String[] args)
9 {

Q u a n t i t y : 2 4 :latoT 1 7 . 2 9

Two digits after
the decimal point

The printf method does not
start a new line here.width 10

No field width was specified,
so no padding added

52  Chapter 2  Fundamental Data Types

10 // Read price per pack
11
12 Scanner in = new Scanner(System.in);
13
14 System.out.print("Please enter the price for a six-pack: ");
15 double packPrice = in.nextDouble();
16
17 // Read can volume
18
19 System.out.print("Please enter the volume for each can (in ounces): ");
20 double canVolume = in.nextDouble();
21
22 // Compute pack volume
23
24 final double CANS_PER_PACK = 6;
25 double packVolume = canVolume * CANS_PER_PACK;
26
27 // Compute and print price per ounce
28
29 double pricePerOunce = packPrice / packVolume;
30
31 System.out.printf("Price per ounce: %8.2f", pricePerOunce);
32 System.out.println();
33 }
34 }

Program Run

Please enter the price for a six-pack: 2.95
Please enter the volume for each can (in ounces): 12
Price per ounce: 0.04

15.	 Write statements to prompt for and read the user’s age using a Scanner variable
named in.

16.	 What is wrong with the following statement sequence?
System.out.print("Please enter the unit price: ");
double unitPrice = in.nextDouble();
int quantity = in.nextInt();

17.	 What is problematic about the following statement sequence?
System.out.print("Please enter the unit price: ");
double unitPrice = in.nextInt();

18.	 What is problematic about the following statement sequence?
System.out.print("Please enter the number of cans");
int cans = in.nextInt();

19.	 What is the output of the following statement sequence?
int volume = 10;
System.out.printf("The volume is %5d", volume);

20.	 Using the printf method, print the values of the integer variables bottles and cans
so that the output looks like this:
Bottles: 8
Cans: 24

The numbers to the right should line up. (You may assume that the numbers
have at most 8 digits.)

S e l f C h e c k

2.3  Input and Output   53

Practice It	 Now you can try these exercises at the end of the chapter: R2.10, P2.6, P2.7.

Use the API Documentation

The classes and methods of the Java library are listed in the API doc-
umentation. The API is the “application programming interface”.
A programmer who uses the Java classes to put together a computer
program (or application) is an application programmer. That’s you.
In contrast, the programmers who designed and implemented the
library classes (such as Scan­ner) are system programmers.

You can find the API documentation at http://download.oracle.com/javase/7/docs/api. The
API documentation describes all classes in the Java library—there are thousands of them. For-
tunately, only a few are of interest to the beginning programmer. To learn more about a class,
click on its name in the left hand column. You can then find out the package to which the class
belongs, and which methods it supports (see Figure 4). Click on the link of a method to get a
detailed description.

Appendix D contains an abbreviated version of the API documentation.

Programming Tip 2.4

The API (Application
Programming Inter
face) documentation
lists the classes and
methods of the
Java library.

Figure 4  The API Documentation of the Standard Java Library

54  Chapter 2  Fundamental Data Types

Step 1	 Understand the problem: What are the inputs? What are the desired outputs?

In this problem, there are two inputs:
•	 The denomination of the bill that the customer inserts
•	 The price of the purchased item

There are two desired outputs:
•	 The number of dollar coins that the machine returns
•	 The number of quarters that the machine returns

Step 2	 Work out examples by hand.

This is a very important step. If you can’t compute a couple of solutions by hand, it’s unlikely
that you’ll be able to write a program that automates the computation.

Let’s assume that a customer purchased an item that cost $2.25 and inserted a $5 bill. The
customer is due $2.75, or two dollar coins and three quarters, in change.

That is easy for you to see, but how can a Java program come to the same conclusion? The
key is to work in pennies, not dollars. The change due the customer is 275 pennies. Dividing
by 100 yields 2, the number of dollars. Dividing the remainder (75) by 25 yields 3, the number
of quarters.

Step 3	 Write pseudocode for computing the answers.

In the previous step, you worked out a specific instance of the problem. You now need to
come up with a method that works in general.

Given an arbitrary item price and payment, how can you compute the coins due? First,
compute the change due in pennies:

change due = 100 x bill value - item price in pennies

To get the dollars, divide by 100 and discard the remainder:

dollar coins = change due / 100 (without remainder)

The remaining change due can be computed in two ways. If you are familiar with the modulus
operator, you can simply compute

change due = change due % 100

Alternatively, subtract the penny value of the dollar coins from the change due:

change due = change due - 100 x dollar coins

To get the quarters due, divide by 25:

quarters = change due / 25

How To 2.1	 Carrying out Computations

Many programming problems require arithmetic computations. This How To shows you
how to turn a problem statement into pseudocode and, ultimately, a Java program.

For example, suppose you are asked to write a program that simulates a vending machine.
A customer selects an item for purchase and inserts a bill into the vending machine. The vend-
ing machine dispenses the purchased item and gives change. We will assume that all item prices
are multiples of 25 cents, and the machine gives all change in dollar coins and quarters.

Your task is to compute how many coins of each type to return.

2.3  Input and Output   55

Step 4	 Declare the variables and constants that you need, and specify their types.

Here, we have five variables:
•	 billValue

•	 itemPrice

•	 changeDue

•	 dollarCoins

•	 quarters

Should we introduce constants to explain 100 and 25 as PENNIES_PER_DOLLAR and PENNIES_PER_
QUARTER? Doing so will make it easier to convert the program to international markets, so we
will take this step.

It is very important that changeDue and PENNIES_PER_DOLLAR are of type int because the com-
putation of dollarCoins uses integer division. Similarly, the other variables are integers.

Step 5	 Turn the pseudocode into Java statements.

If you did a thorough job with the pseudocode, this step should be easy. Of course, you have
to know how to express mathematical operations (such as powers or integer division) in Java.

changeDue = PENNIES_PER_DOLLAR * billValue - itemPrice;
dollarCoins = changeDue / PENNIES_PER_DOLLAR;
changeDue = changeDue % PENNIES_PER_DOLLAR;
quarters = changeDue / PENNIES_PER_QUARTER;

Step 6	 Provide input and output.

Before starting the computation, we prompt the user for the bill value and item price:

System.out.print("Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): ");
billValue = in.nextInt();
System.out.print("Enter item price in pennies: ");
itemPrice = in.nextInt();

When the computation is finished, we display the result. For extra credit, we use the printf
method to make sure that the output lines up neatly.

System.out.printf("Dollar coins: %6d", dollarCoins);
System.out.printf("Quarters: %6d", quarters);

Step 7	 Provide a class with a main method.

Your computation needs to be placed into a class. Find an appropriate name for the class that
describes the purpose of the computation. In our example, we will choose the name Vending-
Machine.

Inside the class, supply a main method.

A vending machine takes bills
and gives change in coins.

56  Chapter 2  Fundamental Data Types

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

In the main method, you need to declare constants and variables (Step 4), carry out compu-
tations (Step 5), and provide input and output (Step 6). Clearly, you will want to first get the
input, then do the computations, and finally show the output. Declare the constants at the
beginning of the method, and declare each variable just before it is needed.

Here is the complete program, how_to_1/VendingMachine.java:

import java.util.Scanner;

/**
 This program simulates a vending machine that gives change.
*/
public class VendingMachine
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);

 final int PENNIES_PER_DOLLAR = 100;
 final int PENNIES_PER_QUARTER = 25;

 System.out.print("Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): ");
 int billValue = in.nextInt();
 System.out.print("Enter item price in pennies: ");
 int itemPrice = in.nextInt();

 // Compute change due

 int changeDue = PENNIES_PER_DOLLAR * billValue - itemPrice;
 int dollarCoins = changeDue / PENNIES_PER_DOLLAR;
 changeDue = changeDue % PENNIES_PER_DOLLAR;
 int quarters = changeDue / PENNIES_PER_QUARTER;

 // Print change due

 System.out.printf("Dollar coins: %6d", dollarCoins);
 System.out.println();
 System.out.printf("Quarters: %6d", quarters);
 System.out.println();
 }
}

Program Run

Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): 5
Enter item price in pennies: 225
Dollar coins: 2
Quarters: 3

Worked Example 2.1	 Computing the Cost of Stamps

This Worked Example uses arithmetic functions to simulate a stamp vending machine.

2.4 P roblem Solving: First Do It By Hand   57

2.4  Problem Solving: First Do It By Hand
A very important step for developing an algorithm is to first carry out the computa-
tions by hand. If you can’t compute a solution yourself, it’s unlikely that you’ll be
able to write a program that automates the computation.

To illustrate the use of hand calculations, consider the following problem.
A row of black and white tiles needs to be placed along a wall. For aesthetic rea-

sons, the architect has specified that the first and last tile shall be black.
Your task is to compute the number of tiles needed and the gap at each end, given

the space available and the width of each tile.

Total width

Gap

To make the problem more concrete, let’s assume the following dimensions:

•	 Total width: 100 inches
•	 Tile width: 5 inches

The obvious solution would be to fill the space with 20 tiles, but that would not
work—the last tile would be white.

Instead, look at the problem this way: The first tile must always be black, and then
we add some number of white/black pairs:

The first tile takes up 5 inches, leaving 95 inches to be covered by pairs. Each pair is
10 inches wide. Therefore the number of pairs is 95 / 10 = 9.5. However, we need to
discard the fractional part since we can’t have fractions of tile pairs.

Therefore, we will use 9 tile pairs or 18 tiles, plus the initial black tile. Altogether,
we require 19 tiles.

The tiles span 19 × 5 = 95 inches, leaving a total gap of 100 – 19 × 5 = 5 inches.
The gap should be evenly distributed at both ends. At each end, the gap is

(100 – 19 × 5) / 2 = 2.5 inches.
This computation gives us enough information to devise an algorithm with arbi-

trary values for the total width and tile width.

number of pairs = integer part of (total width - tile width) / (2 x tile width)
number of tiles = 1 + 2 x number of pairs
gap at each end = (total width - number of tiles x tile width) / 2

As you can see, doing a hand calculation gives enough insight into the problem that it
becomes easy to develop an algorithm.

Pick concrete values
for a typical situation
to use in a hand
calculation.

O n l i n e E x a m p l e

A program that
implements this
algorithm.

58  Chapter 2  Fundamental Data Types

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

21.	 Translate the pseudocode for computing the number of tiles and the gap width
into Java.

22.	 Suppose the architect specifies a pattern with black, gray, and white tiles, like
this:

Again, the first and last tile should be black. How do you need to modify the
algorithm?

23.	 A robot needs to tile a floor with alternating black and white tiles. Develop
an algorithm that yields the color (0 for black, 1 for white), given the row and
column number. Start with specific values for the row and column, and then
generalize.

1 2 3 4

1

2

3

4

24.	 For a particular car, repair and maintenance costs in year 1 are estimated at $100;
in year 10, at $1,500. Assuming that the repair cost increases by the same amount
every year, develop pseudocode to compute the repair cost in year 3 and then
generalize to year n.

25.	 The shape of a bottle is approximated by two cylinders of radius r1 and r2 and
heights h1 and h2, joined by a cone section of height h3.
Using the formulas for the volume of a cylinder,V r h= π 2 , and a cone section,

V
r r r r h

=
+ +()

π 1
2

1 2 2
2

3 ,

develop pseudocode to compute the volume of the bottle. Using an actual bottle
with known volume as a sample, make a hand calculation of your pseudocode.

Practice It	 Now you can try these exercises at the end of the chapter: R2.15, R2.17, R2.18.

S e l f C h e c k

r2

h2

h1

h3

r1

Worked Example 2.2	 Computing Travel Time

In this Worked Example, we develop a hand calculation to compute  
the time that a robot requires to retrieve an item from rocky terrain.

2.5 S trings   59

2.5  Strings
Many programs process text, not numbers. Text
consists of characters: letters, numbers, punc-
tuation, spaces, and so on. A string is a sequence
of characters. For example, the string "Harry" is a
sequence of five characters.

2.5.1  The String Type

You can declare variables that hold strings.
String name = "Harry";

We distinguish between string variables (such as the variable name declared above) and
string literals (character sequences enclosed in quotes, such as "Harry"). A string vari-
able is simply a variable that can hold a string, just as an integer variable can hold an
integer. A string literal denotes a particular string, just as a number literal (such as 2)
denotes a particular number.

The number of characters in a string is called the length of the string. For exam-
ple, the length of "Harry" is 5. You can compute the length of a string with the length
method.

int n = name.length();

A string of length 0 is called the empty string. It contains no characters and is written
as "".

2.5.2  Concatenation

Given two strings, such as "Harry" and "Morgan", you can concatenate them to one
long string. The result consists of all characters in the first string, followed by all
characters in the second string. In Java, you use the + operator to concatenate two
strings.

For example,
String fName = "Harry";
String lName = "Morgan";
String name = fName + lName;

results in the string
"HarryMorgan"

What if you’d like the first and last name separated by a space? No problem:
String name = fName + " " + lName;

This statement concatenates three strings: fName, the string literal " ", and lName. The
result is

"Harry Morgan"

When the expression to the left or the right of a + operator is a string, the other one
is automatically forced to become a string as well, and both strings are concatenated.

Strings are sequences
of characters.

The length method
yields the number
of characters in
a string.

Use the + operator to
concatenate strings;
that is, to put them
together to yield a
longer string.

60  Chapter 2  Fundamental Data Types

For example, consider this code:
String jobTitle = "Agent";
int employeeId = 7;
String bond = jobTitle + employeeId;

Because jobTitle is a string, employeeId is converted from the integer 7 to the string "7".
Then the two strings "Agent" and "7" are concatenated to form the string "Agent7".

This concatenation is very useful for reducing the number of System.out.print
instructions. For example, you can combine

System.out.print("The total is ");
System.out.println(total);

to the single call
System.out.println("The total is " + total);

The concatenation "The total is " + total computes a single string that consists of the
string "The total is ", followed by the string equivalent of the number total.

2.5.3  String Input

You can read a string from the console:
System.out.print("Please enter your name: ");
String name = in.next();

When a string is read with the next method, only one word is read. For example, sup-
pose the user types

Harry Morgan

as the response to the prompt. This input consists of two words. The call in.next()
yields the string "Harry". You can use another call to in.next() to read the second word.

2.5.4  Escape Sequences

To include a quotation mark in a literal string, precede it with a backslash (\), like this:
"He said \"Hello\""

The backslash is not included in the string. It indicates that the quotation mark that
follows should be a part of the string and not mark the end of the string. The sequence
\" is called an escape sequence.

To include a backslash in a string, use the escape sequence \\, like this:
"C:\\Temp\\Secret.txt"

Another common escape sequence is \n, which denotes a newline character. Print-
ing a newline character causes the start of a new line on the display. For example, the
statement

System.out.print("*\n**\n***\n");

prints the characters
*
**

on three separate lines.

Whenever one of
the arguments of the
+ operator is a string,
the other argument is
converted to
a string.

Use the next method
of the Scanner class
to read a string
containing a
single word.

2.5 S trings   61

You often want to add a newline character to the end of the format string when
you use System.out.printf:

System.out.printf("Price: %10.2f\n", price);

2.5.5  Strings and Characters

Strings are sequences of Unicode characters (see Random
Fact 2.2). In Java, a character is a value of the type char.
Characters have numeric values. You can find the values
of the characters that are used in Western European lan-
guages in Appendix A. For example, if you look up the
value for the character 'H', you can see that is actually
encoded as the number 72.

Character literals are delimited by single quotes, and you should not confuse them
with strings.

•	 'H' is a character, a value of type char.
•	 "H" is a string containing a single character, a value of type String.

The charAt method returns a char value from a string. The first string position is
labeled 0, the second one 1, and so on.

0 1 2 3 4

H a r r y

The position number of the last character (4 for the string "Harry") is always one less
than the length of the string.

For example, the statement
String name = "Harry";
char start = name.charAt(0);
char last = name.charAt(4);

sets start to the value 'H' and last to the value 'y'.

2.5.6  Substrings

Once you have a string, you can extract substrings by using the substring method.
The method call

str.substring(start, pastEnd)

returns a string that is made up of the characters in the string str, starting at posi-
tion start, and containing all characters up to, but not including, the position pastEnd.
Here is an example:

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "Hello"

The substring operation makes a string that consists of the first five characters taken
from the string greeting.

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

A string is a sequence of
characters.

String positions are
counted starting
with 0.

Use the substring
method to extract a
part of a string.

62  Chapter 2  Fundamental Data Types

Let’s figure out how to extract the substring "World". Count characters starting at 0,
not 1. You find that W has position number 7. The first character that you don’t want,
!, is the character at position 12. Therefore, the appropriate substring command is

String sub2 = greeting.substring(7, 12);

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !

5

It is curious that you must specify the position of the first character that you do want
and then the first character that you don’t want. There is one advantage to this setup.
You can easily compute the length of the substring: It is pastEnd - start. For example,
the string "World" has length 12 – 7 = 5.

If you omit the end position when calling the substring method, then all characters
from the starting position to the end of the string are copied. For example,

String tail = greeting.substring(7); // Copies all characters from position 7 on

sets tail to the string "World!".
Following is a simple program that puts these concepts to work. The program asks

for your name and that of your significant other. It then prints out your initials.
The operation first.substring(0, 1) makes a

string consisting of one character, taken from the
start of first. The program does the same for the
second. Then it concatenates the resulting one-
character strings with the string literal "&" to get
a string of length 3, the initials string. (See
Figure 5.)

section_5/Initials.java

1 import java.util.Scanner;
2
3 /**
4 This program prints a pair of initials.
5 */
6 public class Initials
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11

Initials are formed from the first
letter of each name.Figure 5  Building the initials String

0 1 2
R & Sinitials =

0 1 2 3 4
S a l l ysecond =

0 1 2 3 4 5
R o d o l f

6
ofirst =

2.5 S trings   63

12 // Get the names of the couple
13
14 System.out.print("Enter your first name: ");
15 String first = in.next();
16 System.out.print("Enter your significant other's first name: ");
17 String second = in.next();
18
19 // Compute and display the inscription
20
21 String initials = first.substring(0, 1)
22 + "&" + second.substring(0, 1);
23 System.out.println(initials);
24 }
25 }

Program Run

Enter your first name: Rodolfo
Enter your significant other's first name: Sally
R&S

Table 9 String Operations

Statement Result Comment

string str = "Ja";
str = str + "va";

str is set to "Java" When applied to strings,
+ denotes concatenation.

System.out.println("Please" ­
 + " enter your name: ");

Prints
Please enter your name:

Use concatenation to break up strings
that don’t fit into one line.

team = 49 + "ers" team is set to "49ers" Because "ers" is a string, 49 is converted
to a string.

String first = in.next();
String last = in.next();
(User input: Harry Morgan)

first contains "Harry"
last contains "Morgan"

The next method places the next word
into the string variable.

String greeting = "H & S";
int n = greeting.length();

n is set to 5 Each space counts as one character.

String str = "Sally";
char ch = str.charAt(1);

ch is set to 'a' This is a char value, not a String. Note
that the initial position is 0.

String str = "Sally";
String str2 = str.substring(1, 4);

str2 is set to "all" Extracts the substring starting at
position 1 and ending before position 4.

String str = "Sally";
String str2 = str.substring(1);

str2 is set to "ally" If you omit the end position, all
characters from the position until the
end of the string are included.

String str = "Sally";
String str2 = str.substring(1, 2);

str2 is set to "a" Extracts a String of length
1; contrast with str.charAt(1).

String last = str.substring(­
 str.length() - 1);

last is set to the string
containing the last
character in str

The last character has position
str.length() - 1.

64  Chapter 2  Fundamental Data Types

26.	 What is the length of the string "Java Program"?
27.	 Consider this string variable.

String str = "Java Program";

Give a call to the substring method that returns the substring "gram".
28.	 Use string concatenation to turn the string variable str from Self Check 27 into

"Java Programming".
29.	 What does the following statement sequence print?

String str = "Harry";
int n = str.length();
String mystery = str.substring(0, 1) + str.substring(n - 1, n);
System.out.println(mystery);

30.	 Give an input statement to read a name of the form “John Q. Public”.

Practice It	 Now you can try these exercises at the end of the chapter: R2.7, R2.11, P2.15, P2.23.

Instance Methods and Static Methods

In this chapter, you have learned how to read, process, and print numbers and strings. Many of
these tasks involve various method calls. You may have noticed syntactical differences in these
method calls. For example, to compute the square root of a number num, you call Math.sqrt(num),
but to compute the length of a string str, you call str.length(). This section explains the rea-
sons behind these differences.

The Java language distinguishes between values of primitive types and objects. Numbers
and characters, as well as the values false and true that you will see in Chapter 3, are primitive.
All other values are objects. Examples of objects are
•	 a string such as "Hello".
•	 a Scanner object obtained by calling in = new Scanner(System.in).
•	 System.in and System.out.

In Java, each object belongs to a class. For example,
•	 All strings are objects of the String class.
•	 A scanner object belongs to the Scanner class.
•	 System.out is an object of the PrintStream class. (It is useful to know this so that you can

look up the valid methods in the API documentation; see Programming Tip 2.4 on page 53.)
A class declares the methods that you can use with its objects. Here are examples of methods
that are invoked on objects:

"Hello".substring(0, 1)
in.nextDouble()
System.out.println("Hello")

A method is invoked with the dot notation: the object is followed by the name of the method,
and the method is followed by parameters enclosed in parentheses.

This is the
name of the method.

These parameters are
inputs to the method.

The method is
invoked on this object.

System.out.println("Hello")

You cannot invoke methods on numbers. For example, the call 2.sqrt() would be an error.

S e l f C h e c k

Special Topic 2.4

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

2.5 S trings   65

In Java, classes can declare methods that are not invoked on objects. Such methods are called
static methods. (The term “static” is a historical holdover from the C and C++ programming
languages. It has nothing to do with the usual meaning of the word.) For example, the Math
class declares a static method sqrt. You call it by giving the name of the class and method, then
the name of the numeric input: Math.sqrt(2).

The name of the static methodThe name of the class

Math.sqrt(2)

In contrast, a method that is invoked on an object is called an instance method. As a rule of
thumb, you use static methods when you manipulate numbers. You use instance methods
when you process strings or perform input/output. You will learn more about the distinction
between static and instance methods in Chapter 8.

Using Dialog Boxes for Input and Output

Most program users find the console window rather old-fashioned. The easiest alternative is
to create a separate pop-up window for each input.

Call the static showInputDialog method of the JOptionPane class, and supply the string that
prompts the input from the user. For example,

String input = JOptionPane.showInputDialog("Enter price:");

That method returns a String object. Of course, often you need the input as a number. Use the
Integer.parseInt and Double.parseDouble methods to convert the string to a number:

double price = Double.parseDouble(input);

You can also display output in a dialog box:

JOptionPane.showMessageDialog(null, "Price: " + price);

Special Topic 2.5

An Input Dialog Box

O n l i n e E x a m p l e

A complete program
that uses option
panes for input
and output.

Video Example 2.2	 Computing Distances on Earth

In this Video Example, you will see how to write a program that
computes the distance between any two points on Earth.

66  Chapter 2  Fundamental Data Types

Declare variables with appropriate names and types.

•	 A variable is a storage location with a name.
•	 When declaring a variable, you usually specify an

initial value.
•	 When declaring a variable, you also specify the type

of its values.
•	 Use the int type for numbers that cannot have a fractional part.
•	 Use the double type for floating-point numbers.
•	 By convention, variable names should start with a lowercase letter.
•	 An assignment statement stores a new value in a variable, replacing

the previously stored value.
•	 The assignment operator = does not denote mathematical equality.

The English alpha-
bet is pretty simple:

upper- and lowercase a to z. Other
European languages have accent marks
and special characters. For example,
German has three so-called umlaut
characters, ä, ö, ü, and a double-s char
acter ß. These are not optional frills;
you couldn’t write a page of German
text without using these characters
a few times. German keyboards have
keys for these characters.

The German Keyboard Layout

Many countries don’t use the Roman
script at all. Russian, Greek, Hebrew,

Arabic, and Thai letters, to name just a
few, have completely different shapes.
To complicate matters, Hebrew and
Arabic are typed from right to left. Each
of these alphabets has about as many
characters as the English alphabet.

Hebrew, Arabic, and English

The Chinese languages as well as
Japanese and Korean use Chinese char-
acters. Each character represents an
idea or thing. Words are made up of
one or more of these ideographic char-
acters. Over 70,000 ideographs are
known.

Starting in 1988, a consortium of
hardware and software manufacturers
developed a uniform encoding scheme

called Unicode that is capable of
encoding text in essentially all written
languages of the world. An early ver-
sion of Unicode used 16 bits for each
character. The Java char type corre-
sponds to that encoding.

Today Unicode has grown to a
21-bit code, with definitions for over
100,000 characters. There are even
plans to add codes for extinct lan-
guages, such as Egyptian hieroglyph-
ics. Unfortunately, that means that a
Java char value does not always cor-
respond to a Unicode character. Some
characters in languages such as Chi-
nese or ancient Egyptian occupy two
char values.

The Chinese Script

Random Fact 2.2  International Alphabets and Unicode

C h a p t e r S u m m a r y

Chapter Summary  67

•	 You cannot change the value of a variable that is defined as final.
•	 Use comments to add explanations for humans who read your

code. The compiler ignores comments.

Write arithmetic expressions in Java.

•	 Mixing integers and floating-point values in an arithmetic expression yields a
floating-point value.

•	 The ++ operator adds 1 to a variable; the -- operator subtracts 1.
•	 If both arguments of / are integers, the remainder is discarded.
•	 The % operator computes the remainder of an integer division.
•	 The Java library declares many mathematical functions, such as Math.sqrt (square

root) and Math.pow (raising to a power).
•	 You use a cast (typeName) to convert a value to a different type.

Write programs that read user input and print formatted output.

•	 Java classes are grouped into packages. Use the import statement to use classes
from packages.

•	 Use the Scanner class to read keyboard input in a console window.
•	 Use the printf method to specify how values should be

formatted.
•	 The API (Application Programming Interface)

documentation lists the classes and methods of the
Java library.

Carry out hand calculations when developing an algorithm.

•	 Pick concrete values for a typical situation to use in a hand calculation.

Write programs that process strings.

•	 Strings are sequences of characters.
•	 The length method yields the number of characters in

a string.
•	 Use the + operator to concatenate strings; that is, to put them together to yield a

longer string.
•	 Whenever one of the arguments of the + operator is a string, the other argument is

converted to a string.
•	 Use the next method of the Scanner class to read a string containing

a single word.
•	 String positions are counted starting with 0.
•	 Use the substring method to extract a part of a string.

68  Chapter 2  Fundamental Data Types

• R2.1	 What is the value of mystery after this sequence of statements?
int mystery = 1;
mystery = 1 - 2 * mystery;
mystery = mystery + 1;

• R2.2	 What is wrong with the following sequence of statements?
int mystery = 1;
mystery = mystery + 1;
int mystery = 1 - 2 * mystery;

•• R2.3	 Write the following mathematical expressions in Java.

s s v t gt

G
a

p m m

= + +

=
+

= ⋅ +

0 0
2

2
3

2
1 2

1
2

4

1

π
()

FV PV
INT
1000

YRS





= + −c a b ab2 2 2 cosγ

•• R2.4	 Write the following Java expressions in mathematical notation.
a.	dm = m * (Math.sqrt(1 + v / c) / Math.sqrt(1 - v / c) - 1);
b.	volume = Math.PI * r * r * h;
c.	volume = 4 * Math.PI * Math.pow(r, 3) / 3;
d.	z = Math.sqrt(x * x + y * y);

•• R2.5	 What are the values of the following expressions? In each line, assume that
double x = 2.5;
double y = -1.5;

java.io.PrintStream
 printf
java.lang.Double
 parseDouble
java.lang.Integer
 MAX_VALUE
 MIN_VALUE
 parseInt
java.lang.Math
 PI
 abs
 cos
 exp
 log
 log10

 max
 min
 pow
 round
 sin
 sqrt
 tan
 toDegrees
 toRadians
java.lang.String
 charAt
 length
 substring
java.lang.System
 in

java.math.BigDecimal
 add
 multiply
 subtract
java.math.BigInteger
 add
 multiply
 subtract
java.util.Scanner
 next
 nextDouble
 nextInt
javax.swing.JOptionPane
 showInputDialog
 showMessageDialog

S ta n d a r d L i b r a r y It e m s I n t r o d u c e d i n t h i s C h a p t e r

R e v i e w E x e r c i s e s

Review Exercises  69

int m = 18;
int n = 4;

a.	x + n * y - (x + n) * y
b.	m / n + m % n
c.	5 * x - n / 5
d.	1 - (1 - (1 - (1 - (1 - n))))
e.	Math.sqrt(Math.sqrt(n))

• R2.6	 What are the values of the following expressions, assuming that n is 17 and m is 18?
a.	n / 10 + n % 10
b.	n % 2 + m % 2
c.	(m + n) / 2
d.	(m + n) / 2.0
e.	(int) (0.5 * (m + n))
f.	 (int) Math.round(0.5 * (m + n))

•• R2.7	 What are the values of the following expressions? In each line, assume that
String s = "Hello";
String t = "World";

a.	s.length() + t.length()
b.	s.substring(1, 2)
c.	s.substring(s.length() / 2, s.length())
d.	s + t
e.	t + s

• R2.8	 Find at least five compile-time errors in the following program.
public class HasErrors
{
 public static void main();
 {
 System.out.print(Please enter two numbers:)
 x = in.readDouble;
 y = in.readDouble;
 System.out.printline("The sum is " + x + y);
 }
}

•• R2.9	 Find three run-time errors in the following program.
public class HasErrors
{
 public static void main(String[] args)
 {
 int x = 0;
 int y = 0;
 Scanner in = new Scanner("System.in");
 System.out.print("Please enter an integer:");
 x = in.readInt();
 System.out.print("Please enter another integer: ");
 x = in.readInt();
 System.out.println("The sum is " + x + y);
 }
}

70  Chapter 2  Fundamental Data Types

• R2.10	 Consider the following code segment.
double purchase = 19.93;
double payment = 20.00;
double change = payment - purchase;
System.out.println(change);

The code segment prints the change as 0.07000000000000028. Explain why. Give a
recommendation to improve the code so that users will not be confused.

• R2.11	 Explain the differences between 2, 2.0, '2', "2", and "2.0".

• R2.12	 Explain what each of the following program segments computes.
a.	x = 2;­

y = x + x;

b.	s = "2";­
t = s + s;

•• R2.13	 Write pseudocode for a program that reads a word and then prints the first character,
the last character, and the characters in the middle. For example, if the input is Harry,
the program prints H y arr.

•• R2.14	 Write pseudocode for a program that reads a name (such as Harold James Morgan) and
then prints a monogram consisting of the initial letters of the first, middle, and last
name (such as HJM).

••• R2.15	 Write pseudocode for a program that computes the first and last digit of a num-
ber. For example, if the input is 23456, the program should print 2 and 6. Hint: %,
Math.log10.

• R2.16	 Modify the pseudocode for the program in How To 2.1 so that the program gives
change in quarters, dimes, and nickels. You can assume that the price is a multiple of
5 cents. To develop your pseudocode, first work with a couple of specific values.

•• R2.17	 A cocktail shaker is composed of three cone sections.
Using realistic values for the radii and heights, compute the total
volume, using the formula given in Self Check 25 for a cone section.
Then develop an algorithm that works for arbitrary dimensions.

••• R2.18	 You are cutting off a piece of pie like this, where c is the length of the
straight part (called the chord length) and h is the height of the piece.

hc

d

There is an approximate formula for the area: A ch
h

c
≈ +2

3

3

2

Programming Exercises  71

However, h is not so easy to measure, whereas the diameter d of a pie is usually
well-known. Calculate the area where the diameter of the pie is 12 inches and the
chord length of the segment is 10 inches. Generalize to an algorithm that yields the
area for any diameter and chord length.

•• R2.19	 The following pseudocode describes how to obtain the name of a day, given the day
number (0 = Sunday, 1 = Monday, and so on.)

Declare a string called names containing "SunMonTueWedThuFriSat".
Compute the starting position as 3 x the day number.
Extract the substring of names at the starting position with length 3.

Check this pseudocode, using the day number 4. Draw a diagram of the string that is
being computed, similar to Figure 5.

••• R2.20	 The following pseudocode describes how to swap two letters in a word.

We are given a string str and two positions i and j. (i comes before j)
Set first to the substring from the start of the string to the last position before i.
Set middle to the substring from positions i + 1 to j - 1.
Set last to the substring from position j + 1 to the end of the string.
Concatenate the following five strings: first, the string containing just the character at position j,

middle, the string containing just the character at position i, and last.

Check this pseudocode, using the string "Gateway" and positions 2 and 4. Draw a
diagram of the string that is being computed, similar to Figure 5.

•• R2.21	 How do you get the first character of a string? The last character? How do you
remove the first character? The last character?

••• R2.22	 Write a program that prints the values
3 * 1000 * 1000 * 1000
3.0 * 1000 * 1000 * 1000

Explain the results.

• R2.23	 This chapter contains a number of recommendations regarding variables and con
stants that make programs easier to read and maintain. Briefly summarize these
recommendations.

• P2.1	 Write a program that displays the dimensions of a letter-size (8.5 × 11 inches) sheet
of paper in millimeters. There are 25.4 millimeters per inch. Use constants and com-
ments in your program.

• P2.2	 Write a program that computes and displays the perimeter of a letter-size (8.5 × 11
inches) sheet of paper and the length of its diagonal.

• P2.3	 Write a program that reads a number and displays the square, cube, and fourth
power. Use the Math.pow method only for the fourth power.

•• P2.4	 Write a program that prompts the user for two integers and then prints
•	 The sum
•	 The difference

P r o g r a m m i n g E x e r ci s e s

72  Chapter 2  Fundamental Data Types

•	 The product
•	 The average
•	 The distance (absolute value of the difference)
•	 The maximum (the larger of the two)
•	 The minimum (the smaller of the two)

Hint: The max and min functions are declared in the Math class.

•• P2.5	 Enhance the output of Exercise P2.4 so that the numbers are properly aligned:
Sum: 45
Difference: -5
Product: 500
Average: 22.50
Distance: 5
Maximum: 25
Minimum: 20

•• P2.6	 Write a program that prompts the user for a measurement in meters and then con
verts it to miles, feet, and inches.

• P2.7	 Write a program that prompts the user for a radius and then prints
•	 The area and circumference of a circle with that radius
•	 The volume and surface area of a sphere with that radius

•• P2.8	 Write a program that asks the user for the lengths of the sides of a rectangle. Then
print

•	 The area and perimeter of the rectangle
•	 The length of the diagonal (use the Pythagorean theorem)

• P2.9	 Improve the program discussed in How To 2.1 to allow input of quarters in addition
to bills.

••• P2.10	 Write a program that helps a person decide whether to buy a hybrid car. Your
program’s inputs should be:

•	 The cost of a new car
•	 The estimated miles driven per year
•	 The estimated gas price
•	 The efficiency in miles per gallon
•	 The estimated resale value after 5 years

Compute the total cost of owning the car for
five years. (For simplicity, we will not take the
cost of financing into account.) Obtain
realistic prices for a new and used hybrid
and a comparable car from the Web. Run your program twice, using today’s gas
price and 15,000 miles per year. Include pseudocode and the program runs with your
assignment.

•• P2.11	 Write a program that asks the user to input
•	 The number of gallons of gas in the tank
•	 The fuel efficiency in miles per gallon
•	 The price of gas per gallon

Programming Exercises  73

Then print the cost per 100 miles and how far the car can go with the gas in the tank.

• P2.12	 File names and extensions. Write a program that prompts the user for the drive letter
(C), the path (\Windows\System), the file name (Readme), and the extension (txt). Then
print the complete file name C:\Windows\System\Readme.txt. (If you use UNIX or a
Macintosh, skip the drive name and use / instead of \ to separate directories.)

••• P2.13	 Write a program that reads a number between 1,000 and 999,999 from the user,
where the user enters a comma in the input. Then print the number without a
comma. Here is a sample dialog; the user input is in color:

Please enter an integer between 1,000 and 999,999: 23,456
23456

Hint: Read the input as a string. Measure the length of the string. Suppose it contains
n characters. Then extract substrings consisting of the first n – 4 characters and the
last three characters.

•• P2.14	 Write a program that reads a number between 1,000 and 999,999 from the user and
prints it with a comma separating the thousands. Here is a sample dialog; the user
input is in color:

Please enter an integer between 1000 and 999999: 23456
23,456

• P2.15	 Printing a grid. Write a program that prints the following grid to play tic-tac-toe.
+--+--+--+
| | | |
+--+--+--+
| | | |
+--+--+--+
| | | |
+--+--+--+

Of course, you could simply write seven statements of the form

System.out.println("+--+--+--+");

You should do it the smart way, though. Declare string variables to hold two kinds
of patterns: a comb-shaped pattern and the bottom line. Print the comb three times
and the bottom line once.

•• P2.16	 Write a program that reads in an integer and breaks it into a sequence of individual
digits. For example, the input 16384 is displayed as

1 6 3 8 4

You may assume that the input has no more than five digits and is not negative.

•• P2.17	 Write a program that reads two times in military format (0900, 1730) and prints the
number of hours and minutes between the two times. Here is a sample run. User
input is in color.

Please enter the first time: 0900
Please enter the second time: 1730
8 hours 30 minutes

Extra credit if you can deal with the case where the first time is later than the second:
Please enter the first time: 1730
Please enter the second time: 0900
15 hours 30 minutes

74  Chapter 2  Fundamental Data Types

••• P2.18	 Writing large letters. A large letter H can be produced like this:
* *
* *

* *
* *

It can be declared as a string literal like this:
final string LETTER_H = "* *\n* *\n*****\n* *\n* *\n";

(The \n escape sequence denotes a “newline” character that causes subsequent
characters to be printed on a new line.) Do the same for the letters E, L, and O. Then
write the message

H
E
L
L
O

in large letters.

•• P2.19	 Write a program that transforms numbers 1, 2, 3, …, 12
into the corresponding month names January, February,
March, …, December. Hint: Make a very long string "January
February March ...", in which you add spaces such that each
month name has the same length. Then use sub­string to
extract the month you want.

•• P2.20	 Write a program that prints a Christmas tree:
 /\'
 / \'
 / \'
/ \'

 " "
 " "
 " "

Remember to use escape sequences.

•• P2.21	 Easter Sunday is the first Sunday after the first full moon of spring. To compute
the date, you can use this algorithm, invented by the mathematician Carl Friedrich
Gauss in 1800:
1. 	 Let y be the year (such as 1800 or 2001).
2. 	 Divide y by 19 and call the remainder a. Ignore the quotient.
3. 	 Divide y by 100 to get a quotient b and a remainder c.
4. 	 Divide b by 4 to get a quotient d and a remainder e.
5. 	 Divide 8 * b + 13 by 25 to get a quotient g. Ignore the remainder.
6. 	 Divide 19 * a + b - d - g + 15 by 30 to get a remainder h. Ignore the quotient.
7. 	 Divide c by 4 to get a quotient j and a remainder k.
8. 	 Divide a + 11 * h by 319 to get a quotient m. Ignore the remainder.
9. 	 Divide 2 * e + 2 * j - k - h + m + 32 by 7 to get a remainder r. Ignore the

quotient.

Programming Exercises  75

10. Divide h - m + r + 90 by 25 to get a quotient n. Ignore the remainder.
11. Divide h - m + r + n + 19 by 32 to get a remainder p. Ignore the quotient.

Then Easter falls on day p of month n. For example, if y is 2001:
a = 6	 h = 18	 n = 4
b = 20, c = 1	 j = 0, k = 1	 p = 15
d = 5, e = 0	 m = 0
g = 6	 r = 6

Therefore, in 2001, Easter Sunday fell on April 15. Write a program that prompts the
user for a year and prints out the month and day of Easter Sunday.

•• Business P2.22	 The following pseudocode describes how a bookstore computes the price of an
order from the total price and the number of the books that were ordered.

Read the total book price and the number of books.
Compute the tax (7.5 percent of the total book price).
Compute the shipping charge ($2 per book).
The price of the order is the sum of the total book price, the tax, and the shipping charge.
Print the price of the order.

Translate this pseudocode into a Java program.

•• Business P2.23	 The following pseudocode describes how to turn a string containing a ten-digit
phone number (such as "4155551212") into a more readable string with parentheses
and dashes, like this: "(415) 555-1212".

Take the substring consisting of the first three characters and surround it with "(" and ") ". This is the
area code.

Concatenate the area code, the substring consisting of the next three characters, a hyphen, and the
substring consisting of the last four characters. This is the formatted number.

Translate this pseudocode into a Java program that reads a telephone number into a
string variable, computes the formatted number, and prints it.

•• Business P2.24	 The following pseudocode describes how to extract the dollars and cents from a
price given as a floating-point value. For example, a price 2.95 yields values 2 and 95
for the dollars and cents.

Assign the price to an integer variable dollars.
Multiply the difference price - dollars by 100 and add 0.5.
Assign the result to an integer variable cents.

Translate this pseudocode into a Java program. Read a price and print the dollars and
cents. Test your program with inputs 2.95 and 4.35.

•• Business P2.25	 Giving change. Implement a program that directs a cashier
how to give change. The program has two inputs: the
amount due and the amount received from the customer.
Display the dollars, quarters, dimes, nickels, and pennies
that the customer should receive in return. In order to avoid
roundoff errors, the program user should supply both
amounts in pennies, for example 274 instead of 2.74.

• Business P2.26	 An online bank wants you to create a program that shows prospective customers
how their deposits will grow. Your program should read the initial balance and the

76  Chapter 2  Fundamental Data Types

annual interest rate. Interest is compounded monthly. Print out the balances after the
first three months. Here is a sample run:

Initial balance: 1000
Annual interest rate in percent: 6.0
After first month: 1005.00
After second month: 1010.03
After third month: 1015.08

• Business P2.27	 A video club wants to reward its best members with a discount based on the mem-
ber’s number of movie rentals and the number of new members referred by the
member. The discount is in percent and is equal to the sum of the rentals and the
referrals, but it cannot exceed 75 percent. (Hint: Math.min.) Write a program Discount-
Calculator to calculate the value of the discount.
Here is a sample run:

Enter the number of movie rentals: 56
Enter the number of members referred to the video club: 3
The discount is equal to: 59.00 percent.

• Science P2.28	 Consider the following circuit.

R1

R2 R3

Write a program that reads the resistances of the three resistors and computes the
total resistance, using Ohm’s law.

•• Science P2.29	 The dew point temperature Td can be calculated (approximately) from the relative
humidity RH and the actual temperature T by

T
b f T RH

a f T RH

f T RH
a T
b T

RH

d =
⋅ ()
− ()

() = ⋅
+

+ ()

,

,

, ln

where a = 17.27 and b = 237.7° C.
Write a program that reads the relative humidity (between 0 and 1) and the tem-
perature (in degrees C) and prints the dew point value. Use the Java function log to
compute the natural logarithm.

••• Science P2.30	 The pipe clip temperature sensors shown here are robust sensors that can be clipped
directly onto copper pipes to measure the temperature of the liquids in the pipes.

Programming Exercises  77

Each sensor contains a device called a thermistor. Thermistors are semiconductor
devices that exhibit a temperature-dependent resistance described by:

R R e T T=
−











0

1 1

0

β

where R is the resistance (in Ω) at the temperature T (in °K), and R0 is the resistance
(in Ω) at the temperature T0 (in °K). β is a constant that depends on the material used
to make the thermistor. Thermistors are specified by providing values for R0, T0,
and β.
The thermistors used to make the pipe clip temperature sensors have R0 = 1075 Ω at
T0 = 85 °C, and β = 3969 °K. (Notice that β has units of °K. Recall that the tempera-
ture in °K is obtained by adding 273 to the temperature in °C.) The liquid tempera-
ture, in °C, is determined from the resistance R, in Ω, using

T
T

T
R

R

=








 +

−
β

β

0

0
0

273

ln

Write a Java program that prompts the user for the thermistor resistance R and prints
a message giving the liquid temperature in °C.

••• Science P2.31	 The circuit shown below illustrates some impor-
tant aspects of the connection between a power
company and one of its customers. The customer is
represented by three parameters, Vt, P, and pf. Vt is
the voltage accessed by plugging into a wall outlet.
Customers depend on having a dependable value
of Vt in order for their appliances to work prop-
erly. Accordingly, the power company regulates
the value of Vt carefully. P describes the amount of
power used by the customer and is the primary factor in determining the customer’s
electric bill. The power factor, pf, is less familiar. (The power factor is calculated as
the cosine of an angle so that its value will always be between zero and one.) In this
problem you will be asked to write a Java program to investigate the significance of
the power factor.

Vs

Customer

+
–

R = 10 Ω

Power
Lines

Power
Company

R = 10 Ω

P = 260 W
pf = 0.6

Vt = 120 Vrms

+

–

78  Chapter 2  Fundamental Data Types

In the figure, the power lines are represented, somewhat simplistically, as resistances
in Ohms. The power company is represented as an AC voltage source. The source
voltage, Vs, required to provide the customer with power P at voltage Vt can be
determined using the formula

V V
RP
V

RP
pf V

pfs t
t t

= +






+







−()2 2

1
2 2

2

(Vs has units of Vrms.) This formula indicates that the value of Vs depends on the
value of pf. Write a Java program that prompts the user for a power factor value and
then prints a message giving the corresponding value of Vs, using the values for P, R,
and Vt shown in the figure above.

••• Science P2.32	 Consider the following tuning circuit connected to an antenna, where C is a variable
capacitor whose capacitance ranges from Cmin to Cmax.

L C

Antenna

The tuning circuit selects the frequency f
LC

= 2π
. To design this circuit for a given

frequency, take C C C= min max and calculate the required inductance L from f and

C. Now the circuit can be tuned to any frequency in the range f
LCmin

max

= 2π
 to

f
LCmax

min

= 2π
.

Write a Java program to design a tuning circuit for a given frequency, using a variable
capacitor with given values for Cmin and Cmax. (A typical input is f = 16.7 MHz,
Cmin = 14 pF, and Cmax = 365 pF.) The program should read in f (in Hz), Cmin and
Cmax (in F), and print the required inductance value and the range of frequencies to
which the circuit can be tuned by varying the capacitance.

• Science P2.33	 According to the Coulomb force law, the electric force between two charged
particles of charge Q1 and Q2 Coulombs, that are a distance r meters apart, is

F
Q Q

r
= 1 2

24π ε
 Newtons, where ε = × −8 854 10 12. Farads/meter. Write a program

that calculates the force on a pair of charged particles, based on the user input of Q1
Coulombs, Q2 Coulombs, and r meters, and then computes and displays the electric
force.

Answers to Self-Check Questions  79

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 One possible answer is
int bottlesPerCase = 8;

You may choose a different variable name or a
different initialization value, but your variable
should have type int.

2.	 There are three errors:
•	 You cannot have spaces in variable names.
•	 The variable type should be double because
	 it holds a fractional value.
•	 There is a semicolon missing at the end of
	 the statement.

3.	 double unitPrice = 1.95;
int quantity = 2;

4.	 System.out.print("Total price: ");
System.out.println(unitPrice * quantity);

5.	 Change the declaration of cansPerPack to
int cansPerPack = 4;

6.	 You need to use a */ delimiter to close a com-
ment that begins with a /*:
double canVolume = 0.355;
 /* Liters in a 12-ounce can */

7.	 The program would compile, and it would
display the same result. However, a person
reading the program might find it confusing
that fractional cans are being considered.

8.	 Its value is modified by the assignment
statement.

9.	 Assignment would occur when one car is
replaced by another in the parking space.

10.	 double interest = balance * percent / 100;
11.	 double sideLength = Math.sqrt(area);
12.	 4 * PI * Math.pow(radius, 3) / 3

or (4.0 / 3) * PI * Math.pow(radius, 3),
but not (4 / 3) * PI * Math.pow(radius, 3)

13.	 172 and 9
14.	 It is the second-to-last digit of n. For example,

if n is 1729, then n / 10 is 172, and (n / 10) % 10
is 2.

15.	 System.out.print("How old are you? ");
int age = in.nextInt();

16.	 There is no prompt that alerts the program
user to enter the quantity.

17.	 The second statement calls nextInt, not next-
Double. If the user were to enter a price such as
1.95, the program would be terminated with an
“input mismatch exception”.

18.	 There is no colon and space at the end of the
prompt. A dialog would look like this:
Please enter the number of cans6

19.	 The total volume is 10
There are four spaces between is and 10. One
space originates from the format string (the
space between s and %), and three spaces are
added before 10 to achieve a field width of 5.

20.	 Here is a simple solution:
System.out.printf("Bottles: %8d\n", bottles);
System.out.printf("Cans: %8d\n", cans);

Note the spaces after Cans:. Alternatively,
you can use format specifiers for the strings.
You can even combine all output into a single
statement:
System.out.printf("%-9s%8d\n%-9s%8d\n",

"Bottles: ", bottles, "Cans:", cans);

21.	 int pairs = (totalWidth - tileWidth)
 / (2 * tileWidth);
int tiles = 1 + 2 * pairs;
double gap = (totalWidth - ­
 tiles * tileWidth) / 2.0;

Be sure that pairs is declared as an int.
22.	 Now there are groups of four tiles (gray/

white/gray/black) following the initial black
tile. Therefore, the algorithm is now

number of groups = integer part of (total width - tile width) /
(4 x tile width)

number of tiles = 1 + 4 x number of groups

The formula for the gap is not changed.
23.	 Clearly, the answer depends only on whether

the row and column numbers are even or odd,
so let’s first take the remainder after divid-
ing by 2. Then we can enumerate all expected
answers:

Row % 2  Column % 2  Color
	 0 	 0 	 0
	 0	 1	 1
	 1	 0	 1
	 1	 1	 0

80  Chapter 2  Fundamental Data Types

In the first three entries of the table, the color
is simply the sum of the remainders. In the
fourth entry, the sum would be 2, but we want
a zero. We can achieve that by taking another
remainder operation:

color = ((row % 2) + (column % 2)) % 2

24.	 In nine years, the repair costs increased by
$1,400. Therefore, the increase per year is
$1,400 / 9 ≈ $156. The repair cost in year 3
would be $100 + 2 × $156 = $412. The repair
cost in year n is $100 + n × $156. To avoid
accumulation of roundoff errors, it is actually
a good idea to use the original expression that
yielded $156, that is,

Repair cost in year n = 100 + n x 1400 / 9

25.	 The pseudocode follows easily from the
equations:

bottom volume = p  x  r1
2  x  h1

top volume = p  x  r2
2  x  h2

middle volume = p  x  (r1
2  +  r1  x  r2  +  r2

2)  x  h3  /  3
total volume = bottom volume + top volume + middle volume

Measuring a typical wine bottle yields
r1 = 3.6, r2 = 1.2, h1 = 15, h2 = 7, h3 = 6
(all in centimeters). Therefore,
bottom volume = 610.73
top volume = 31.67
middle volume = 135.72
total volume = 778.12
The actual volume is 750 ml, which is close
enough to our computation to give confidence
that it is correct.

26.	 The length is 12. The space counts as a
character.

27.	 str.substring(8, 12) or str.substring(8)
28.	 str = str + "ming";
29.	 Hy
30.	 String first = in.next();

String middle = in.next();
String last = in.next();

3C h a p t e r

81

Decis ions

To implement decisions using if
statements

To compare integers, floating-point numbers, and strings

To write statements using the Boolean data type

To develop strategies for testing your programs

To validate user input

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

3.1  The if Statement   82

Syntax 3.1: if Statement 84
Programming Tip 3.1: Brace Layout  86
Programming Tip 3.2: Always Use Braces  86
Common Error 3.1: A Semicolon After the

if Condition  86
Programming Tip 3.3: Tabs  87
Special Topic 3.1: The Conditional Operator  87
Programming Tip 3.4: Avoid

Duplication in Branches  88

3.2  Comparing Numbers
and Strings  88

Syntax 3.2: Comparisons  89
Common Error 3.2: Exact Comparison of

Floating-Point Numbers  91
Common Error 3.3: Using == to Compare Strings  92
Special Topic 3.2: Lexicographic Ordering

of Strings  92
How To 3.1:  Implementing an if Statement  93
Worked Example 3.1: Extracting the Middle 
Random Fact 3.1: The Denver Airport Luggage

Handling System  95

3.3  Multiple Alternatives  96

Special Topic 3.3: The switch Statement  99

3.4  Nested Branches  100

Programming Tip 3.5: Hand-Tracing  103
Common Error 3.4: The Dangling else Problem  104
Special Topic 3.4: Enumeration Types  105
Video Example 3.1: Computing the Plural of an

English Word 

3.5  Problem Solving: Flowcharts  105

3.6  Problem Solving: Test Cases  108

Programming Tip 3.6: Make a Schedule and Make
Time for Unexpected Problems  109

Special Topic 3.5: Logging  110

3.7  Boolean Variables
and Operators  111

Common Error 3.5: Combining Multiple
Relational Operators  113

Common Error 3.6: Confusing && and ||
Conditions  114

Special Topic 3.6: Short-Circuit Evaluation of
Boolean Operators  114

Special Topic 3.7: De Morgan’s Law  115

3.8  Application: Input Validation  116

Video Example 3.2: The Genetic Code 
Random Fact 3.2: Artificial Intelligence  119

82

One of the essential features of computer programs is
their ability to make decisions. Like a train that changes
tracks depending on how the switches are set, a program
can take different actions depending on inputs and other
circumstances.

In this chapter, you will learn how to program simple and
complex decisions. You will apply what you learn to the
task of checking user input.

3.1  The if Statement
The if statement is used to implement a decision (see Syntax 3.1). When a condition is
fulfilled, one set of statements is executed. Otherwise, another set of statements is
executed.

Here is an example using the if statement: In
many countries, the number 13 is considered
unlucky. Rather than offending superstitious ten­
ants, building owners sometimes skip the thir­
teenth floor; floor 12 is immediately followed by
floor 14. Of course, floor 13 is not usually left
empty or, as some conspiracy theorists believe,
filled with secret offices and research labs. It is
simply called floor 14. The computer that controls
the building elevators needs to compensate for
this foible and adjust all floor numbers above 13.

Let’s simulate this process in Java. We will ask
the user to type in the desired floor number and
then compute the actual floor. When the input is
above 13, then we need to decrement the input to
obtain the actual floor. For example, if the user
provides an input of 20, the program determines
the actual floor as 19. Otherwise, we simply use
the supplied floor number.

int actualFloor;

if (floor > 13)
{
 actualFloor = floor - 1;
}
else
{
 actualFloor = floor;
}

The flowchart in Figure 1 shows the branching behavior.
In our example, each branch of the if statement contains a single statement. You

can include as many statements in each branch as you like. Sometimes, it happens that

The if statement
allows a program to
carry out different
actions depending on
the nature of the data
to be processed.

This elevator panel “skips” the
thirteenth floor. The floor is not
actually missing—the computer
that controls the elevator adjusts
the floor numbers above 13.

3.1 T he if Statement   83

Figure 1 
Flowchart for if Statement

floor > 13?
True False

actualFloor =
floor - 1

actualFloor =
floor

Condition

Figure 2 
Flowchart for if Statement with No else Branch

floor > 13?
True False

actualFloor--

No else branch

there is nothing to do in the else branch of the statement. In that case, you can omit it
entirely, such as in this example:

int actualFloor = floor;

if (floor > 13)
{
 actualFloor--;
} // No else needed

See Figure 2 for the flowchart.

An if statement is like a fork in
the road. Depending upon a
decision, different parts of the
program are executed.

84  Chapter 3  Decisions

Syntax 3.1	 if Statement

Don't put a semicolon here!
 See page 86.

Lining up braces
 is a good idea.

 See page 86.

if (floor > 13)
{
 actualFloor = floor - 1;
}
else
{
 actualFloor = floor;
}

A condition that is true or false.
Often uses relational operators:
== != < <= > >= (See page 89.)

If the condition is true, the statement(s)
in this branch are executed in sequence;
if the condition is false, they are skipped.

Braces are not required
if the branch contains a
single statement, but it's
good to always use them.
 See page 86.

If the condition is false, the statement(s)
in this branch are executed in sequence;
if the condition is true, they are skipped.

Omit the else branch
if there is nothing to do.

if (condition)
{
 statements
}

if (condition) { statements1 }
else { statements2 }

Syntax

The following program puts the if statement to work. This program asks for the
desired floor and then prints out the actual floor.

section_1/ElevatorSimulation.java

1 import java.util.Scanner;
2
3 /**
4 This program simulates an elevator panel that skips the 13th floor.
5 */
6 public class ElevatorSimulation
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Floor: ");
12 int floor = in.nextInt();
13
14 // Adjust floor if necessary
15
16 int actualFloor;
17 if (floor > 13)
18 {
19 actualFloor = floor - 1;
20 }
21 else
22 {

3.1 T he if Statement   85

23 actualFloor = floor;
24 }
25
26 System.out.println("The elevator will travel to the actual floor "
27 + actualFloor);
28 }
29 }

Program Run

Floor: 20
The elevator will travel to the actual floor 19

1.	 In some Asian countries, the number 14 is considered unlucky. Some building
owners play it safe and skip both the thirteenth and the fourteenth floor. How
would you modify the sample program to handle such a building?

2.	 Consider the following if statement to compute a discounted price:
if (originalPrice > 100)
{
 discountedPrice = originalPrice - 20;
}
else
{
 discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?
3.	 Compare this if statement with the one in Self Check 2:

if (originalPrice < 100)
{
 discountedPrice = originalPrice - 10;
}
else
{
 discountedPrice = originalPrice - 20;
}

Do the two statements always compute the same value? If not, when do the
values differ?

4.	 Consider the following statements to compute a discounted price:
discountedPrice = originalPrice;
if (originalPrice > 100)
{
 discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?
5.	 The variables fuelAmount and fuelCapacity hold the actual amount of fuel and the

size of the fuel tank of a vehicle. If less than 10 percent is remaining in the tank, a
status light should show a red color; otherwise it shows a green color. Simulate
this process by printing out either "red" or "green".

Practice It	 Now you can try these exercises at the end of the chapter: R3.5, R3.6, P3.31.

S e l f C h e c k

86  Chapter 3  Decisions

Brace Layout

The compiler doesn’t care where you place
braces. In this book, we follow the simple rule
of making { and } line up.

if (floor > 13)
{
 floor--;
}

This style makes it easy to spot matching
braces. Some programmers put the opening
brace on the same line as the if:

if (floor > 13) {
 floor--;
}

This style makes it harder to match the braces, but it saves a line of code, allowing you to view
more code on the screen without scrolling. There are passionate advocates of both styles.

It is important that you pick a layout style and stick with it consistently within a given
programming project. Which style you choose may depend on your personal preference or a
coding style guide that you need to follow.

Always Use Braces

When the body of an if statement consists of a single statement, you need not use braces. For
example, the following is legal:

if (floor > 13)
 floor--;

However, it is a good idea to always include the braces:

if (floor > 13)
{
 floor--;
}

The braces make your code easier to read. They also make it easier for you to maintain the
code because you won’t have to worry about adding braces when you add statements inside
an if statement.

A Semicolon After the if Condition

The following code fragment has an unfortunate error:

if (floor > 13) ; // ERROR
{
 floor--;
}

There should be no semicolon after the if condition. The compiler interprets this statement as
follows: If floor is greater than 13, execute the statement that is denoted by a single semicolon,
that is, the do-nothing statement. The statement enclosed in braces is no longer a part of the if

Programming Tip 3.1

Properly lining up your code makes your pro-
grams easier to read.

Programming Tip 3.2

Common Error 3.1

3.1 T he if Statement   87

statement. It is always executed. In other words, even if the value of floor is not above 13, it is
decremented.

Tabs

Block-structured code has the property that nested statements are indented by one or more
levels:

public class ElevatorSimulation
{
| public static void main(String[] args)
| {
| | int floor;
| | . . .
| | if (floor > 13)
| | {
| | | floor--;
| | }
| | . . .
| }
| | | |
0 1 2 3 Indentation level

How do you move the cursor from the leftmost column to the appropriate indentation level?
A perfectly reasonable strategy is to hit the space bar a sufficient number of times. With most
editors, you can use the Tab key instead. A tab moves the cursor to the next indentation level.
Some editors even have an option to fill in the tabs automatically.

While the Tab key is nice, some editors use tab characters for alignment, which is not so
nice. Tab characters can lead to problems when you send your file to another person or a
printer. There is no universal agreement on the width of a tab character, and some software
will ignore tab characters altogether. It is therefore best to save your files with spaces instead of
tabs. Most editors have a setting to automatically convert all tabs to spaces. Look at the docu­
mentation of your development environment to find out how to activate this useful setting.

The Conditional Operator

Java has a conditional operator of the form

condition ? value1 : value2

The value of that expression is either value1 if the test passes or value2 if it fails. For example,
we can compute the actual floor number as

actualFloor = floor > 13 ? floor - 1 : floor;

which is equivalent to

if (floor > 13) { actualFloor = floor - 1; } else { actualFloor = floor; }

You can use the conditional operator anywhere that a value is expected, for example:

System.out.println("Actual floor: " + (floor > 13 ? floor - 1 : floor));

We don’t use the conditional operator in this book, but it is a convenient construct that you
will find in many Java programs.

Programming Tip 3.3

You use
the Tab key
to move the
cursor to the next
indentation level.

Special Topic 3.1

88  Chapter 3  Decisions

Avoid Duplication in Branches

Look to see whether you duplicate code in each branch. If so, move it out of the if statement.
Here is an example of such duplication:

if (floor > 13)
{
 actualFloor = floor - 1;
 System.out.println("Actual floor: " + actualFloor);
}
else
{
 actualFloor = floor;
 System.out.println("Actual floor: " + actualFloor);
}

The output statement is exactly the same in both branches. This is not an error—the program
will run correctly. However, you can simplify the program by moving the duplicated state­
ment, like this:

if (floor > 13)
{
 actualFloor = floor - 1;
}
else
{
 actualFloor = floor;
}
System.out.println("Actual floor: " + actualFloor);

Removing duplication is particularly important when programs are maintained for a long
time. When there are two sets of statements with the same effect, it can easily happen that a
programmer modifies one set but not the other.

3.2  Comparing Numbers and Strings
Every if statement contains a condi­
tion. In many cases, the condition
involves comparing two values. For
example, in the previous examples we
tested floor > 13. The comparison > is
called a relational operator. Java has
six relational operators (see Table 1).

 As you can see, only two Java rela­
tional operators (> and <) look as you
would expect from the mathematical
notation. Computer keyboards do not
have keys for ≥, ≤, or ≠, but the >=, <=,
and != operators are easy to remember
because they look similar. The == opera­
tor is initially confusing to most new­
comers to Java.

Programming Tip 3.4

In Java, you use a relational operator to check
whether one value is greater than another.

Use relational
operators
(< <= > >= == !=)
to compare numbers.

3.2  Comparing Numbers and Strings   89

Table 1 Relational Operators

Java Math Notation Description

> > Greater than

>= ≥ Greater than or equal

< < Less than

<= ≤ Less than or equal

== = Equal

!= ≠ Not equal

In Java, = already has a meaning, namely assignment. The == operator denotes equality
testing:

floor = 13; // Assign 13 to floor

if (floor == 13) // Test whether floor equals 13

You must remember to use == inside tests and to use = outside tests.

Syntax 3.2	 Comparisons

floor > 13

floor == 13

String input;
if (input.equals("Y"))

double x; double y; final double EPSILON = 1E-14;
if (Math.abs(x - y) < EPSILON)

These quantities are compared.

Checks for equality.

Check that you have the right direction:
> (greater) or < (less)

Use ==, not =.

One of: == != < <= > >= (See page 89.)

Use equals to compare strings. (See page 92.)

Checks that these floating-point numbers are very close.
 See page 91.

Check the boundary condition:
> (greater) or >= (greater or equal)?

90  Chapter 3  Decisions

The relational operators in Table 1 have a lower precedence than the arithmetic opera­
tors. That means, you can write arithmetic expressions on either side of the relational
operator without using parentheses. For example, in the expression

floor - 1 < 13

both sides (floor - 1 and 13) of the < operator are evaluated, and the results are com­
pared. Appendix B shows a table of the Java operators and their precedence.

To test whether two strings are equal to each other, you must use the method called
equals:

if (string1.equals(string2)) . . .

Do not use the == operator to compare strings. The comparison
if (string1 == string2) // Not useful

has an unrelated meaning. It tests whether the two strings are stored in the same loca­
tion. You can have strings with identical contents stored in different locations, so this
test never makes sense in actual programming; see Common Error 3.3 on page 92.

Table 2 summarizes how to compare values in Java.

Table 2 Relational Operator Examples

Expression Value Comment

3 <= 4 true 3 is less than 4; <= tests for “less than or equal”.

3 =< 4 Error The “less than or equal” operator is <=, not =<.
The “less than” symbol comes first.

3 > 4 false > is the opposite of <=.

4 < 4 false The left-hand side must be strictly smaller than
the right-hand side.

4 <= 4 true Both sides are equal; <= tests for “less than or
equal”.

3 == 5 - 2 true == tests for equality.

3 != 5 - 1 true != tests for inequality. It is true that 3 is not 5 – 1.

3 = 6 / 2 Error Use == to test for equality.

1.0 / 3.0 == 0.333333333 false Although the values are very close to one
another, they are not exactly equal. See Common
Error 3.2 on page 91.

"10" > 5 Error You cannot compare a string to a number.

"Tomato".substring(0, 3).equals("Tom") true Always use the equals method to check whether
two strings have the same contents.

"Tomato".substring(0, 3) == ("Tom") false Never use == to compare strings; it only checks
whether the strings are stored in the same
location. See Common Error 3.3 on page 92.

ONLINE E x a m p l e

A program that
demonstrates
comparisons of
numbers and strings.

Do not use the = =
operator to compare
strings. Use the
equals method
instead.

3.2  Comparing Numbers and Strings   91

6.	 Which of the following conditions are true, provided a is 3 and b is 4?
a.	 a + 1 <= b
b.	a + 1 >= b
c.	 a + 1 != b

7.	 Give the opposite of the condition
floor > 13

8.	 What is the error in this statement?
if (scoreA = scoreB)
{
 System.out.println("Tie");
}

9.	 Supply a condition in this if statement to test whether the user entered a Y:
System.out.println("Enter Y to quit.");
String input = in.next();
if (. . .)
{
 System.out.println("Goodbye.");
}

10.	 How do you test that a string str is the empty string?

Practice It	 Now you can try these exercises at the end of the chapter: R3.4, R3.7, P3.18.

Exact Comparison of Floating-Point Numbers

Floating-point numbers have only a limited precision, and cal­
culations can introduce roundoff errors. You must take these
inevitable roundoffs into account when comparing floating-
point numbers. For example, the following code multiplies the
square root of 2 by itself. Ideally, we expect to get the answer 2:

double r = Math.sqrt(2.0);
if (r * r == 2.0)
{
 System.out.println("Math.sqrt(2.0) squared is 2.0");
}
else
{
 System.out.println("Math.sqrt(2.0) squared is not 2.0 but "
 + r * r);
}

This program displays

Math.sqrt(2.0) squared is not 2.0 but 2.00000000000000044

It does not make sense in most circumstances to compare floating-point numbers exactly.
Instead, we should test whether they are close enough. That is, the magnitude of their differ­
ence should be less than some threshold. Mathematically, we would write that x and y are close
enough if

x y− < ε

S e l f C h e c k

Common Error 3.2

Take limited precision into
account when comparing
floating-point numbers.

92  Chapter 3  Decisions

for a very small number, e. e is the Greek letter epsilon, a letter used to denote a very small
quantity. It is common to set e to 10–14 when comparing double numbers:

final double EPSILON = 1E-14;
double r = Math.sqrt(2.0);
if (Math.abs(r * r - 2.0) < EPSILON)
{
 System.out.println("Math.sqrt(2.0) squared is approximately 2.0");
}

Using == to Compare Strings

If you write

if (nickname == "Rob")

then the test succeeds only if the variable nickname refers to the exact same location as the string
literal "Rob". The test will pass if a string variable was initialized with the same string literal:

String nickname = "Rob";
. . .
if (nickname == "Rob") // Test is true

However, if the string with the letters R o b has been assembled in some other way, then the test
will fail:

String name = "Robert";
String nickname = name.substring(0, 3);
. . .
if (nickname == "Rob") // Test is false

In this case, the substring method produces a string in a different memory location. Even
though both strings have the same contents, the comparison fails.

You must remember never to use == to compare strings. Always use equals to check whether
two strings have the same contents.

Lexicographic Ordering of Strings

If two strings are not identical to each other, you still
may want to know the relationship between them. The
compareTo method compares strings in “lexicographic”
order. This ordering is very similar to the way in which
words are sorted in a dictionary. If

string1.compareTo(string2) < 0

then the string string1 comes before the string string2
in the dictionary. For example, this is the case if string1
is "Harry", and string2 is "Hello". If

string1.compareTo(string2) > 0

then string1 comes after string2 in dictionary order.
Finally, if

string1.compareTo(string2) == 0

then string1 and string2 are equal.

Common Error 3.3

Special Topic 3.2

To see which of two terms comes
first in the dictionary, consider the
first letter in which they differ.

3.2  Comparing Numbers and Strings   93

There are a few technical differences between the ordering in a
dictionary and the lexicographic ordering in Java. In Java:
•	 All uppercase letters come before the lowercase letters. For

example, "Z" comes before "a".
•	 The space character comes before all printable characters.
•	 Numbers come before letters.
•	 For the ordering of punctuation marks, see Appendix A.
When comparing two strings, you compare the first letters of each
word, then the second letters, and so on, until one of the strings ends
or you find the first letter pair that doesn’t match.

If one of the strings ends, the longer string is considered the
“larger” one. For example, compare "car" with "cart". The first
three letters match, and we reach the end of the first string. There­
fore "car" comes before "cart" in lexicographic ordering.

When you reach a mismatch, the string containing the “larger”
character is considered “larger”. For example, let’s compare "cat"
with "cart". The first two letters match. Because t comes after r, the
string "cat" comes after "cart" in the lexicographic ordering.

Step 1	 Decide upon the branching condition.

In our sample problem, the obvious choice for the
condition is:

original price < 128?

That is just fine, and we will use that condition in
our solution.

But you could equally well come up with a
correct solution if you choose the opposite condi­
tion: Is the original price at least $128? You might
choose this condition if you put yourself into the
position of a shopper who wants to know when
the bigger discount applies.

Step 2	 Give pseudocode for the work that needs to be
done when the condition is true.

In this step, you list the action or actions that are taken in the “positive” branch. The details
depend on your problem. You may want to print a message, compute values, or even exit the
program.

The compareTo
method compares
strings in
lexicographic order.

c a r t

c a r

c a t

Letters
match

r comes
before t

Lexicographic
Ordering

How To 3.1	 Implementing an if Statement

This How To walks you through the process of implementing an if statement. We will illus­
trate the steps with the following example problem:

The university bookstore has a Kilobyte Day sale every October 24, giving an 8 percent
discount on all computer accessory purchases if the price is less than $128, and a 16 percent
discount if the price is at least $128. Write a program that asks the cashier for the original price
and then prints the discounted price.

Sales discounts are often higher for
expensive products. Use the if statement
to implement such a decision.

94  Chapter 3  Decisions

In our example, we need to apply an 8 percent discount:

discounted price = 0.92 x original price

Step 3	 Give pseudocode for the work (if any) that needs to be done when the condition is not true.

What do you want to do in the case that the condition of Step 1 is not satisfied? Sometimes,
you want to do nothing at all. In that case, use an if statement without an else branch.

In our example, the condition tested whether the price was less than $128. If that condition
is not true, the price is at least $128, so the higher discount of 16 percent applies to the sale:

discounted price = 0.84 x original price

Step 4	 Double-check relational operators.

First, be sure that the test goes in the right direction. It is a common error to confuse > and <.
Next, consider whether you should use the < operator or its close cousin, the <= operator.

What should happen if the original price is exactly $128? Reading the problem carefully, we
find that the lower discount applies if the original price is less than $128, and the higher dis­
count applies when it is at least $128. A price of $128 should therefore not fulfill our condition,
and we must use <, not <=.

Step 5	 Remove duplication.

Check which actions are common to both branches, and move them outside. (See Program­
ming Tip 3.4 on page 88.)

In our example, we have two statements of the form

discounted price = ___ x original price

They only differ in the discount rate. It is best to just set the rate in the branches, and to do the
computation afterwards:

If original price < 128
	 discount rate = 0.92
Else
	 discount rate = 0.84
discounted price = discount rate x original price

Step 6	 Test both branches.

Formulate two test cases, one that fulfills the condition of the if statement, and one that does
not. Ask yourself what should happen in each case. Then follow the pseudocode and act each
of them out.

In our example, let us consider two scenarios for the original price: $100 and $200. We
expect that the first price is discounted by $8, the second by $32.

When the original price is 100, then the condition 100 < 128 is true, and we get

discount rate = 0.92
discounted price = 0.92 x 100 = 92

When the original price is 200, then the condition 200 < 128 is false, and

discount rate = 0.84
discounted price = 0.84 x 200 = 168

In both cases, we get the expected answer.

Step 7	 Assemble the if statement in Java.

Type the skeleton

if ()
{

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

3.2  Comparing Numbers and Strings   95

}
else
{
}

and fill it in, as shown in Syntax 3.1 on page 84. Omit the else branch if it is not needed.
In our example, the completed statement is

if (originalPrice < 128)
{
 discountRate = 0.92;
}
else
{
 discountRate = 0.84;
}

discountedPrice = discountRate * originalPrice;

ONLINE E x a m p l e

The complete
program for
calculating a
discounted price.

Worked Example 3.1	 Extracting the Middle

This Worked Example shows how to extract the middle character from a
string, or the two middle characters if the length of the string is even. 0 1 2 3 4

c r a t e

Making decisions is
an essential part of

any computer program. Nowhere is
this more obvious than in a computer
system that helps sort luggage at an
airport. After scanning the luggage
identification codes, the system sorts
the items and routes them to differ-
ent conveyor belts. Human operators
then place the items onto trucks. When
the city of Denver built a huge airport
to replace an outdated and congested
facility, the luggage system contractor
went a step further. The new system
was designed to replace the human
operators with robotic carts. Unfortu
nately, the system plainly did not
work. It was plagued by mechanical
problems, such as luggage falling onto
the tracks and jamming carts. Equally
frustrating were the software glitches.
Carts would uselessly accumulate at
some locations when they were needed
elsewhere.

The airport had been scheduled
to open in 1993, but without a func
tioning luggage system, the opening
was delayed for over a year while the
contractor tried to fix the problems.
The contractor never succeeded,
and ultimately a manual system was
installed. The delay cost the city and
airlines close to a billion dollars, and
the contractor, once the leading lug
gage systems vendor in the United
States, went bankrupt.

Clearly, it is very risky to build a
large system based on a technology
that has never been tried on a smaller
scale. As robots and the software that
controls them get better over time,
they will take on a larger share of lug
gage handling in the future. But it is
likely that this will happen in an incre
mental fashion.

The Denver airport originally had a
fully automatic system for moving lug
gage, replacing human operators with
robotic carts. Unfortunately, the sys
tem never worked and was dismantled
before the airport was opened.

Random Fact 3.1  The Denver Airport Luggage Handling System

96  Chapter 3  Decisions

3.3  Multiple Alternatives
In Section 3.1, you saw how to program a two-way branch with an if statement. In
many situations, there are more than two cases. In this section, you will see how to
implement a decision with multiple alternatives.

For example, consider a program that displays the effect of an earthquake, as mea­
sured by the Richter scale (see Table 3).

Table 3 Richter Scale

Value Effect

8 Most structures fall

7 Many buildings destroyed

6 Many buildings considerably
damaged, some collapse

4.5 Damage to poorly constructed
buildings

The Richter scale is a measurement of the strength of an earthquake. Every step in
the scale, for example from 6.0 to 7.0, signifies a tenfold increase in the strength of the
quake.

In this case, there are five branches: one each for the four descriptions of damage,
and one for no destruction. Figure 3 shows the flowchart for this multiple-branch
statement.

You use multiple if statements to implement multiple alternatives, like this:
if (richter >= 8.0)
{
 System.out.println("Most structures fall");
}
else if (richter >= 7.0)
{
 System.out.println("Many buildings destroyed");
}
else if (richter >= 6.0)
{
 System.out.println("Many buildings considerably damaged, some collapse");
}
else if (richter >= 4.5)
{
 System.out.println("Damage to poorly constructed buildings");
}
else
{
 System.out.println("No destruction of buildings");
}

As soon as one of the four tests succeeds, the effect is displayed, and no further tests
are attempted. If none of the four cases applies, the final else clause applies, and a
default message is printed.

Multiple if
statements can be
combined to evaluate
complex decisions.

The 1989 Loma Prieta
earthquake that
damaged the Bay
Bridge in San Francisco
and destroyed many
buildings measured 7.1
on the Richter scale.

A N I M AT I O N
Multiple Alternatives

3.3  Multiple Alternatives   97

Figure 3 
Multiple Alternatives

richter ≥ 8.0?

richter ≥ 7.0?

richter ≥ 6.0?

richter ≥ 4.5?

No destruction
of buildings

False

False

False

False

True

True

True

True

Most
structures

fall

Many
buildings
destroyed

Many buildings
considerably

damaged,
some collapse

Damage to
poorly constructed

buildings

Here you must sort the conditions and test against the largest cutoff first.
Suppose we reverse the order of tests:

if (richter >= 4.5) // Tests in wrong order
{
 System.out.println("Damage to poorly constructed buildings");
}
else if (richter >= 6.0)
{
 System.out.println("Many buildings considerably damaged, some collapse");
}
else if (richter >= 7.0)
{
 System.out.println("Many buildings destroyed");

98  Chapter 3  Decisions

}
else if (richter >= 8.0)
{
 System.out.println("Most structures fall");
}

This does not work. Suppose the value of richter is 7.1. That value is at least 4.5,
matching the first case. The other tests will never be attempted.

The remedy is to test the more specific conditions first. Here, the condition
richter >= 8.0 is more specific than the condition richter >= 7.0, and the condition
richter >= 4.5 is more general (that is, fulfilled by more values) than either of the first
two.

In this example, it is also important that we use an if/else  if/else sequence, not
just multiple independent if statements. Consider this sequence of independent tests.

if (richter >= 8.0) // Didn’t use else
{
 System.out.println("Most structures fall");
}
if (richter >= 7.0)
{
 System.out.println("Many buildings destroyed");
}
if (richter >= 6.0)
{
 System.out.println("Many buildings considerably damaged, some collapse");
}
if (richter >= 4.5)
{
 System.out.println("Damage to poorly constructed buildings");
}

Now the alternatives are no longer exclusive. If richter is 7.1, then the last three tests
all match, and three messages are printed.

11.	 In a game program, the scores of players A and B are stored in variables scoreA
and scoreB. Assuming that the player with the larger score wins, write an if/
else if/else sequence that prints out "A won", "B won", or "Game tied".

12.	 Write a conditional statement with three branches that sets s to 1 if x is positive,
to –1 if x is negative, and to 0 if x is zero.

13.	 How could you achieve the task of Self Check 12 with only two branches?
14.	 Beginners sometimes write statements such as the following:

if (price > 100)
{
 discountedPrice = price - 20;
}
else if (price <= 100)
{
 discountedPrice = price - 10;
}

Explain how this code can be improved.
15.	 Suppose the user enters -1 into the earthquake program. What is printed?

When using multiple
if statements, test
general conditions
after more specific
conditions.

ONLINE E x a m p l e

The complete
program for printing
earthquake
descriptions.

S e l f C h e c k

3.3  Multiple Alternatives   99

16.	 Suppose we want to have the earthquake program check whether the user en­
tered a negative number. What branch would you add to the if statement, and
where?

Practice It	 Now you can try these exercises at the end of the chapter: R3.22, P3.9, P3.34.

The switch Statement

An if/else if/else sequence that compares a value against several alternatives can be imple­
mented as a switch statement. For example,

int digit = . . .;
switch (digit)
{
 case 1: digitName = "one"; break;
 case 2: digitName = "two"; break;
 case 3: digitName = "three"; break;
 case 4: digitName = "four"; break;
 case 5: digitName = "five"; break;
 case 6: digitName = "six"; break;
 case 7: digitName = "seven"; break;
 case 8: digitName = "eight"; break;
 case 9: digitName = "nine"; break;
 default: digitName = ""; break;
}

This is a shortcut for

int digit = . . .;
if (digit == 1) { digitName = "one"; }
else if (digit == 2) { digitName = "two"; }
else if (digit == 3) { digitName = "three"; }
else if (digit == 4) { digitName = "four"; }
else if (digit == 5) { digitName = "five"; }
else if (digit == 6) { digitName = "six"; }
else if (digit == 7) { digitName = "seven"; }
else if (digit == 8) { digitName = "eight"; }
else if (digit == 9) { digitName = "nine"; }
else { digitName = ""; }

It isn’t much of a shortcut, but it has one advantage—it is obvious that all branches test the
same value, namely digit.

The switch statement can be applied only in narrow circumstances. The values in the case
clauses must be constants. They can be integers or characters. As of Java 7, strings are permit­
ted as well. You cannot use a switch statement to branch on floating-point values.

Every branch of the switch should be terminated by a break instruction. If the break is miss­
ing, execution falls through to the next branch, and so on, until a break or the end of the switch
is reached. In practice, this fall-through behavior is rarely useful, but it is a common cause
of errors. If you accidentally forget a break statement, your program compiles but executes
unwanted code. Many programmers consider the switch statement somewhat dangerous and
prefer the if statement.

We leave it to you to use the switch statement for your own code or not. At any rate, you
need to have a reading knowledge of switch in case you find it in other programmers’ code.

Special Topic 3.3

The switch statement lets you choose
from a fixed set of alternatives.

100  Chapter 3  Decisions

3.4  Nested Branches
It is often necessary to include an if statement inside another. Such an arrangement is
called a nested set of statements.

Here is a typical example: In the United States, different tax rates are used depend­
ing on the taxpayer’s marital status. There are different tax schedules for single and
for married taxpayers. Married taxpayers add their income together and pay taxes on
the total. Table 4 gives the tax rate computations, using a simplification of the sched­
ules in effect for the 2008 tax year. A different tax rate applies to each “bracket”. In
this schedule, the income in the first bracket is taxed at 10 percent, and the income in
the second bracket is taxed at 25 percent. The income limits for each bracket depend
on the marital status.

Table 4 Federal Tax Rate Schedule

If your status is Single and
if the taxable income is the tax is of the amount over

at most $32,000 10% $0

over $32,000 $3,200 + 25% $32,000

If your status is Married and
if the taxable income is the tax is of the amount over

at most $64,000 10% $0

over $64,000 $6,400 + 25% $64,000

Now compute the taxes due, given a marital status and an income figure. The key
point is that there are two levels of decision making. First, you must branch on the
marital status. Then, for each marital status, you must have another branch on income
level.

The two-level decision process is reflected in two levels of if statements in the pro­
gram at the end of this section. (See Figure 4 for a flowchart.) In theory, nesting can go
deeper than two levels. A three-level decision process (first by state, then by marital
status, then by income level) requires three nesting levels.

When a decision
statement is
contained inside the
branch of another
decision statement,
the statements
are nested.

Nested decisions
are required for
problems that
have two levels of
decision making.

A N I M AT I O N
Nested Branches

Computing income taxes requires
multiple levels of decisions.

3.4 N ested Branches   101

section_4/

Figure 4  Income Tax Computation

10%
bracket

25%
bracket

Single income
≤ 32,000

10%
bracket

25%
bracket

income
≤ 64,000

False

True

True

False

True

False

TaxCalculator.java

1 import java.util.Scanner;
2
3 /**
4 This program computes income taxes, using a simplified tax schedule.
5 */
6 public class TaxCalculator
7 {
8 public static void main(String[] args)
9 {

10 final double RATE1 = 0.10;
11 final double RATE2 = 0.25;
12 final double RATE1_SINGLE_LIMIT = 32000;
13 final double RATE1_MARRIED_LIMIT = 64000;
14
15 double tax1 = 0;
16 double tax2 = 0;
17
18 // Read income and marital status
19
20 Scanner in = new Scanner(System.in);
21 System.out.print("Please enter your income: ");
22 double income = in.nextDouble();
23
24 System.out.print("Please enter s for single, m for married: ");
25 String maritalStatus = in.next();
26
27 // Compute taxes due
28

102  Chapter 3  Decisions

29 if (maritalStatus.equals("s"))
30 {
31 if (income <= RATE1_SINGLE_LIMIT)
32 {
33 tax1 = RATE1 * income;
34 }
35 else
36 {
37 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
38 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
39 }
40 }
41 else
42 {
43 if (income <= RATE1_MARRIED_LIMIT)
44 {
45 tax1 = RATE1 * income;
46 }
47 else
48 {
49 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
50 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
51 }
52 }
53
54 double totalTax = tax1 + tax2;
55
56 System.out.println("The tax is $" + totalTax);
57 }
58 }

Program Run

Please enter your income: 80000
Please enter s for single, m for married: m
The tax is $10400

17.	 What is the amount of tax that a single taxpayer pays on an income of $32,000?
18.	 Would that amount change if the first nested if statement changed from

if (income <= RATE1_SINGLE_LIMIT)

to
if (income < RATE1_SINGLE_LIMIT)

19.	 Suppose Harry and Sally each make $40,000 per year. Would they save taxes if
they married?

20.	 How would you modify the TaxCalculator.java program in order to check that
the user entered a correct value for the marital status (i.e., s or m)?

21.	 Some people object to higher tax rates for higher incomes, claiming that you
might end up with less money after taxes when you get a raise for working hard.
What is the flaw in this argument?

Practice It	 Now you can try these exercises at the end of the chapter: R3.9, R3.21, P3.18, P3.21.

S e l f C h e c k

3.4 N ested Branches   103

Hand-Tracing

A very useful technique for understanding whether a pro­
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the tax program with the data
from the program run on page 102. In lines 15 and 16, tax1 and
tax2 are initialized to 0.

8	 public static void main(String[] args)
9	 {

10	 final double RATE1 = 0.10;
11	 final double RATE2 = 0.25;
12	 final double RATE1_SINGLE_LIMIT = 32000;
13	 final double RATE1_MARRIED_LIMIT = 64000;
14	
15	 double tax1 = 0;
16	 double tax2 = 0;
17	

In lines 22 and 25, income and maritalStatus are
initialized by input statements.

20	 Scanner in = new Scanner(System.in);
21	 System.out.print("Please enter your income: ");
22	 double income = in.nextDouble();
23	
24	 System.out.print("Please enter s for single, m for married: ");
25	 String maritalStatus = in.next();

Because maritalStatus is not "s", we move to the else branch of the outer if statement
(line 41).

29	 if (maritalStatus.equals("s"))
30	 {
31	 if (income <= RATE1_SINGLE_LIMIT)
32	 {
33	 tax1 = RATE1 * income;
34	 }
35	 else
36	 {
37	 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
38	 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
39	 }
40	 }
41	 else
42	 {

Because income is not <= 64000, we move to the else branch of the inner if statement (line 47).

43	 if (income <= RATE1_MARRIED_LIMIT)
44	 {
45	 tax1 = RATE1 * income;
46	 }
47	 else
48	 {
49	 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
50	 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
51	 }

Programming Tip 3.5

Hand-tracing helps you
understand whether a
program works correctly.

 marital
 tax1 tax2 income status

 0 0

 marital
 tax1 tax2 income status

 0 0 80000 m

104  Chapter 3  Decisions

The values of tax1 and tax2 are updated.

48	 {
49	 tax1 = RATE1 * RATE1_MARRIED_LIMIT;
50	 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
51	 }
52	 }
53	

Their sum totalTax is computed and printed.
Then the program ends.

54	 double totalTax = tax1 + tax2;
55	
56	 System.out.println("The tax is $" + totalTax);
57	 }

Because the program trace shows the expected
output ($10,400), it successfully demonstrated
that this test case works correctly.

The Dangling else Problem

When an if statement is nested inside another if statement, the following error may occur.

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
 if (state.equals("HI"))
 shippingCharge = 10.00; // Hawaii is more expensive
else // Pitfall!
 shippingCharge = 20.00; // As are foreign shipments

The indentation level seems to suggest that the else is grouped with the test country.
equals("USA"). Unfortunately, that is not the case. The compiler ignores all indentation and
matches the else with the preceding if. That is, the code is actually

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
 if (state.equals("HI"))
 shippingCharge = 10.00; // Hawaii is more expensive
 else // Pitfall!
 shippingCharge = 20.00; // As are foreign shipments

That isn’t what you want. You want to group the else with the first if.
The ambiguous else is called a dangling else. You can avoid this pitfall if you always use

braces, as recommended in Programming Tip 3.2 on page 86:

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA"))
{
 if (state.equals("HI"))
 {
 shippingCharge = 10.00; // Hawaii is more expensive
 }
}
else
{
 shippingCharge = 20.00; // As are foreign shipments
}

 marital
 tax1 tax2 income status

 0 0 80000 m

 6400 4000

 marital total
 tax1 tax2 income status tax

 0 0 80000 m

 6400 4000 10400

Common Error 3.4

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

3.5 P roblem Solving: Flowcharts   105

Enumeration Types

In many programs, you use variables that can hold one of a finite number of values. For exam­
ple, in the tax return class, the maritalStatus variable holds one of the values "s" or "m". If, due
to some programming error, the maritalStatus variable is set to another value (such as "d" or
"w"), then the programming logic may produce invalid results.

In a simple program, this is not really a problem. But as programs grow over time, and more
cases are added (such as the “married filing separately” status), errors can slip in. Java version
5.0 introduces a remedy: enumeration types. An enumeration type has a finite set of values,
for example

public enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }

You can have any number of values, but you must include them all in the enum declaration.
You can declare variables of the enumeration type:

FilingStatus status = FilingStatus.SINGLE;

If you try to assign a value that isn’t a FilingStatus, such as 2 or "S", then the compiler reports
an error.

Use the == operator to compare enumeration values, for example:

if (status == FilingStatus.SINGLE) . . .

Place the enum declaration inside the class that implements your program, such as

public class TaxReturn
{
 public enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }

 public static void main(String[] args)
 {
 . . .
 }
}

3.5  Problem Solving: Flowcharts
You have seen examples of flowcharts earlier in this chapter. A flowchart shows the
structure of decisions and tasks that are required to solve a problem. When you have
to solve a complex problem, it is a good idea to draw a flowchart to visualize the flow
of control.

The basic flowchart elements are shown in Figure 5.

Special Topic 3.4

Video Example 3.1	 Computing the Plural of an English Word

The plural of apple is apples, but the plural of cherry is cherries. In
this Video Example, we develop an algorithm for computing the
plural of an English word.

Flow charts are made
up of elements for
tasks, input/output,
and decisions.

106  Chapter 3  Decisions

Figure 5 
Flowchart Elements

True

False

ConditionSimple task Input/output

The basic idea is simple enough. Link tasks and input/output boxes in the sequence in
which they should be executed. Whenever you need to make a decision, draw a dia­
mond with two outcomes (see Figure 6).

Each branch can contain a sequence of tasks and even additional decisions. If there
are multiple choices for a value, lay them out as in Figure 7.

There is one issue that you need to be aware of when drawing flowcharts. Uncon­
strained branching and merging can lead to “spaghetti code”, a messy network of
possible pathways through a program.

There is a simple rule for avoiding spaghetti code: Never point an arrow inside
another branch.

To understand the rule, consider this example: Shipping costs are $5 inside the
United States, except that to Hawaii and Alaska they are $10. International shipping
costs are also $10.

Each branch of a
decision can contain
tasks and further
decisions.

Never point an
arrow inside
another branch.

Figure 6  Flowchart with Two Outcomes

True

False

False branch True branch

Condition

Figure 7  Flowchart with Multiple Choices

True

False

Choice 1
“Choice 1”

branch

True

False

Choice 2
“Choice 2”

branch

True

False

Choice 3
“Choice 3”

branch

“Other”
branch

3.5 P roblem Solving: Flowcharts   107

You might start out with a flowchart like the following:

False

True

Shipping
cost = $10

Inside US?

True

False

Continental US? Shipping
cost = $5

Now you may be tempted to reuse the “shipping cost = $10” task:

False

True

Shipping
cost = $10

Inside US?

True

False

Continental US? Shipping
cost = $5

Don’t do that! The red arrow points inside a different branch. Instead, add another
task that sets the shipping cost to $10, like this:

False

True

Shipping
cost = $10

Inside US?

True

False

Continental US?

Shipping
cost = $10

Shipping
cost = $5

108  Chapter 3  Decisions

Not only do you avoid spaghetti code, but it is also a
better design. In the future it may well happen that the
cost for international shipments is different from that
to Alaska and Hawaii.

Flowcharts can be very useful for getting an intui­
tive understanding of the flow of an algorithm. How­
ever, they get large rather quickly when you add more
details. At that point, it makes sense to switch from
flowcharts to pseudocode.

22.	 Draw a flowchart for a program that reads a value temp and prints “Frozen” if it
is less than zero.

23.	 What is wrong with the flowchart at right?
24.	 How do you fix the flowchart of

Self Check 23?
25.	 Draw a flowchart for a program that reads a

value x. If it is less than zero, print “Error”.
Otherwise, print its square root.

26.	 Draw a flowchart for a program that reads a
value temp. If it is less than zero, print “Ice”.
If it is greater than 100, print “Steam”. Oth­
erwise, print “Liquid”.

Practice It	 Now you can try these exercises at the end of the
chapter: R3.12, R3.13, R3.14.

3.6  Problem Solving: Test Cases
Consider how to test the tax computation program from Section 3.4. Of course,
you cannot try out all possible inputs of marital status and income level. Even if you
could, there would be no point in trying them all. If the program correctly computes
one or two tax amounts in a given bracket, then we have a good reason to believe that
all amounts will be correct.

You want to aim for complete coverage of all decision points. Here is a plan for
obtaining a comprehensive set of test cases:

•	 There are two possibilities for the marital status and two tax brackets for each
status, yielding four test cases.

•	 Test a handful of boundary conditions, such as an income that is at the boundary
between two brackets, and a zero income.

•	 If you are responsible for error checking (which is discussed in Section 3.8), also
test an invalid input, such as a negative income.

O n l i n e E x a m p l e

A program to
compute shipping
costs.

Spaghetti code has so many
pathways that it becomes
impossible to understand.

S e l f C h e c k

True

False

Input < 0?

True

False

Input > 100?

Status = “OK” Status = “Error”

Each branch of your
program should
be covered by a
test case.

3.6 P roblem Solving: Test Cases   109

Make a list of the test cases and the expected outputs:

 Test Case Expected Output Comment
 30,000 s 3,000 10% bracket
 72,000 s 13,200 3,200 + 25% of 40,000
 50,000 m 5,000 10% bracket

104,000 m 16,400 6,400 + 25% of 40,000
 32,000 s 3,200 boundary case

 0 0 boundary case

When you develop a set of test cases, it is helpful to have a flowchart of your program
(see Section 3.5). Check off each branch that has a test case. Include test cases for the
boundary cases of each decision. For example, if a decision checks whether an input is
less than 100, test with an input of 100.

It is always a good idea to design test cases before starting to code. Working
through the test cases gives you a better understanding of the algorithm that you are
about to implement.

27.	 Using Figure 1 on page 83 as a guide, follow the process described in Section 3.6 to
design a set of test cases for the ElevatorSimulation.java program in Section 3.1.

28.	 What is a boundary test case for the algorithm in How To 3.1 on page 93? What is
the expected output?

29.	 Using Figure 3 on page 97 as a guide, follow the process described in Section 3.6 to
design a set of test cases for the EarthquakeStrength.java program in Section 3.3.

30.	 Suppose you are designing a part of a program for a medical ro­
bot that has a sensor returning an x- and y-location (measured in
cm). You need to check whether the sensor location is inside the
circle, outside the circle, or on the boundary (specifically, hav­
ing a distance of less than 1 mm from the boundary). Assume the
circle has center (0, 0) and a radius of 2 cm. Give a set of test cases.

Practice It	 Now you can try these exercises at the end of the chapter: R3.15, R3.16.

Make a Schedule and Make Time for Unexpected Problems

Commercial software is notorious for being delivered later than promised. For example,
Microsoft originally promised that its Windows Vista operating system would be available late
in 2003, then in 2005, then in March 2006; it finally was released in January 2007. Some of the
early promises might not have been realistic. It was in Microsoft’s interest to let prospective
customers expect the imminent availability of the product. Had customers known the actual
delivery date, they might have switched to a different product in the meantime. Undeniably,
though, Microsoft had not anticipated the full complexity of the tasks it had set itself to solve.

Microsoft can delay the delivery of its product, but it is likely that you cannot. As a student
or a programmer, you are expected to manage your time wisely and to finish your assignments
on time. You can probably do simple programming exercises the night before the due date,
but an assignment that looks twice as hard may well take four times as long, because more
things can go wrong. You should therefore make a schedule whenever you start a program­
ming project.

It is a good idea to
design test cases
before implementing
a program.

S e l f C h e c k

Programming Tip 3.6

110  Chapter 3  Decisions

First, estimate realistically how much time it
will take you to:
•	 Design the program logic.
•	 Develop test cases.
•	 Type the program in and fix syntax errors.
•	 Test and debug the program.
For example, for the income tax program I might
estimate an hour for the design; 30 minutes for
developing test cases; an hour for data entry and
fixing syntax errors; and an hour for testing and
debugging. That is a total of 3.5 hours. If I work
two hours a day on this project, it will take me
almost two days.

Then think of things that can go wrong. Your computer might break down. You might be
stumped by a problem with the computer system. (That is a particularly important concern
for beginners. It is very common to lose a day over a trivial problem just because it takes time
to track down a person who knows the magic command to overcome it.) As a rule of thumb,
double the time of your estimate. That is, you should start four days, not two days, before the
due date. If nothing went wrong, great; you have the program done two days early. When the
inevitable problem occurs, you have a cushion of time that protects you from embarrassment
and failure.

Logging

Sometimes you run a program and you are not sure where it spends its time. To get a printout
of the program flow, you can insert trace messages into the program, such as this one:

if (status == SINGLE)
{
 System.out.println("status is SINGLE");
 . . .
}

However, there is a problem with using System.out.println for trace messages. When you are
done testing the program, you need to remove all print statements that produce trace mes­
sages. If you find another error, however, you need to stick the print statements back in.

To overcome this problem, you should use the Logger class, which allows you to turn off the
trace messages without removing them from the program.

Instead of printing directly to System.out, use the global logger object that is returned
by the call Logger.getGlobal(). (Prior to Java 7, you obtained the global logger as
Logger.getLogger("global").) Then call the info method:

Logger.getGlobal().info("status is SINGLE");

By default, the message is printed. But if you call

Logger.getGlobal().setLevel(Level.OFF);

at the beginning of the main method of your program, all log message printing is suppressed.
Set the level to Level.INFO to turn logging of info messages on again. Thus, you can turn off
the log messages when your program works fine, and you can turn them back on if you find
another error. In other words, using Logger.getGlobal().info is just like System.out.println,
except that you can easily activate and deactivate the logging.

The Logger class has many other options for industrial-strength logging. Check out the API
documentation if you want to have more control over logging.

Make a schedule for your programming
work and build in time for problems.

Special Topic 3.5

Logging messages can be
deactivated when testing
is complete.

3.7  Boolean Variables and Operators   111

3.7  Boolean Variables and Operators
Sometimes, you need to evaluate a logical condition in one part of a program and use
it elsewhere. To store a condition that can be true or false, you use a Boolean variable.
Boolean variables are named after the mathematician George Boole (1815–1864), a
pioneer in the study of logic.

In Java, the boolean data type has exactly two values, denoted false and true. These
values are not strings or integers; they are special values, just for Boolean variables.
Here is a declaration of a Boolean variable:

boolean failed = true;

You can use the value later in your program to make a decision:
if (failed) // Only executed if failed has been set to true
{
 . . .
}

When you make complex decisions, you often need to combine Boolean values. An
operator that combines Boolean conditions is called a Boolean operator. In Java, the
&& operator (called and) yields true only when both conditions are true. The || opera­
tor (called or) yields the result true if at least one of the conditions is true.

Suppose you write a program that processes temperature values, and you want
to test whether a given temperature corresponds to liquid water. (At sea level, water
freezes at 0 degrees Celsius and boils at 100 degrees.) Water is liquid if the tempera­
ture is greater than zero and less than 100:

if (temp > 0 && temp < 100) { System.out.println("Liquid"); }

The condition of the test has two parts, joined by the && operator. Each part is a Bool­
ean value that can be true or false. The combined expression is true if both individual
expressions are true. If either one of the expressions is false, then the result is also false
(see Figure 8).

The Boolean operators && and || have a lower precedence than the relational opera­
tors. For that reason, you can write relational expressions on either side of the Bool­
ean operators without using parentheses. For example, in the expression

temp > 0 && temp < 100

the expressions temp > 0 and temp < 100 are evaluated first. Then the && operator com­
bines the results. Appendix B shows a table of the Java operators and their
precedence.

The Boolean type
boolean has two
values, false
and true.

A Boolean variable
is also called a flag
because it can be
either up (true) or
down (false).

Java has two Boolean
operators that
combine conditions:
&& (and) and || (or).

Figure 8  Boolean Truth Tables

A B A && B

true true true

true false false

false true false

false false false

A B A || B

true true true

true false true

false true true

false false false

A !A

true false

false true

112  Chapter 3  Decisions

At this geyser in Iceland,
you can see ice, liquid
water, and steam.

Conversely, let’s test whether water is not liquid at a given temperature. That is the
case when the temperature is at most 0 or at least 100. Use the || (or) operator to com­
bine the expressions:

if (temp <= 0 || temp >= 100) { System.out.println("Not liquid"); }

Figure 9 shows flowcharts for these examples.
Sometimes you need to invert a condition with the not Boolean operator. The

! operator takes a single condition and evaluates to true if that condition is false and to
false if the condition is true. In this example, output occurs if the value of the Boolean
variable frozen is false:

if (!frozen) { System.out.println("Not frozen"); }

Table 5 illustrates additional examples of evaluating Boolean operators.

ONLINE E x a m p l e

A program
comparing numbers
using Boolean
expressions.

To invert a condition,
use the ! (not)
operator.

Figure 9  Flowcharts for and and or Combinations

True True True

True

False

False

False False
Temperature

> 0?

Temperature
< 100?

Water is
liquid

Water is
not liquid

Temperature
≤ 0?

Temperature
≥ 100?

Both conditions
must be true

At least
one condition
must be true

and or

3.7  Boolean Variables and Operators   113

Table 5 Boolean Operator Examples

Expression Value Comment

0 < 200 && 200 < 100 false Only the first condition is true.

0 < 200 || 200 < 100 true The first condition is true.

0 < 200 || 100 < 200 true The || is not a test for “either-or”. If both
conditions are true, the result is true.

0 < x && x < 100 || x == -1 (0 < x && x < 100)
 || x == -1

The && operator has a higher precedence than the
|| operator (see Appendix B).

0 < x < 100 Error Error: This expression does not test whether x is
between 0 and 100. The expression 0 < x is a
Boolean value. You cannot compare a Boolean
value with the integer 100.

x && y > 0 Error Error: This expression does not test whether x and
y are positive. The left-hand side of && is an integer,
x, and the right-hand side, y > 0, is a Boolean value.
You cannot use && with an integer argument.

!(0 < 200) false 0 < 200 is true, therefore its negation is false.

frozen == true frozen There is no need to compare a Boolean variable
with true.

frozen == false !frozen It is clearer to use ! than to compare with false.

31.	 Suppose x and y are two integers. How do you test whether both of them are
zero?

32.	 How do you test whether at least one of them is zero?
33.	 How do you test whether exactly one of them is zero?
34.	 What is the value of !!frozen?
35.	 What is the advantage of using the type boolean rather than strings "false"/"true"

or integers 0/1?

Practice It	 Now you can try these exercises at the end of the chapter: R3.29, P3.25, P3.27.

Combining Multiple Relational Operators

Consider the expression

if (0 <= temp <= 100) // Error

This looks just like the mathematical test 0 ≤ temp ≤ 100. But in Java, it is a compile-time error.
Let us dissect the condition. The first half, 0 <= temp, is a test with an outcome true or false.

The outcome of that test (true or false) is then compared against 100. This seems to make no

S e l f C h e c k

Common Error 3.5

114  Chapter 3  Decisions

sense. Is true larger than 100 or not? Can one compare truth values and numbers? In Java, you
cannot. The Java compiler rejects this statement.

Instead, use && to combine two separate tests:

if (0 <= temp && temp <= 100) . . .

Another common error, along the same lines, is to write

if (input == 1 || 2) . . . // Error

to test whether input is 1 or 2. Again, the Java compiler flags this construct as an error. You
cannot apply the || operator to numbers. You need to write two Boolean expressions and join
them with the || operator:

if (input == 1 || input == 2) . . .

Confusing && and || Conditions

It is a surprisingly common error to confuse and and or conditions. A value lies between 0 and
100 if it is at least 0 and at most 100. It lies outside that range if it is less than 0 or greater than
100. There is no golden rule; you just have to think carefully.

Often the and or or is clearly stated, and then it isn’t too hard to implement it. But some­
times the wording isn’t as explicit. It is quite common that the individual conditions are nicely
set apart in a bulleted list, but with little indication of how they should be combined. Consider
these instructions for filing a tax return. You can claim single filing status if any one of the fol­
lowing is true:
•	 You were never married.
•	 You were legally separated or divorced on the last day of the tax year.
•	 You were widowed, and did not remarry.
Since the test passes if any one of the conditions is true, you must combine the conditions with
or. Elsewhere, the same instructions state that you may use the more advantageous status of
married filing jointly if all five of the following conditions are true:
•	 Your spouse died less than two years ago and you did not remarry.
•	 You have a child whom you can claim as dependent.
•	 That child lived in your home for all of the tax year.
•	 You paid over half the cost of keeping up your home for this child.
•	 You filed a joint return with your spouse the year he or she died.
Because all of the conditions must be true for the test to pass, you must combine them with an
and.

Short-Circuit Evaluation of Boolean Operators

The && and || operators are computed using short-circuit evaluation.
In other words, logical expressions are evaluated from left to right,
and evaluation stops as soon as the truth value is determined. When
an && is evaluated and the first condition is false, the second condition
is not evaluated, because it does not matter what the outcome of the
second test is.

For example, consider the expression

quantity > 0 && price / quantity < 10

Common Error 3.6

Special Topic 3.6

The && and ||
operators are
computed using
short-circuit
evaluation: As soon
as the truth value is
determined, no
further conditions
are evaluated.

3.7  Boolean Variables and Operators   115

Suppose the value of quantity is zero. Then the test quantity > 0 fails, and the second test is not
attempted. That is just as well, because it is illegal to divide by zero.

Similarly, when the first condition of an || expression is true, then the remainder is not
evaluated because the result must be true.

This process is called short-circuit evaluation.

In a short circuit, electricity travels along the path of least
resistance. Similarly, short-circuit evaluation takes the fast-
est path for computing the result of a Boolean expression.

De Morgan’s Law

Humans generally have a hard time comprehending logical conditions with not operators
applied to and/or expressions. De Morgan’s Law, named after the logician Augustus De Mor­
gan (1806–1871), can be used to simplify these Boolean expressions.

Suppose we want to charge a higher shipping rate if we don’t ship within the continental
United States.

if (!(country.equals("USA") && !state.equals("AK") && !state.equals("HI")))
{
 shippingCharge = 20.00;

}

This test is a little bit complicated, and you have to think carefully through the logic. When it
is not true that the country is USA and the state is not Alaska and the state is not Hawaii, then
charge $20.00. Huh? It is not true that some people won’t be confused by this code.

The computer doesn’t care, but it takes human programmers to write and maintain the
code. Therefore, it is useful to know how to simplify such a condition.

De Morgan’s Law has two forms: one for the negation of an
and expression and one for the negation of an or expression:

!(A && B) is the same as !A || !B
!(A || B) is the same as !A && !B

Pay particular attention to the fact that the and and or operators are reversed by moving the
not inward. For example, the negation of “the state is Alaska or it is Hawaii”,

!(state.equals("AK") || state.equals("HI"))

is “the state is not Alaska and it is not Hawaii”:

!state.equals("AK") && !state.equals("HI")

Now apply the law to our shipping charge computation:

!(country.equals("USA")
 && !state.equals("AK")
 && !state.equals("HI"))

is equivalent to

!country.equals("USA")
 || !!state.equals("AK")
 || !!state.equals("HI"))

Special Topic 3.7

De Morgan’s law tells
you how to negate &&
and || conditions.

116  Chapter 3  Decisions

Because two ! cancel each other out, the result is the simpler test

!country.equals("USA")
 || state.equals("AK")
 || state.equals("HI")

In other words, higher shipping charges apply when the destination is outside the United
States or to Alaska or Hawaii.

To simplify conditions with negations of and or or expressions, it is usually a good idea to
apply De Morgan’s Law to move the negations to the innermost level.

3.8  Application: Input Validation
An important application for the if statement is input validation. Whenever
your program accepts user input, you need to make sure that the user-supplied
values are valid before you use them in your computations.

Consider our elevator simulation program. Assume that the elevator panel
has buttons labeled 1 through 20 (but not 13). The following are illegal inputs:

•	 The number 13
•	 Zero or a negative number
•	 A number larger than 20
•	 An input that is not a sequence of digits, such as five

In each of these cases, we will want to give an error message and exit the
program.

It is simple to guard against an input of 13:
if (floor == 13)
{
 System.out.println("Error: There is no thirteenth floor.");
}

Here is how you ensure that the user doesn’t enter a number outside the valid range:
if (floor <= 0 || floor > 20)
{
 System.out.println("Error: The floor must be between 1 and 20.");
}

However, dealing with an input that is not a valid integer is a more serious problem.
When the statement

floor = in.nextInt();

is executed, and the user types in an input that is not an integer (such as five), then
the integer variable floor is not set. Instead, a run-time exception occurs and the pro­
gram is terminated. To avoid this problem, you should first call the hasNextInt method
which checks whether the next input is an integer. If that method returns true, you
can safely call nextInt. Otherwise, print an error message and exit the program.

if (in.hasNextInt())
{
 int floor = in.nextInt();
 Process the input value
}

Like a quality control worker,
you want to make sure that
user input is correct before
processing it.

Call the hasNextInt or
hasNextDouble
method to ensure
that the next input is
a number.

3.8 A pplication: Input Validation   117

else
{
 System.out.println("Error: Not an integer.");
}

Here is the complete elevator simulation program with input validation:

section_8/ElevatorSimulation2.java

1 import java.util.Scanner;
2
3 /**
4 This program simulates an elevator panel that skips the 13th floor, checking for
5 input errors.
6 */
7 public class ElevatorSimulation2
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Floor: ");
13 if (in.hasNextInt())
14 {
15 // Now we know that the user entered an integer
16
17 int floor = in.nextInt();
18
19 if (floor == 13)
20 {
21 System.out.println("Error: There is no thirteenth floor.");
22 }
23 else if (floor <= 0 || floor > 20)
24 {
25 System.out.println("Error: The floor must be between 1 and 20.");
26 }
27 else
28 {
29 // Now we know that the input is valid
30
31 int actualFloor = floor;
32 if (floor > 13)
33 {
34 actualFloor = floor - 1;
35 }
36
37 System.out.println("The elevator will travel to the actual floor "
38 + actualFloor);
39 }
40 }
41 else
42 {
43 System.out.println("Error: Not an integer.");
44 }
45 }
46 }

Program Run

Floor: 13
Error: There is no thirteenth floor.

118  Chapter 3  Decisions

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

36.	 In the ElevatorSimulation2 program, what is the output when the input is
a.	 100?
b.	–1?
c.	 20?
d.	thirteen?

37.	 Your task is to rewrite lines 19–26 of the ElevatorSimulation2 program so that
there is a single if statement with a complex condition. What is the condition?
if (. . .)
{
 System.out.println("Error: Invalid floor number");
}

38.	 In the Sherlock Holmes story “The Adventure of the Sussex Vampire”, the
inimitable detective uttered these words: “Matilda Briggs was not the name of
a young woman, Watson, … It was a ship which is associated with the giant rat
of Sumatra, a story for which the world is not yet prepared.” Over a hundred
years later, researchers found giant rats in Western New Guinea, another part of
Indonesia.
Suppose you are charged with writing a program that processes rat weights. It
contains the statements
System.out.print("Enter weight in kg: ");
double weight = in.nextDouble();

What input checks should you supply?

When processing inputs, you want to reject values that are too large. But how large is too large?
These giant rats, found in Western New Guinea, are about five times the size of a city rat.

39.	 Run the following test program and supply inputs 2 and three at the prompts.
What happens? Why?
import java.util.Scanner

public class Test
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter an integer: ");
 int m = in.nextInt();
 System.out.print("Enter another integer: ");
 int n = in.nextInt();
 System.out.println(m + " " + n);
 }
}

Practice It	 Now you can try these exercises at the end of the chapter: R3.3, R3.32, P3.11.

S e l f C h e c k

Video Example 3.2	 The Genetic Code

Watch this Video Example to see how to build a “decoder ring” for
the genetic code.

3.8 A pplication: Input Validation   119

When one uses a
sophisticated com

puter program such as a tax prepara
tion package, one is bound to attribute
some intelligence to the computer.
The computer asks sensible questions
and makes computations that we find
a mental challenge. After all, if doing
one’s taxes were easy, we wouldn’t
need a computer to do it for us.

As programmers, however, we
know that all this apparent intelligence
is an illusion. Human programmers
have carefully “coached” the software
in all possible scenarios, and it simply
replays the actions and decisions that
were programmed into it.

Would it be possible to write com
puter programs that are genuinely
intelligent in some sense? From the
earliest days of computing, there was
a sense that the human brain might
be nothing but an immense computer,
and that it might well be feasible to
program computers to imitate some
processes of human thought. Serious
research into artificial intelligence
began in the mid-1950s, and the first
twenty years brought some impres
sive successes. Programs that play
chess—surely an activity that appears
to require remarkable intellectual pow-
ers—have become so good that they
now routinely beat all but the best
human players. As far back as 1975,
an expert-system program called
Mycin gained fame for being better in
diagnosing meningitis in patients than
the average physician.

However, there were serious set
backs as well. From 1982 to 1992,
the Japanese government embarked
on a massive research project, funded
at over 40 billion Japanese yen. It was
known as the Fifth-Generation Project.
Its goal was to develop new hardware
and software to greatly improve the
performance of expert system soft
ware. At its outset, the project created
fear in other countries that the Japa
nese computer industry was about to
become the undisputed leader in the
field. However, the end results were
disappointing and did little to bring

artificial intelligence applications to
market.

From the very outset, one of the
stated goals of the AI community was
to produce software that could trans
late text from one language to another,
for example from English to Russian.
That undertaking proved to be enor-
mously complicated. Human language
appears to be much more subtle and
interwoven with the human experi-
ence than had originally been thought.
Even the grammar-checking tools that
come with word-processing programs
today are more of a gimmick than a
useful tool, and analyzing grammar
is just the first step in translating
sentences.

The CYC (from encyclopedia) proj-
ect, started by Douglas Lenat in 1984,
tries to codify the implicit assump-
tions that underlie human speech and
writing. The team members started
out analyzing news articles and asked
themselves what unmentioned facts
are necessary to actually understand
the sentences. For example, consider
the sentence, “Last fall she enrolled in
Michigan State”. The reader automati-
cally realizes that “fall” is not related
to falling down in this context, but
refers to the season. While there is
a state of Michigan, here Michigan
State denotes the university. A priori,
a computer program has none of this

knowledge. The goal of the CYC proj-
ect is to extract and store the requi-
site facts—that is, (1) people enroll in
universities; (2) Michigan is a state; (3)
many states have universities named
X State University, often abbreviated
as X State; (4) most people enroll in
a university in the fall. By 1995, the
project had codified about 100,000
common-sense concepts and about
a million facts of knowledge relating
them. Even this massive amount of
data has not proven sufficient for use-
ful applications.

In recent years, artificial intelli-
gence technology has seen substantial
advances. One of the most astounding
examples is the outcome of a series
of “grand challenges” for autono-
mous vehicles posed by the Defense
Advanced Research Projects Agency
(DARPA). Competitors were invited to
submit a computer-controlled vehi-
cle that had to complete an obstacle
course without a human driver or
remote control. The first event, in
2004, was a disappointment, with
none of the entrants finishing the
route. In 2005, five vehicles com-
pleted a grueling 212 km course in the
Mojave desert. Stanford’s Stanley came
in first, with an average speed of 30
km/h. In 2007, DARPA moved the com-
petition to an “urban” environment, an
abandoned air force base. Vehicles

had to be able to
interact with each
other, following Cali-
fornia traffic laws. As
Stanford’s Sebastian
Thrun explained: “In
the last Grand Chal-
lenge, it didn’t really
matter whether an
obstacle was a rock
or a bush, because
either way you’d just
drive around it. The
current challenge is to
move from just sens-
ing the environment
to understanding it.”

Winner of the 2007 DARPA Urban Challenge

Random Fact 3.2  Artificial Intelligence

120  Chapter 3  Decisions

Use the if statement to implement a decision.

•	 The if statement allows a program to carry out
different actions depending on the nature of the
data to be processed.

Implement comparisons of numbers and objects.

•	 Use relational operators (< <= > >= == !=) to compare numbers.
•	 Do not use the = = operator to compare strings. Use the equals method instead.
•	 The compareTo method compares strings in lexicographic order.

Implement complex decisions that require multiple if statements.

•	 Multiple if statements can be combined to evaluate complex decisions.
•	 When using multiple if statements, test general conditions after more specific

conditions.

Implement decisions whose branches require further decisions.

•	 When a decision statement is contained inside the branch of another decision
statement, the statements are nested.

•	 Nested decisions are required for problems that have two levels of decision
making.

Draw flowcharts for visualizing the control flow of a program.

•	 Flow charts are made up of elements for tasks,
input/output, and decisions.

•	 Each branch of a decision can contain tasks and further
decisions.

•	 Never point an arrow inside another branch.

Design test cases for your programs.

•	 Each branch of your program should be covered by a test case.
•	 It is a good idea to design test cases before implementing a program.
•	 Logging messages can be deactivated when testing is complete.

C h a p t e r Summ a r y

True

False

Condition

Review Exercises  121

Use the Boolean data type to store and combine conditions that can be true or false.

•	 The Boolean type boolean has two values, false and true.
•	 Java has two Boolean operators that combine conditions: && (and) and || (or).
•	 To invert a condition, use the ! (not) operator.
•	 The && and || operators are computed using short-circuit evaluation: As soon as

the truth value is determined, no further conditions are evaluated.
•	 De Morgan’s law tells you how to negate && and || conditions.

Apply if statements to detect whether user input is valid.

•	 Call the hasNextInt or hasNextDouble method to ensure that the
next input is a number.

• R3.1	 What is the value of each variable after the if statement?
a.	int n = 1; int k = 2; int r = n;

if (k < n) { r = k; }

b.	int n = 1; int k = 2; int r;
if (n < k) { r = k; }
else { r = k + n; }

c.	int n = 1; int k = 2; int r = k;
if (r < k) { n = r; }
else { k = n; }

d.	int n = 1; int k = 2; int r = 3;
if (r < n + k) { r = 2 * n; }
else { k = 2 * r; }

•• R3.2	 Explain the difference between
s = 0;
if (x > 0) { s++; }
if (y > 0) { s++; }

and
s = 0;
if (x > 0) { s++; }
else if (y > 0) { s++; }

java.lang.String
 equals
 compareTo
java.util.Scanner
 hasNextDouble
 hasNextInt

java.util.logging.Level
 INFO
 OFF
java.util.logging.Logger
 getGlobal
 info
 setLevel

S ta n d a r d L i b r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e v i e w E x e r c i s e s

122  Chapter 3  Decisions

•• R3.3	 Find the errors in the following if statements.
a.	if x > 0 then System.out.print(x);
b.	if (1 + x > Math.pow(x, Math.sqrt(2)) { y = y + x; }
c.	if (x = 1) { y++; }
d.	x = in.nextInt();

if (in.hasNextInt())
{
 sum = sum + x;
}
else
{
 System.out.println("Bad input for x");
}

e.	String letterGrade = "F";
if (grade >= 90) { letterGrade = "A"; }
if (grade >= 80) { letterGrade = "B"; }
if (grade >= 70) { letterGrade = "C"; }
if (grade >= 60) { letterGrade = "D"; }

• R3.4	 What do these code fragments print?
a.	int n = 1;

int m = -1;
if (n < -m) { System.out.print(n); }
else { System.out.print(m); }

b.	int n = 1;
int m = -1;
if (-n >= m) { System.out.print(n); }
else { System.out.print(m); }

c.	double x = 0;
double y = 1;
if (Math.abs(x - y) < 1) { System.out.print(x); }
else { System.out.print(y); }

d.	double x = Math.sqrt(2);
double y = 2;
if (x * x == y) { System.out.print(x); }
else { System.out.print(y); }

•• R3.5	 Suppose x and y are variables of type double. Write a code fragment that sets y to x if x
is positive and to 0 otherwise.

•• R3.6	 Suppose x and y are variables of type double. Write a code fragment that sets y to the
absolute value of x without calling the Math.abs function. Use an if statement.

•• R3.7	 Explain why it is more difficult to compare floating-point numbers than integers.
Write Java code to test whether an integer n equals 10 and whether a floating-point
number x is approximately equal to 10.

• R3.8	 It is easy to confuse the = and == operators. Write a test program containing the
statement

if (floor = 13)

What error message do you get? Write another test program containing the
statement

count == 0;

What does your compiler do when you compile the program?

Review Exercises  123

•• R3.9	 Each square on a chess board can be described by a letter and number, such as g5 in
this example:

1
2

4

6

8

3

5

7

1
2

4

6

8

3

5

7

a

a

b

b

d

d

f

f

h

h

c

c

e

e

g5

g

g

The following pseudocode describes an algorithm that determines whether a square
with a given letter and number is dark (black) or light (white).

If the letter is an a, c, e, or g
	 If the number is odd
		 color = "black"
	 Else
		 color = "white"
Else
	 If the number is even
		 color = "black"
	 Else
		 color = "white"

Using the procedure in Programming Tip 3.5, trace this pseudocode with input g5.

•• R3.10	 Give a set of four test cases for the algorithm of Exercise R3.9 that covers all
branches.

•• R3.11	 In a scheduling program, we want to check whether two appointments overlap. For
simplicity, appointments start at a full hour, and we use military time (with hours
0–24). The following pseudocode describes an algorithm that determines whether
the appointment with start time start1 and end time end1 overlaps with the appoint­
ment with start time start2 and end time end2.

If start1 > start2
	 s = start1
Else
	 s = start2
If end1 < end2
	 e = endl
Else
	 e = end2
If s < e
	 The appointments overlap.
Else
	 The appointments don’t overlap.

Trace this algorithm with an appointment from 10–12 and one from 11–13, then with
an appointment from 10–11 and one from 12–13.

124  Chapter 3  Decisions

• R3.12	 Draw a flow chart for the algorithm in Exercise R3.11.

• R3.13	 Draw a flow chart for the algorithm in Exercise P3.17.

• R3.14	 Draw a flow chart for the algorithm in Exercise P3.18.

•• R3.15	 Develop a set of test cases for the algorithm in Exercise R3.11.

•• R3.16	 Develop a set of test cases for the algorithm in Exercise P3.18.

•• R3.17	 Write pseudocode for a program that prompts the user for a month and day and
prints out whether it is one of the following four holidays:

•	 New Year’s Day (January 1)
•	 Independence Day (July 4)
•	 Veterans Day (November 11)
•	 Christmas Day (December 25)

•• R3.18	 Write pseudocode for a program that assigns letter grades for a quiz, according to the
following table:

Score	 Grade
90-100	 A
80-89	 B
70-79	 C
60-69	 D
 < 60	 F

•• R3.19	 Explain how the lexicographic ordering of strings in Java differs from the order­
ing of words in a dictionary or telephone book. Hint: Consider strings such as IBM,
wiley.com, Century 21, and While-U-Wait.

•• R3.20	 Of the following pairs of strings, which comes first in lexicographic order?
a.	"Tom", "Jerry"
b.	"Tom", "Tomato"
c.	"church", "Churchill"
d.	"car manufacturer", "carburetor"
e.	"Harry", "hairy"
f.	 "Java", " Car"
g.	"Tom", "Tom"
h.	"Car", "Carl"
i.	 "car", "bar"

• R3.21	 Explain the difference between an if/else if/else sequence and nested if statements.
Give an example of each.

•• R3.22	 Give an example of an if/else if/else sequence where the order of the tests does not
matter. Give an example where the order of the tests matters.

• R3.23	 Rewrite the condition in Section 3.3 to use < operators instead of >= operators. What
is the impact on the order of the comparisons?

•• R3.24	 Give a set of test cases for the tax program in Exercise P3.22. Manually compute the
expected results.

Review Exercises  125

• R3.25	 Make up a Java code example that shows the dangling else problem using the follow­
ing statement: A student with a GPA of at least 1.5, but less than 2, is on probation.
With less than 1.5, the student is failing.

••• R3.26	 Complete the following truth table by finding the truth values of the Boolean
expressions for all combinations of the Boolean inputs p, q, and r.

p q r (p && q) || !r !(p && (q || !r))

false false false

false false true

false true false

. . .

5 more combinations

. . .

••• R3.27	 True or false? A && B is the same as B && A for any Boolean conditions A and B.

• R3.28	 The “advanced search” feature of many search engines allows you to use Boolean
operators for complex queries, such as “(cats OR dogs) AND NOT pets”. Contrast
these search operators with the Boolean operators in Java.

•• R3.29	 Suppose the value of b is false and the value of x is 0. What is the value of each of the
following expressions?

a.	b && x == 0
b.	b || x == 0
c.	!b && x == 0
d.	!b || x == 0
e.	b && x != 0
f.	 b || x != 0
g.	!b && x != 0
h.	!b || x != 0

•• R3.30	 Simplify the following expressions. Here, b is a variable of type boolean.
a.	b == true
b.	b == false
c.	b != true
d.	b != false

••• R3.31	 Simplify the following statements. Here, b is a variable of type boolean and n is a vari­
able of type int.

a.	if (n == 0) { b = true; } else { b = false; }

(Hint: What is the value of n == 0?)
b.	if (n == 0) { b = false; } else { b = true; }
c.	b = false; if (n > 1) { if (n < 2) { b = true; } }
d.	if (n < 1) { b = true; } else { b = n > 2; }

126  Chapter 3  Decisions

• R3.32	 What is wrong with the following program?
System.out.print("Enter the number of quarters: ");
int quarters = in.nextInt();
if (in.hasNextInt())
{
 total = total + quarters * 0.25;
 System.out.println("Total: " + total);
}
else
{
 System.out.println("Input error.");
}

• P3.1	 Write a program that reads an integer and prints whether it is negative, zero, or
positive.

•• P3.2	 Write a program that reads a floating-point number and prints “zero” if the number
is zero. Otherwise, print “positive” or “negative”. Add “small” if the absolute value
of the number is less than 1, or “large” if it exceeds 1,000,000.

•• P3.3	 Write a program that reads an integer and prints how many digits the number has, by
checking whether the number is ≥ 10, ≥ 100, and so on. (Assume that all integers are
less than ten billion.) If the number is negative, first multiply it with –1.

•• P3.4	 Write a program that reads three numbers and prints “all the same” if they are all the
same, “all different” if they are all different, and “neither” otherwise.

•• P3.5	 Write a program that reads three numbers and prints “increasing” if they are in
increasing order, “decreasing” if they are in decreasing order, and “neither” other­
wise. Here, “increasing” means “strictly increasing”, with each value larger than its
predecessor. The sequence 3 4 4 would not be considered increasing.

•• P3.6	 Repeat Exercise P3.5, but before reading the numbers, ask the user whether increas­
ing/decreasing should be “strict” or “lenient”. In lenient mode, the sequence 3 4 4 is
increasing and the sequence 4 4 4 is both increasing and decreasing.

•• P3.7	 Write a program that reads in three integers and prints “in order” if they are sorted in
ascending or descending order, or “not in order” otherwise. For example,

 1 2 5 in order
 1 5 2 not in order
 5 2 1 in order
 1 2 2 in order

•• P3.8	 Write a program that reads four integers and prints “two pairs” if the input consists
of two matching pairs (in some order) and “not two pairs” otherwise. For example,

 1 2 2 1 two pairs
 1 2 2 3 not two pairs
 2 2 2 2 two pairs

P r o g r a mm i n g E x e r c i s e s

Programming Exercises  127

• P3.9	 Write a program that reads a temperature value and the letter C for Celsius or F for
Fahrenheit. Print whether water is liquid, solid, or gaseous at the given temperature
at sea level.

• P3.10	 The boiling point of water drops by about one degree centigrade for every 300
meters (or 1,000 feet) of altitude. Improve the program of Exercise P3.9 to allow the
user to supply the altitude in meters or feet.

• P3.11	 Add error handling to Exercise P3.10. If the user does not enter a number when
expected, or provides an invalid unit for the altitude, print an error message and end
the program.

•• P3.12	 Write a program that translates a letter grade into a number grade. Letter grades are
A, B, C, D, and F, possibly followed by + or –. Their numeric values are 4, 3, 2, 1, and
0. There is no F+ or F–. A + increases the numeric value by 0.3, a – decreases it by 0.3.
However, an A+ has value 4.0.

Enter a letter grade: B-
The numeric value is 2.7.

•• P3.13	 Write a program that translates a number between 0 and 4 into the closest letter
grade. For example, the number 2.8 (which might have been the average of several
grades) would be converted to B–. Break ties in favor of the better grade; for example
2.85 should be a B.

•• P3.14	 Write a program that takes user input describing a playing card in the following
shorthand notation:

A		 Ace
2 ... 10	 Card values
J		 Jack
Q		 Queen
K		 King
D		 Diamonds
H		 Hearts
S		 Spades
C		 Clubs

Your program should print the full description of the card. For example,
Enter the card notation: QS
Queen of Spades

•• P3.15	 Write a program that reads in three floating-point numbers and prints the largest of
the three inputs. For example:

Please enter three numbers: 4 9 2.5
The largest number is 9.

•• P3.16	 Write a program that reads in three strings and sorts them lexicographically.
Enter three strings: Charlie Able Baker
Able
Baker
Charlie

128  Chapter 3  Decisions

•• P3.17	 When two points in time are compared, each given as hours (in military time, rang­
ing from 0 and 23) and minutes, the following pseudocode determines which comes
first.

If hour1 < hour2
	 time1 comes first.
Else if hour1 and hour2 are the same
	 If minute1 < minute2
		 time1 comes first.
	 Else if minute1 and minute2 are the same
		 time1 and time2 are the same.
	 Else
		 time2 comes first.
Else
	 time2 comes first.

Write a program that prompts the user for two points in time and prints the time that
comes first, then the other time.

•• P3.18	 The following algorithm yields the season (Spring, Summer, Fall, or Winter) for a
given month and day.

If month is 1, 2, or 3, season = "Winter"
Else if month is 4, 5, or 6, season = "Spring"
Else if month is 7, 8, or 9, season = "Summer"
Else if month is 10, 11, or 12, season = "Fall"
If month is divisible by 3 and day >= 21
	 If season is "Winter", season = "Spring"
	 Else if season is "Spring", season = "Summer"
	 Else if season is "Summer", season = "Fall"
	 Else season = "Winter"

Write a program that prompts the user for a month
and day and then prints the season, as determined
by this algorithm.

•• P3.19	 Write a program that reads in two floating-point numbers and tests whether they are
the same up to two decimal places. Here are two sample runs.

Enter two floating-point numbers: 2.0 1.99998
They are the same up to two decimal places.
Enter two floating-point numbers: 2.0 1.98999
They are different.

••• P3.20	 Write a program that prompts for the day and month of the user’s birthday and then
prints a horoscope. Make up fortunes for programmers, like this:

Please enter your birthday (month and day): 6 16
Gemini are experts at figuring out the behavior of complicated programs.
You feel where bugs are coming from and then stay one step ahead. Tonight,
your style wins approval from a tough critic.

Each fortune should contain the name of the astrological sign. (You will find the
names and date ranges of the signs at a distressingly large number of sites on the
Internet.)

Programming Exercises  129

•• P3.21	 The original U.S. income tax of 1913 was quite simple. The tax was

•	 1 percent on the first $50,000.

•	 2 percent on the amount over $50,000 up to $75,000.

•	 3 percent on the amount over $75,000 up to $100,000.

•	 4 percent on the amount over $100,000 up to $250,000.

•	 5 percent on the amount over $250,000 up to $500,000.

•	 6 percent on the amount over $500,000.

There was no separate schedule for single or married taxpayers. Write a program that
computes the income tax according to this schedule.

••• P3.22	 Write a program that computes taxes for the following schedule.

If your status is Single and
if the taxable income is over but not over the tax is of the amount over

$0 $8,000 10% $0

$8,000 $32,000 $800 + 15% $8,000

$32,000 $4,400 + 25% $32,000

If your status is Married and
if the taxable income is over but not over the tax is of the amount over

$0 $16,000 10% $0

$16,000 $64,000 $1,600 + 15% $16,000

$64,000 $8,800 + 25% $64,000

••• P3.23	 The TaxCalculator.java program uses a simplified version of the 2008 U.S. income tax
schedule. Look up the tax brackets and rates for the current year, for both single and
married filers, and implement a program that computes the actual income tax.

••• P3.24	 Unit conversion. Write a unit conversion program that asks the users from which
unit they want to convert (fl. oz, gal, oz, lb, in, ft, mi) and to which unit they want to
convert (ml, l, g, kg, mm, cm, m, km). Reject incompatible conversions (such as gal
→ km). Ask for the value to be converted, then display the result:

Convert from? gal
Convert to? ml
Value? 2.5
2.5 gal = 9462.5 ml

• P3.25	 Write a program that prompts the user to provide a single character from the alpha­
bet. Print Vowel or Consonant, depending on the user input. If the user input is
not a letter (between a and z or A and Z), or is a string of length > 1, print an error
message.

130  Chapter 3  Decisions

••• P3.26	 Roman numbers. Write a program that converts a positive integer into the Roman
number system. The Roman number system has digits

I		 1
V		 5
X		 10
L		 50
C		 100
D		 500
M		 1,000

Numbers are formed according to the following rules:
a.	Only numbers up to 3,999 are represented.
b.	As in the decimal system, the thousands, hundreds, tens, and ones are

expressed separately.
c.	The numbers 1 to 9 are expressed as

I		 1
II		 2
III	 3
IV		 4
V		 5
VI		 6
VII	 7
VIII	 8
IX	 9
As you can see, an I preceding a V or X is subtracted from the value, and you
can never have more than three I’s in a row.

d.	Tens and hundreds are done the same way, except that the letters X, L, C and C,
D, M are used instead of I, V, X, respectively.

Your program should take an input, such as 1978, and convert it to Roman numerals,
MCMLXXVIII.

•• P3.27	 Write a program that asks the user to enter a month (1 for January, 2 for February,
and so on) and then prints the number of days in the month. For February, print “28
or 29 days”.

Enter a month: 5
30 days

Do not use a separate if/else branch for each month. Use Boolean operators.

••• P3.28	 A year with 366 days is called a leap year. Leap years are necessary to keep the cal­
endar synchronized with the sun because the earth revolves around the sun once
every 365.25 days. Actually, that figure is not entirely precise, and for all dates after
1582 the Gregorian correction applies. Usually years that are divisible by 4 are leap
years, for example 1996. However, years that are divisible by 100 (for example, 1900)
are not leap years, but years that are divisible by 400 are leap years (for example,

Programming Exercises  131

2000). Write a program that asks the user for a year and computes whether that year
is a leap year. Use a single if statement and Boolean operators.

••• P3.29	 French country names are feminine when they end with the letter e, masculine other­
wise, except for the following which are masculine even though they end with e:

•	 le Belize
•	 le Cambodge
•	 le Mexique
•	 le Mozambique
•	 le Zaïre
•	 le Zimbabwe

Write a program that reads the French name of a country and adds the article: le for
masculine or la for feminine, such as le Canada or la Belgique.
However, if the country name starts with a vowel, use l’; for example, l’Afghanistan.
For the following plural country names, use les:

•	 les Etats-Unis
•	 les Pays-Bas

••• Business P3.30	 Write a program to simulate a bank transaction. There are two bank accounts: check­
ing and savings. First, ask for the initial balances of the bank accounts; reject nega­
tive balances. Then ask for the transactions; options are deposit, withdrawal, and
transfer. Then ask for the account; options are checking and savings. Then ask for the
amount; reject transactions that overdraw an account. At the end, print the balances
of both accounts.

•• Business P3.31	 Write a program that reads in the name and salary of an employee. Here the salary
will denote an hourly wage, such as $9.25. Then ask how many hours the employee
worked in the past week. Be sure to accept fractional hours. Compute the pay. Any
overtime work (over 40 hours per week) is paid at 150 percent of the regular wage.
Print a paycheck for the employee.

•• Business P3.32	 When you use an automated teller machine (ATM) with your bank card, you need
to use a personal identification number (PIN) to access your account. If a user fails
more than three times when entering the PIN, the machine will block the card.
Assume that the user’s PIN is “1234” and write a program that asks the user for the
PIN no more than three times, and does the following:

•	 If the user enters the right number, print a message saying, “Your PIN is
correct”, and end the program.

•	 If the user enters a wrong number, print a message saying, “Your PIN is
incorrect” and, if you have asked for the PIN less than three times, ask for it
again.

•	 If the user enters a wrong number three times, print a message saying “Your
bank card is blocked” and end the program.

• Business P3.33	 Calculating the tip when you go to a restaurant is not difficult, but your restaurant
wants to suggest a tip according to the service diners receive. Write a program that
calculates a tip according to the diner’s satisfaction as follows:

•	 Ask for the diners’ satisfaction level using these ratings: 1 = Totally satisfied,
2 = Satisfied, 3 = Dissatisfied.

132  Chapter 3  Decisions

•	 If the diner is totally satisfied, calculate a 20 percent tip.
•	 If the diner is satisfied, calculate a 15 percent tip.
•	 If the diner is dissatisfied, calculate a 10 percent tip.
•	 Report the satisfaction level and tip in dollars and cents.

• Business P3.34	 A supermarket awards coupons depending on how much a customer spends on
groceries. For example, if you spend $50, you will get a coupon worth eight percent
of that amount. The following table shows the percent used to calculate the coupon
awarded for different amounts spent. Write a program that calculates and prints the
value of the coupon a person can receive based on groceries purchased.
Here is a sample run:

Please enter the cost of your groceries: 14
You win a discount coupon of $ 1.12. (8% of your purchase)

Money Spent Coupon Percentage

Less than $10 No coupon

From $10 to $60 8%

More than $60 to $150 10%

More than $150 to $210 12%

More than $210 14%

• Science P3.35	 Write a program that prompts the user for a wavelength value and prints a descrip­
tion of the corresponding part of the electromagnetic spectrum, as given in the fol­
lowing table.

Electromagnetic Spectrum

Type Wavelength (m) Frequency (Hz)

Radio Waves > 10–1 < 3 × 109

Microwaves 10–3 to 10–1 3 × 109 to 3 × 1011

Infrared 7 × 10–7 to 10–3 3 × 1011 to 4 × 1014

Visible light 4 × 10–7 to 7 × 10–7 4 × 1014 to 7.5 × 1014

Ultraviolet 10–8 to 4 × 10–7 7.5 × 1014 to 3 × 1016

X-rays 10–11 to 10–8 3 × 1016 to 3 × 1019

Gamma rays < 10–11 > 3 × 1019

• Science P3.36	 Repeat Exercise P3.35, modifying the program so that it prompts for the frequency
instead.

Programming Exercises  133

•• Science P3.37	 Repeat Exercise P3.35, modifying the program so that it first asks the user whether
the input will be a wavelength or a frequency.

••• Science P3.38	 A minivan has two sliding doors. Each door can be
opened by either a dashboard switch, its inside handle,
or its outside handle. However, the inside handles do not
work if a child lock switch is activated. In order for the
sliding doors to open, the gear shift must be in park, and
the master unlock switch must be activated. (This book’s
author is the long-suffering owner of just such a vehicle.)
Your task is to simulate a portion of the control software for the vehicle. The input is
a sequence of values for the switches and the gear shift, in the following order:

•	 Dashboard switches for left and right sliding door, child lock, and master
unlock (0 for off or 1 for activated)

•	 Inside and outside handles on the left and right sliding doors (0 or 1)

•	 The gear shift setting (one of P N D 1 2 3 R).

A typical input would be 0 0 0 1 0 1 0 0 P.
Print “left door opens” and/or “right door opens” as appropriate. If neither door
opens, print “both doors stay closed”.

• Science P3.39	 Sound level L in units of decibel (dB) is determined by

L = 20 log10(p/p0)

where p is the sound pressure of the sound (in Pascals, abbreviated Pa), and p0 is a
reference sound pressure equal to 20 × 10–6 Pa (where L is 0 dB). The following table
gives descriptions for certain sound levels.

Threshold of pain	 130 dB
Possible hearing damage	 120 dB
Jack hammer at 1 m	 100 dB
Traffic on a busy roadway at 10 m	 90 dB
Normal conversation	 60 dB
Calm library	 30 dB
Light leaf rustling	 0 dB

Write a program that reads a value and a unit, either dB or Pa, and then prints the
closest description from the list above.

•• Science P3.40	 The electric circuit shown below is designed to measure the temperature of the gas in
a chamber.

+
–Vs = 20 V

Rs = 75 Ω

R Vm

+

–

Voltmeter

11.43 V

134  Chapter 3  Decisions

The resistor R represents a temperature sensor enclosed in the chamber. The resis­
tance R, in Ω, is related to the temperature T, in °C, by the equation

R R kT= +0

In this device, assume R0 = 100 Ω and k = 0.5. The voltmeter displays the value of the
voltage, Vm , across the sensor. This voltage Vm indicates the temperature, T, of the
gas according to the equation

T
R
k

R
k

R
k

V
V V

R
k

s m

s m
= − =

−
−0 0

Suppose the voltmeter voltage is constrained to the range Vmin = 12 volts ≤ Vm ≤
Vmax = 18 volts. Write a program that accepts a value of Vm and checks that it’s
between 12 and 18. The program should return the gas temperature in degrees
Celsius when Vm is between 12 and 18 and an error message when it isn’t.

••• Science P3.41	 Crop damage due to frost is one of the many risks confronting farmers. The figure
below shows a simple alarm circuit designed to warn of frost. The alarm circuit uses
a device called a thermistor to sound a buzzer when the temperature drops below
freezing. Thermistors are semiconductor devices that exhibit a temperature depen­
dent resistance described by the equation

R R e T T=
−







0

1 1

0

β

where R is the resistance, in Ω, at the temperature T, in °K, and R0 is the resistance,
in Ω, at the temperature T0, in°K. β is a constant that depends on the material used to
make the thermistor.

–

+

9 V

R3

R4R2

RThermistor

9 V

Comparator

Buzzer

The circuit is designed so that the alarm will sound when

R

R R

R

R R
2

2

4

3 4+
<

+

The thermistor used in the alarm circuit has R0 = 33,192 Ω at T0 = 40 °C, and
β = 3,310 °K. (Notice that β has units of °K. The temperature in °K is obtained by
adding 273° to the temperature in °C.) The resistors R2, R3, and R4 have a resistance
of 156.3 kΩ = 156,300 Ω.
Write a Java program that prompts the user for a temperature in °F and prints a
message indicating whether or not the alarm will sound at that temperature.

Answers to Self-Check Questions  135

• Science P3.42	 A mass m = 2 kilograms is attached to the end of a rope of length r = 3 meters. The
mass is whirled around at high speed. The rope can withstand a maximum tension
of T = 60 Newtons. Write a program that accepts a rotation speed v and determines
whether such a speed will cause the rope to break. Hint: =T m v r2 .

• Science P3.43	 A mass m is attached to the end of a rope of length r = 3 meters. The rope can only
be whirled around at speeds of 1, 10, 20, or 40 meters per second. The rope can
withstand a maximum tension of T = 60 Newtons. Write a program where the user
enters the value of the mass m, and the program determines the greatest speed at
which it can be whirled without breaking the rope. Hint: =T m v r2 .

•• Science P3.44	 The average person can jump off the ground
with a velocity of 7 mph without fear of leaving
the planet. However, if an astronaut jumps with
this velocity while standing on Halley’s Comet,
will the astronaut ever come back down? Create
a program that allows the user to input a launch
velocity (in mph) from the surface of Halley’s
Comet and determine whether a jumper will
return to the surface. If not, the program should
calculate how much more massive the comet
must be in order to return the jumper to the surface.

Hint: Escape velocity is v
GM

Rescape = 2 , where = × −G N6.67 10 m kg11 2 2 is

the gravitational constant, = ×M 1.3 10 kg22 is the mass of Halley’s comet, and

= ×R 1.153 10 m6 is its radius.

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 Change the if statement to
if (floor > 14)
{
 actualFloor = floor - 2;
}

2.	 85. 90. 85.
3.	 The only difference is if originalPrice is 100.

The statement in Self Check 2 sets discounted-
Price to 90; this one sets it to 80.

4.	 95. 100. 95.
5.	 if (fuelAmount < 0.10 * fuelCapacity)

{
 System.out.println("red");
}
else
{
 System.out.println("green");
}

6.	 (a) and (b) are both true, (c) is false.

7.	 floor <= 13
8.	 The values should be compared with ==, not =.
9.	 input.equals("Y")

10.	 str.equals("") or str.length() == 0
11.	 if (scoreA > scoreB)

{
 System.out.println("A won");
}
else if (scoreA < scoreB)
{
 System.out.println("B won");
}
else
{
 System.out.println("Game tied");
}

12.	 if (x > 0) { s = 1; }
else if (x < 0) { s = -1; }
else { s = 0; }

136  Chapter 3  Decisions

13.	 You could first set s to one of the three values:
s = 0;
if (x > 0) { s = 1; }
else if (x < 0) { s = -1; }

14.	 The if (price <= 100) can be omitted (leaving
just else), making it clear that the else branch
is the sole alternative.

15.	 No destruction of buildings.
16.	 Add a branch before the final else:

else if (richter < 0)
{
 System.out.println("Error: Negative input");
}

17.	 3200.
18.	 No. Then the computation is 0.10 × 32000 +

0.25 × (32000 – 32000).
19.	 No. Their individual tax is $5,200 each, and if

they married, they would pay $10,400. Actu­
ally, taxpayers in higher tax brackets (which
our program does not model) may pay higher
taxes when they marry, a phenomenon known
as the marriage penalty.

20.	 Change else in line 41 to
else if (maritalStatus.equals("m"))

and add another branch after line 52:
else
{
 System.out.println(
 "Error: marital status should be s or m.");
}

21.	 The higher tax rate is only applied on the
income in the higher bracket. Suppose you are
single and make $31,900. Should you try to
get a $200 raise? Absolutely: you get to keep
90 percent of the first $100 and 75 percent of
the next $100.

22.	

23.	 The “True” arrow from the first decision
points into the “True” branch of the second
decision, creating spaghetti code.

24.	 Here is one solution. In Section 3.7, you will
see how you can combine the conditions for a
more elegant solution.

25.	

26.	

True

False

temp < 0? Print “Frozen”

Read temp

True

False

Input < 0? Status = “Error”

True

False

Input > 100?

Status = “OK”

Status = “Error”

True

False

Print Print “Error”

x < 0?

Read x

True

False

temp < 0? Print “Ice”

True

False

temp > 100? Print “Steam”

Print “Liquid”

Read temp

Answers to Self-Check Questions  137

27.	 Test
Case

Expected
Output

Comment

12 12 Below 13th floor
14 13 Above 13th floor
13 ? The specification is not clear— See

Section 3.8 for a version of this
program with error handling

29.	 A boundary test case is a price of $128. A 16
percent discount should apply because the
problem statement states that the larger dis­
count applies if the price is at least $128. Thus,
the expected output is $107.52.

30.	 Test
Case

Expected
Output

Comment

9 Most structures fall
7.5 Many buildings destroyed
6.5 Many buildings ...
5 Damage to poorly...
3 No destruction...

8.0 Most structures fall Boundary case. In this
program, boundary cases
are not as significant
because the behavior of
an earthquake changes
gradually.

-1 The specification is not
clear—see Self Check
16 for a version of this
program with error
handling.

31.	 Test Case Expected Output Comment
(0.5, 0.5) inside

(4, 2) outside
(0, 2) on the boundary Exactly on the boundary

(1.414, 1.414) on the boundary Close to the boundary
(0, 1.9) inside Not less than 1 mm

from the boundary
(0, 2.1) outside Not less than 1 mm

from the boundary

32.	 x == 0 && y == 0
33.	 x == 0 || y == 0
34.	 (x == 0 && y != 0) || (y == 0 && x != 0)
35.	 The same as the value of frozen.
36.	 You are guaranteed that there are no other

values. With strings or integers, you would
need to check that no values such as "maybe" or
–1 enter your calculations.

37.	 (a) Error: The floor must be between 1 and 20.
(b) Error: The floor must be between 1 and 20.
(c) 19 (d) Error: Not an integer.

38.	 floor == 13 || floor <= 0 || floor > 20
39.	 Check for in.hasNextDouble(), to make sure a

researcher didn’t supply an input such as oh
my. Check for weight <= 0, because any rat must
surely have a positive weight. We don’t know
how giant a rat could be, but the New Guinea
rats weighed no more than 2 kg. A regular
house rat (rattus rattus) weighs up to 0.2 kg, so
we’ll say that any weight > 10 kg was surely an
input error, perhaps confusing grams and kilo­
grams. Thus, the checks are
if (in.hasNextDouble())
{
 double weight = in.nextDouble();
 if (weight < 0)
 {
 System.out.println(
 "Error: Weight cannot be negative.");
 }
 else if (weight > 10)
 {
 System.out.println(
 "Error: Weight > 10 kg.");
 }
 else
 {
 Process valid weight.
 }
}
else
}
 System.out.print("Error: Not a number");
}

40.	 The second input fails, and the program termi­
nates without printing anything.

4C h a p t e r

139

Loops

To implement while, for, and do loops

To hand-trace the execution of a program

To become familiar with common
loop algorithms

To understand nested loops

To implement programs that read and process data sets

To use a computer for simulations

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

4.1  The while Loop  140

Syntax 4.1: while Statement  141
Common Error 4.1: Don’t Think “Are We

There Yet?”  144
Common Error 4.2:  Infinite Loops  145
Common Error 4.3: Off-by-One Errors  145
Random Fact 4.1: The First Bug  146

4.2  Problem Solving:
Hand-Tracing  147

4.3  The for Loop  150

Syntax 4.2:  for Statement  152
Programming Tip 4.1: Use for Loops for Their

Intended Purpose Only  155
Programming Tip 4.2: Choose Loop Bounds That

Match Your Task  155
Programming Tip 4.3: Count Iterations  156

4.4  The do Loop  156

Programming Tip 4.4: Flowcharts for Loops  157

4.5  Application: Processing
Sentinel Values  158

Special Topic 4.1: The Loop-and-a-Half Problem
and the break Statement  160

Special Topic 4.2: Redirection of Input
and Output  161

Video Example 4.1: Evaluating a Cell
Phone Plan 

4.6  Problem Solving:
Storyboards  162

4.7  Common Loop Algorithms  165

How To 4.1: Writing a Loop  169
Worked Example 4.1: Credit Card Processing 

4.8  Nested Loops  172

Worked Example 4.2:  Manipulating the Pixels
in an Image 

4.9  Application: Random Numbers  
and Simulations  176

Special Topic 4.3: Drawing Graphical Shapes  179
Video Example 4.2: Drawing a Spiral 
Random Fact 4.2: Software Piracy  182

140

In a loop, a part of a program is repeated over and over,
until a specific goal is reached. Loops are important for
calculations that require repeated steps and for processing
input consisting of many data items. In this chapter, you will
learn about loop statements in Java, as well as techniques
for writing programs that process input and simulate
activities in the real world.

4.1  The while Loop
In this section, you will learn about loop statements that
repeatedly execute instructions until a goal has been
reached.

Recall the investment problem from Chapter 1. You
put $10,000 into a bank account that earns 5 percent inter­
est per year. How many years does it take for the account
balance to be double the original investment?

In Chapter 1 we developed the following algorithm for
this problem:

Start with a year value of 0, a column for the interest, and a balance of $10,000.

 year interest balance
 0 $10,000

Repeat the following steps while the balance is less than $20,000.
	 Add 1 to the year value.
	 Compute the interest as balance x 0.05 (i.e., 5 percent interest).
	 Add the interest to the balance.
Report the final year value as the answer.

You now know how to declare and update the variables in Java. What you don’t yet
know is how to carry out “Repeat steps while the balance is less than $20,000”.

Because the interest
earned also earns interest,
a bank balance grows
exponentially.

In a particle accelerator, subatomic particles
traverse a loop-shaped tunnel multiple times,
gaining the speed required for physical experiments.
Similarly, in computer science, statements in a
loop are executed while a condition is true.

4.1 T he while Loop   141

In Java, the while statement implements such a
repetition (see Syntax 4.1). It has the form

while (condition)
{
 statements
}

As long as the condition remains true, the statements
inside the while statement are executed. These state­
ments are called the body of the while statement.

In our case, we want to increment the year coun­
ter and add interest while the balance is less than the
target balance of $20,000:

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

A while statement is an example of a loop. If you draw a flowchart, the flow of execu­
tion loops again to the point where the condition is tested (see Figure 1).

Figure 1  Flowchart of a while Loop

False

True

Calculate
interest

Add interest
to balance

Increment
year

balance <
TARGET?

A loop executes
instructions
repeatedly while a
condition is true.

Syntax 4.1	 while Statement

Lining up braces
is a good idea.
See page 86.

double balance = 0;
.
.
.
while (balance < TARGET)
{
 double interest = balance * RATE / 100;

 balance = balance + interest;
}

If the condition
never becomes false,
an infinite loop occurs.
 See page 145.

These statements
are executed while
the condition is true.

Don’t put a semicolon here!
 See page 86.

Beware of “off-by-one”
errors in the loop condition.

 See page 145.

Braces are not required if the body contains
a single statement, but it’s good to always use them.

 See page 86.

This variable is declared outside the loop
and updated in the loop.

This variable is created
in each loop iteration.

while (condition)
{
 statements
}

Syntax

142  Chapter 4  Loops

When you declare a variable inside the loop body, the variable is created for each
iteration of the loop and removed after the end of each iteration. For example, con­
sider the interest variable in this loop:

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
} // interest no longer declared here

In contrast, the balance and years variables were declared outside the loop body. That
way, the same variable is used for all iterations of the loop.

A new interest variable
is created in each iteration.

Figure 2 
Execution of the
DoubleInvestment
Loop

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}
System.out.println(year);

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Check the loop condition1 The condition is true

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Execute the statements in the loop2

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Check the loop condition again3 The condition is still true

while (balance < TARGET)
{
 year++;
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

After 15 iterations4 The condition is
no longer true

Execute the statement following the loop5

.

.

.

year = 0

balance = 10000

year = 1

interest = 500

balance = 10500

year = 1

balance = 10500

year = 15

balance = 20789.28

year = 15

balance = 20789.28

4.1 T he while Loop   143

Here is the program that solves the investment problem. Figure 2 illustrates the pro­
gram’s execution.

section_1/DoubleInvestment.java

1 /**
2 This program computes the time required to double an investment.
3 */
4 public class DoubleInvestment
5 {
6 public static void main(String[] args)
7 {
8 final double RATE = 5;
9 final double INITIAL_BALANCE = 10000;

10 final double TARGET = 2 * INITIAL_BALANCE;
11
12 double balance = INITIAL_BALANCE;
13 int year = 0;
14
15 // Count the years required for the investment to double
16
17 while (balance < TARGET)
18 {
19 year++;
20 double interest = balance * RATE / 100;
21 balance = balance + interest;
22 }
23
24 System.out.println("The investment doubled after "
25 + year + " years.");
26 }
27 }

Program Run

The investment doubled after 15 years.

1.	 How many years does it take for the investment to triple? Modify the program
and run it.

2.	 If the interest rate is 10 percent per year, how many years does it take for the
investment to double? Modify the program and run it.

3.	 Modify the program so that the balance after each year is printed. How did you
do that?

4.	 Suppose we change the program so that the condition of the while loop is
while (balance <= TARGET)

What is the effect on the program? Why?
5.	 What does the following loop print?

int n = 1;
while (n < 100)
{
 n = 2 * n;
 System.out.print(n + " ");
}

Practice It	 Now you can try these exercises at the end of the chapter: R4.1, R4.5, P4.14.

S e l f C h e c k

144  Chapter 4  Loops

Table 1 while Loop Examples

Loop Output Explanation

i = 0; sum = 0;
while (sum < 10)
{
 i++; sum = sum + i;
 Print i and sum;
}

1 1
2 3
3 6
4 10

When sum is 10, the loop condition is
false, and the loop ends.

i = 0; sum = 0;
while (sum < 10)
{
 i++; sum = sum - i;
 Print i and sum;
}

1 -1
2 -3
3 -6
4 -10
. . .

Because sum never reaches 10, this is an
“infinite loop” (see Common Error 4.2
on page 145).

i = 0; sum = 0;
while (sum < 0)
{
 i++; sum = sum - i;
 Print i and sum;
}

(No output) The statement sum < 0 is false when the
condition is first checked, and the loop
is never executed.

i = 0; sum = 0;
while (sum >= 10)
{
 i++; sum = sum + i;
 Print i and sum;
}

(No output) The programmer probably thought,
“Stop when the sum is at least 10.”
However, the loop condition controls
when the loop is executed, not when it
ends (see Common Error 4.1 on
page 144).

i = 0; sum = 0;
while (sum < 10) ;
{
 i++; sum = sum + i;
 Print i and sum;
}

(No output, program
does not terminate)

Note the semicolon before the {.
This loop has an empty body. It runs
forever, checking whether sum < 0 and
doing nothing in the body.

Don’t Think “Are We There Yet?”

When doing something repetitive, most of us want to know when
we are done. For example, you may think, “I want to get at least
$20,000,” and set the loop condition to

balance >= TARGET

But the while loop thinks the opposite: How long am I allowed to
keep going? The correct loop condition is

while (balance < TARGET)

In other words: “Keep at it while the balance is less than the target.”

When writing a loop condition, don’t ask, “Are we there yet?”
The condition determines how long the loop will keep going.

Common Error 4.1

4.1 T he while Loop   145

Infinite Loops

A very annoying loop error is an infinite loop: a loop that
runs forever and can be stopped only by killing the program
or restarting the computer. If there are output statements
in the program, then reams and reams of output flash by on
the screen. Otherwise, the program just sits there and hangs,
seeming to do nothing. On some systems, you can kill a hang­
ing program by hitting Ctrl + C. On others, you can close the
window in which the program runs.

A common reason for infinite loops is forgetting to update
the variable that controls the loop:

int year = 1;
while (year <= 20)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
}

Here the programmer forgot to add a year++ command in the loop. As a result, the year always
stays at 1, and the loop never comes to an end.

Another common reason for an infinite loop is accidentally incrementing a counter that
should be decremented (or vice versa). Consider this example:

int year = 20;
while (year > 0)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
 year++;
}

The year variable really should have been decremented, not incremented. This is a common
error because incrementing counters is so much more common than decrementing that your
fingers may type the ++ on autopilot. As a consequence, year is always larger than 0, and the
loop never ends. (Actually, year may eventually exceed the largest representable positive inte­
ger and wrap around to a negative number. Then the loop ends—of course, with a completely
wrong result.)

Off-by-One Errors

Consider our computation of the number of years that are required to double an investment:

int year = 0;
while (balance < TARGET)
{
 year++;
 balance = balance * (1 + RATE / 100);
}
System.out.println("The investment doubled after "
 + year + " years.");

Should year start at 0 or at 1? Should you test for balance < TARGET or for balance <= TARGET? It is
easy to be off by one in these expressions.

Common Error 4.2

Like this hamster who can’t
stop running in the treadmill,
an infinite loop never ends.

Common Error 4.3

146  Chapter 4  Loops

Some people try to solve off-by-one errors by randomly inserting +1 or -1 until the pro­
gram seems to work—a terrible strategy. It can take a long time to compile and test all the vari­
ous possibilities. Expending a small amount of mental effort is a real time saver.

Fortunately, off-by-one errors are easy to avoid, simply by
thinking through a couple of test cases and using the information
from the test cases to come up with a rationale for your decisions.

Should year start at 0 or at 1? Look at a scenario with simple val­
ues: an initial balance of $100 and an interest rate of 50 percent. After
year 1, the balance is $150, and after year 2 it is $225, or over $200. So
the investment doubled after 2 years. The loop executed two times,
incrementing year each time. Hence year must start at 0, not at 1.

 year balance
 0 $100
 1 $150
 2 $225

In other words, the balance variable denotes the balance after the end of the year. At the outset,
the balance variable contains the balance after year 0 and not after year 1.

Next, should you use a < or <= comparison in the test? This is harder to figure out, because
it is rare for the balance to be exactly twice the initial balance. There is one case when this
happens, namely when the interest is 100 percent. The loop executes once. Now year is 1, and
balance is exactly equal to 2 * INITIAL_BALANCE. Has the investment doubled after one year? It
has. Therefore, the loop should not execute again. If the test condition is balance < TARGET, the
loop stops, as it should. If the test condition had been balance <= TARGET, the loop would have
executed once more.

In other words, you keep adding interest while the balance has not yet doubled.

An off-by-one error is
a common error
when programming
loops. Think through
simple test cases
to avoid this type
of error.

According to legend,
the first bug was

found in the Mark II, a huge electrome
chanical computer at Harvard Univer
sity. It really was caused by a bug—a
moth was trapped in a relay switch.

Actually, from the note that the
operator left in the log book next to
the moth (see the photo), it appears as
if the term “bug” had already been in
active use at the time.

The First Bug

The pioneering computer scientist
Maurice Wilkes wrote, “Somehow, at
the Moore School and afterwards, one
had always assumed there would be
no particular difficulty in getting pro

grams right. I can remember the exact
instant in time at which it dawned on
me that a great part of my future life
would be spent finding mistakes in my
own programs.”

Random Fact 4.1  The First Bug

4.2 P roblem Solving: Hand-Tracing   147

4.2  Problem Solving: Hand-Tracing
In Programming Tip 3.5, you learned about the method of hand-tracing. When you
hand-trace code or pseudocode, you write the names of the variables on a sheet of
paper, mentally execute each step of the code and update the variables.

It is best to have the code written or printed on a sheet of paper. Use a marker,
such as a paper clip, to mark the current line. Whenever a variable changes, cross out
the old value and write the new value below. When a program produces output, also
write down the output in another column.

Consider this example. What value is displayed?
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

There are three variables: n, sum, and digit.

 n sum digit

The first two variables are initialized with 1729 and 0 before the loop is entered.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

Because n is greater than zero, enter the loop. The variable digit is set to 9 (the remain­
der of dividing 1729 by 10). The variable sum is set to 0 + 9 = 9.

int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

Hand-tracing is a
simulation of code
execution in which
you step through
instructions and
track the values of
the variables.

 n sum digit
 1729 0

 n sum digit
 1729 0
 9 9

148  Chapter 4  Loops

Finally, n becomes 172. (Recall that the remainder in the division 1729 / 10 is dis­
carded because both arguments are integers.)

Cross out the old values and write the new ones under the old ones.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

Now check the loop condition again.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

Because n is still greater than zero, repeat
the loop. Now digit becomes 2, sum is set
to 9 + 2 = 11, and n is set to 17.

Repeat the loop once again, setting digit
to 7, sum to 11 + 7 = 18, and n to 1.

Enter the loop for one last time. Now
digit is set to 1, sum to 19, and n becomes
zero.

 n sum digit
 1729 0
 172 9 9

 n sum digit
 1729 0
 172 9 9
 17 11 2

 n sum digit
 1729 0
 172 9 9
 17 11 2
 1 18 7

 n sum digit
 1729 0
 172 9 9
 17 11 2
 1 18 7
 0 19 1

4.2 P roblem Solving: Hand-Tracing   149

int n = 1729;
int sum = 0;
while (n > 0)

Because n equals zero,
this condition is not true.

{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

The condition n > 0 is now false. Continue with the statement after the loop.
int n = 1729;
int sum = 0;
while (n > 0)
{
 int digit = n % 10;
 sum = sum + digit;
 n = n / 10;
}
System.out.println(sum);

This statement is an output statement. The value that is output is the value of sum,
which is 19.

Of course, you can get the same answer by just running the code. However, hand-
tracing can give you an insight that you would not get if you simply ran the code.
Consider again what happens in each iteration:

•	 We extract the last digit of n.
•	 We add that digit to sum.
•	 We strip the digit off n.

In other words, the loop forms the sum of the digits in n. You now know what the
loop does for any value of n, not just the one in the example. (Why would anyone
want to form the sum of the digits? Operations of this kind are useful for checking
the validity of credit card numbers and other forms of ID numbers—see Exercise
P4.32.)

Hand-tracing does not just help you understand code that works correctly. It is
a powerful technique for finding errors in your code. When a program behaves in a
way that you don’t expect, get out a sheet of paper and track the values of the vari­
ables as you mentally step through the code.

You don’t need a working program to do hand-tracing. You can hand-trace
pseudocode. In fact, it is an excellent idea to hand-trace your pseudocode before you
go to the trouble of translating it into actual code, to confirm that it works correctly.

6.	 Hand-trace the following code, showing the value of n and the output.
int n = 5;
while (n >= 0)
{
 n--;
 System.out.print(n);
}

 n sum digit output
 1729 0
 172 9 9
 17 11 2
 1 18 7
 0 19 1 19

A N I M AT I O N
Tracing a Loop

Hand-tracing can
help you understand
how an unfamiliar
algorithm works.

Hand-tracing can
show errors in code
or pseudocode.

S e l f C h e c k

150  Chapter 4  Loops

7.	 Hand-trace the following code, showing the value of n and the output. What
potential error do you notice?
int n = 1;
while (n <= 3)
{
 System.out.print(n + ", ");
 n++;
}

8.	 Hand-trace the following code, assuming that a is 2 and n is 4. Then explain what
the code does for arbitrary values of a and n.
int r = 1;
int i = 1;
while (i <= n)
{
 r = r * a;
 i++;
}

9.	 Trace the following code. What error do you observe?
int n = 1;
while (n != 50)
{
 System.out.println(n);
 n = n + 10;
}

10.	 The following pseudocode is intended to count the number of digits in the
number n:

count = 1
temp = n
while (temp > 10)
	 Increment count.
	 Divide temp by 10.0.

Trace the pseudocode for n = 123 and n = 100. What error do you find?

Practice It	 Now you can try these exercises at the end of the chapter: R4.3, R4.6.

4.3  The for Loop
It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
 System.out.println(counter);
 counter++; // Update the counter
}

Because this loop type is so common, there is a special form for it, called the for loop
(see Syntax 4.2).

The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

4.3 T he for Loop   151

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Some people call this loop count-controlled. In con­
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance
reaches the target. Another commonly used term
for a count-controlled loop is definite. You know
from the outset that the loop body will be executed
a definite number of times; ten times in our example.
In contrast, you do not know how many iterations
it takes to accumulate a target balance. Such a loop is
called indefinite.

The for loop neatly groups the initialization, con­
dition, and update expressions together. However, it
is important to realize that these expressions are not
executed together (see Figure 3).

•	 The initialization is executed once, before the loop is entered. 1

•	 The condition is checked before each iteration. 2 5

•	 The update is executed after each iteration. 4

You can visualize the for loop as
an orderly sequence of steps.

A N I M AT I O N
The for Loop

Figure 3 
Execution of a
for Loop

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

152  Chapter 4  Loops

Syntax 4.2	 for Statement

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

This loop executes 6 times.
 See page 156.

This initialization
happens once
before the loop starts.

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The variable i is
defined only in this for loop.

See page 153.

These three
expressions should be related.

 See page 155.

for (initialization; condition; update)
{
 statements
}

Syntax

A for loop can count down instead of up:
for (int counter = 10; counter >= 0; counter--) . . .

The increment or decrement need not be in steps of 1:
for (int counter = 0; counter <= 10; counter = counter + 2) . . .

See Table 2 for additional variations.
So far, we have always declared the counter variable in the loop initialization:
for (int counter = 1; counter <= 10; counter++)
{
 . . .
}
// counter no longer declared here

Table 2 for Loop Examples

Loop Values of i Comment

for (i = 0; i <= 5; i++) 0 1 2 3 4 5 Note that the loop is executed 6 times. (See
Programming Tip 4.3 on page 156.)

for (i = 5; i >= 0; i--) 5 4 3 2 1 0 Use i-- for decreasing values.

for (i = 0; i < 9; i = i + 2) 0 2 4 6 8 Use i = i + 2 for a step size of 2.

for (i = 0; i != 9; i = i + 2) 0 2 4 6 8 10 12 14 …
(infinite loop)

You can use < or <= instead of != to avoid
this problem.

for (i = 1; i <= 20; i = i * 2) 1 2 4 8 16 You can specify any rule for modifying i,
such as doubling it in every step.

for (i = 0; i < str.length(); i++) 0 1 2 … until the last valid
index of the string str

In the loop body, use the expression
str.charAt(i) to get the ith character.

4.3 T he for Loop   153

Such a variable is declared for all iterations of the loop, but you cannot use it after the
loop. If you declare the counter variable before the loop, you can continue to use it
after the loop:

int counter;
for (counter = 1; counter <= 10; counter++)
{
 . . .
}
// counter still declared here

Here is a typical use of the for loop. We want to print the balance of our savings
account over a period of years, as shown in this table:

Year Balance

1 10500.00

2 11025.00

3 11576.25

4 12155.06

5 12762.82

The for loop pattern applies because the variable
year starts at 1 and then moves in constant incre­
ments until it reaches the target:

for (int year = 1; year <= nyears; year++)
{
 Update balance.
 Print year and balance.
}

Following is the complete program. Figure 4
shows the corresponding flowchart.

Figure 4  Flowchart of a for Loop

section_3/InvestmentTable.java

1 import java.util.Scanner;
2
3 /**
4 This program prints a table showing the growth of an investment.
5 */
6 public class InvestmentTable
7 {
8 public static void main(String[] args)
9 {

10 final double RATE = 5;
11 final double INITIAL_BALANCE = 10000;

True

False

year++

year ≤ nyears ?

year = 1

Update balance;
Print year and

balance

154  Chapter 4  Loops

12 double balance = INITIAL_BALANCE;
13
14 System.out.print("Enter number of years: ");
15 Scanner in = new Scanner(System.in);
16 int nyears = in.nextInt();
17
18 // Print the table of balances for each year
19
20 for (int year = 1; year <= nyears; year++)
21 {
22 double interest = balance * RATE / 100;
23 balance = balance + interest;
24 System.out.printf("%4d %10.2f\n", year, balance);
25 }
26 }
27 }

Program Run

Enter number of years: 10
 1 10500.00
 2 11025.00
 3 11576.25
 4 12155.06
 5 12762.82
 6 13400.96
 7 14071.00
 8 14774.55
 9 15513.28
 10 16288.95

Another common use of the for loop is to traverse all characters of a string:
for (int i = 0; i < str.length(); i++)
{
 char ch = str.charAt(i);
 Process ch
}

Note that the counter variable i starts at 0, and the loop is terminated when i reaches
the length of the string. For example, if str has length 5, i takes on the values 0, 1, 2, 3,
and 4. These are the valid positions in the string.

11.	 Write the for loop of the InvestmentTable.java program as a while loop.
12.	 How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{
 System.out.println(n);
}

13.	 Write a for loop that prints all even numbers between 10 and 20 (inclusive).
14.	 Write a for loop that computes the sum of the integers from 1 to n.
15.	 How would you modify the for loop of the InvestmentTable.java program to

print all balances until the investment has doubled?

Practice It	 Now you can try these exercises at the end of the chapter: R4.4, R4.10, P4.8, P4.13.

S e l f C h e c k

4.3 T he for Loop   155

Use for Loops for Their Intended Purpose Only

A for loop is an idiom for a loop of a particular form. A value runs from the start to the end,
with a constant increment or decrement.

The compiler won’t check whether the initialization, condition, and update expressions are
related. For example, the following loop is legal:

// Confusing—unrelated expressions
for (System.out.print("Inputs: "); in.hasNextDouble(); sum = sum + x)
{
 x = in.nextDouble();
}

However, programmers reading such a for loop will be confused because it does not match
their expectations. Use a while loop for iterations that do not follow the for idiom.

You should also be careful not to update the loop counter in the body of a for loop. Con­
sider the following example:

for (int counter = 1; counter <= 100; counter++)
{
 if (counter % 10 == 0) // Skip values that are divisible by 10
 {
 counter++; // Bad style—you should not update the counter in a for loop
 }
 System.out.println(counter);
}

Updating the counter inside a for loop is confusing because the counter is updated again at the
end of the loop iteration. In some loop iterations, counter is incremented once, in others twice.
This goes against the intuition of a programmer who sees a for loop.

If you find yourself in this situation, you can either change from a for loop to a while loop,
or implement the “skipping” behavior in another way. For example:

for (int counter = 1; counter <= 100; counter++)
{
 if (counter % 10 != 0) // Skip values that are divisible by 10
 {
 System.out.println(counter);
 }
}

Choose Loop Bounds That Match Your Task

Suppose you want to print line numbers that go from 1 to 10. Of course, you will use a loop:

for (int i = 1; i <= 10; i++)

The values for i are bounded by the relation 1 ≤ i≤ 10. Because there are ≤ on both bounds, the
bounds are called symmetric.

When traversing the characters in a string, it is more natural to use the bounds

for (int i = 0; i < str.length(); i++)

In this loop, i traverses all valid positions in the string. You can access the ith character as str.
charAt(i). The values for i are bounded by 0 ≤ i < str.length(), with a ≤ to the left and a < to the
right. That is appropriate, because str.length() is not a valid position. Such bounds are called
asymmetric.

In this case, it is not a good idea to use symmetric bounds:

for (int i = 0; i <= str.length() - 1; i++) // Use < instead

The asymmetric form is easier to understand.

Programming Tip 4.1

Programming Tip 4.2

156  Chapter 4  Loops

Count Iterations

Finding the correct lower and upper bounds for an iteration can be confusing. Should you
start at 0 or at 1? Should you use <= b or < b as a termination condition?

Counting the number of iterations is a very useful device for better understanding a loop.
Counting is easier for loops with asymmetric bounds. The loop

for (int i = a; i < b; i++)

is executed b - a times. For example, the loop traversing the characters in a string,

for (int i = 0; i < str.length(); i++)

runs str.length() times. That makes perfect sense, because there are str.length() characters in
a string.

The loop with symmetric bounds,

for (int i = a; i <= b; i++)

is executed b - a + 1 times. That “+1” is the source of many programming errors.
For example,

for (int i = 0; i <= 10; i++)

runs 11 times. Maybe that is what you want; if not, start at 1 or use < 10.
One way to visualize this “+1” error is

by looking at a fence. Each section has one
fence post to the left, and there is a final post
on the right of the last section. Forgetting to
count the last value is often called a “fence
post error”.

How many posts do you need for a fence
with four sections? It is easy to be “off by one”

with problems such as this one.

4.4  The do Loop
Sometimes you want to execute the body of a loop at least once and perform the loop
test after the body is executed. The do loop serves that purpose:

do
{
 statements
}
while (condition);

The body of the do loop is executed first, then the condition is tested.
Some people call such a loop a post-test loop because the condition is tested after

completing the loop body. In contrast, while and for loops are pre-test loops. In those
loop types, the condition is tested before entering the loop body.

A typical example for a do loop is input validation. Suppose you ask a user to enter
a value < 100. If the user doesn’t pay attention and enters a larger value, you ask
again, until the value is correct. Of course, you cannot test the value until the user has
entered it. This is a perfect fit for the do loop (see Figure 5):

Programming Tip 4.3

The do loop is
appropriate when
the loop body
must be executed
at least once.

ONLINE E x a m p l e

A program to
illustrate the use of
the do loop for input
validation.

4.4 T he do Loop   157

Figure 5  Flowchart of a do Loop

int value;
do
{
 System.out.print("Enter an integer < 100: ");
 value = in.nextInt();
}
while (value >= 100);

16.	 Suppose that we want to check for inputs that are
at least 0 and at most 100. Modify the do loop for
this check.

17.	 Rewrite the input check do loop using a while loop.
What is the disadvantage of your solution?

18.	 Suppose Java didn’t have a do loop. Could you
rewrite any do loop as a while loop?

19.	 Write a do loop that reads integers and computes
their sum. Stop when reading the value 0.

20.	 Write a do loop that reads integers and computes their sum. Stop when reading a
zero or the same value twice in a row. For example, if the input is 1 2 3 4 4, then
the sum is 14 and the loop stops.

Practice It	 Now you can try these exercises at the end of the chapter: R4.9, R4.16, R4.17.

Flowcharts for Loops

In Section 3.5, you learned how to use flowcharts to visualize the flow of control in a program.
There are two types of loops that you can include in a flowchart; they correspond to a while
loop and a do loop in Java. They differ in the placement of the condition—either before or after
the loop body.

False

True

Loop body

Condition?

True

False

Loop body

Condition?

As described in Section 3.5, you want to avoid “spaghetti code” in your flowcharts. For loops,
that means that you never want to have an arrow that points inside a loop body.

True

False

value ≥ 100?

Prompt user
to enter

a value < 100

Copy the input
to value

S e l f C h e c k

Programming Tip 4.4

158  Chapter 4  Loops

4.5  Application: Processing Sentinel Values
In this section, you will learn how to write loops that read and process a sequence of
input values.

Whenever you read a sequence of inputs, you
need to have some method of indicating the end
of the sequence. Sometimes you are lucky and no
input value can be zero. Then you can prompt the
user to keep entering numbers, or 0 to finish the
sequence. If zero is allowed but negative numbers
are not, you can use –1 to indicate termination.

Such a value, which is not an actual input,
but serves as a signal for termination, is called a
sentinel.

Let’s put this technique to work in a program
that computes the average of a set of salary values.
In our sample program, we will use –1 as a sentinel.
An employee would surely not work for a negative
salary, but there may be volunteers who work for
free.

Inside the loop, we read an input. If the input is
not –1, we process it. In order to compute the aver­
age, we need the total sum of all salaries, and the
number of inputs.

salary = in.nextDouble();
if (salary != -1)
{
 sum = sum + salary;
 count++;
}

We stay in the loop while the sentinel value is not detected.
while (salary != -1)
{
 . . .
}

There is just one problem: When the loop is entered for the first time, no data value
has been read. We must make sure to initialize salary with some value other than the
sentinel:

double salary = 0;
// Any value other than –1 will do

After the loop has finished, we compute and print the average. Here is the complete
program:

section_5/SentinelDemo.java

1 import java.util.Scanner;
2
3 /**
4 This program prints the average of salary values that are terminated with a sentinel.
5 */

In the military, a sentinel guards
a border or passage. In computer
science, a sentinel value denotes
the end of an input sequence or the
border between input sequences.

A sentinel value
denotes the end of a
data set, but it is not
part of the data.

4.5 A pplication: Processing Sentinel Values   159

6 public class SentinelDemo
7 {
8 public static void main(String[] args)
9 {

10 double sum = 0;
11 int count = 0;
12 double salary = 0;
13 System.out.print("Enter salaries, -1 to finish: ");
14 Scanner in = new Scanner(System.in);
15
16 // Process data until the sentinel is entered
17
18 while (salary != -1)
19 {
20 salary = in.nextDouble();
21 if (salary != -1)
22 {
23 sum = sum + salary;
24 count++;
25 }
26 }
27
28 // Compute and print the average
29
30 if (count > 0)
31 {
32 double average = sum / count;
33 System.out.println("Average salary: " + average);
34 }
35 else
36 {
37 System.out.println("No data");
38 }
39 }
40 }

Program Run

Enter salaries, -1 to finish: 10 10 40 -1
Average salary: 20

Some programmers don’t like the “trick” of initializing the input variable with a value
other than the sentinel. Another approach is to use a Boolean variable:

System.out.print("Enter salaries, -1 to finish: ");
boolean done = false;
while (!done)
{
 value = in.nextDouble();
 if (value == -1)
 {
 done = true;
 }
 else
 {
 Process value.
 }
}

Special Topic 4.1 on page 160 shows an alternative mechanism for leaving such a loop.

You can use a
Boolean variable to
control a loop. Set
the variable before
entering the loop,
then set it to the
opposite to leave
the loop.

160  Chapter 4  Loops

Now consider the case in which any number (positive, negative, or zero) can be
an acceptable input. In such a situation, you must use a sentinel that is not a number
(such as the letter Q). As you have seen in Section 3.8, the condition

in.hasNextDouble()

is false if the next input is not a floating-point number. Therefore, you can read and
process a set of inputs with the following loop:

System.out.print("Enter values, Q to quit: ");
while (in.hasNextDouble())
{
 value = in.nextDouble();
 Process value.
}

21.	 What does the SentinelDemo.java program print when the user immediately types
–1 when prompted for a value?

22.	 Why does the SentinelDemo.java program have two checks of the form
salary != -1

23.	 What would happen if the declaration of the salary variable in SentinelDemo.java
was changed to
double salary = -1;

24.	 In the last example of this section, we prompt the user “Enter values, Q to quit.”
What happens when the user enters a different letter?

25.	 What is wrong with the following loop for reading a sequence of values?
System.out.print("Enter values, Q to quit: ");
do
{
 double value = in.nextDouble();
 sum = sum + value;
 count++;
}
while (in.hasNextDouble());

Practice It	 Now you can try these exercises at the end of the chapter: R4.13, P4.27, P4.28.

The Loop-and-a-Half Problem and the break Statement

Consider again this loop for processing inputs until a sentinel value has been reached:

boolean done = false;
while (!done)
{
 double value = in.nextDouble();
 if (value == -1)
 {
 done = true;
 }
 else
 {
 Process value.
 }
}

S e l f C h e c k

Special Topic 4.1

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

4.5 A pplication: Processing Sentinel Values   161

The actual test for loop termination is in the middle of the loop, not at the top. This is called a
loop and a half because one must go halfway into the loop before knowing whether one needs
to terminate.

As an alternative, you can use the break reserved word.

while (true)
{
 double value = in.nextDouble();
 if (value == -1) { break; }
 Process value.
}

The break statement breaks out of the enclosing loop, independent of the loop condition.
When the break statement is encountered, the loop is terminated, and the statement following
the loop is executed.

In the loop-and-a-half case, break statements can be beneficial. But it is difficult to lay down
clear rules as to when they are safe and when they should be avoided. We do not use the break
statement in this book.

Redirection of Input and Output

Consider the SentinelDemo program that computes the average
value of an input sequence. If you use such a program, then it is
quite likely that you already have the values in a file, and it seems
a shame that you have to type them all in again. The command
line interface of your operating system provides a way to link a
file to the input of a program, as if all the characters in the file had
actually been typed by a user. If you type

java SentinelDemo < numbers.txt

the program is executed, but it no longer expects input from the keyboard. All input com­
mands get their input from the file numbers.txt. This process is called input redirection.

Input redirection is an excellent tool for testing programs. When you develop a program
and fix its bugs, it is boring to keep entering the same input every time you run the program.
Spend a few minutes putting the inputs into a file, and use redirection.

You can also redirect output. In this program, that is not terribly useful. If you run

java SentinelDemo < numbers.txt > output.txt

the file output.txt contains the input prompts and the output, such as

Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Average salary: 15

However, redirecting output is obviously useful for programs that produce lots of output.
You can format or print the file containing the output.

Special Topic 4.2

Use input redirection to
read input from a file.
Use output redirection to
capture program output
in a file.

Video Example 4.1	 Evaluating a Cell Phone Plan

In this Video Example, you will learn how to design a
program that computes the cost of a cell phone plan
from actual usage data.

162  Chapter 4  Loops

4.6  Problem Solving: Storyboards
When you design a program that interacts with a user, you need to make a plan for
that interaction. What information does the user provide, and in which order? What
information will your program display, and in which format? What should happen
when there is an error? When does the program quit?

This planning is similar to the development of a movie or a computer game, where
storyboards are used to plan action sequences. A storyboard is made up of panels that
show a sketch of each step. Annotations explain what is happening and note any spe­
cial situations. Storyboards are also used to develop software—see Figure 6.

Making a storyboard is very helpful when you begin designing a program. You
need to ask yourself which information you need in order to compute the answers
that the program user wants. You need to decide how to present those answers. These
are important considerations that you want to settle before you design an algorithm
for computing the answers.

Let’s look at a simple example. We want to write a program that helps users with
questions such as “How many tablespoons are in a pint?” or “How many inches are
30 centimeters?”

What information does the user provide?

•	 The quantity and unit to convert from
•	 The unit to convert to

What if there is more than one quantity? A user may have a whole table of centimeter
values that should be converted into inches.

What if the user enters units that our program doesn’t know how to handle, such
as ångström?

What if the user asks for impossible conversions, such as inches to gallons?

A storyboard consists
of annotated
sketches for each
step in an action
sequence.

Developing a
storyboard helps you
understand the
inputs and outputs
that are required for
a program.

Figure 6 
Storyboard for the
Design of a Web
Application

4.6 P roblem Solving: Storyboards   163

Let’s get started with a storyboard panel. It is a good idea to write the user inputs in
a different color. (Underline them if you don’t have a color pen handy.)

What unit do you want to convert from? cm
What unit do you want to convert to? in
Enter values, terminated by zero
30
30 cm = 11.81 in
100
100 cm = 39.37 in
0
What unit do you want to convert from?

Format makes clear what got converted

Allows conversion of multiple values

Converting a Sequence of Values

The storyboard shows how we deal with a potential confusion. A user who wants to
know how many inches are 30 centimeters may not read the first prompt carefully
and specify inches. But then the output is “30 in = 76.2 cm”, alerting the user to the
problem.

The storyboard also raises an issue. How is the user supposed to know that “cm”
and “in” are valid units? Would “centimeter” and “inches” also work? What happens
when the user enters a wrong unit? Let’s make another storyboard to demonstrate
error handling.

What unit do you want to convert from? cm
What unit do you want to convert to? inches
Sorry, unknown unit.
What unit do you want to convert to? inch
Sorry, unknown unit.
What unit do you want to convert to? grrr

Handling Unknown Units (needs improvement)

To eliminate frustration, it is better to list the units that the user can supply.

From unit (in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal): cm
To unit: in

No need to list the units again

We switched to a shorter prompt to make room for all the unit names. Exercise R4.21
explores a different alternative.

There is another issue that we haven’t addressed yet. How does the user quit the
program? The first storyboard suggests that the program will go on forever.

We can ask the user after seeing the sentinel that terminates an input sequence.

164  Chapter 4  Loops

From unit (in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal): cm
To unit: in
Enter values, terminated by zero
30
30 cm = 11.81 in
0
More conversions (y, n)? n
(Program exits)

Sentinel triggers the prompt to exit

Exiting the Program

As you can see from this case study, a storyboard is essential for developing a work­
ing program. You need to know the flow of the user interaction in order to structure
your program.

26.	 Provide a storyboard panel for a program that reads a number of test scores and
prints the average score. The program only needs to process one set of scores.
Don’t worry about error handling.

27.	 Google has a simple interface for converting units. You just type the question,
and you get the answer.

Make storyboards for an equivalent interface in a Java program. Show a scenario
in which all goes well, and show the handling of two kinds of errors.

28.	 Consider a modification of the program in Self Check 26. Suppose we want to
drop the lowest score before computing the average. Provide a storyboard for
the situation in which a user only provides one score.

29.	 What is the problem with implementing the following storyboard in Java?

Enter scores: 90 80 90 100 80
The average is 88
Enter scores: 100 70 70 100 80
The average is 88
Enter scores: -1
(Program exits)

-1 is used as a sentinel to exit the program

Computing Multiple Averages

30.	 Produce a storyboard for a program that compares the growth of a $10,000
investment for a given number of years under two interest rates.

Practice It	 Now you can try these exercises at the end of the chapter: R4.21, R4.22, R4.23.

S e l f C h e c k

4.7  Common Loop Algorithms   165

4.7  Common Loop Algorithms
In the following sections, we discuss some of the most common algorithms that are
implemented as loops. You can use them as starting points for your loop designs.

4.7.1  Sum and Average Value

Computing the sum of a number of inputs is a very common task. Keep a running
total, a variable to which you add each input value. Of course, the total should be
initialized with 0.

double total = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 total = total + input;
}

Note that the total variable is declared outside the loop. We want the loop to update
a single variable. The input variable is declared inside the loop. A separate variable is
created for each input and removed at the end of each loop iteration.

To compute an average, count how many values you have, and divide by the count.
Be sure to check that the count is not zero.

double total = 0;
int count = 0;
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 total = total + input;
 count++;
}
double average = 0;
if (count > 0)
{
 average = total / count;
}

4.7.2  Counting Matches

You often want to know how many values fulfill a particular condition. For example,
you may want to count how many spaces are in a string. Keep a counter, a variable
that is initialized with 0 and incremented whenever there is a match.

int spaces = 0;
for (int i = 0; i < str.length(); i++)
{
 char ch = str.charAt(i);
 if (ch == ' ')
 {
 spaces++;
 }
}

For example, if str is "My Fair Lady", spaces is incremented twice (when i is 2 and 7).

To compute an
average, keep a
total and a count
of all values.

To count values that
fulfill a condition,
check all values and
increment a counter
for each match.

166  Chapter 4  Loops

Note that the spaces variable is declared outside the loop. We want the loop to
update a single variable. The ch variable is declared inside the loop. A separate variable
is created for each iteration and removed at the end of each loop iteration.

This loop can also be used for scanning inputs. The following loop reads text, a
word at a time, and counts the number of words with at most three letters:

int shortWords = 0;
while (in.hasNext())
{
 String input = in.next();
 if (input.length() <= 3)
 {
 shortWords++;
 }
}

4.7.3  Finding the First Match

When you count the values that fulfill a condition, you need to look at all values.
However, if your task is to find a match, then you can stop as soon as the condition is
fulfilled.

Here is a loop that finds the first space in a string. Because we do not visit all ele­
ments in the string, a while loop is a better choice than a for loop:

boolean found = false;
char ch = '?';
int position = 0;
while (!found && position < str.length())
{
 ch = str.charAt(position);
 if (ch == ' ') { found = true; }
 else { position++; }
}

If a match was found, then found is true, ch is
the first matching character, and position is
the index of the first match. If the loop did
not find a match, then found remains false
after the end of the loop.

Note that the variable ch is declared out-
side the while loop because you may want to
use the input after the loop has finished. If it
had been declared inside the loop body, you
would not be able to use it outside the loop.

In a loop that counts matches,
a counter is incremented
whenever a match is found.

If your goal is to find
a match, exit the loop
when the match
is found.

When searching, you look at items until a
match is found.

4.7  Common Loop Algorithms   167

4.7.4  Prompting Until a Match is Found

In the preceding example, we searched a string for a character that matches a condi­
tion. You can apply the same process to user input. Suppose you are asking a user to
enter a positive value < 100. Keep asking until the user provides a correct input:

boolean valid = false;
double input = 0;
while (!valid)
{
 System.out.print("Please enter a positive value < 100: ");
 input = in.nextDouble();
 if (0 < input && input < 100) { valid = true; }
 else { System.out.println("Invalid input."); }
}

Note that the variable input is declared outside the while loop because you will want to
use the input after the loop has finished.

4.7.5  Maximum and Minimum

To compute the largest value in a sequence, keep a variable that stores the largest ele­
ment that you have encountered, and update it when you find a larger one.

double largest = in.nextDouble();
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input > largest)
 {
 largest = input;
 }
}

This algorithm requires that there is at least one input.
To compute the smallest value, simply reverse the comparison:
double smallest = in.nextDouble();
while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input < smallest)
 {
 smallest = input;
 }

}

To find the largest
value, update the
largest value seen so
far whenever you see
a larger one.

To find the height of the tallest bus rider,
remember the largest value so far, and
update it whenever you see a taller one.

168  Chapter 4  Loops

4.7.6  Comparing Adjacent Values

When processing a sequence of values in a loop, you sometimes need to compare a
value with the value that just preceded it. For example, suppose you want to check
whether a sequence of inputs contains adjacent duplicates such as 1 7 2 9 9 4 9.

Now you face a challenge. Consider the typical loop for reading a value:
double input;
while (in.hasNextDouble())
{
 input = in.nextDouble();
 . . .
}

How can you compare the current input
with the preceding one? At any time, input
contains the current input, overwriting the
previous one.

The answer is to store the previous input,
like this:

double input = 0;
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

One problem remains. When the loop is entered for the first time, input has not yet
been read. You can solve this problem with an initial input operation outside the loop:

double input = in.nextDouble();
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

31.	 What total is computed when no user input is provided in the algorithm in
Section 4.7.1?

32.	 How do you compute the total of all positive inputs?
33.	 What are the values of position and ch when no match is found in the algorithm

in Section 4.7.3?
34.	 What is wrong with the following loop for finding the position of the first space

in a string?
boolean found = false;
for (int position = 0; !found && position < str.length(); position++)
{

To compare adjacent
inputs, store the
preceding input in
a variable.

When comparing adjacent values, store
the previous value in a variable.

O n l i n e E x a m p l e

A program using
common loop
algorithms.

S e l f C h e c k

4.7  Common Loop Algorithms   169

 char ch = str.charAt(position);
 if (ch == ' ') { found = true; }
}

35.	 How do you find the position of the last space in a string?
36.	 What happens with the algorithm in Section 4.7.5 when no input is provided at

all? How can you overcome that problem?

Practice It	 Now you can try these exercises at the end of the chapter: P4.5, P4.9, P4.10.

Step 1	 Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
•	 Reading another item.
•	 Updating a value (such as a bank balance or total).
•	 Incrementing a counter.
If you can’t figure out what needs to go inside the loop, start by writing down the steps that
you would take if you solved the problem by hand. For example, with the temperature reading
problem, you might write

Read first value.
Read second value.
If second value is higher than the first, set highest temperature to that value, highest month to 2.
Read next value.
If value is higher than the first and second, set highest temperature to that value, highest month to 3.
Read next value.
If value is higher than the highest temperature seen so far, set highest temperature to that value,

highest month to 4.
. . .

Now look at these steps and reduce them to a set of uniform actions that can be placed into the
loop body. The first action is easy:

Read next value.

The next action is trickier. In our description, we used tests “higher than the first”, “higher
than the first and second”, “higher than the highest temperature seen so far”. We need to settle
on one test that works for all iterations. The last formulation is the most general.

How To 4.1	 Writing a Loop

This How To walks you through the process of implementing a
loop statement. We will illustrate the steps with the following
example problem:

Read twelve temperature values (one for each month), and dis­
play the number of the month with the highest temperature. For
example, according to http://worldclimate.com, the average maxi­
mum temperatures for Death Valley are (in order by month, in
degrees Celsius):

18.2  22.6  26.4  31.1  36.6  42.2  45.7  44.5  40.2  33.1  24.2  17.6
In this case, the month with the highest temperature (45.7 degrees
Celsius) is July, and the program should display 7.

170  Chapter 4  Loops

Similarly, we must find a general way of setting the highest month. We need a variable that
stores the current month, running from 1 to 12. Then we can formulate the second loop action:

If value is higher than the highest temperature, set highest temperature to that value,
highest month to current month.

Altogether our loop is

Repeat
	 Read next value.
	 If value is higher than the highest temperature,
		 set highest temperature to that value,

	 set highest month to current month.
	 Increment current month.

Step 2	 Specify the loop condition.

What goal do you want to reach in your loop? Typical examples are
•	 Has a counter reached its final value?
•	 Have you read the last input value?
•	 Has a value reached a given threshold?
In our example, we simply want the current month to reach 12.

Step 3	 Determine the loop type.

We distinguish between two major loop types. A count-controlled loop is executed a defi­
nite number of times. In an event-controlled loop, the number of iterations is not known in
advance—the loop is executed until some event happens.

Count-controlled loops can be implemented as for statements. For other loops, consider
the loop condition. Do you need to complete one iteration of the loop body before you can
tell when to terminate the loop? In that case, choose a do loop. Otherwise, use a while loop.

Sometimes, the condition for terminating a loop changes in the middle of the loop body. In
that case, you can use a Boolean variable that specifies when you are ready to leave the loop.
Follow this pattern:

boolean done = false;
while (!done)
{
 Do some work.
 If all work has been completed
 {
 done = true;
 }
 else
 {
 Do more work.
 }
}

Such a variable is called a flag.
In summary,

•	 If you know in advance how many times a loop is repeated, use a for loop.
•	 If the loop body must be executed at least once, use a do loop.
•	 Otherwise, use a while loop.
In our example, we read 12 temperature values. Therefore, we choose a for loop.

Step 4	 Set up variables for entering the loop for the first time.

List all variables that are used and updated in the loop, and determine how to initialize them.
Commonly, counters are initialized with 0 or 1, totals with 0.

4.7  Common Loop Algorithms   171

In our example, the variables are

current month
highest value
highest month

We need to be careful how we set up the highest temperature value. We can’t simply set it to
0. After all, our program needs to work with temperature values from Antarctica, all of which
may be negative.

A good option is to set the highest temperature value to the first input value. Of course,
then we need to remember to read in only 11 more values, with the current month starting at 2.

We also need to initialize the highest month with 1. After all, in an Australian city, we may
never find a month that is warmer than January.

Step 5	 Process the result after the loop has finished.

In many cases, the desired result is simply a variable that was updated in the loop body. For
example, in our temperature program, the result is the highest month. Sometimes, the loop
computes values that contribute to the final result. For example, suppose you are asked to
average the temperatures. Then the loop should compute the sum, not the average. After the
loop has completed, you are ready to compute the average: divide the sum by the number of
inputs.

Here is our complete loop.

Read first value; store as highest value.
highest month = 1
For current month from 2 to 12
	 Read next value.
	 If value is higher than the highest value
		 Set highest value to that value.
		 Set highest month to current month.

Step 6	 Trace the loop with typical examples.

Hand trace your loop code, as described in Section 4.2. Choose example values that are not too
complex—executing the loop 3–5 times is enough to check for the most common errors. Pay
special attention when entering the loop for the first and last time.

Sometimes, you want to make a slight modification to make tracing feasible. For example,
when hand-tracing the investment doubling problem, use an interest rate of 20 percent rather
than 5 percent. When hand-tracing the temperature loop, use 4 data values, not 12.

Let’s say the data are 22.6  36.6  44.5  24.2. Here is the walkthrough:

 current month current value highest month highest value
 1 22.6
 2 36.6 2 36.6
 3 44.5 3 44.5
 4 24.2

The trace demonstrates that highest month and highest value are properly set.

Step 7	 Implement the loop in Java.

Here’s the loop for our example. Exercise P4.4 asks you to complete the program.

double highestValue;
highestValue = in.nextDouble();
int highestMonth = 1;

172  Chapter 4  Loops

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

for (int currentMonth = 2; currentMonth <= 12; currentMonth++)
{
 double nextValue = in.nextDouble();
 if (nextValue > highestValue)
 {
 highestValue = nextValue;
 highestMonth = currentMonth;
 }
}
System.out.println(highestMonth);

4.8  Nested Loops
In Section 3.4, you saw how to nest two if statements. Similarly, complex iterations
sometimes require a nested loop: a loop inside another loop statement. When pro­
cessing tables, nested loops occur naturally. An outer loop iterates over all rows of the
table. An inner loop deals with the columns in the current row.

In this section you will see how to print a table. For simplicity, we will simply print
the powers of x, xn, as in the table at right.

Here is the pseudocode for printing the table:

Print table header.
For x from 1 to 10
	 Print table row.
	 Print new line.

How do you print a table row? You need to print a
value for each exponent. This requires a second loop.

For n from 1 to 4
	 Print xn.

This loop must be placed inside the preceding loop. We say that the inner loop is
nested inside the outer loop.

Worked Example 4.1	 Credit Card Processing

This Worked Example uses a loop to remove spaces from a
credit card number.

When the body of a
loop contains
another loop, the
loops are nested. A
typical use of nested
loops is printing a
table with rows
and columns.

x1 x2 x3 x4

1 1 1 1

2 4 8 16

3 9 27 81

… … … …

10 100 1000 10000

The hour and minute displays in a digital clock are an
example of nested loops. The hours loop 12 times, and
for each hour, the minutes loop 60 times.

4.8 N ested Loops   173

Figure 7 
Flowchart of a Nested Loop

True

False x ≤ 10 ?

x = 1

True

False n ≤ 4 ?

n = 1

n++

Print xn

x++

Print new line

This loop is nested
in the outer loop.

There are 10 rows in the outer loop. For each x, the program prints four columns
in the inner loop (see Figure 7). Thus, a total of 10 × 4 = 40 values are printed.

Following is the complete program. Note that we also use loops to print the table
header. However, those loops are not nested.

section_8/PowerTable.java

1 /**
2 This program prints a table of powers of x.
3 */
4 public class PowerTable
5 {
6 public static void main(String[] args)
7 {
8 final int NMAX = 4;
9 final double XMAX = 10;

10
11 // Print table header
12
13 for (int n = 1; n <= NMAX; n++)
14 {
15 System.out.printf("%10d", n);
16 }
17 System.out.println();

174  Chapter 4  Loops

18 for (int n = 1; n <= NMAX; n++)
19 {
20 System.out.printf("%10s", "x ");
21 }
22 System.out.println();
23
24 // Print table body
25
26 for (double x = 1; x <= XMAX; x++)
27 {
28 // Print table row
29
30 for (int n = 1; n <= NMAX; n++)
31 {
32 System.out.printf("%10.0f", Math.pow(x, n));
33 }
34 System.out.println();
35 }
36 }
37 }

Program Run

 1 2 3 4
 x x x x

 1 1 1 1
 2 4 8 16
 3 9 27 81
 4 16 64 256
 5 25 125 625
 6 36 216 1296
 7 49 343 2401
 8 64 512 4096
 9 81 729 6561
 10 100 1000 10000

37.	 Why is there a statement System.out.println(); in the outer loop but not in the
inner loop?

38.	 How would you change the program to display all powers from x0 to x5?
39.	 If you make the change in Self Check 38, how many values are displayed?
40.	 What do the following nested loops display?

for (int i = 0; i < 3; i++)
{
 for (int j = 0; j < 4; j++)
 {
 System.out.print(i + j);
 }
 System.out.println();
}

41.	 Write nested loops that make the following pattern of brackets:
[][][][]
[][][][]
[][][][]

S e l f C h e c k

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

4.8 N ested Loops   175

Practice It	 Now you can try these exercises at the end of the chapter: R4.27, P4.19, P4.21.

Table 3 Nested Loop Examples

Nested Loops Output Explanation

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 4; j++) { Print "*" }
 System.out.println();
}

Prints 3 rows of 4
asterisks each.

for (i = 1; i <= 4; i++)
{
 for (j = 1; j <= 3; j++) { Print "*" }
 System.out.println();
}

Prints 4 rows of 3
asterisks each.

for (i = 1; i <= 4; i++)
{
 for (j = 1; j <= i; j++) { Print "*" }
 System.out.println();
}

*
**

Prints 4 rows of
lengths 1, 2, 3, and 4.

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 5; j++)
 {
 if (j % 2 == 0) { Print "*" }
 else { Print "-" }
 }
 System.out.println();
}

-*-*-
-*-*-
-*-*-

Prints asterisks in
even columns,
dashes in odd
columns.

for (i = 1; i <= 3; i++)
{
 for (j = 1; j <= 5; j++)
 {
 if (i % 2 == j % 2) { Print "*" }
 else { Print " " }
 }
 System.out.println();
}

* * *
 * *
* * *

Prints a
checkerboard
pattern.

Worked Example 4.2	 Manipulating the Pixels in an Image

This Worked Example shows how to use nested loops for
manipulating the pixels in an image. The outer loop tra­
verses the rows of the image, and the inner loop accesses
each pixel of a row.

176  Chapter 4  Loops

4.9  Application: Random Numbers
and Simulations

A simulation program uses the computer to simulate an activity in the real world (or
an imaginary one). Simulations are commonly used for predicting climate change,
analyzing traffic, picking stocks, and many other applications in science and busi­
ness. In many simulations, one or more loops are used to modify the state of a system
and observe the changes. You will see examples in the following sections.

4.9.1  Generating Random Numbers

Many events in the real world are difficult to predict with absolute precision, yet we
can sometimes know the average behavior quite well. For example, a store may know
from experience that a customer arrives every five minutes. Of course, that is an aver­
age—customers don’t arrive in five minute intervals. To accurately model customer
traffic, you want to take that random fluctuation into account. Now, how can you
run such a simulation in the computer?

The Java library has a random number generator, which produces numbers that
appear to be completely random. Calling Math.random() yields a random floating-point
number that is ≥ 0 and < 1. Call Math.random() again, and you get a different number.

The following program calls Math.random() ten times.

section_9_1/RandomDemo.java

1 /**
2 This program prints ten random numbers between 0 and 1.
3 */
4 public class RandomDemo
5 {
6 public static void main(String[] args)
7 {
8 for (int i = 1; i <= 10; i++)
9 {

10 double r = Math.random();
11 System.out.println(r);
12 }
13 }
14 }

Program Run

0.6513550469421886
0.920193662882893
0.6904776061289993
0.8862828776788884
0.7730177555323139
0.3020238718668635
0.0028504531690907164
0.9099983981705169
0.1151636530517488
0.1592258808929058

In a simulation, you
use the computer to
simulate an activity.

You can introduce
randomness by
calling the random
number generator.

4.9 A pplication: Random Numbers and Simulations   177

Actually, the numbers are not completely random. They are drawn from sequences
of numbers that don’t repeat for a long time. These sequences are actually computed
from fairly simple formulas; they just behave like random numbers (see Exercise
P4.25). For that reason, they are often called pseudorandom numbers.

4.9.2  Simulating Die Tosses

In actual applications, you need to transform the output from
the random number generator into different ranges. For exam­
ple, to simulate the throw of a die, you need random integers
between 1 and 6.

Here is the general recipe for computing random integers
between two bounds a and b. As you know from Program­
ming Tip 4.3 on page 156, there are b - a + 1 values between a and
b, including the bounds themselves. First compute

(int) (Math.random() * (b ‑ a + 1))

to obtain a random integer between 0 and b - a, then add a, yielding a random value
between a and b:

int r = (int) (Math.random() * (b - a + 1)) + a;

Here is a program that simulates the throw of a pair of dice:

section_9_2/Dice.java

1 /**
2 This program simulates tosses of a pair of dice.
3 */
4 public class Dice
5 {
6 public static void main(String[] args)
7 {
8 for (int i = 1; i <= 10; i++)
9 {

10 // Generate two random numbers between 1 and 6
11
12 int d1 = (int) (Math.random() * 6) + 1;
13 int d2 = (int) (Math.random() * 6) + 1;
14 System.out.println(d1 + " " + d2);
15 }
16 System.out.println();
17 }
18 }

Program Run

5 1
2 1
1 2
5 1
1 2
6 4
4 4
6 1
6 3
5 2

178  Chapter 4  Loops

4.9.3  The Monte Carlo Method

The Monte Carlo method is
an ingenious method for find-
ing approximate solutions to
problems that cannot be pre-
cisely solved. (The method is
named after the famous casino in
Monte Carlo.) Here is a typical
example. It is difficult to com-
pute the number p, but you can
approximate it quite well with
the following simulation.

Simulate shooting a dart into a square surrounding a circle of radius 1. That is easy:
generate random x and y coordinates between –1 and 1.

If the generated point lies inside the circle, we count
it as a hit. That is the case when x2 + y2 ≤ 1. Because our
shots are entirely random, we expect that the ratio of hits
/ tries is approximately equal to the ratio of the areas of
the circle and the square, that is, p / 4. Therefore, our
estimate for p is 4 × hits / tries. This method yields an
estimate for p, using nothing but simple arithmetic.

To generate a random floating-point value between –1
and 1, you compute:

double r = Math.random(); // 0 ≤ r < 1
double x = -1 + 2 * r; // –1 ≤ x < 1

As r ranges from 0 (inclusive) to 1 (exclusive), x ranges from –1 + 2 × 0 = –1 (inclusive)
to –1 + 2 × 1 = 1 (exclusive). In our application, it does not matter that x never reaches
1. The points that fulfill the equation x = 1 lie on a line with area 0.

Here is the program that carries out the simulation:

section_9_3/MonteCarlo.java

1 /**
2 This program computes an estimate of pi by simulating dart throws onto a square.
3 */
4 public class MonteCarlo
5 {
6 public static void main(String[] args)
7 {
8 final int TRIES = 10000;
9

10 int hits = 0;
11 for (int i = 1; i <= TRIES; i++)
12 {
13 // Generate two random numbers between -1 and 1
14
15 double r = Math.random();
16 double x = -1 + 2 * r; // Between -1 and 1
17 r = Math.random();
18 double y = -1 + 2 * r;
19

x

y

1–1

1

–1

4.9 A pplication: Random Numbers and Simulations   179

20 // Check whether the point lies in the unit circle
21
22 if (x * x + y * y <= 1) { hits++; }
23 }
24
25 /*
26 The ratio hits / tries is approximately the same as the ratio
27 circle area / square area = pi / 4
28 */
29
30 double piEstimate = 4.0 * hits / TRIES;
31 System.out.println("Estimate for pi: " + piEstimate);
32 }
33 }

Program Run

Estimate for pi: 3.1504

42.	 How do you simulate a coin toss with the Math.random() method?
43.	 How do you simulate the picking of a random playing card?
44.	 Why does the loop body in Dice.java call Math.random() twice?
45.	 In many games, you throw a pair of dice to get a value between 2 and 12. What is

wrong with this simulated throw of a pair of dice?
int sum = (int) (Math.random() * 11) + 2;

46.	 How do you generate a random floating-point number ≥ 0 and < 100?

Practice It	 Now you can try these exercises at the end of the chapter: R4.28, P4.7, P4.24.

Drawing Graphical Shapes

In Java, it is easy to produce simple drawings such as the
one in Figure 8. By writing programs that draw such pat­
terns, you can practice programming loops. For now, we
give you a program outline into which you place your
drawing code. The program outline also contains the
necessary code for displaying a window containing your
drawing. You need not look at that code now. It will be
discussed in detail in Chapter 10.

Your drawing instructions go inside the draw method:

public class TwoRowsOfSquares
{
 public static void draw(Graphics g)
 {
 Drawing instructions
 }
 . . .
}

When the window is shown, the draw method is called, and your drawing instructions will be
executed.

S e l f C h e c k

Special Topic 4.3

Figure 8  Two Rows of Squares

180  Chapter 4  Loops

The draw method receives an object of type Graphics. The Graphics object has methods for
drawing shapes. It also remembers the color that is used for drawing operations. You can think
of the Graphics object as the equivalent of System.out for drawing shapes instead of printing
values.

Table 4 shows useful methods of the Graphics class.

Table 4 Graphics Methods

Method Result Notes

g.drawRect(x, y, width, height) (x, y) is the top left corner.

g.drawOval(x, y, width, height) (x, y) is the top left corner
of the box that bounds the
ellipse. To draw a circle, use
the same value for width
and height.

g.fillRect(x, y, width, height) The rectangle is filled in.

g.fillOval(x, y, width, height) The oval is filled in.

g.drawLine(x1, y1, x2, y2)	 (x1, y1) and (x2, y2) are
the endpoints.

g.drawString("Message", x, y)

BaselineBasepoint

(x, y) is the basepoint.

g.setColor(color) From now on,
draw or fill methods
will use this color.

Use Color.RED, Color.GREEN,
Color.BLUE, and so on. (See
Table 10.1 for a complete
list of predefined colors.)

The program below draws the squares shown in Figure 8. When you want to produce your
own drawings, make a copy of this program and modify it. Replace the drawing tasks in the
draw method. Rename the class (for example, Spiral instead of TwoRowsOfSquares).

special_topic_3/TwoRowsOfSquares.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import javax.swing.JFrame;
4 import javax.swing.JComponent;
5
6 /**
7 This program draws two rows of squares.
8 */
9 public class TwoRowsOfSquares

10 {

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

4.9 A pplication: Random Numbers and Simulations   181

11 public static void draw(Graphics g)
12 {
13 final int width = 20;
14 g.setColor(Color.BLUE);
15
16 // Top row. Note that the top left corner of the drawing has coordinates (0, 0)
17 int x = 0;
18 int y = 0;
19 for (int i = 0; i < 10; i++)
20 {
21 g.fillRect(x, y, width, width);
22 x = x + 2 * width;
23 }
24 // Second row, offset from the first one
25 x = width;
26 y = width;
27 for (int i = 0; i < 10; i++)
28 {
29 g.fillRect(x, y, width, width);
30 x = x + 2 * width;
31 }
32 }
33
34 public static void main(String[] args)
35 {
36 // Do not look at the code in the main method
37 // Your code will go into the draw method above
38
39 JFrame frame = new JFrame();
40
41 final int FRAME_WIDTH = 400;
42 final int FRAME_HEIGHT = 400;
43
44 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
45 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
46
47 JComponent component = new JComponent()
48 {
49 public void paintComponent(Graphics graph)
50 {
51 draw(graph);
52 }
53 };
54
55 frame.add(component);
56 frame.setVisible(true);
57 }
58 }

Video Example 4.2	 Drawing a Spiral

In this Video Example, you will see how to develop a program
that draws a spiral.

182  Chapter 4  Loops

.

Explain the flow of execution in a loop.

•	 A loop executes instructions repeatedly while a
condition is true.

•	 An off-by-one error is a common error when
programming loops. Think through simple test
cases to avoid this type of error.

Use the technique of hand-tracing to analyze the behavior of a program.

•	 Hand-tracing is a simulation of code execution in which you step
through instructions and track the values of the variables.

•	 Hand-tracing can help you understand how an unfamiliar algo­
rithm works.

•	 Hand-tracing can show errors in code or pseudocode.

As you read this, you
will have written a few

computer programs and experienced
firsthand how much effort it takes to
write even the humblest of programs.
Writing a real software product, such
as a financial application or a computer
game, takes a lot of time and money.
Few people, and fewer companies, are
going to spend that kind of time and
money if they don’t have a reasonable
chance to make more money from their
effort. (Actually, some companies give
away their software in the hope that
users will upgrade to more elaborate
paid versions. Other companies give
away the software that enables users to
read and use files but sell the software
needed to create those files. Finally,
there are individuals who donate their
time, out of enthusiasm, and produce
programs that you can copy freely.)

When selling software, a company
must rely on the honesty of its cus
tomers. It is an easy matter for an
unscrupulous person to make copies
of computer programs without paying
for them. In most countries that is ille
gal. Most governments provide legal
protection, such as copyright laws and
patents, to encourage the develop
ment of new products. Countries that
tolerate widespread piracy have found

that they have an ample cheap supply
of foreign software, but no local man
ufacturers willing to design good soft
ware for their own citizens, such as
word processors in the local script or
financial programs adapted to the local
tax laws.

When a mass market for software
first appeared, vendors were enraged
by the money they lost through piracy.
They tried to fight back by various
schemes to ensure that only the legiti-
mate owner could use the software,
such as dongles—devices that must
be attached to a printer port before
the software will run. Legitimate users
hated these measures. They paid for
the software, but they had to suffer
through inconveniences, such as hav-
ing multiple dongles stick out from
their computer. In the United States,
market pressures forced most vendors
to give up on these copy protection
schemes, but they are still common-
place in other parts of the world.

Because it is so easy and inexpen
sive to pirate software, and the chance
of being found out is minimal, you
have to make a moral choice for your
self. If a package that you would really
like to have is too expensive for your
budget, do you steal it, or do you stay

honest and get by with a more afford
able product?

Of course, piracy
is not limited to
software. The same
issues arise for other
digital products as
well. You may have
had the opportunity
to obtain copies of
songs or movies
without payment. Or you may have
been frustrated by a copy protec-
tion device on your music player that
made it diffi cult for you to listen to
songs that you paid for. Admittedly,
it can be diffi cult to have a lot of sym-
pathy for a musical ensemble whose
publisher charges a lot of money for
what seems to have been very little
effort on their part, at least when
compared to the effort that goes into
designing and implementing a soft-
ware package. Nevertheless, it seems
only fair that artists and authors
receive some compensation for their
efforts. How to pay artists, authors,
and programmers fairly, without
burdening honest customers, is an
unsolved problem at the time of this
writing, and many computer scientists
are engaged in research in this area.

Random Fact 4.2  Software Piracy

C h a p t e r Summ a r y

Chapter Summary  183

 Use for loops for implementing count-controlled loops.

•	 The for loop is used when a value runs from a starting point to an ending point
with a constant increment or decrement.

Choose between the while loop and the do loop.

•	 The do loop is appropriate when the loop body must be executed at least once.

Implement loops that read sequences of input data.

•	 A sentinel value denotes the end of a data set, but it is not part of
the data.

•	 You can use a Boolean variable to control a loop. Set the variable
to true before entering the loop, then set it to false to leave the
loop.

•	 Use input redirection to read input from a file. Use output
redirection to capture program output in a file.

Use the technique of storyboarding for planning user interactions.

•	 A storyboard consists of annotated sketches for each step in an action sequence.
•	 Developing a storyboard helps you understand the inputs and outputs that are

required for a program.

Know the most common loop algorithms.

•	 To compute an average, keep a total and a count of all values.
•	 To count values that fulfill a condition, check all values and increment a counter

for each match.
•	 If your goal is to find a match, exit the loop when the match is found.
•	 To find the largest value, update the largest value seen so far whenever you see a

larger one.
•	 To compare adjacent inputs, store the preceding input in a variable.

Use nested loops to implement multiple levels of iteration.

•	 When the body of a loop contains another loop, the loops are nested. A typical
use of nested loops is printing a table with rows and columns.

Apply loops to the implementation of simulations.

•	 In a simulation, you use the computer to simulate an activity.
•	 You can introduce randomness by calling the random number

generator.

184  Chapter 4  Loops

• R4.1	 Write a while loop that prints
a.	All squares less than n. For example, if n is 100, print 0 1 4 9 16 25 36 49 64 81.
b.	All positive numbers that are divisible by 10 and less than n. For example, if n is

100, print 10 20 30 40 50 60 70 80 90
c.	All powers of two less than n. For example, if n is 100, print 1 2 4 8 16 32 64.

•• R4.2	 Write a loop that computes
a.	The sum of all even numbers between 2 and 100 (inclusive).
b.	The sum of all squares between 1 and 100 (inclusive).
c.	The sum of all odd numbers between a and b (inclusive).
d.	The sum of all odd digits of n. (For example, if n is 32677, the sum would

be 3 + 7 + 7 = 17.)

• R4.3	 Provide trace tables for these loops.
a.	int i = 0; int j = 10; int n = 0;

while (i < j) { i++; j--; n++; }

b.	int i = 0; int j = 0; int n = 0;
while (i < 10) { i++; n = n + i + j; j++; }

c.	int i = 10; int j = 0; int n = 0;
while (i > 0) { i--; j++; n = n + i - j; }

d.	int i = 0; int j = 10; int n = 0;
while (i != j) { i = i + 2; j = j - 2; n++; }

• R4.4	 What do these loops print?
a.	for (int i = 1; i < 10; i++) { System.out.print(i + " "); }
b.	for (int i = 1; i < 10; i += 2) { System.out.print(i + " "); }
c.	for (int i = 10; i > 1; i--) { System.out.print(i + " "); }
d.	for (int i = 0; i < 10; i++) { System.out.print(i + " "); }
e.	for (int i = 1; i < 10; i = i * 2) { System.out.print(i + " "); }
f.	 for (int i = 1; i < 10; i++) { if (i % 2 == 0) { System.out.print(i + " "); } }

• R4.5	 What is an infinite loop? On your computer, how can you terminate a program that
executes an infinite loop?

• R4.6	 Write a program trace for the pseudocode in Exercise P4.6, assuming the input val­
ues are 4 7 –2 –5 0.

java.awt.Color
java.awt.Graphics
 drawLine
 drawOval
 drawRect
 drawString
 setColor

java.lang.Math
 random

S ta n d a r d L ib r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e vi e w E x e r ci s e s

Review Exercises  185

•• R4.7	 What is an “off-by-one” error? Give an example from your own programming
experience.

• R4.8	 What is a sentinel value? Give a simple rule when it is appropriate to use a numeric
sentinel value.

• R4.9	 Which loop statements does Java support? Give simple rules for when to use each
loop type.

• R4.10	 How many iterations do the following loops carry out? Assume that i is not
changed in the loop body.

a.	for (int i = 1; i <= 10; i++) . . .
b.	for (int i = 0; i < 10; i++) . . .
c.	for (int i = 10; i > 0; i--) . . .
d.	for (int i = -10; i <= 10; i++) . . .
e.	for (int i = 10; i >= 0; i++) . . .
f.	 for (int i = -10; i <= 10; i = i + 2) . . .
g.	for (int i = -10; i <= 10; i = i + 3) . . .

•• R4.11	 Write pseudocode for a program that prints a calendar such as the following:
Su M T W Th F Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

• R4.12	 Write pseudocode for a program that prints a Celsius/Fahrenheit conversion table
such as the following:

Celsius | Fahrenheit
--------+-----------
 0 | 32
 10 | 50
 20 | 68

 100 | 212

• R4.13	 Write pseudocode for a program that reads a student record, consisting of the stu­
dent’s first and last name, followed by a sequence of test scores and a sentinel of –1.
The program should print the student’s average score. Then provide a trace table for
this sample input:

Harry Morgan 94 71 86 95 -1

•• R4.14	 Write pseudocode for a program that reads a sequence of student records and prints
the total score for each student. Each record has the student’s first and last name,
followed by a sequence of test scores and a sentinel of –1. The sequence is terminated
by the word END. Here is a sample sequence:

Harry Morgan 94 71 86 95 -1
Sally Lin 99 98 100 95 90 -1
END

Provide a trace table for this sample input.

186  Chapter 4  Loops

• R4.15	 Rewrite the following for loop into a while loop.
int s = 0;
for (int i = 1; i <= 10; i++)
{
 s = s + i;
}

• R4.16	 Rewrite the following do loop into a while loop.
int n = in.nextInt();
double x = 0;
double s;
do
{
 s = 1.0 / (1 + n * n);
 n++;
 x = x + s;
}
while (s > 0.01);

• R4.17	 Provide trace tables of the following loops.
a.	int s = 1;

int n = 1;
while (s < 10) { s = s + n; }
n++;

b.	int s = 1;
for (int n = 1; n < 5; n++) { s = s + n; }

c.	int s = 1;
int n = 1;
do
{
 s = s + n;
 n++;
}
while (s < 10 * n);

• R4.18	 What do the following loops print? Work out the answer by tracing the code, not by
using the computer.

a.	int s = 1;
for (int n = 1; n <= 5; n++)
{
 s = s + n;
 System.out.print(s + " ");
}

b.	int s = 1;
for (int n = 1; s <= 10; System.out.print(s + " "))
{
 n = n + 2;
 s = s + n;
}

c.	int s = 1;
int n;
for (n = 1; n <= 5; n++)
{
 s = s + n;
 n++;
}
System.out.print(s + " " + n);

Review Exercises  187

• R4.19	 What do the following program segments print? Find the answers by tracing the
code, not by using the computer.

a.	int n = 1;
for (int i = 2; i < 5; i++) { n = n + i; }
System.out.print(n);

b.	int i;
double n = 1 / 2;
for (i = 2; i <= 5; i++) { n = n + 1.0 / i; }
System.out.print(i);

c.	double x = 1;
double y = 1;
int i = 0;
do
{
 y = y / 2;
 x = x + y;
 i++;
}
while (x < 1.8);
System.out.print(i);

d.	double x = 1;
double y = 1;
int i = 0;
while (y >= 1.5)
{
 x = x / 2;
 y = x + y;
 i++;
}
System.out.print(i);

•• R4.20	 Give an example of a for loop where symmetric bounds are more natural. Give an
example of a for loop where asymmetric bounds are more natural.

• R4.21	 Add a storyboard panel for the conversion program in Section 4.6 on page 162 that
shows a scenario where a user enters incompatible units.

• R4.22	 In Section 4.6, we decided to show users a list of all valid units in the prompt. If the
program supports many more units, this approach is unworkable. Give a storyboard
panel that illustrates an alternate approach: If the user enters an unknown unit, a list
of all known units is shown.

• R4.23	 Change the storyboards in Section 4.6 to support a menu that asks users whether
they want to convert units, see program help, or quit the program. The menu should
be displayed at the beginning of the program, when a sequence of values has been
converted, and when an error is displayed.

• R4.24	 Draw a flow chart for a program that carries out unit conversions as described in
Section 4.6.

•• R4.25	 In Section 4.7.5, the code for finding the largest and smallest input initializes the
largest and smallest variables with an input value. Why can’t you initialize them
with zero?

• R4.26	 What are nested loops? Give an example where a nested loop is typically used.

188  Chapter 4  Loops

•• R4.27	 The nested loops
for (int i = 1; i <= height; i++)
{
 for (int j = 1; j <= width; j++) { System.out.print("*"); }
 System.out.println();
}

display a rectangle of a given width and height, such as

Write a single for loop that displays the same rectangle.

•• R4.28	 Suppose you design an educational game to teach children how to read a clock. How
do you generate random values for the hours and minutes?

••• R4.29	 In a travel simulation, Harry will visit one of his friends that are located in three
states. He has ten friends in California, three in Nevada, and two in Utah. How do
you produce a random number between 1 and 3, denoting the destination state, with
a probability that is proportional to the number of friends in each state?

• P4.1	 Write programs with loops that compute
a.	The sum of all even numbers between 2 and 100 (inclusive).
b.	The sum of all squares between 1 and 100 (inclusive).
c.	All powers of 2 from 20 up to 220.
d.	The sum of all odd numbers between a and b (inclusive), where a and b are

inputs.
e.	The sum of all odd digits of an input. (For example, if the input is 32677, the

sum would be 3 + 7 + 7 = 17.)

•• P4.2	 Write programs that read a sequence of integer inputs and print
a.	The smallest and largest of the inputs.
b.	The number of even and odd inputs.
c.	Cumulative totals. For example, if the input is 1 7 2 9, the program should print

1 8 10 19.
d.	All adjacent duplicates. For example, if the input is 1 3 3 4 5 5 6 6 6 2, the

program should print 3 5 6.

•• P4.3	 Write programs that read a line of input as a string and print
a.	Only the uppercase letters in the string.
b.	Every second letter of the string.
c.	The string, with all vowels replaced by an underscore.
d.	The number of vowels in the string.
e.	The positions of all vowels in the string.

•• P4.4	 Complete the program in How To 4.1 on page 169. Your program should read twelve
temperature values and print the month with the highest temperature.

P r o g r a mmi n g E x e r ci s e s

Programming Exercises  189

•• P4.5	 Write a program that reads a set of floating-point values. Ask the user to enter the
values, then print

•	 the average of the values.
•	 the smallest of the values.
•	 the largest of the values.
•	 the range, that is the difference between the smallest and largest.

Of course, you may only prompt for the values once.

• P4.6	 Translate the following pseudocode for finding the minimum value from a set of
inputs into a Java program.

Set a Boolean variable "first" to true.
While another value has been read successfully
	 If first is true
		 Set the minimum to the value.
		 Set first to false.
	 Else if the value is less than the minimum
		 Set the minimum to the value.
Print the minimum.

••• P4.7	 Translate the following pseudocode for randomly permuting the characters in a
string into a Java program.

Read a word.
Repeat word.length() times
	 Pick a random position i in the word, but not the last position.
	 Pick a random position j > i in the word.
	 Swap the letters at positions j and i.
Print the word.

To swap the letters, construct substrings as follows:

first middle lasti j

Then replace the string with
first + word.charAt(j) + middle + word.charAt(i) + last

• P4.8	 Write a program that reads a word and prints each character of the word on a sepa­
rate line. For example, if the user provides the input "Harry", the program prints

H
a
r
r
y

•• P4.9	 Write a program that reads a word and prints the word in reverse. For example, if the
user provides the input "Harry", the program prints

yrraH

• P4.10	 Write a program that reads a word and prints the number of vowels in the word. For
this exercise, assume that a e i o u y are vowels. For example, if the user provides the
input "Harry", the program prints 2 vowels.

190  Chapter 4  Loops

••• P4.11	 Write a program that reads a word and prints the number of syllables in the word.
For this exercise, assume that syllables are determined as follows: Each sequence of
adjacent vowels a e i o u y, except for the last e in a word, is a syllable. However, if
that algorithm yields a count of 0, change it to 1. For example,

Word		 Syllables
Harry		 2
hairy		 2
hare		 1
the		 1

••• P4.12	 Write a program that reads a word and prints all substrings, sorted by length. For
example, if the user provides the input "rum", the program prints

r
u
m
ru
um
rum

• P4.13	 Write a program that prints all powers of 2 from 20 up to 220.

•• P4.14	 Write a program that reads a number and prints all of its binary digits: Print the
remainder number % 2, then replace the number with number / 2. Keep going until the
number is 0. For example, if the user provides the input 13, the output should be

1
0
1
1

•• P4.15	 Mean and standard deviation. Write a program that reads a set of floating-point data
values. Choose an appropriate mechanism for prompting for the end of the data set.
When all values have been read, print out the count of the values, the average, and
the standard deviation. The average of a data set {x1, . . ., xn} is x x ni= ∑ , where
∑ = + +x x xi n1 … is the sum of the input values. The standard deviation is

s
x x

n
i=

−()
−

∑ 2

1

However, this formula is not suitable for the task. By the time the program has
computed x , the individual xi are long gone. Until you know how to save these
values, use the numerically less stable formula

s
x x

n
i n i=

− ()
−

∑∑ 2 1 2

1

You can compute this quantity by keeping track of the count, the sum, and the sum
of squares as you process the input values.

Programming Exercises  191

•• P4.16	 The Fibonacci numbers are defined by the sequence

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

Reformulate that as
fold1 = 1;
fold2 = 1;
fnew = fold1 + fold2;

After that, discard fold2, which is no longer needed, and set fold2 to fold1 and fold1 to
fnew. Repeat an appropriate number of times.
Implement a program that prompts the user for an integer n and prints the nth
Fibonacci number, using the above algorithm.

••• P4.17	 Factoring of integers. Write a program that asks the user for an integer and then
prints out all its factors. For example, when the user enters 150, the program should
print

2
3
5
5

••• P4.18	 Prime numbers. Write a program that prompts the user for an integer and then prints
out all prime numbers up to that integer. For example, when the user enters 20, the
program should print

2
3
5
7
11
13
17
19

Recall that a number is a prime number if it is not divisible by any number except 1
and itself.

• P4.19	 Write a program that prints a multiplication table, like this:
 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 . . .
 10 20 30 40 50 60 70 80 90 100

•• P4.20	 Write a program that reads an integer and displays, using asterisks, a filled and hol­
low square, placed next to each other. For example if the side length is 5, the program
should display

***** *****
***** * *
***** * *
***** * *
***** *****

Fibonacci numbers describe the
growth of a rabbit population.

192  Chapter 4  Loops

•• P4.21	 Write a program that reads an integer and displays, using asterisks, a filled diamond
of the given side length. For example, if the side length is 4, the program should dis­
play

 *

 *

••• P4.22	 The game of Nim. This is a well-known game with a number of variants. The fol­
lowing variant has an interesting winning strategy. Two players alternately take
marbles from a pile. In each move, a player chooses how many marbles to take. The
player must take at least one but at most half of the marbles. Then the other player
takes a turn. The player who takes the last marble loses.
Write a program in which the computer plays against a human opponent. Generate a
random integer between 10 and 100 to denote the initial size of the pile. Generate a
random integer between 0 and 1 to decide whether the computer or the human takes
the first turn. Generate a random integer between 0 and 1 to decide whether the
computer plays smart or stupid. In stupid mode the computer simply takes a random
legal value (between 1 and n/2) from the pile whenever it has a turn. In smart mode
the computer takes off enough marbles to make the size of the pile a power of two
minus 1—that is, 3, 7, 15, 31, or 63. That is always a legal move, except when the size
of the pile is currently one less than a power of two. In that case, the computer makes
a random legal move.
You will note that the computer cannot be beaten in smart mode when it has the first
move, unless the pile size happens to be 15, 31, or 63. Of course, a human player who
has the first turn and knows the winning strategy can win against the computer.

•• P4.23	 The Drunkard’s Walk. A drunkard in a grid of streets randomly picks one of four
directions and stumbles to the next intersection, then again randomly picks one of
four directions, and so on. You might think that on average the drunkard doesn’t
move very far because the choices cancel each other out, but that is actually not the
case.
Represent locations as integer pairs (x, y). Implement the drunkard’s walk over 100
intersections, starting at (0, 0), and print the ending location.

•• P4.24	 The Monty Hall Paradox. Marilyn vos Savant described the following problem
(loosely based on a game show hosted by Monty Hall) in a popular magazine: “Sup­
pose you’re on a game show, and you’re given the choice of three doors: Behind one
door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who
knows what’s behind the doors, opens another door, say No. 3, which has a goat.
He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to
switch your choice?”
Ms. vos Savant proved that it is to your advantage, but many of her readers, includ­
ing some mathematics professors, disagreed, arguing that the probability would not
change because another door was opened.
Your task is to simulate this game show. In each iteration, randomly pick a door
number between 1 and 3 for placing the car. Randomly have the player pick a door.
Randomly have the game show host pick a door having a goat (but not the door that

Programming Exercises  193

the player picked). Increment a counter for strategy 1 if the player wins by switching
to the host’s choice, and increment a counter for strategy 2 if the player wins by
sticking with the original choice. Run 1,000 iterations and print both counters.

• P4.25	 A simple random generator is obtained by the formula

r a r b mnew old= ⋅ +()%
and then setting rold to rnew. If m is chosen as 232, then you can compute

r a r bnew old= ⋅ +

because the truncation of an overflowing result to the int type is equivalent to
computing the remainder.
Write a program that asks the user to enter a seed value for rold. (Such a value is often
called a seed). Then print the first 100 random integers generated by this formula,
using a = 32310901 and b = 1729.

•• P4.26	 The Buffon Needle Experiment. The following experiment was devised by Comte
Georges-Louis Leclerc de Buffon (1707–1788), a French naturalist. A needle of
length 1 inch is dropped onto paper that is ruled with lines 2 inches apart. If the
needle drops onto a line, we count it as a hit. (See Figure 9.) Buffon discovered that
the quotient tries/hits approximates p.

For the Buffon needle experiment, you must generate two random numbers: one to
describe the starting position and one to describe the angle of the needle with the
x-axis. Then you need to test whether the needle touches a grid line.
Generate the lower point of the needle. Its x-coordinate is irrelevant, and you may
assume its y-coordinate ylow to be any random number between 0 and 2. The angle a
between the needle and the x-axis can be any value between 0 degrees and 180
degrees (p radians). The upper end of the needle has y-coordinate

y yhigh low= + sinα

The needle is a hit if yhigh is at least 2, as shown in Figure 10. Stop after 10,000 tries
and print the quotient tries/hits. (This program is not suitable for computing the
value of p. You need p in the computation of the angle.)

Figure 9 
The Buffon Needle Experiment

Figure 10 
A Hit in the Buffon Needle Experiment

2

0

yhigh

ylow α

194  Chapter 4  Loops

•• Business P4.27	 Currency conversion. Write a program
that first asks the user to type today’s
price for one dollar in Japanese yen,
then reads U.S. dollar values and
converts each to yen. Use 0 as a sentinel.

•• Business P4.28	 Write a program that first asks the user
to type in today’s price of one dollar
in Japanese yen, then reads U.S. dollar
values and converts each to Japanese
yen. Use 0 as the sentinel value to denote the end of dollar inputs. Then the program
reads a sequence of yen amounts and converts them to dollars. The second sequence
is terminated by another zero value.

•• Business P4.29	 Your company has shares of stock it would like to sell when their value exceeds a
certain target price. Write a program that reads the target price and then reads the
current stock price until it is at least the target price. Your program should use a
Scanner to read a sequence of double values from standard input. Once the minimum
is reached, the program should report that the stock price exceeds the target price.

•• Business P4.30	 Write an application to pre-sell a limited number of cinema tickets. Each buyer can
buy as many as 4 tickets. No more than 100 tickets can be sold. Implement a pro­
gram called TicketSeller that prompts the user for the desired number of tickets and
then displays the number of remaining tickets. Repeat until all tickets have been
sold, and then display the total number of buyers.

•• Business P4.31	 You need to control the number of people who can be in an oyster bar at the same
time. Groups of people can always leave the bar, but a group cannot enter the bar
if they would make the number of people in the bar exceed the maximum of 100
occupants. Write a program that reads the sizes of the groups that arrive or depart.
Use negative numbers for departures. After each input, display the current number
of occupants. As soon as the bar holds the maximum number of people, report that
the bar is full and exit the program.

••• Business P4.32	 Credit Card Number Check. The last digit of a credit card number is the check
digit, which protects against transcription errors such as an error in a single digit or
switching two digits. The following method is used to verify actual credit card num­
bers but, for simplicity, we will describe it for numbers with 8 digits instead of 16:

•	 Starting from the rightmost digit, form the sum of every other digit. For
example, if the credit card number is 4358 9795, then you form the sum
5 + 7 + 8 + 3 = 23.

•	 Double each of the digits that were not included in the preceding step. Add all
digits of the resulting numbers. For example, with the number given above,
doubling the digits, starting with the next-to-last one, yields 18 18 10 8. Adding
all digits in these values yields 1 + 8 + 1 + 8 + 1 + 0 + 8 = 27.

•	 Add the sums of the two preceding steps. If the last digit of the result is 0, the
number is valid. In our case, 23 + 27 = 50, so the number is valid.

Write a program that implements this algorithm. The user should supply an 8-digit
number, and you should print out whether the number is valid or not. If it is not
valid, you should print the value of the check digit that would make it valid.

Programming Exercises  195

•• Science P4.33	 In a predator-prey simulation, you compute the populations of predators and prey,
using the following equations:

prey prey A B pred

pred pred C D
n n n

n n

+

+

= × + − ×()
= × − + ×

1

1

1

1 ppreyn()
Here, A is the rate at which prey birth exceeds natural
death, B is the rate of predation, C is the rate at which
predator deaths exceed births without food, and D repre­
sents predator increase in the presence of food.
Write a program that prompts users for these rates, the
initial population sizes, and the number of periods. Then
print the populations for the given number of periods. As
inputs, try A = 0.1, B = C = 0.01, and D = 0.00002 with
initial prey and predator populations of 1,000 and 20.

•• Science P4.34	 Projectile flight. Suppose a cannonball is propelled straight into the air with a starting
velocity v0. Any calculus book will state that the position of the ball after t seconds is
s t gt v t() = − +1

2
2

0 , where =g 9.81 m s2 is the gravitational force of the earth. No
calculus textbook ever mentions why someone would want to carry out such an
obviously dangerous experiment, so we will do it in the safety of the computer.
In fact, we will confirm the theorem
from calculus by a simulation. In our
simulation, we will consider how the
ball moves in very short time intervals
Δt. In a short time interval the velocity v
is nearly constant, and we can compute
the distance the ball moves as Δs = vΔt.
In our program, we will simply set

const double DELTA_T = 0.01;

and update the position by
s = s + v * DELTA_T;

The velocity changes constantly—in fact, it is reduced by the gravitational force of
the earth. In a short time interval, Δv = –gΔt, we must keep the velocity updated as

v = v - g * DELTA_T;

In the next iteration the new velocity is used to update the distance.
Now run the simulation until the cannonball falls back to the earth. Get the initial
velocity as an input (100 m̸s is a good value). Update the position and velocity 100
times per second, but print out the position only every full second. Also printout the
values from the exact formula s t gt v t() = − +1

2
2

0 for comparison.
Note: You may wonder whether there is a benefit to this simulation when an exact
formula is available. Well, the formula from the calculus book is not exact. Actually,
the gravitational force diminishes the farther the cannonball is away from the surface
of the earth. This complicates the algebra sufficiently that it is not possible to give an
exact formula for the actual motion, but the computer simulation can simply be
extended to apply a variable gravitational force. For cannonballs, the calculus-book
formula is actually good enough, but computers are necessary to compute accurate
trajectories for higher-flying objects such as ballistic missiles.

196  Chapter 4  Loops

••• Science P4.35	 A simple model for the hull of a ship is given by

y
B x

L
z
T

= − 

















− 















2

1
2

1
2 2

where B is the beam, L is the length, and T is the draft. (Note: There are two values of
y for each x and z because the hull is symmetric from starboard to port.)

The cross-sectional area at a point x is called the “section” in nauti­
cal parlance. To compute it, let z go from 0 to –T in n increments,
each of size T n. For each value of z, compute the value for y.
Then sum the areas of trapezoidal strips. At right are the strips
where n = 4.
Write a program that reads in values for B, L, T, x, and n and then
prints out the cross-sectional area at x.

• Science P4.36	 Radioactive decay of radioactive materials can be mod­
eled by the equation A = A0e-t (log 2̸h), where A is the
amount of the material at time t, A0 is the amount at
time 0, and h is the half-life.
Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A ̸ A0 in a patient
body every hour for 24 hours after receiving a dose.

••• Science P4.37	 The photo at left shows an electric device called a “transformer”. Transformers are
often constructed by wrapping coils of wire around a ferrite core. The figure below
illustrates a situation that occurs in various audio devices such as cell phones and
music players. In this circuit, a transformer is used to connect a speaker to the output
of an audio amplifier.

Vs = 40 V

Speaker

+
–

R0 = 20 Ω

Rs = 8 Ω

TransformerAmplifier

1 : n

Programming Exercises  197

The symbol used to represent the transformer is intended to suggest two coils of
wire. The parameter n of the transformer is called the “turns ratio” of the trans­
former. (The number of times that a wire is wrapped around the core to form a coil is
called the number of turns in the coil. The turns ratio is literally the ratio of the
number of turns in the two coils of wire.)
When designing the circuit, we are concerned primarily with the value of the power
delivered to the speakers—that power causes the speakers to produce the sounds we
want to hear. Suppose we were to connect the speakers directly to the amplifier
without using the transformer. Some fraction of the power available from the
amplifier would get to the speakers. The rest of the available power would be lost in
the amplifier itself. The transformer is added to the circuit to increase the fraction of
the amplifier power that is delivered to the speakers.
The power, Ps, delivered to the speakers is calculated using the formula

P R
nV

n R Rs s
s

s

=
+









2

0

2

Write a program that models the circuit shown and varies the turns ratio from 0.01 to
2 in 0.01 increments, then determines the value of the turns ratio that maximizes the
power delivered to the speakers.

• Graphics P4.38	 Write a program to plot the following face.

• Graphics P4.39	 Write a graphical application that displays a checkerboard with 64 squares, alternat­
ing white and black.

••• Graphics P4.40	 Write a graphical application that draws a spiral, such as the following:

•• Graphics P4.41	 It is easy and fun to draw graphs of curves with the Java graphics library. Simply
draw 100 line segments joining the points (x, f(x)) and (x + d, f(x + d)), where x
ranges from xmin to xmax and d x x= −()max min 100.
Draw the curve f x x x x() . .= − + +0 00005 0 03 4 2003 2 , where x ranges from 0 to
400 in this fashion.

••• Graphics P4.42	 Draw a picture of the “four-leaved rose” whose equation in polar coordinates is
r = cos()2θ . Let q go from 0 to 2p in 100 steps. Each time, compute r and then
compute the (x, y) coordinates from the polar coordinates by using the formula

x r y r= ⋅ = ⋅cos() sin()θ θ,

198  Chapter 4  Loops

A n s w e r s t o S e lf - C h e c k Q u e s t i o n s

1.	 23 years.
2.	 7 years.
3.	 Add a statement

System.out.println(balance);

as the last statement in the while loop.
4.	 The program prints the same output. This is

because the balance after 14 years is slightly
below $20,000, and after 15 years, it is slightly
above $20,000.

5.	 2 4 8 16 32 64 128
Note that the value 128 is printed even though
it is larger than 100.

6.	 n output
 5
 4 4
 3 3
 2 2
 1 1
 0 0
-1 -1

7.	 n output
 1 1,
 2 1, 2,
 3 1, 2, 3,
 4

There is a comma after the last value. Usually,
commas are between values only.

8.	 a n r i
 2 4 1 1
 2 2
 4 3
 8 4
 16 5

The code computes an.
9.	 n output

 1 1
11 11
21 21
31 31
41 41
51 51
61 61
...

This is an infinite loop. n is never equal to 50.
10.	 count temp

1 123
2 12.3
3 1.23

This yields the correct answer. The number
123 has 3 digits.

count temp
1 100
2 10.0

This yields the wrong answer. The number 100
also has 3 digits. The loop condition should
have been

while (temp >= 10)

11.	 int year = 1;
while (year <= nyears)
{
 double interest = balance * RATE / 100;
 balance = balance + interest;
 System.out.printf("%4d %10.2f\n",
 year, balance);
 year++;
}

12.	 11 numbers: 10 9 8 7 6 5 4 3 2 1 0
13.	 for (int i = 10; i <= 20; i = i + 2)

{
 System.out.println(i);
}

14.	 int sum = 0;
for (int i = 1; i <= n; i++)
{
 sum = sum + i;
}

15.	 for (int year = 1;
 balance <= 2 * INITIAL_BALANCE; year++)
However, it is best not to use a for loop in this
case because the loop condition does not relate
to the year variable. A while loop would be a
better choice.

16.	 do
{
 System.out.print(
 "Enter a value between 0 and 100: ");
 value = in.nextInt();
}
while (value < 0 || value > 100);

17.	 int value = 100;
while (value >= 100)
{
 System.out.print("Enter a value < 100: ");
 value = in.nextInt();
}

Answers to Self-Check Questions  199

Here, the variable value had to be initialized
with an artificial value to ensure that the loop
is entered at least once.

18.	 Yes. The do loop
do { body } while (condition);

is equivalent to this while loop:
boolean first = true;
while (first || condition)
{
 body;
 first = false;
}

19.	 int x;
int sum = 0;
do
{
 x = in.nextInt();
 sum = sum + x;
}
while (x != 0);

20.	 int x = 0;
int previous;
do
{
 previous = x;
 x = in.nextInt();
 sum = sum + x;
}
while (x != 0 && previous != x);

21.	 No data

22.	 The first check ends the loop after the sentinel
has been read. The second check ensures that
the sentinel is not processed as an input value.

23.	 The while loop would never be entered. The
user would never be prompted for input.
Because count stays 0, the program would then
print "No data".

24.	 The nextDouble method also returns false.
A more accurate prompt would have been:
“Enter values, a key other than a digit to quit.”
But that might be more confusing to the pro­
gram user who would need now ponder which
key to choose.

25.	 If the user doesn’t provide any numeric input,
the first call to in.nextDouble() will fail.

26.	 Computing the average

27.	 Simple conversion

Unknown unit

Program doesn’t understand question syntax

28.	 One score is not enough

29.	 It would not be possible to implement this
interface using the Java features we have cov­
ered up to this point. There is no way for the
program to know when the first set of inputs
ends. (When you read numbers with value =
in.nextDouble(), it is your choice whether to put
them on a single line or multiple lines.)

30.	 Comparing two interest rates

31.	 The total is zero.
32.	 double total = 0;

while (in.hasNextDouble())
{
 double input = in.nextDouble();
 if (input > 0) { total = total + input; }
}

33.	 position is str.length() and ch is unchanged
from its initial value, '?'. Note that ch must

Enter scores, Q to quit: 90 80 90 100 80 Q
The average is 88
(Program exits)

Your conversion question: How many in are 30 cm
30 cm = 11.81 in
(Program exits) Run program again for another question

Only one value can be converted

Your conversion question: How many inches are 30 cm?
Unknown unit: inches
Known units are in, ft, mi, mm, cm, m, km, oz, lb, g, kg, tsp, tbsp, pint, gal
(Program exits)

Your conversion question: What is an ångström?
Please formulate your question as “How many (unit) are (value) (unit)?”
(Program exits)

Enter scores, Q to quit: 90 Q
Error: At least two scores are required.
(Program exits)

First interest rate in percent: 5
Second interest rate in percent: 10
Years: 5
Year 5% 10%

0 10000.00 10000.00
1 10500.00 11000.00
2 11025.00 12100.00
3 11576.25 13310.00
4 12155.06 14641.00
5 12762.82 16105.10

This row clarifies that 1 means
the end of the first year

200  Chapter 4  Loops

be initialized with some value—otherwise the
compiler will complain about a possibly unini­
tialized variable.

34.	 The loop will stop when a match is found, but
you cannot access the match because neither
position nor ch are defined outside the loop.

35.	 Start the loop at the end of string:
boolean found = false;
int i = str.length() - 1;
while (!found && i >= 0)
{
 char ch = str.charAt(i);
 if (ch == ' ') { found = true; }
 else { i--; }
}

36.	 The initial call to in.nextDouble() fails, termi­
nating the program. One solution is to do all
input in the loop and introduce a Boolean vari­
able that checks whether the loop is entered for
the first time.
double input = 0;
boolean first = true;
while (in.hasNextDouble())
{
 double previous = input;
 input = in.nextDouble();
 if (first) { first = false; }
 else if (input == previous)
 {
 System.out.println("Duplicate input");
 }
}

37.	 All values in the inner loop should be dis­
played on the same line.

38.	 Change lines 13, 18, and 30 to for (int n = 0;
n <= NMAX; n++). Change NMAX to 5.

39.	 60: The outer loop is executed 10 times, and
the inner loop 6 times.

40.	 0123
1234
2345

41.	 for (int i = 1; i <= 3; i++)
{
 for (int j = 1; j <= 4; j++)
 {
 System.out.print("[]");
 }
 System.out.println();
}

42.	 Compute (int) (Math.random() * 2), and use 0
for heads, 1 for tails, or the other way around.

43.	 Compute (int) (Math.random() * 4) and asso­
ciate the numbers 0 . . . 3 with the four suits.
Then compute (int) (Math.random() * 13) and
associate the numbers 0 . . . 12 with Jack, Ace, 2
. . . 10, Queen, and King.

44.	 We need to call it once for each die. If we
printed the same value twice, the die tosses
would not be independent.

45.	 The call will produce a value between 2 and
12, but all values have the same probability.
When throwing a pair of dice, the number 7 is
six times as likely as the number 2. The correct
formula is
int sum = (int) (Math.random() * 6) + (int)
(Math.random() * 6) + 2;

46.	 Math.random() * 100.0

5C h a p t e r

201

Methods

To be able to implement methods

To become familiar with the concept of
parameter passing

To develop strategies for decomposing
complex tasks into simpler ones

To be able to determine the scope of a variable

To learn how to think recursively (optional)

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

5.1  Methods as Black Boxes  202

5.2  Implementing Methods  204

Syntax 5.1: Static Method Declaration  205
Programming Tip 5.1: Method Comments  207

5.3  Parameter Passing  207

Programming Tip 5.2: Do Not Modify Parameter
Variables  209

Common Error 5.1: Trying to Modify
Arguments  209

5.4  Return Values  210

Common Error 5.2: Missing Return Value  212
How To 5.1:  Implementing a Method  212
Worked Example 5.1: Generating Random

Passwords 

5.5   Methods Without
Return Values   214

5.6  Problem Solving: Reusable
Methods  215

5.7  Problem Solving: Stepwise
Refinement  218

Programming Tip 5.3: Keep Methods Short  223
Programming Tip 5.4: Tracing Methods  223
Programming Tip 5.5: Stubs  224
Worked Example 5.2: Calculating a

Course Grade 

5.8  Variable Scope  225

Video Example 5.1: Debugging 

5.9  Recursive Methods
(Optional)  228

How To 5.2: Thinking Recursively  231
Random Fact 5.1: The Explosive Growth of

Personal Computers  232
Video Example 5.2: Fully Justified Text 

202

A method packages a computation consisting of multiple
steps into a form that can be easily understood and reused.
(The person in the image to the left is in the middle of
executing the method “make espresso”.)

In this chapter, you will learn how to design and implement
your own methods. Using the process of stepwise refine­
ment, you will be able to break up complex tasks into sets
of cooperating methods.

5.1  Methods as Black Boxes
A method is a sequence of instructions with a name. You have already encountered
several methods. For example, the Math.pow method, which was introduced in Chapter
2, contains instructions to compute a power xy. Moreover, every Java program has a
method called main.

You call a method in order to execute its instructions. For example, consider the
following program fragment:

public static void main(String[] args)
{
 double result = Math.pow(2, 3);
 . . .
}

By using the expression Math.pow(2, 3), main calls the Math.pow method, asking it to
compute 23. The instructions of the Math.pow method execute and compute the result.
The Math.pow method returns its result back to main, and the main method resumes exe-
cution (see Figure 1).

A method is a
named sequence
of instructions.

Figure 1  Execution Flow During a Method Call

Pass 2 and 3 to
Math.pow

Use result

main

Pass result
to caller

Compute 23

Math.pow

5.1  Methods as Black Boxes   203

Figure 2 
The Math.pow Method
as a Black Box

2, 3

8

Math.pow

Arguments

Return value

When another method calls the Math.pow method, it provides “inputs”, such as the
values 2 and 3 in the call Math.pow(2, 3). These values are called the arguments of the
method call. Note that they are not necessarily inputs provided by a human user.
They are simply the values for which we want the method to compute a result. The
“output” that the Math.pow method computes is called the return value.

Methods can receive multiple arguments, but they return only one value. It is also
possible to have methods with no arguments. An example is the Math.random method
that requires no argument to produce a random number.

The return value of a method is returned to the calling method, where it is pro-
cessed according to the statement containing the method call. For example, suppose
your program contains a statement

double result = Math.pow(2, 3);

When the Math.pow method returns its result, the return value is stored in the
variable result.

Do not confuse returning a value with producing program output. If you want
the return value to be printed, you need to add a statement such as System.out.
print(result).

At this point, you may wonder how the Math.pow method performs its job. For
example, how does Math.pow compute that 23 is 8? By multiplying 2 × 2 × 2? With
logarithms? Fortunately, as a user of the method, you don’t need to know how the
method is implemented. You just need to know the specification of the method: If you
provide arguments x and y, the method returns xy. Engineers use the term black box
for a device with a given specification but unknown implementation. You can think
of Math.pow as a black box, as shown in Figure 2.

When you design your own methods, you will want to make them appear as black
boxes to other programmers. Those programmers want to use your methods without
knowing what goes on inside. Even if you are the only person working on a program,
making each method into a black box pays off: there are fewer details that you need to
keep in mind.

Arguments are
supplied when a
method is called.

The return value is
the result that the
method computes.

Although a thermostat is usually white, you
can think of it as a “black box”. The input is the
desired temperature, and the output is a signal
to the heater or air conditioner.

204  Chapter 5  Methods

1.	 Consider the method call Math.pow(3, 2). What are the arguments and return
values?

2.	 What is the return value of the method call Math.pow(Math.pow(2, 2), 2)?
3.	 The Math.ceil method in the Java standard library is described as follows: The

method receives a single argument a of type double and returns the smallest double
value ≥ a that is an integer. What is the return value of Math.ceil(2.3)?

4.	 It is possible to determine the answer to Self Check 3 without knowing how the
Math.ceil method is implemented. Use an engineering term to describe this
aspect of the Math.ceil method.

Practice It	 Now you can try these exercises at the end of the chapter: R5.3, R5.6.

5.2  Implementing Methods
In this section, you will learn how to implement a
method from a given specification. We will use a very
simple example: a method to compute the volume of a
cube with a given side length.

The cubeVolume method uses a given side
length to compute the volume of a cube.

When writing this method, you need to

•	 Pick a name for the method (cubeVolume).
•	 Declare a variable for each argument (double sideLength). These variables are called

the parameter variables.
•	 Specify the type of the return value (double).
•	 Add the public static modifiers. We will discuss the meanings of these modifiers

in Chapter 8. For now, you should simply add them to your methods.

Put all this information together to form the first line of the method’s declaration:
public static double cubeVolume(double sideLength)

This line is called the header of the method. Next, specify the body of the method.
The body contains the variable declarations and statements that are executed when
the method is called.

The volume of a cube of side length s is s × s × s. However, for greater clarity, our
parameter variable has been called sideLength, not s, so we need to compute sideLength
* sideLength * sideLength.

We will store this value in a variable called volume:
double volume = sideLength * sideLength * sideLength;

In order to return the result of the method, use the return statement:
return volume;

S e l f C h e c k

When declaring a
method, you provide
a name for the
method, a variable
for each argument,
and a type for
the result.

5.2  Implementing Methods   205

The return statement gives the
method’s result to the caller.

The body of a method is enclosed in braces. Here is the complete method:
public static double cubeVolume(double sideLength)
{
 double volume = sideLength * sideLength * sideLength;
 return volume;
}

Let’s put this method to use. We’ll supply a main method that calls the cubeVolume
method twice.

public static void main(String[] args)
{
 double result1 = cubeVolume(2);
 double result2 = cubeVolume(10);
 System.out.println("A cube with side length 2 has volume " + result1);
 System.out.println("A cube with side length 10 has volume " + result2);
}

When the method is called with different arguments, the method returns different
results. Consider the call cubeVolume(2). The argument 2 corresponds to the sideLength
parameter variable. Therefore, in this call, sideLength is 2. The method computes

Syntax 5.1	 Static Method Declaration

public static double cubeVolume(double sideLength)
{
 double volume = sideLength * sideLength * sideLength;
 return volume;
}

Type of return value

Name of method

Type of parameter variable

Name of parameter variable

return statement
exits method and

returns result.

Method body,
executed when
method is called.

public static returnType methodName(parameterType parameterName, . . .)
{
 method body
}

Syntax

206  Chapter 5  Methods

sideLength * sideLength * sideLength, or 2 * 2 * 2. When the method is called with a dif-
ferent argument, say 10, then the method computes 10 * 10 * 10.

Now we combine both methods into a test program. Note that both methods are
contained in the same class. Also note the comment that describes the behavior of the
cubeVolume method. (Programming Tip 5.1 describes the format of the comment.)

section_2/Cubes.java

1 /**
2 This program computes the volumes of two cubes.
3 */
4 public class Cubes
5 {
6 public static void main(String[] args)
7 {
8 double result1 = cubeVolume(2);
9 double result2 = cubeVolume(10);

10 System.out.println("A cube with side length 2 has volume " + result1);
11 System.out.println("A cube with side length 10 has volume " + result2);
12 }
13
14 /**
15 Computes the volume of a cube.
16 @param sideLength the side length of the cube
17 @return the volume
18 */
19 public static double cubeVolume(double sideLength)
20 {
21 double volume = sideLength * sideLength * sideLength;
22 return volume;
23 }
24 }

Program Run

A cube with side length 2 has volume 8
A cube with side length 10 has volume 1000

5.	 What is the value of cubeVolume(3)?
6.	 What is the value of cubeVolume(cubeVolume(2))?
7.	 Provide an alternate implementation of the body of the cubeVolume method by

calling the Math.pow method.
8.	 Declare a method squareArea that computes the area of a square of a given side

length.
9.	 Consider this method:

public static int mystery(int x, int y)
{
 double result = (x + y) / (y - x);
 return result;
}

What is the result of the call mystery(2, 3)?

Practice It	 Now you can try these exercises at the end of the chapter: R5.1, R5.2, P5.5, P5.22.

S e l f C h e c k

5.3 P arameter Passing   207

Method Comments

Whenever you write a method, you should comment its behavior. Comments are for human
readers, not compilers. The Java language provides a standard layout for method comments,
called the javadoc convention, as shown here:

/**
 Computes the volume of a cube.
 @param sideLength the side length of the cube
 @return the volume
*/
public static double cubeVolume(double sideLength)
{
 double volume = sideLength * sideLength * sideLength;
 return volume;
}

Comments are enclosed in /** and */ delimiters. The first line of the comment describes the
purpose of the method. Each @param clause describes a parameter variable and the @return
clause describes the return value.

Note that the method comment does not document the implementation (how the method
carries out its work) but rather the design (what the method does). The comment allows other
programmers to use the method as a “black box”.

5.3  Parameter Passing
In this section, we examine the mechanism of parameter passing more closely. When
a method is called, variables are created for receiving the method’s arguments. These
variables are called parameter variables. (Another commonly used term is formal
parameters.) The values that are supplied to the method when it is called are the
arguments of the call. (These values are also commonly called the actual param-
eters.) Each parameter variable is initialized with the corresponding argument.

Consider the method call illustrated in Figure 3:
double result1 = cubeVolume(2);

Programming Tip 5.1

Method comments
explain the purpose
of the method, the
meaning of the
parameter variables
and return value, as
well as any special
requirements.

Parameter variables
hold the arguments
supplied in the
method call.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

208  Chapter 5  Methods

•	

Figure 3  Parameter Passing

1 Method call result1 =

sideLength =

2 Initializing method parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After method call result1 = 8

double result1 = cubeVolume(2);

double volume = sideLength * sideLength * sideLength;
return volume;

double result1 = cubeVolume(2);

double result1 = cubeVolume(2);

The parameter variable sideLength of the cubeVolume method is created when the
method is called. 1

•	 The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. 2

•	 The method computes the expression sideLength * sideLength * sideLength, which
has the value 8. That value is stored in the variable volume. 3

•	 The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubeVolume method. The caller
puts the return value in the result1 variable. 4

Now consider what happens in a subsequent call, cubeVolume(10). A new parameter
variable is created. (Recall that the previous parameter variable was removed when
the first call to cubeVolume returned.) It is initialized with 10, and the process repeats.
After the second method call is complete, its variables are again removed.

10.	 What does this program print? Use a diagram like Figure 3 to find the answer.
public static double mystery(int x, int y)
{
 double z = x + y;
 z = z / 2.0;
 return z;
}
public static void main(String[] args)
{
 int a = 5;
 int b = 7;

A N I M AT I O N
Parameter Passing

S e l f C h e c k

5.3 P arameter Passing   209

 System.out.println(mystery(a, b));
}

11.	 What does this program print? Use a diagram like Figure 3 to find the answer.
public static int mystery(int x)
{
 int y = x * x;
 return y;
}
public static void main(String[] args)
{
 int a = 4;
 System.out.println(mystery(a + 1));
}

12.	 What does this program print? Use a diagram like Figure 3 to find the answer.
public static int mystery(int n)
{
 n++;
 n++;
 return n;
}
public static void main(String[] args)
{
 int a = 5;
 System.out.println(mystery(a));
}

Practice It	 Now you can try these exercises at the end of the chapter: R5.5, R5.14, P5.8.

Do Not Modify Parameter Variables

In Java, a parameter variable is just like any other variable. You can modify the values of the
parameter variables in the body of a method. For example,

public static int totalCents(int dollars, int cents)
{
 cents = dollars * 100 + cents; // Modifies parameter variable
 return cents;
}

However, many programmers find this practice confusing (see Common Error 5.1). To avoid
the confusion, simply introduce a separate variable:

public static int totalCents(int dollars, int cents)
{
 int result = dollars * 100 + cents;
 return result;
}

Trying to Modify Arguments

The following method contains a common error: trying to modify an argument.

public static int addTax(double price, double rate)
{
 double tax = price * rate / 100;
 price = price + tax; // Has no effect outside the method

Programming Tip 5.2

Common Error 5.1

210  Chapter 5  Methods

 return tax;
}

Now consider this call:

double total = 10;
addTax(total, 7.5); // Does not modify total

When the addTax method is called, price is set to 10. Then price is changed to 10.75. When the
method returns, all of its parameter variables are removed. Any values that have been assigned
to them are simply forgotten. Note that total is not changed. In Java, a method can never
change the contents of a variable that was passed as an argument.

5.4  Return Values
You use the return statement to specify the result of a method. In the preceding exam-
ples, each return statement returned a variable. However, the return statement can
return the value of any expression. Instead of saving the return value in a variable and
returning the variable, it is often possible to eliminate the variable and return a more
complex expression:

public static double cubeVolume(double sideLength)
{
 return sideLength * sideLength * sideLength;
}

When the return statement is processed, the method exits immediately. Some
programmers find this behavior convenient for handling exceptional cases at the
beginning of the method:

public static double cubeVolume(double sideLength)
{
 if (sideLength < 0) { return 0; }
 // Handle the regular case
 . . .
}

If the method is called with a negative value for sideLength, then the method returns 0
and the remainder of the method is not executed. (See Figure 4.)

The return statement
terminates a method
call and yields the
method result.

Figure 4  A return Statement Exits a Method Immediately

sideLength < 0? return 0

return volume

 volume =
sideLength ×
sideLength ×
sideLength

True

False

5.4 R eturn Values   211

Every branch of a method needs to return a value. Consider the following incor-
rect method:

public static double cubeVolume(double sideLength)
{
 if (sideLength >= 0)
 {
 return sideLength * sideLength * sideLength;
 } // Error—no return value if sideLength < 0
}

The compiler reports this as an error. A correct implementation is:
public static double cubeVolume(double sideLength)
{
 if (sideLength >= 0)
 {
 return sideLength * sideLength * sideLength;
 }
 else
 {
 return 0;
 }
}

Many programmers dislike the use of multiple return statements in a method. You
can avoid multiple returns by storing the method result in a variable that you return
in the last statement of the method. For example:

public static double cubeVolume(double sideLength)
{
 double volume;
 if (sideLength >= 0)
 {
 volume = sideLength * sideLength * sideLength;
 }
 else
 {
 volume = 0;
 }
 return volume;
}

13.	 Suppose we change the body of the cubeVolume method to
if (sideLength <= 0) { return 0; }
return sideLength * sideLength * sideLength;

How does this method differ from the one described in this section?
14.	 What does this method do?

public static boolean mystery (int n)
{
 if (n % 2 == 0) { return true };
 else { return false; }
}

15.	 Implement the mystery method of Self Check 14 with a single return statement.

Practice It	 Now you can try these exercises at the end of the chapter: R5.13, P5.20.

ONL I NE E x a m p l e

A program showing a
method with multiple
return statements.

S e l f C h e c k

212  Chapter 5  Methods

Missing Return Value

It is a compile-time error if some branches of a method return a value and others do not. Con-
sider this example:

public static int sign(double number)
{
 if (number < 0) { return -1; }
 if (number > 0) { return 1; }
 // Error: missing return value if number equals 0
}

This method computes the sign of a number: –1 for negative numbers and +1 for positive num-
bers. If the argument is zero, however, no value is returned. The remedy is to add a statement
return 0; to the end of the method.

Step 1	 Describe what the method should do.

Provide a simple English description, such as “Compute the volume of a pyramid whose base
is a square.”

Step 2	 Determine the method’s “inputs”.

Make a list of all the parameters that can vary. It is common for begin-
ners to implement methods that are overly specific. For example, you
may know that the great pyramid of Giza, the largest of the Egyptian
pyramids, has a height of 146 meters and a base length of 230 meters.
You should not use these numbers in your calculation, even if the original problem only asked
about the great pyramid. It is just as easy—and far more useful—to write a method that com
putes the volume of any pyramid.

In our case, the parameters are the pyramid’s height and base length. At this point, we have
enough information to document the method:

/**
 Computes the volume of a pyramid whose base is a square.
 @param height the height of the pyramid
 @param baseLength the length of one side of the pyramid’s base
 @return the volume of the pyramid
*/

Common Error 5.2

How To 5.1	 Implementing a Method

A method is a computation that can be used multiple
times with different arguments, either in the same pro
gram or in different programs. Whenever a computa-
tion is needed more than once, turn it into a method.

To illustrate this process, suppose that you are help-
ing archaeologists who research Egyptian pyramids.
You have taken on the task of writing a method that
determines the volume of a pyramid, given its height
and base length.

Turn computations
that can be reused
into methods.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

5.4 R eturn Values   213

Step 3	 Determine the types of the parameter variables and the return value.

The height and base length can both be floating-point numbers. Therefore, we will choose the
type double for both parameter variables. The computed volume is also a floating-point num-
ber, yielding a return type of double. Therefore, the method will be declared as

public static double pyramidVolume(double height, double baseLength)

Step 4	 Write pseudocode for obtaining the desired result.

In most cases, a method needs to carry out several steps to find the desired answer. You may
need to use mathematical formulas, branches, or loops. Express your method in pseudocode.

An Internet search yields the fact that the volume of a pyramid is computed as

volume = 1/3 x height x base area

Because the base is a square, we have

base area = base length x base length

Using these two equations, we can compute the volume from the arguments.

Step 5	 Implement the method body.

In our example, the method body is quite simple. Note the use of the return statement to
return the result.

public static double pyramidVolume(double height, double baseLength)
{
 double baseArea = baseLength * baseLength;
 return height * baseArea / 3;
}

Step 6	 Test your method.

After implementing a method, you should test it in isolation. Such a test is called a unit test.
Work out test cases by hand, and make sure that the method produces the correct results.
For example, for a pyramid with height 9 and base length 10, we expect the area to be 1/3 × 9 ×
100 = 300. If the height is 0, we expect an area of 0.

public static void main(String[] args)
{
 System.out.println("Volume: " + pyramidVolume(9, 10));
 System.out.println("Expected: 300");
 System.out.println("Volume: " + pyramidVolume(0, 10));
 System.out.println("Expected: 0");
}

The output confirms that the method worked as expected:

Volume: 300
Expected: 300
Volume: 0
Expected: 0

ONL I NE E x a m p l e

The program for
calculating a
pyramid’s volume.

Worked Example 5.1	 Generating Random Passwords

This Worked Example creates a method that generates
passwords of a given length with at least one digit and
one special character.

Enter your current password:

Enter your new password:

Retype your new password:

214  Chapter 5  Methods

5.5  Methods Without Return Values
Sometimes, you need to carry out a
sequence of instructions that does
not yield a value. If that instruction
sequence occurs multiple times, you
will want to package it into a method.
In Java, you use the return type void to
indicate the absence of a return value.

Here is a typical example: Your task
is to print a string in a box, like this:

!Hello!

However, different strings can be substituted for Hello. A method for this task can be
declared as follows:

public static void boxString(String contents)

Now you develop the body of the method in the usual way, by formulating a general
method for solving the task.

Print a line that contains the - character n + 2 times, where n is the length of the string.
Print a line containing the contents, surrounded with a ! to the left and right.
Print another line containing the - character n + 2 times.

Here is the method implementation:

/**
 Prints a string in a box.
 @param contents the string to enclose in a box
*/
public static void boxString(String contents)
{
 int n = contents.length();
 for (int i = 0; i < n + 2; i++) { System.out.print("-"); }
 System.out.println();
 System.out.println("!" + contents + "!");
 for (int i = 0; i < n + 2; i++) { System.out.print("-"); }
 System.out.println();
}

Note that this method doesn’t compute any value. It performs some actions and then
returns to the caller.

Because there is no return value, you cannot use boxString in an expression. You
can call

boxString("Hello");

but not
result = boxString("Hello"); // Error: boxString doesn’t return a result.

If you want to return from a void method before reaching the end, you use a return
statement without a value. For example,

public static void boxString(String contents)
{

A void method returns no value, but it can
produce output.

Use a return type of
void to indicate that a
method does not
return a value.

O n l i n e E x a m p l e

A complete program
demonstrating the
boxString method.

5.6 P roblem Solving: Reusable Methods   215

 int n = contents.length();
 if (n == 0)
 {
 return; // Return immediately
 }
 . . .
}

16.	 How do you generate the following printout, using the boxString method?

!Hello!

!World!

17.	 What is wrong with the following statement?
System.out.print(boxString("Hello"));

18.	 Implement a method shout that prints a line consisting of a string followed by
three exclamation marks. For example, shout("Hello") should print Hello!!!. The
method should not return a value.

19.	 How would you modify the boxString method to leave a space around the string
that is being boxed, like this:

! Hello !

20.	 The boxString method contains the code for printing a line of - characters twice.
Place that code into a separate method printLine, and use that method to simplify
boxString. What is the code of both methods?

Practice It	 Now you can try these exercises at the end of the chapter: R5.4, P5.25.

5.6  Problem Solving: Reusable Methods
You have used many methods from the standard Java library. These methods have
been provided as a part of the Java platform so that programmers need not recre-
ate them. Of course, the Java library doesn’t cover every conceivable need. You will
often be able to save yourself time by designing your own methods that can be used
for multiple problems.

When you write nearly identical code or pseudocode multiple times, either in the
same program or in separate programs, consider introducing a method. Here is a typ-
ical example of code replication:

int hours;
do
{
 System.out.print("Enter a value between 0 and 23: ");
 hours = in.nextInt();
}
while (hours < 0 || hours > 23);

S e l f C h e c k

Eliminate replicated
code or pseudocode
by defining a method.

216  Chapter 5  Methods

int minutes;
do
{
 System.out.print("Enter a value between 0 and 59: ");
 minutes = in.nextInt();
}
while (minutes < 0 || minutes > 59);

This program segment reads two variables, making sure that each of them is within a
certain range. It is easy to extract the common behavior into a method:

/**
 Prompts a user to enter a value up to a given maximum until the user
 provides a valid input.
 @param high the largest allowable input
 @return the value provided by the user (between 0 and high, inclusive)
*/
public static int readIntUpTo(int high)
{
 int input;
 Scanner in = new Scanner(System.in);
 do
 {
 System.out.print("Enter a value between 0 and " + high + ": ");
 input = in.nextInt();
 }
 while (input < 0 || input > high);
 return input;
}

Then use this method twice:
int hours = readIntUpTo(23);
int minutes = readIntUpTo(59);

We have now removed the replication of the loop—it only occurs once, inside the
method.

Note that the method can be reused in other programs that need to read integer
values. However, we should consider the possibility that the smallest value need not
always be zero.

Here is a better alternative:
/**
 Prompts a user to enter a value within a given range until the user
 provides a valid input.
 @param low the smallest allowable input
 @param high the largest allowable input
 @return the value provided by the user (between low and high, inclusive)
*/
public static int readIntBetween(int low, int high)
{
 int input;
 Scanner in = new Scanner(System.in);
 do
 {
 System.out.print("Enter a value between " + low + " and " + high + ": ");
 input = in.nextInt();
 }
 while (input < low || input > high);
 return input;
}

Design your methods
to be reusable.
Supply parameter
variables for the
values that can vary
when the method
is reused.

5.6 P roblem Solving: Reusable Methods   217

In our program, we call

When carrying out the same task
multiple times, use a method.

int hours = readIntBetween(0, 23);

Another program can call
int month = readIntBetween(1, 12);

In general, you will want to provide parameter variables for the values that vary when
a method is reused.

21.	 Consider the following statements:
int totalPennies = (int) Math.round(100 * total) % 100;
int taxPennies = (int) Math.round(100 * (total * taxRate)) % 100;

Introduce a method to reduce code duplication.
22.	 Consider this method that prints a page number on the left or right side of a

page:
if (page % 2 == 0) { System.out.println(page); }
else { System.out.println(" " + page); }

Introduce a method with return type boolean to make the condition in the if
statement easier to understand.

23.	 Consider the following method that computes compound interest for an
account with an initial balance of $10,000 and an interest rate of 5 percent:
public static double balance(int years) { return 10000 * Math.pow(1.05, years); }

How can you make this method more reusable?
24.	 The comment explains what the following loop does. Use a method instead.

// Counts the number of spaces
int spaces = 0;
for (int i = 0; i < input.length(); i++)
{
 if (input.charAt(i) == ' ') { spaces++; }
}

25.	 In Self Check 24, you were asked to implement a method that counts spaces.
How can you generalize it so that it can count any character? Why would you
want to do this?

Practice It	 Now you can try these exercises at the end of the chapter: R5.7, P5.21.

O n l i n e E x a m p l e

A complete program
demonstrating the
readIntBetween
method.

S e l f C h e c k

218  Chapter 5  Methods

5.7  Problem Solving: Stepwise Refinement
One of the most powerful strategies for
problem solving is the process of stepwise
refinement. To solve a difficult task, break
it down into simpler tasks. Then keep break-
ing down the simpler tasks into even simpler
ones, until you are left with tasks that you
know how to solve.

Now apply this process to a problem of
everyday life. You get up in the morning and
simply must get coffee. How do you get cof
fee? You see whether you can get someone
else, such as your mother or mate, to bring
you some. If that fails, you must make coffee.

A production process is broken down
into sequences of assembly steps.

Use the process of
stepwise refinement
to decompose
complex tasks into
simpler ones.

Figure 5 
Flowchart of
Coffee-Making
Solution

Yes No

Get
coffee

Ask for
coffee

Can you
ask someone

?

Make
coffee

Yes No

Do you
have instant

coffee?

Brew
coffee

Add coffee
beans to
grinderPut cup

in micro-
wave

Bring to
a boil

Fill cup
with water

Fill kettle
with water

Heat
3 min.

Grind
60 sec.

Add water
to coffee

maker

Add filter
to coffee

maker

Add coffee
beans to

filter

Grind
coffee
beans

Turn coffee
maker on

Make
instant
coffee

Boil
water

Mix water
and instant

coffee

Do you
have a micro-

wave?

Yes No

5.7 P roblem Solving: Stepwise Refinement   219

How do you make coffee? If there is instant coffee available, you can make instant coffee.
How do you make instant coffee? Simply boil water and mix the boiling water with the
instant coffee. How do you boil water? If there is a microwave, then you fill a cup
with water, place it in the microwave and heat it for three minutes. Otherwise, you fill
a kettle with water and heat it on the stove until the water comes to a boil. On the
other hand, if you don’t have instant coffee, you must brew coffee. How do you brew
coffee? You add water to the coffee maker, put in a filter, grind coffee, put the coffee in
the filter, and turn the coffee maker on. How do you grind coffee? You add coffee
beans to the coffee grinder and push the button for 60 seconds.

Figure 5 shows a flowchart view of the coffee-making solution. Refinements are
shown as expanding boxes. In Java, you implement a refinement as a method. For
example, a method brewCoffee would call grindCoffee, and brewCoffee would be called
from a method makeCoffee.

Let us apply the process of stepwise refine-
ment to a programming problem. When print-
ing a check, it is customary to write the check
amount both as a number (“$274.15”) and as a
text string (“two hundred seventy four dollars
and 15 cents”). Doing so reduces the recipient’s
temptation to add a few digits in front of the
amount.

For a human, this isn’t particularly difficult,
but how can a computer do this? There is no
built-in method that turns 274 into "two hundred seventy four". We need to program
this method. Here is the description of the method we want to write:

/**
 Turns a number into its English name.
 @param number a positive integer < 1,000
 @return the name of number (e.g., “two hundred seventy four”)
*/
public static String intName(int number)

How can this method do its job? Consider a simple case first. If the number is between
1 and 9, we need to compute "one" … "nine". In fact, we need the same computation
again for the hundreds (two hundred). Any time you need something more than once, it
is a good idea to turn that into a method. Rather than writing the entire method, write
only the comment:

/**
 Turns a digit into its English name.
 @param digit an integer between 1 and 9
 @return the name of digit (“one” . . . “nine”)
*/
public static String digitName(int digit)

Numbers between 10 and 19 are special cases. Let’s have a separate method teenName
that converts them into strings "eleven", "twelve", "thirteen", and so on:

/**
 Turns a number between 10 and 19 into its English name.
 @param number an integer between 10 and 19
 @return the name of the number (“ten” . . . “nineteen”)
*/
public static String teenName(int number)

When you discover
that you need a
method, write a
description of the
parameter variables
and return values.

A method may
require simpler
methods to carry
out its work.

220  Chapter 5  Methods

Next, suppose that the number is between 20 and 99. The name of such a number has
two parts, such as "seventy four". We need a way of producing the first part, "twenty",
"thirty", and so on. Again, we will put that computation into a separate method:

/**
 Gives the name of the tens part of a number between 20 and 99.
 @param number an integer between 20 and 99
 @return the name of the tens part of the number (“twenty” . . . “ninety”)
*/
public static String tensName(int number)

Now let us write the pseudocode for the intName method. If the number is between
100 and 999, then we show a digit and the word "hundred" (such as "two hundred").
We then remove the hundreds, for example reducing 274 to 74. Next, suppose the
remaining part is at least 20 and at most 99. If the number is evenly divisible by 10,
we use tensName, and we are done. Otherwise, we print the tens with tensName (such as
"seventy") and remove the tens, reducing 74 to 4. In a separate branch, we deal with
numbers that are at between 10 and 19. Finally, we print any remaining single digit
(such as "four").

part = number (The part that still needs to be converted)
name = "" (The name of the number)

If part >= 100
	 name = name of hundreds in part + " hundred"
	 Remove hundreds from part.

If part >= 20
	 Append tensName(part) to name.
	 Remove tens from part.
Else if part >= 10
	 Append teenName(part) to name.
	 part = 0

If (part > 0)
	 Append digitName(part) to name.

Translating the pseudocode into Java is straightforward. The result is shown in the
source listing at the end of this section.

Note how we rely on helper methods to do much of the detail work. Using the
process of stepwise refinement, we now need to consider these helper methods.

Let’s start with the digitName method. This method is so simple to implement that
pseudocode is not really required. Simply use an if statement with nine branches:

public static String digitName(int digit)
{
 if (digit == 1) { return "one" };
 if (digit == 2) { return "two" };
 . . .
}

The teenName and tensName methods are similar.

A N I M AT I O N
Tracing a Method

5.7 P roblem Solving: Stepwise Refinement   221

This concludes the process of stepwise refinement. Here is the complete program:

section_7/IntegerName.java

1 import java.util.Scanner;
2
3 /**
4 This program turns an integer into its English name.
5 */
6 public class IntegerName
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Please enter a positive integer < 1000: ");
12 int input = in.nextInt();
13 System.out.println(intName(input));
14 }
15
16 /**
17 Turns a number into its English name.
18 @param number a positive integer < 1,000
19 @return the name of the number (e.g. “two hundred seventy four”)
20 */
21 public static String intName(int number)
22 {
23 int part = number; // The part that still needs to be converted
24 String name = ""; // The name of the number
25
26 if (part >= 100)
27 {
28 name = digitName(part / 100) + " hundred";
29 part = part % 100;
30 }
31
32 if (part >= 20)
33 {
34 name = name + " " + tensName(part);
35 part = part % 10;
36 }
37 else if (part >= 10)
38 {
39 name = name + " " + teenName(part);
40 part = 0;
41 }
42
43 if (part > 0)
44 {
45 name = name + " " + digitName(part);
46 }
47
48 return name;
49 }
50
51 /**
52 Turns a digit into its English name.
53 @param digit an integer between 1 and 9
54 @return the name of digit (“one” . . . “nine”)
55 */

222  Chapter 5  Methods

56 public static String digitName(int digit)
57 {
58 if (digit == 1) { return "one"; }
59 if (digit == 2) { return "two"; }
60 if (digit == 3) { return "three"; }
61 if (digit == 4) { return "four"; }
62 if (digit == 5) { return "five"; }
63 if (digit == 6) { return "six"; }
64 if (digit == 7) { return "seven"; }
65 if (digit == 8) { return "eight"; }
66 if (digit == 9) { return "nine"; }
67 return "";
68 }
69
70 /**
71 Turns a number between 10 and 19 into its English name.
72 @param number an integer between 10 and 19
73 @return the name of the given number (“ten” . . . “nineteen”)
74 */
75 public static String teenName(int number)
76 {
77 if (number == 10) { return "ten"; }
78 if (number == 11) { return "eleven"; }
79 if (number == 12) { return "twelve"; }
80 if (number == 13) { return "thirteen"; }
81 if (number == 14) { return "fourteen"; }
82 if (number == 15) { return "fifteen"; }
83 if (number == 16) { return "sixteen"; }
84 if (number == 17) { return "seventeen"; }
85 if (number == 18) { return "eighteen"; }
86 if (number == 19) { return "nineteen"; }
87 return "";
88 }
89
90 /**
91 Gives the name of the tens part of a number between 20 and 99.
92 @param number an integer between 20 and 99
93 @return the name of the tens part of the number (“twenty” . . . “ninety”)
94 */
95 public static String tensName(int number)
96 {
97 if (number >= 90) { return "ninety"; }
98 if (number >= 80) { return "eighty"; }
99 if (number >= 70) { return "seventy"; }

100 if (number >= 60) { return "sixty"; }
101 if (number >= 50) { return "fifty"; }
102 if (number >= 40) { return "forty"; }
103 if (number >= 30) { return "thirty"; }
104 if (number >= 20) { return "twenty"; }
105 return "";
106 }
107 }

Program Run

Please enter a positive integer < 1000: 729
seven hundred twenty nine

5.7 P roblem Solving: Stepwise Refinement   223

26.	 Explain how you can improve the intName method so that it can handle argu-
ments up to 9999.

27.	 Why does line 40 set part = 0?
28.	 What happens when you call intName(0)? How can you change the intName

method to handle this case correctly?
29.	 Trace the method call intName(72), as described in Programming Tip 5.4.
30.	 Use the process of stepwise refinement to break down the task of printing the

following table into simpler tasks.
+-----+-----------+
| i | i * i * i |
+-----+-----------+
| 1 | 1 |
| 2 | 8 |

| 20 | 8000 |
+-----+-----------+

Practice It	 Now you can try these exercises at the end of the chapter: R5.12, P5.11, P5.24.

Keep Methods Short

There is a certain cost for writing a method. You need to design, code, and test the method.
The method needs to be documented. You need to spend some effort to make the method
reusable rather than tied to a specific context. To avoid this cost, it is always tempting just to
stuff more and more code in one place rather than going through the trouble of breaking up
the code into separate methods. It is quite common to see inexperienced programmers pro
duce methods that are several hundred lines long.

As a rule of thumb, a method that is so long that its code will not fit on a single screen in
your development environment should probably be broken up.

Tracing Methods

When you design a complex method, it is a good idea to carry out a manual walkthrough
before entrusting your program to the computer.

Take an index card, or some other piece of paper, and write down the method call that you
want to study. Write the name of the method and the names and values of the parameter vari-
ables, like this:

 intName(number = 416)

Then write the names and initial values of the method variables. Write them in a table, because
you will update them as you walk through the code.

 intName(number = 416)
 part name
 416 ""

S e l f C h e c k

Programming Tip 5.3

Programming Tip 5.4

224  Chapter 5  Methods

We enter the test part >= 100. part / 100 is 4 and part % 100 is 16. digitName(4) is easily seen to
be "four". (Had digitName been complicated, you would have started another sheet of paper to
figure out that method call. It is quite common to accumulate several sheets in this way.)

Now name has changed to name + " " + digitName(part / 100) + " hundred", that is "four hun-
dred", and part has changed to part % 100, or 16.

 intName(number = 416)
 part name
 416 ""
 16 "four hundred"

Now you enter the branch part >= 10. teenName(16) is sixteen, so the variables now have the
values

 intName(number = 416)
 part name
 416 ""
 16 "four hundred"
 0 "four hundred sixteen"

Now it becomes clear why you need to set part to 0 in line 40. Otherwise, you would enter the
next branch and the result would be "four hundred sixteen six". Tracing the code is an effective
way to understand the subtle aspects of a method.

Stubs

When writing a larger program, it is not always
feasible to implement and test all methods at once.
You often need to test a method that calls another,
but the other method hasn’t yet been imple-
mented. Then you can temporarily replace the
missing method with a stub. A stub is a method
that returns a simple value that is sufficient for
testing another method. Here are examples of
stub methods:

/**
 Turns a digit into its English name.
 @param digit an integer between 1 and 9
 @return the name of digit (“one” . . . nine”)
*/
public static String digitName(int digit)
{
 return "mumble";
}

/**
 Gives the name of the tens part of a number between 20 and 99.
 @param number an integer between 20 and 99
 @return the tens name of the number (“twenty” . . . “ninety”)

Programming Tip 5.5

Stubs are incomplete methods that can
be used for testing.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

5.8  Variable Scope   225

*/
public static String tensName(int number)
{
 return "mumblety";
}

If you combine these stubs with the intName method and test it with an argument of 274, you
will get a result of "mumble hundred mumblety mumble", which indicates that the basic logic of the
intName method is working correctly.

5.8  Variable Scope
As your programs get larger and contain more variables, you may encounter prob-
lems where you cannot access a variable that is defined in a different part of your pro-
gram, or where two variable definitions conflict with each other. In order to resolve
these problems, you need to be familiar with the concept of variable scope.

The scope of a variable is the part of the program in which you can access it. For
example, the scope of a method’s parameter variable is the entire method. In the fol-
lowing code segment, the scope of the parameter variable sideLength is the entire
cubeVolume method but not the main method.

public static void main(String[] args)
{
 System.out.println(cubeVolume(10));
}

public static double cubeVolume(double sideLength)
{
 return sideLength * sideLength * sideLength;
}

A variable that is defined within a method is called a local variable. When a local
variable is declared in a block, its scope ranges from its declaration until the end of
the block. For example, in the code segment below, the scope of the square variable is
highlighted.

public static void main(String[] args)
{
 int sum = 0;
 for (int i = 1; i <= 10; i++)
 {
 int square = i * i;
 sum = sum + square;
 }
 System.out.println(sum);
}

Worked Example 5.2	 Calculating a Course Grade

This Worked Example uses stepwise refinement to solve the
problem of converting a set of letter grades into an average
grade for a course.

The scope of a
variable is the part of
the program in which
it is visible.

226  Chapter 5  Methods

The scope of a variable that is declared in a for statement extends to the end of the
statement:

public static void main(String[] args)
{
 int sum = 0;
 for (int i = 1; i <= 10; i++)
 {
 sum = sum + i * i;
 }
 System.out.println(sum);
 }

Here is an example of a scope problem. The following code will not compile:

public static void main(String[] args)
{
 double sideLength = 10;
 int result = cubeVolume();
 System.out.println(result);
}

public static double cubeVolume()
{
 return sideLength * sideLength * sideLength; // ERROR
}

Note the scope of the variable sideLength. The cubeVolume method attempts to read
the variable, but it cannot—the scope of sideLength does not extend outside the main
method. The remedy is to pass it as an argument, as we did in Section 5.2.

It is possible to use the same variable name more than once in a program. Consider
the result variables in the following example:

public static void main(String[] args)
{
 int result = square(3) + square(4);
 System.out.println(result);
}

public static int square(int n)
{
 int result = n * n;
 return result;
}

In the same way that there can be a street named “Main Street” in different cities, a Java program
can have multiple variables with the same name.

5.8  Variable Scope   227

Each result variable is declared in a separate method, and their scopes do not overlap.
You can even have two variables with the same name in the same method, provided

that their scopes do not overlap:

public static void main(String[] args)
{
 int sum = 0;
 for (int i = 1; i <= 10; i++)
 {
 sum = sum + i;
 }

 for (int i = 1; i <= 10; i++)
 {
 sum = sum + i * i;
 }
 System.out.println(sum);
}

It is not legal to declare two variables with the same name in the same method in such
a way that their scopes overlap. For example, the following is not legal:

public static int sumOfSquares(int n)
{
 int sum = 0;
 for (int i = 1; i <= n; i++)
 {
 int n = i * i; // ERROR
 sum = sum + n;
 }
 return sum;
}

The scope of the local variable n is contained within the scope of the parameter vari-
able n. In this case, you need to rename one of the variables.

Consider this sample program:
1	 public class Sample
2	 {
3	 public static void main(String[] args)
4	 {
5	 int x = 4;
6	 x = mystery(x + 1);
7	 System.out.println(s);
8	 }
9	

10	 public static int mystery(int x)
11	 {
12	 int s = 0;
13	 for (int i = 0; i < x; x++)
14	 {
15	 int x = i + 1;
16	 s = s + x;

Two local or
parameter variables
can have the same
name, provided that
their scopes do
not overlap.

S e l f C h e c k

228  Chapter 5  Methods

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

17	 }
18	 return s;
19	 }
20	 }

31.	 Which lines are in the scope of the variable i declared in line 13?
32.	 Which lines are in the scope of the parameter variable x declared in line 10?
33.	 The program declares two local variables with the same name whose scopes

don’t overlap. What are they?
34.	 There is a scope error in the mystery method. How do you fix it?
35.	 There is a scope error in the main method. What is it, and how do you fix it?

Practice It	 Now you can try these exercises at the end of the chapter: R5.9, R5.10.

5.9  Recursive Methods (Optional)
A recursive method is a method that calls itself. This is not as unusual as it sounds at
first. Suppose you face the arduous task of cleaning up an entire house. You may well
say to yourself, “I’ll pick a room and clean it, and then I’ll clean the other rooms.” In
other words, the cleanup task calls itself, but with a simpler input. Eventually, all the
rooms will be cleaned.

Video Example 5.1	 Debugging

In this Video Example, you will learn how to use a debugger to find
errors in a program.

Cleaning up a house can be solved recursively:
Clean one room, then clean up the rest.

5.9 R ecursive Methods (Optional)   229

In Java, a recursive method uses the same principle. Here is a typical example. We
want to print triangle patterns like this:

[]
[][]
[][][]
[][][][]

Specifically, our task is to provide a method
public static void printTriangle(int sideLength)

The triangle given above is printed by calling printTriangle(4). To see how recursion
helps, consider how a triangle with side length 4 can be obtained from a triangle with
side length 3.

[]
[][]
[][][]
[][][][]

Print the triangle with side length 3.
Print a line with four [].

More generally, here are the Java instructions for an arbitrary side length:
public static void printTriangle(int sideLength)
{
 printTriangle(sideLength - 1);
 for (int i = 0; i < sideLength; i++)
 {
 System.out.print("[]");
 }
 System.out.println();
}

There is just one problem with this idea. When the side length is 1, we don’t want to
call printTriangle(0), printTriangle(-1), and so on. The solution is simply to treat this
as a special case, and not to print anything when sideLength is less than 1.

public static void printTriangle(int sideLength)
{
 if (sideLength < 1) { return; }
 printTriangle(sideLength - 1);
 for (int i = 0; i < sideLength; i++)
 {
 System.out.print("[]");
 }
 System.out.println();
}

Look at the printTriangle method one more time and notice how utterly reasonable it
is. If the side length is 0, nothing needs to be printed. The next part is just as reason-
able. Print the smaller triangle and don’t think about why that works. Then print a
row of []. Clearly, the result is a triangle of the desired size.

There are two key requirements to make sure that the recursion is successful:

•	 Every recursive call must simplify the task in some way.
•	 There must be special cases to handle the simplest tasks directly.

The printTriangle method calls itself again with smaller and smaller side lengths.
Eventually the side length must reach 0, and the method stops calling itself.

A recursive
computation solves
a problem by using
the solution of the
same problem with
simpler inputs.

For a recursion to
terminate, there must
be special cases for
the simplest inputs.

230  Chapter 5  Methods

This set of Russian dolls looks similar to the
call pattern of a recursive method.

Here is what happens when we print a triangle with side length 4:

•	 The call printTriangle(4) calls printTriangle(3).
•	 The call printTriangle(3) calls printTriangle(2).

•	 The call printTriangle(2) calls printTriangle(1).
•	 The call printTriangle(1) calls printTriangle(0).

•	 The call printTriangle(0) returns, doing nothing.
•	 The call printTriangle(1) prints [].

•	 The call printTriangle(2) prints [][].
•	 The call printTriangle(3) prints [][][].

•	 The call printTriangle(4) prints [][][][].

The call pattern of a recursive method looks complicated, and the key to the success-
ful design of a recursive method is not to think about it.

Recursion is not really necessary to print triangle shapes. You can use nested loops,
like this:

public static void printTriangle(int sideLength)
{
 for (int i = 0; i < sideLength; i++)
 {
 for (int j = 0; j < i; j++)
 {
 System.out.print("[]");
 }
 System.out.println();
 }
}

However, this pair of loops is a bit tricky. Many people find the recursive solution
simpler to understand.

36.	 Consider this slight modification of the printTriangle method:
public static void printTriangle(int sideLength)
{
 if (sideLength < 1) { return; }
 for (int i = 0; i < sideLength; i++)
 {
 System.out.print("[]");

A N I M AT I O N
Tracing a Recursion

ONL I NE E x a m p l e

The complete
TrianglePrinter
program.

S e l f C h e c k

5.9 R ecursive Methods (Optional)   231

 }
 System.out.println();
 printTriangle(sideLength - 1);
}

What is the result of printTriangle(4)?
37.	 Consider this recursive method:

public static int mystery(int n)
{
 if (n <= 0) { return 0; }
 return n + mystery(n - 1);
}

What is mystery(4)?
38.	 Consider this recursive method:

public static int mystery(int n)
{
 if (n <= 0) { return 0; }
 return mystery(n / 2) + 1;
}

What is mystery(20)?
39.	 Write a recursive method for printing n box shapes [] in a row.
40.	 The intName method in Section 5.7 accepted arguments < 1,000. Using a recursive

call, extend its range to 999,999. For example an input of 12,345 should return
"twelve thousand three hundred forty five".

Practice It	 Now you can try these exercises at the end of the chapter: R5.16, P5.16, P5.18.

Step 1	 Break the input into parts that can themselves be inputs to the problem.

In your mind, focus on a particular input or set of inputs for the task
that you want to solve, and think how you can simplify the inputs.
Look for simplifications that can be solved by the same task, and
whose solutions are related to the original task.

In the digit sum problem, consider how we can simplify an
input such as n = 1729. Would it help to subtract 1? After all,
digitSum(1729) = digitSum(1728) + 1. But consider n = 1000. There seems to be no obvious rela-
tionship between digitSum(1000) and digitSum(999).

A much more promising idea is to remove the last digit, that is, to compute n / 10 = 172. The
digit sum of 172 is directly related to the digit sum of 1729.

How To 5.2	 Thinking Recursively

To solve a problem recursively requires a different mindset than to solve it by programming
loops. In fact, it helps if you are, or pretend to be, a bit lazy and let others do most of the work
for you. If you need to solve a complex problem, pretend that “someone else” will do most
of the heavy lifting and solve the problem for all simpler inputs. Then you only need to figure
out how you can turn the solutions with simpler inputs into a solution for the whole problem.

To illustrate the recursive thinking process, consider the problem of Section 4.2, computing
the sum of the digits of a number. We want to design a method digitSum that computes the sum
of the digits of an integer n.

For example, digitSum(1729) = 1 + 7 + 2 + 9 = 19

The key to finding a
recursive solution is
reducing the input to
a simpler input for
the same problem.

232  Chapter 5  Methods

Step 2	 Combine solutions with simpler inputs into a solution of the original problem.

In your mind, consider the solutions for the simpler inputs that you have discovered in Step 1.
Don’t worry how those solutions are obtained. Simply have faith that the solutions are readily
available. Just say to yourself: These are simpler inputs, so someone else will solve the problem
for me.

In the case of the digit sum task, ask yourself how you can obtain
digitSum(1729) if you know digitSum(172). You simply add the last
digit (9) and you are done. How do you get the last digit? As the
remainder n % 10. The value digitSum(n) can therefore be obtained as

 digitSum(n / 10) + n % 10

Don’t worry how digitSum(n / 10) is computed. The input is smaller,
and therefore it works.

Step 3	 Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. To make sure that the recursion comes
to a stop, you must deal with the simplest inputs separately. Come up with special solutions
for them. That is usually very easy.

Look at the simplest inputs for the digitSum problem:
•	 A number with a single digit
•	 0

When designing a
recursive solution,
do not worry about
multiple nested calls.
Simply focus on
reducing a problem
to a slightly
simpler one.

In 1971, Marcian E.
“Ted” Hoff, an engineer
at Intel Corporation,

was working on a chip for a manufac­
turer of electronic calculators. He real­
ized that it would be a better idea to
develop a general-purpose chip that
could be programmed to interface with
the keys and display of a calculator,
rather than to do yet another custom
design. Thus, the microprocessor was
born. At the time, its primary applica­
tion was as a controller for calculators,
washing machines, and the like. It took
years for the computer industry to
notice that a genuine central process­
ing unit was now available as a single
chip.

Hobbyists were the first to catch
on. In 1974 the first computer kit, the
Altair 8800, was available from MITS
Electronics for about $350. The kit
consisted of the microprocessor, a cir­
cuit board, a very small amount of
memory, toggle switches, and a row of
display lights. Purchasers had to sol­
der and assemble it, then program it in
machine language through the toggle
switches. It was not a big hit.

The first big hit was the Apple II. It
was a real computer with a keyboard,
a monitor, and a floppy disk drive.
When it was first released, users had a
$3,000 machine that could play Space
Invaders, run a primitive bookkeep­
ing program, or let users program it
in BASIC. The original Apple II did not
even support lowercase letters, mak­
ing it worthless for word processing.
The breakthrough came in 1979 with
a new spreadsheet program, VisiCalc.
In a spreadsheet, you enter financial
data and their relationships into a grid
of rows and columns (see the figure at
right). Then you modify some of the
data and watch in real time how the
others change. For example, you can
see how changing the mix of widgets
in a manufacturing plant might affect
estimated costs and profits. Middle
managers in companies, who under­
stood computers and were fed up with
having to wait for hours or days to get
their data runs back from the comput­
ing center, snapped up VisiCalc and the
computer that was needed to run it.
For them, the computer was a spread­
sheet machine.

The next big hit was the IBM Per­
sonal Computer, ever after known as
the PC. It was the first widely available
personal computer that used Intel’s
16-bit processor, the 8086, whose
successors are still being used in per­
sonal computers today. The success
of the PC was based not on any engi­
neering breakthroughs but on the fact
that it was easy to clone. IBM published
the computer’s specifications in order
to encourage third parties to develop
plug-in cards. Perhaps IBM did not
foresee that functionally equivalent
versions of their computer could be
recreated by others, but a variety of
PC clone vendors emerged, and ulti­
mately IBM stopped selling personal
computers.

IBM never produced an operating
system for its PCs—that is, the soft­
ware that organizes the interaction
between the user and the computer,
starts application programs, and man­
ages disk storage and other resources.
Instead, IBM offered customers the
option of three separate operating
systems. Most customers couldn’t
care less about the operating system.

Random Fact 5.1  The Explosive Growth of Personal Computers

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

5.9 R ecursive Methods (Optional)   233

A number with a single digit is its own digit sum, so you can stop the recursion when n < 10,
and return n in that case. Or, you can be even lazier. If n has a single digit, then digitSum(n / 10)
+ n % 10 equals digitSum(0) + n. You can simply terminate the recursion when n is zero.

Step 4	 Implement the solution by combining the simple cases and the reduction step.

Now you are ready to implement the solution. Make separate cases for the simple inputs that
you considered in Step 3. If the input isn’t one of the simplest cases, then implement the logic
you discovered in Step 2.

Here is the complete digitSum method:

public static int digitSum(int n)
{
 if (n == 0) { return 0; } // Special case for terminating the recursion
 return digitSum(n / 10) + n % 10; // General case
}

O n l i n e E x a m p l e

A program
illustrating the
digitSum method.

Video Example 5.2	 Fully Justified Text

In printed books (such as this one), all but the last line of a
paragraph have the same length. In this Video Example,
you will see how to achieve this effect.

They chose the system that was able
to launch most of the few applications
that existed at the time. It happened
to be DOS (Disk Operating System) by

Microsoft. Microsoft licensed the same
operating system to other hardware
vendors and encouraged software
companies to write DOS applications.

A huge number of useful application
programs for PC-compatible machines
was the result.

PC applications were certainly use­
ful, but they were not easy to learn.
Every vendor developed a different
user interface: the collection of key­
strokes, menu options, and settings
that a user needed to master to use
a software package effectively. Data
exchange between applications was
difficult, because each program used a
different data format. The Apple Mac­
intosh changed all that in 1984. The
designers of the Macintosh had the
vision to supply an intuitive user inter­
face with the computer and to force
software developers to adhere to it.
It took Microsoft and PC-compatible
manufacturers years to catch up.

Most personal computers are used
for accessing information from online
sources, entertainment, word process­
ing, and home finance. Some analysts
predict that the personal computer will
merge with the television set and cable
network into an entertainment and
information appliance.

The Visicalc Spreadsheet Running on an Apple II

234  Chapter 5  Methods

Understand the concepts of methods, arguments, and return values.

•	 A method is a named sequence of instructions.
•	 Arguments are supplied when a method is called.
•	 The return value is the result that the method computes.

 Be able to implement methods.

•	 When declaring a method, you provide a name for the method, a variable for each
argument, and a type for the result.

•	 Method comments explain the purpose of the method, the meaning of the param-
eter variables and return value, as well as any special requirements.

Describe the process of parameter passing.

•	 Parameter variables hold the arguments
supplied in the method call.

Describe the process of returning a value from a method.

•	 The return statement terminates a method call and yields the
method result.

•	 Turn computations that can be reused into methods.

Design and implement methods without return values.

•	 Use a return type of void to indicate that a method does not return a value.

Develop methods that can be reused for multiple problems.

•	 Eliminate replicated code or pseudocode by defining a method.
•	 Design your methods to be reusable. Supply parameter variables for the values

that can vary when the method is reused.

Apply the design principle of stepwise refinement.

•	 Use the process of stepwise refinement to decompose complex tasks into
simpler ones.

•	 When you discover that you need a method, write a description of the parameter
variables and return values.

•	 A method may require simpler methods to carry out its work.

C h a p t e r Summ a r y

pie(fruit) pie(fruit)

Review Exercises  235

Determine the scope of variables in a program.

•	 The scope of a variable is the part of the program in which it is
visible.

•	 Two local or parameter variables can have the same name,
provided that their scopes do not overlap.

Understand recursive method calls and implement simple recursive methods.

•	 A recursive computation solves a problem by using the solution of the same
problem with simpler inputs.

•	 For a recursion to terminate, there must be special cases for the simplest inputs.
•	 The key to finding a recursive solution is reducing the input to a simpler input for

the same problem.
•	 When designing a recursive solution, do not worry about multiple nested calls.

Simply focus on reducing a problem to a slightly simpler one.

• R5.1	 In which sequence are the lines of the Cubes.java program in Section 5.2 executed,
starting with the first line of main?

• R5.2	 Write method headers for methods with the following descriptions.
a.	Computing the larger of two integers
b.	Computing the smallest of three floating-point numbers
c.	Checking whether an integer is a prime number, returning true if it is and

false otherwise
d.	Checking whether a string is contained inside another string
e.	Computing the balance of an account with a given initial balance, an annual

interest rate, and a number of years of earning interest
f.	 Printing the balance of an account with a given initial balance and an annual

interest rate over a given number of years
g.	Printing the calendar for a given month and year
h.	Computing the weekday for a given day, month, and year (as a string such

as "Monday")
i.	 Generating a random integer between 1 and n

• R5.3	 Give examples of the following methods from the Java library.
a.	A method with a double argument and a double return value
b.	A method with two double arguments and a double return value
c.	A method with a String argument and a double return value
d.	A method with no arguments and a double return value

• R5.4	 True or false?
a.	A method has exactly one return statement.
b.	A method has at least one return statement.

R e vi e w E x e r ci s e s

236  Chapter 5  Methods

c.	A method has at most one return value.
d.	A method with return value void never has a return statement.
e.	When executing a return statement, the method exits immediately.
f.	 A method with return value void must print a result.
g.	A method without parameter variables always returns the same value.

•• R5.5	 Consider these methods:
public static double f(double x) { return g(x) + Math.sqrt(h(x)); }
public static double g(double x) { return 4 * h(x); }
public static double h(double x) { return x * x + k(x) - 1; }
public static double k(double x) { return 2 * (x + 1); }

Without actually compiling and running a program, determine the results of the
following method calls.

a.	double x1 = f(2);
b.	double x2 = g(h(2));
c.	double x3 = k(g(2) + h(2));
d.	double x4 = f(0) + f(1) + f(2);
e.	double x5 = f(-1) + g(-1) + h(-1) + k(-1);

• R5.6	 What is the difference between an argument and a return value? How many argu-
ments can a method call have? How many return values?

•• R5.7	 Design a method that prints a floating-point number as a currency value (with a $
sign and two decimal digits).

a.	Indicate how the programs ch02/section_3/Volume2.java and ch04/section_3/
InvestmentTable.java should change to use your method.

b.	What change is required if the programs should show a different currency, such
as euro?

•• Business R5.8	 Write pseudocode for a method that translates a telephone number with letters in it
(such as 1-800-FLOWERS) into the actual phone number. Use the standard letters
on a phone pad.

•• R5.9	 Describe the scope error in the following program and explain how to fix it.
public class Conversation
{
 public static void main(String[] args)
 {
 Scanner in = new Scanner(System.in);

Review Exercises  237

 System.out.print("What is your first name? ");
 String input = in.next();
 System.out.println("Hello, " + input);
 System.out.print("How old are you? ");
 int input = in.nextInt();
 input++;
 System.out.println("Next year, you will be " + input);
 }
}

•• R5.10	 For each of the variables in the following program, indicate the scope. Then deter
mine what the program prints, without actually running the program.

1	 public class Sample
2	 {
3	 public static void main(String[] args)
4	 {
5	 int i = 10;
6	 int b = g(i);
7	 System.out.println(b + i);
8	 }
9	

10	 public static int f(int i)
11	 {
12	 int n = 0;
13	 while (n * n <= i) { n++; }
14	 return n - 1;
15	 }
16	
17	 public static int g(int a)
18	 {
19	 int b = 0;
20	 for (int n = 0; n < a; n++)
21	 {
22	 int i = f(n);
23	 b = b + i;
24	 }
25	 return b;
26	 }
27	 }

•• R5.11	 Use the process of stepwise refinement to describe the process of making scrambled
eggs. Discuss what you do if you do not find eggs in the refrigerator.

• R5.12	 Perform a walkthrough of the intName method with the following arguments:
a.	5
b.	12
c.	21
d.	301
e.	324
f.	 0
g.	-2

•• R5.13	 Consider the following method:
public static int f(int a)
{
 if (a < 0) { return -1; }
 int n = a;

238  Chapter 5  Methods

 while (n > 0)
 {
 if (n % 2 == 0) // n is even
 {
 n = n / 2;
 }
 else if (n == 1) { return 1; }
 else { n = 3 * n + 1; }
 }
 return 0;
}

Perform traces of the computations f(-1), f(0), f(1), f(2), f(10), and f(100).

••• R5.14	 Consider the following method that is intended to swap the values of two integers:
public static void falseSwap(int a, int b)
{
 int temp = a;
 a = b;
 b = temp;
}

public static void main(String[] args)
{
 int x = 3;
 int y = 4;
 falseSwap(x, y);
 System.out.println(x + " " + y);
}

Why doesn’t the falseSwap method swap the contents of x and y?

••• R5.15	 Give pseudocode for a recursive method for printing all substrings of a given string.
For example, the substrings of the string "rum" are "rum" itself, "ru", "um", "r", "u",
"m", and the empty string. You may assume that all letters of the string are different.

••• R5.16	 Give pseudocode for a recursive method that sorts all letters in a string. For example,
the string "goodbye" would be sorted into "bdegooy".

• P5.1	 Write the following methods and provide a program to test them.
a.	double smallest(double x, double y, double z), returning the smallest of the

arguments
b.	double average(double x, double y, double z), returning the average of the

arguments

•• P5.2	 Write the following methods and provide a program to test them.
a.	boolean allTheSame(double x, double y, double z), returning true if the arguments

are all the same
b.	boolean allDifferent(double x, double y, double z), returning true if the argu-

ments are all different
c.	boolean sorted(double x, double y, double z), returning true if the arguments are

sorted, with the smallest one coming first

P r o g r a mmi n g E x e r ci s e s

Programming Exercises  239

•• P5.3	 Write the following methods.
a.	int firstDigit(int n), returning the first digit of the argument
b.	int lastDigit(int n), returning the last digit of the argument
c.	int digits(int n), returning the number of digits of the argument

For example, firstDigit(1729) is 1, lastDigit(1729) is 9, and digits(1729) is 4. Provide a
program that tests your methods.

• P5.4	 Write a method
public static String middle(String str)

that returns a string containing the middle character in str if the length of str is odd,
or the two middle characters if the length is even. For example, middle("middle")
returns "dd".

• P5.5	 Write a method
public static String repeat(String str, int n)

that returns the string str repeated n times. For example, repeat("ho", 3) returns
"hohoho".

•• P5.6	 Write a method
public static int countVowels(String str)

that returns a count of all vowels in the string str. Vowels are the letters a, e, i, o, and
u, and their uppercase variants.

•• P5.7	 Write a method
public static int countWords(String str)

that returns a count of all words in the string str. Words are separated by spaces. For
example, countWords("Mary had a little lamb") should return 5.

•• P5.8	 It is a well-known phenomenon that most people are easily able to read a text whose
words have two characters flipped, provided the first and last letter of each word are
not changed. For example,

I dn’ot gvie a dman for a man taht can olny sepll a wrod one way. (Mrak Taiwn)

Write a method String scramble(String word) that constructs a scrambled version of a
given word, randomly flipping two characters other than the first and last one. Then
write a program that reads words and prints the scrambled words.

• P5.9	 Write methods

public static double sphereVolume(double r)
public static double sphereSurface(double r)
public static double cylinderVolume(double r, double h)
public static double cylinderSurface(double r, double h)
public static double coneVolume(double r, double h)
public static double coneSurface(double r, double h)

that compute the volume and surface area of a sphere with radius r, a cylinder with a
circular base with radius r and height h, and a cone with a circular base with radius r
and height h. Then write a program that prompts the user for the values of r and h,
calls the six methods, and prints the results.

240  Chapter 5  Methods

•• P5.10	 Write a method
public static double readDouble(String prompt)

that displays the prompt string, followed by a space, reads a floating-point number
in, and returns it. Here is a typical usage:

salary = readDouble("Please enter your salary:");
percentageRaise = readDouble("What percentage raise would you like?");

•• P5.11	 Enhance the intName method so that it works correctly for values < 1,000,000,000.

•• P5.12	 Enhance the intName method so that it works correctly for negative values and zero.
Caution: Make sure the improved method doesn’t print 20 as "twenty zero".

••• P5.13	 For some values (for example, 20), the intName method returns a string with a lead-
ing space (" twenty"). Repair that blemish and ensure that spaces are inserted only
when necessary. Hint: There are two ways of accomplishing this. Either ensure that
leading spaces are never inserted, or remove leading spaces from the result before
returning it.

••• P5.14	 Write a method String getTimeName(int hours, int minutes) that returns the English
name for a point in time, such as "ten minutes past two", "half past three", "a quarter to
four", or "five o'clock". Assume that hours is between 1 and 12.

•• P5.15	 Write a recursive method
public static String reverse(String str)

that computes the reverse of a string. For example, reverse("flow") should return
"wolf". Hint: Reverse the substring starting at the second character, then add the first
character at the end. For example, to reverse "flow", first reverse "low" to "wol", then
add the "f" at the end.

•• P5.16	 Write a recursive method
public static boolean isPalindrome(String str)

that returns true if str is a palindrome, that is, a word that is the same when reversed.
Examples of palindrome are “deed”, “rotor”, or “aibohphobia”. Hint: A word is a
palindrome if the first and last letters match and the remainder is also a palindrome.

•• P5.17	 Use recursion to implement a method public static boolean find(String str, String
match) that tests whether match is contained in str:

boolean b = find("Mississippi", "sip"); // Sets b to true

Hint: If str starts with match, then you are done. If not, consider the string that you
obtain by removing the first character.

• P5.18	 Use recursion to determine the number of digits in an integer n. Hint: If n is < 10, it
has one digit. Otherwise, it has one more digit than n / 10.

• P5.19	 Use recursion to compute an, where n is a positive integer. Hint: If n is 1, then
an = a. If n is even, then an = (an/2)2. Otherwise, an = a × an–1.

•• P5.20	 Leap years. Write a method
public static boolean isLeapYear(int year)

that tests whether a year is a leap year: that is, a year with 366 days. Exercise P3.28
describes how to test whether a year is a leap year. In this exercise, use multiple if
statements and return statements to return the result as soon as you know it.

Programming Exercises  241

•• P5.21	 In Exercise P3.26 you were asked to write a program to
convert a number to its representation in Roman numerals.
At the time, you did not know how to eliminate duplicate
code, and as a consequence the resulting program was rather
long. Rewrite that program by implementing and using the
following method:

public static String romanDigit(int n, String one, String five, String ten)

That method translates one digit, using the strings specified for the one, five, and ten
values. You would call the method as follows:

romanOnes = romanDigit(n % 10, “I”, “V”, “X”);
n = n / 10;
romanTens = romanDigit(n % 10, “X”, “L”, “C”);
. . .

•• Business P5.22	 Write a method that computes the balance of a bank account with a given initial
balance and interest rate, after a given number of years. Assume interest is com
pounded yearly.

•• Business P5.23	 Write a program that prints instructions to get coffee, asking the user for input
whenever a decision needs to be made. Decompose each task into a method, for
example:

public static void brewCoffee()
{
 System.out.println(“Add water to the coffee maker.”);
 System.out.println(“Put a filter in the coffee maker.”);
 grindCoffee();
 System.out.println(“Put the coffee in the filter.”);
 . . .
}

•• Business P5.24	 Write a program that prints a paycheck. Ask the program user for the name of the
employee, the hourly rate, and the number of hours worked. If the number of hours
exceeds 40, the employee is paid “time and a half”, that is, 150 percent of the hourly
rate on the hours exceeding 40. Your check should look similar to that in the fig-
ure below. Use fictitious names for the payer and the bank. Be sure to use stepwise
refinement and break your solution into several methods. Use the intName method to
print the dollar amount of the check.

AmountDate

CHECK
NUMBER 063331 74-39

311 567390
Publishers, Bank Minnesota
2000 Prince Blvd
Jonesville, MN 55400

4659484PAY

TWO HUNDRED SEVENTY FOUR AND 15 / 100 **
TO THE ORDER OF:

John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774

JOHN DOE
1009 Franklin Blvd
Sunnyvale, CA 95014

04/29/13 $*******274.15

•• Business P5.25	 Postal bar codes. For faster sorting of letters, the United States Postal Service encour-
ages companies that send large volumes of mail to use a bar code denoting the zip
code (see Figure 6).

242  Chapter 5  Methods

Figure 6  A Postal Bar Code

*************** ECRLOT ** CO57

CODE C671RTS2
JOHN DOE CO57
1009 FRANKLIN BLVD
SUNNYVALE CA 95014 – 5143

The encoding scheme for a five-digit zip code is shown in Figure 7. There are
full-height frame bars on each side. The five encoded digits are followed by a check
digit, which is computed as follows: Add up all digits, and choose the check digit to
make the sum a multiple of 10. For example, the zip code 95014 has a sum of 19, so
the check digit is 1 to make the sum equal to 20.

Each digit of the zip code, and the check digit, is encoded according to the table
below, where 1 denotes a full bar and 0 a half bar:

Digit
Bar 1 

(weight 7)
Bar 2 

(weight 4)
Bar 3 

(weight 2)
Bar 4 

(weight 1)
Bar 5 

(weight 0)

1 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 1 0 0 0 1

8 1 0 0 1 0

9 1 0 1 0 0

0 1 1 0 0 0

The digit can be easily computed from the bar code using the column weights 7, 4, 2,
1, 0. For example, 01100 is 0 × 7 + 1 × 4 + 1 × 2 + 0 × 1 + 0 × 0 = 6. The only exception
is 0, which would yield 11 according to the weight formula.

Figure 7  Encoding for Five-Digit Bar Codes

Frame bars

Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Check
Digit

Programming Exercises  243

Write a program that asks the user for a zip code and prints the bar code. Use : for
half bars, | for full bars. For example, 95014 becomes

||:|:::|:|:||::::::||:|::|:::|||

Provide these methods:
public static void printDigit(int d)
public static void printBarCode(int zipCode)

••• Business P5.26	 Write a program that reads in a bar code (with : denoting half bars and | denoting
full bars) and prints out the zip code it represents. Print an error message if the bar
code is not correct.

•• Business P5.27	 Write a program that converts a Roman number such as MCMLXXVIII to its deci-
mal number representation. Hint: First write a method that yields the numeric value
of each of the letters. Then use the following algorithm:

total = 0
While the roman number string is not empty
	 If value(first character) is at least value(second character), or the string has length 1
		 Add value(first character) to total.
		 Remove the character.
	 Else
		 Add the difference value(second character) - value(first character) to total.
		 Remove both characters.

•• Business P5.28	 A non-governmental organization needs a program to calculate the amount of finan-
cial assistance for needy families. The formula is as follows:

•	 If the annual household income is between $30,000 and $40,000 and the
household has at least three children, the amount is $1,000 per child.

•	 If the annual household income is between $20,000 and $30,000 and the
household has at least two children, the amount is $1,500 per child.

•	 If the annual household income is less than $20,000, the amount is $2,000 per
child.

Implement a method for this computation. Write a program that asks for the house-
hold income and number of children for each applicant, printing the amount
returned by your method. Use –1 as a sentinel value for the input.

••• Business P5.29	 In a social networking service, a user has friends, the
friends have other friends, and so on. We are interested
in knowing how many people can be reached from a
person by following a given number of friendship rela-
tions. This number is called the “degree of separation”:
one for friends, two for friends of friends, and so on.
Because we do not have the data from an actual social
network, we will simply use an average of the number of friends per user.
Write a recursive method

public static double reachablePeople(int degree, double averageFriendsPerUser)

Use that method in a program that prompts the user for the desired degree and
average, and then prints the number of reachable people. This number should
include the original user.

244  Chapter 5  Methods

•• Business P5.30	 Having a secure password is a very important practice, when much of our informa-
tion is stored online. Write a program that validates a new password, following these
rules:

•	 The password must be at least 8 characters long.
•	 The password must have at least one uppercase and one lowercase letter
•	 The password must have at least one digit.

Write a program that asks for a password, then asks again to confirm it. If the
passwords don’t match or the rules are not fulfilled, prompt again. Your program
should include a method that checks whether a password is valid.

••• Science P5.31	 You are designing an element for a control panel that displays a temperature value
between 0 and 100. The element’s color should vary continuously from blue (when
the temperature is 0) to red (when the temperature is 100). Write a method public
static int colorForValue(double temperature) that returns a color value for the given
temperature. Colors are encoded as red/green/blue values, each between 0 and 255.
The three colors are combined into a single integer, using the formula

color = 65536 × red + 256 × green + blue

Each of the intermediate colors should be fully saturated; that is, it should be on the
outside of the color cube, along the path that goes from blue through cyan, green,
and yellow to red.

B

G

R

255

255

255

White (255, 255, 255)

Path

You need to know how to interpolate between values. In general, if an output y
should vary from c to d as an input x varies from a to b, then y is computed as follows:

z = (x – a) / (b – a)

y = d z + c (1 – z)

If the temperature is between 0 and 25 degrees, interpolate between blue and cyan,
whose (red, green, blue) components are (0, 0, 255) and (0, 255, 255). For temperature
values between 25 and 50, interpolate between (0, 255, 255) and (0, 255, 0), which rep-
resents the color green. Do the same for the remaining two path segments.

You need to interpolate each color component separately and then combine the
interpolated colors to a single integer.

Be sure to use appropriate helper methods to solve your task.

•• Science P5.32	 In a movie theater, the angle q at which a viewer sees the picture on the screen
depends on the distance x of the viewer from the screen. For a movie theater with the
dimensions shown in the picture below, write a method that computes the angle for a
given distance.

Programming Exercises  245

24 ft.

6 ft.8°

θ
θ

x

Next, provide a more general method that works for theaters with arbitrary
dimensions.

•• Science P5.33	 The effective focal length f of a lens of thickness d
that has surfaces with radii of curvature R1 and R2
is given by

1
1

1 1 1

1 2 1 2f
n

R R
n d
nR R

= −() − +
−()











where n is the refractive index of the lens medium.
Write a method that computes f in terms of the other
parameters.

•• Science P5.34	 A laboratory container is shaped like the frustum of a cone:

h

R2

R1

Write methods to compute the volume and surface area, using these equations:

V h R R R R= + +()1
3 1

2
2
2

1 2π

S R R R R h R= +() −() + +π π1 2 2 1
2 2

1
2

•• Science P5.35	 Electric wire, like that in the photo, is a cylindrical conductor covered by an insulat-
ing material. The resistance of a piece of wire is given by the formula

R
L

A
L

d
= =ρ ρ

π
4

2

where ρ is the resistivity of the conductor, and L, A, and d are the length, cross-
sectional area, and diameter of the wire. The resistivity of copper is 1.678 × 10−8 Ω m.

f

246  Chapter 5  Methods

The wire diameter, d, is commonly specified by the American wire gauge (AWG),
which is an integer, n. The diameter of an AWG n wire is given by the formula

d
n

= ×
−

0 127 92
36

39. mm

Write a method
public static double diameter(int wireGauge)

that accepts the wire gauge and returns the corresponding wire diameter. Write
another method

public static double copperWireResistance(double length, int wireGauge)

that accepts the length and gauge of a piece of copper wire and returns the resistance
of that wire. The resistivity of aluminum is 2.82 × 10−8 Ω m. Write a third method

public static double aluminumWireResistance(double length, int wireGauge)

that accepts the length and gauge of a piece of aluminum wire and returns the
resistance of that wire.
Write a program to test these methods.

•• Science P5.36	 The drag force on a car is given by

F v ACD D= 1
2

2ρ

where ρ is the density of air (1.23 kg̸m3), v is the velocity in units of m̸s, A is the
projected area of the car (2.5 m2), and CD is the drag coefficient (0.2).
The amount of power in watts required to overcome such drag force is P = FDv, and
the equivalent horsepower required is Hp = P ̸ 746. Write a program that accepts a
car’s velocity and computes the power in watts and in horsepower needed to over-
come the resulting drag force. Note: 1 mph = 0.447 m̸s.

A n s w e r s t o S e l f- C h e ck Q u e s t i o n s

1.	 The arguments are 3 and 2. The return value
is 9.

2.	 The inner call to Math.pow returns 22 = 4. There-
fore, the outer call returns 42 = 16.

3.	 3.0
4.	 Users of the method can treat it as a black box.
5.	 27
6.	 8 × 8 × 8 = 512
7.	 double volume = Math.pow(sideLength, 3);

return volume;

8.	 public static double squareArea(
 double sideLength)
{
 double area = sideLength * sideLength;
 return area;
}

9.	 (2 + 3) / (3 - 2) = 5
10.	 When the mystery method is called, x is set to

5, y is set to 7, and z becomes 12.0. Then z is
changed to 6.0, and that value is returned and
printed.

11.	 When the method is called, x is set to 5. Then
y is set to 25, and that value is returned and
printed.

12.	 When the method is called, n is set to 5. Then n
is incremented twice, setting it to 7. That value
is returned and printed.

13.	 It acts the same way: If sideLength is 0, it returns
0 directly instead of computing 0 × 0 × 0.

14.	 It returns true if n is even; false if n is odd.

Answers to Self-Check Questions  247

15.	 public static boolean mystery(int n)
{
 return n % 2 == 0;
}

16.	 boxString("Hello");
boxString("World");

17.	 The boxString method does not return a value.
Therefore, you cannot use it in a call to the
print method.

18.	 public static void shout(String message)
{
 System.out.println(message ++ "!!!");
}

19.	 public static void boxString(String contents)
{
 int n = contents.length();
 for (int i = 0; i < n + 4; i++)
 {
 System.out.print("-");
 }
 System.out.println();
 System.out.println("! " + contents + " !");
 for (int i = 0; i < n + 4; i++)
 {
 System.out.print("-");
 }
 System.out.println()
}

20.	 public static void printLine(int count)
{
 for (int i = 0; i < count; i++)
 {
 System.out.print("-");
 }
 System.out.println();
}
public static void boxString(String contents)
{
 int n = contents.length();
 printLine(n + 2);
 System.out.println("!" + contents + "!");
 printLine(n + 2);
}

21.	 int totalPennies = getPennies(total);
int taxPennies = getPennies(total * taxRate);

where the method is defined as
/**
 @param amount an amount in dollars and cents
 @return the number of pennies in the amount
*/
public static int getPennies(double amount)
{
 return (int) Math.round(100 * amount) % 100;
}

22.	 if (isEven(page)) . . .
where the method is defined as follows:
public static boolean isEven(int n)
{
 return n % 2 == 0;
}

23.	 Add parameter variables so you can pass the
initial balance and interest rate to the method:
public static double balance(
 double initialBalance, double rate,
 int years)
{
 return initialBalance * pow(
 1 + rate / 100, years);
}

24.	 int spaces = countSpaces(input);
where the method is defined as follows:
/**
 @param str any string
 @return the number of spaces in str
*/
public static int countSpaces(String str)
{
 int count = 0;
 for (int i = 0; i < str.length(); i++)
 {
 if (str.charAt(i) == ' ')
 {
 count++;
 }
 }
 return count;
}

25.	 It is very easy to replace the space with any
character.
/**
 @param str any string
 @param ch a character whose occurrences
 should be counted
 @return the number of times that ch occurs
 in str
*/
public static int count(String str, char ch)
{
 int count = 0;
 for (int i = 0; i < str.length(); i++)
 {
 if (str.charAt(i) == ch) { count++; }
 }
 return count;
}

This is useful if you want to count other char-
acters. For example, count(input, ",") counts
the commas in the input.

248  Chapter 5  Methods

26.	 Change line 28 to
name = name + digitName(part / 100)
 + " hundred";

In line 25, add the statement
if (part >= 1000)
{
 name = digitName(part / 1000) + "thousand ";
 part = part % 1000;
}

In line 18, change 1000 to 10000 in the
comment.

27.	 In the case of “teens”, we already have the last
digit as part of the name.

28.	 Nothing is printed. One way of dealing with
this case is to add the following statement
before line 23.
if (number == 0) { return "zero"; }

29.	 Here is the approximate trace:

 intName(number = 72)
 part name
 72 " seventy"
 2 " seventy two"

Note that the string starts with a blank space.
Exercise P5.13 asks you to eliminate it.

30.	 Here is one possible solution. Break up the
task print table into print header and
print body. The print header task calls print separator,
prints the header cells, and calls print separator
again. The print body task repeatedly calls print row
and then calls print separator.

31.	 Lines 14–17.
32.	 Lines 11–19.
33.	 The variables x defined in lines 5 and 15.
34.	 Rename the local variable x that is declared in

line 15, or rename the parameter variable x that
is declared in line 10.

35.	 The main method accesses the local variable s
of the mystery method. Assuming that the main
method intended to print the last value of s
before the method returned, it should simply
print the return value that is stored in its local
variable x.

36.	 [][][][]
[][][]
[][]
[]

37.	 4 + 3 + 2 + 1 + 0 = 10
38.	 mystery(10) + 1 = mystery(5) + 2 = mystery(2) + 3

 = mystery(1) + 4 = mystery(0) + 5 = 5

39.	 The idea is to print one [], then print n - 1 of
them.
public static void printBoxes(int n)
{
 if (n == 0) { return; }
 System.out.print("[]");
 printBoxes(n - 1);
}

40.	 Simply add the following to the beginning of
the method:
if (part >= 1000)
{
 return intName(part / 1000) + " thousand "
 + intName(part % 1000);
}

6C h a p t e r

249

Arrays and
Array L ists

To collect elements using arrays
and array lists

To use the enhanced for loop for traversing arrays and array lists

To learn common algorithms for processing arrays and array lists

To work with two-dimensional arrays

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

6.1  Arrays  250

Syntax 6.1: Arrays  251
Common Error 6.1: Bounds Errors  255
Common Error 6.2: Uninitialized Arrays  255
Programming Tip 6.1: Use Arrays for Sequences

of Related Items  256
Random Fact 6.1: An Early Internet Worm  256

6.2  The Enhanced for Loop  257

Syntax 6.2: The Enhanced for Loop  258

6.3  Common Array Algorithms  258

Common Error 6.3: Underestimating the Size
of a Data Set  267

Special Topic 6.1: Sorting with the Java Library  267
Special Topic 6.2: Binary Search  267

6.4  Using Arrays with Methods  268

Special Topic 6.3: Methods with a Variable
Number of Parameters  272

6.5  Problem Solving: Adapting
Algorithms  272

Programming Tip 6.2: Reading Exception
Reports  274

How To 6.1: Working with Arrays  275
Worked Example 6.1: Rolling the Dice 

6.6  Problem Solving: Discovering
Algorithms by Manipulating
Physical Objects  279

Video Example 6.1: Removing Duplicates from
an Array 

6.7  Two-Dimensional Arrays  282

Syntax 6.3: Two-Dimensional Array
Declaration  283

Worked Example 6.2: A World Population Table 
Special Topic 6.4: Two-Dimensional Arrays with

Variable Row Lengths  288
Special Topic 6.5: Multidimensional Arrays  289

6.8  Array Lists  289

Syntax 6.4: Array Lists  290
Common Error 6.4: Length and Size  299
Special Topic 6.6: The Diamond Syntax

in Java 7  299
Video Example 6.2: Game of Life 

250

In many programs, you need to collect large numbers of
values. In Java, you use the array and array list constructs
for this purpose. Arrays have a more concise syntax,
whereas array lists can automatically grow to any desired
size. In this chapter, you will learn about arrays, array lists,
and common algorithms for processing them.

6.1  Arrays
We start this chapter by introducing the array data type. Arrays are the fundamental
mechanism in Java for collecting multiple values. In the following sections, you will
learn how to declare arrays and how to access array elements.

6.1.1  Declaring and Using Arrays

Suppose you write a program that reads a sequence of values and prints out the
sequence, marking the largest value, like this:

32
54
67.5
29
35
80
115 <= largest value	
44.5
100
65

You do not know which value to mark as the largest one until you have seen them all.
After all, the last value might be the largest one. Therefore, the program must first
store all values before it can print them.

Could you simply store each value in a separate variable? If you know that there
are ten values, then you could store the values in ten variables value1, value2, value3, …,
value10. However, such a sequence of variables is not very practical to use. You would
have to write quite a bit of code ten times, once for each of the variables. In Java, an
array is a much better choice for storing a sequence of values of the same type.

Here we create an array that can hold ten values of type double:
new double[10]

The number of elements (here, 10) is called the length of the array.
The new operator constructs the array. You will want to store the array in a variable

so that you can access it later.
The type of an array variable is the type of the element to be stored, followed by [].

In this example, the type is double[], because the element type is double.
Here is the declaration of an array variable of type double[] (see Figure 1):
double[] values; 1

When you declare an array variable, it is not yet initialized. You need to initialize the
variable with the array:

double[] values = new double[10]; 2

An array collects a
sequence of values of
the same type.

6.1 A rrays   251

Figure 1  An Array of Size 10

1

Declare the array variable

values =

2 double[]

0
0

0
0
0
0

0
0
0
0

values =

3 double[]

35
0

0
0
0
0

0
0
0
0

values =
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
Initialize it with an array Access an array element

Now values is initialized with an array of 10 numbers. By default, each number in the
array is 0.

When you declare an array, you can specify the initial values. For example,
double[] moreValues = { 32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65 };

When you supply initial values, you don’t use the new operator. The compiler deter-
mines the length of the array by counting the initial values.

To access a value in an array, you specify which “slot” you want to use. That is
done with the [] operator:

values[4] = 35; 3

Now the number 4 slot of values is filled with 35 (see Figure 1). This “slot number” is
called an index. Each slot in an array contains an element.

Because values is an array of double values, each element values[i] can be used like
any variable of type double. For example, you can display the element with index 4
with the following command:

System.out.println(values[4]);

Individual elements
in an array are
accessed by an
integer index i, using
the notation
array[i].

An array element
can be used like
any variable.

Syntax 6.1	 Arrays

 double[] values = new double[10];

 double[] moreValues = { 32, 54, 67.5, 29, 35 };

Type of array variable

List of initial values

Name of array variable

Use brackets to access an element.

values[i] = 0;

The index must be ≥ 0 and < the length of the array.
 See page 255.

Length
Element
type

To construct an array: new typeName[length]

To access an element: arrayReference[index]

Syntax

252  Chapter 6  Arrays and Array Lists

Before continuing, we must take care of an
important detail of Java arrays. If you look
carefully at Figure 1, you will find that the
fifth element was filled when we changed
values[4]. In Java, the elements of arrays
are numbered starting at 0. That is, the
legal elements for the values array are

values[0], the first element
values[1], the second element
values[2], the third element
values[3], the fourth element
values[4], the fifth element
. . .
values[9], the tenth element

In other words, the declaration
double[] values = new double[10];

creates an array with ten elements. In this array, an index can be any integer ranging
from 0 to 9.

You have to be careful that the index stays within the valid range. Trying to access
an element that does not exist in the array is a serious error. For example, if values has
ten elements, you are not allowed to access values[20]. Attempting to access an ele-
ment whose index is not within the valid index range is called a bounds error. The
compiler does not catch this type of error. When a bounds error occurs at run time, it
causes a run-time exception.

Here is a very common bounds error:
double[] values = new double[10];
values[10] = value;

There is no values[10] in an array with ten elements—the index can range from 0 to 9.
To avoid bounds errors, you will want to know how many elements are in an array.

The expression values.length yields the length of the values array. Note that there are
no parentheses following length.

Table 1 Declaring Arrays

int[] numbers = new int[10]; An array of ten integers. All elements are
initialized with zero.

final int LENGTH = 10;
int[] numbers = new int[LENGTH];

It is a good idea to use a named constant
instead of a “magic number”.

int length = in.nextInt();
double[] data = new double[length];

The length need not be a constant.

int[] squares = { 0, 1, 4, 9, 16 }; An array of five integers, with initial values.

String[] friends = { "Emily", "Bob", "Cindy" }; An array of three strings.

double[] data = new int[10]; Error: You cannot initialize a double[]
variable with an array of type int[].

Like a mailbox that is identified by a box
number, an array element is identified by
an index.

An array index must
be at least zero and
less than the size of
the array.

A bounds error,
which occurs if you
supply an invalid
array index, can
cause your program
to terminate.

6.1 A rrays   253

The following code ensures that you only access the array when the index variable
i is within the legal bounds:

if (0 <= i && i < values.length) { values[i] = value; }

Arrays suffer from a significant limitation: their length is fixed. If you start out with
an array of 10 elements and later decide that you need to add additional elements,
then you need to make a new array and copy all elements of the existing array into the
new array. We will discuss this process in detail in Section 6.3.9.

To visit all elements of an array, use a variable for the index. Suppose values has ten
elements and the integer variable i is set to 0, 1, 2, and so on, up to 9. Then the expres-
sion values[i] yields each element in turn. For example, this loop displays all elements
in the values array.

for (int i = 0; i < 10; i++)
{
 System.out.println(values[i]);
}

Note that in the loop condition the index is less than 10 because there is no element
corresponding to values[10].

6.1.2  Array References

If you look closely at Figure 1, you will note that the variable values does not store
any numbers. Instead, the array is stored elsewhere and the values variable holds a
reference to the array. (The reference denotes the location of the array in memory.)
When you access the elements in an array, you need not be concerned about the fact
that Java uses array references. This only becomes important when copying array
references.

When you copy an array variable into another, both variables refer to the same
array (see Figure 2).

int[] scores = { 10, 9, 7, 4, 5 };
int[] values = scores; // Copying array reference

You can modify the array through either of the variables:
scores[3] = 10;
System.out.println(values[3]); // Prints 10

Section 6.3.9 shows how you can make a copy of the contents of the array.

Use the expression
array.length to find
the number of
elements in an array.

An array reference
specifies the location
of an array. Copying
the reference yields a
second reference to
the same array.

Figure 2 
Two Array Variables Referencing the Same Array

int[]
scores =

values =
10
9
7
4
5

254  Chapter 6  Arrays and Array Lists

6.1.3  Partially Filled Arrays

An array cannot change size at run time. This is a problem when you don’t know in
advance how many elements you need. In that situation, you must come up with a
good guess on the maximum number of elements that you need to store. For exam-
ple, we may decide that we sometimes want to store more than ten elements, but
never more than 100:

final int LENGTH = 100;
double[] values = new double[LENGTH];

In a typical program run, only a part of the array will be occupied by actual elements.
We call such an array a partially filled array. You must keep a companion variable
that counts how many elements are actually used. In Figure 3 we call the companion
variable currentSize.

The following loop collects inputs and fills up the values array:

int currentSize = 0;
Scanner in = new Scanner(System.in);
while (in.hasNextDouble())
{
 if (currentSize < values.length)
 {
 values[currentSize] = in.nextDouble();
 currentSize++;
 }
}

At the end of this loop, currentSize contains the actual number of elements in the
array. Note that you have to stop accepting inputs if the currentSize companion vari-
able reaches the array length.

To process the gathered array elements, you again use the companion variable, not
the array length. This loop prints the partially filled array:

for (int i = 0; i < currentSize; i++)
{
 System.out.println(values[i]);

}

With a partially filled
array, you need to
remember how many
elements are filled.

With a partially filled
array, keep a
companion variable
for the current size.

O n l i n e E x a m p l e

A program
demonstrating array
operations.

Figure 3  A Partially Filled Array

double[]values =

29
67.5
54
32

values.length

...Not currently used

currentSize

6.1 A rrays   255

1.	 Declare an array of integers containing the first five prime numbers.
2.	 Assume the array primes has been initialized as described in Self Check 1. What

does it contain after executing the following loop?
for (int i = 0; i < 2; i++)
{
 primes[4 - i] = primes[i];
}

3.	 Assume the array primes has been initialized as described in Self Check 1. What
does it contain after executing the following loop?
for (int i = 0; i < 5; i++)
{
 primes[i]++;
}

4.	 Given the declaration
int[] values = new int[10];

write statements to put the integer 10 into the elements of the array values with
the lowest and the highest valid index.

5.	 Declare an array called words that can hold ten elements of type String.
6.	 Declare an array containing two strings, "Yes", and "No".
7.	 Can you produce the output on page 250 without storing the inputs in an array,

by using an algorithm similar to the algorithm for finding the maximum in
Section 4.7.5?

Practice It	 Now you can try these exercises at the end of the chapter: R6.1, R6.2, R6.6, P6.1.

Bounds Errors

Perhaps the most common error in using arrays is accessing a nonexistent element.

double[] values = new double[10];
values[10] = 5.4;
 // Error—values has 10 elements, and the index can range from 0 to 9

If your program accesses an array through an out-of-bounds index, there is no compiler error
message. Instead, the program will generate an exception at run time.

Uninitialized Arrays

A common error is to allocate an array variable, but not an actual array.

double[] values;
values[0] = 29.95; // Error—values not initialized

The Java compiler will catch this error. The remedy is to initialize the variable with an array:

double[] values = new double[10];

S e l f C h e c k

Common Error 6.1

Common Error 6.2

256  Chapter 6  Arrays and Array Lists

Use Arrays for Sequences of Related Items

Arrays are intended for storing sequences of values with the same meaning. For example, an
array of test scores makes perfect sense:

int[] scores = new int[NUMBER_OF_SCORES];

But an array

int[] personalData = new int[3];

that holds a person’s age, bank balance, and shoe size in positions 0, 1, and 2 is bad design.
It would be tedious for the programmer to remember which of these data values is stored in
which array location. In this situation, it is far better to use three separate variables.

Programming Tip 6.1

In November 1988,
Robert Morris, a stu

dent at Cornell University, launched a
so-called virus program that infected
about 6,000 computers connected to
the Internet across the United States.
Tens of thousands of computer users
were unable to read their e-mail or oth
erwise use their computers. All major
universities and many high-tech com
panies were affected. (The Internet was
much smaller then than it is now.)

The particular kind of virus used in
this attack is called a worm. The worm
program crawled from one computer
on the Internet to the next. The worm
would attempt to connect to finger,
a program in the UNIX operating sys-
tem for finding information on a user
who has an account on a particular
computer on the network. Like many
programs in UNIX, finger was written
in the C language. In order to store
the user name, the finger program
allocated an array of 512 characters,
under the assumption that nobody
would ever provide such a long input.
Unfortunately, C does not check that
an array index is less than the length
of the array. If you write into an array
using an index that is too large, you
simply overwrite memory locations
that belong to some other objects. In
some versions of the finger program,
the programmer had been lazy and had
not checked whether the array holding
the input characters was large enough

to hold the input. So the worm pro-
gram purposefully filled the 512-char-
acter array with 536 bytes. The excess
24 bytes would overwrite a return
address, which the attacker knew was
stored just after the array. When that
method was finished, it didn’t return
to its caller but to code supplied by the
worm (see the figure, A “Buffer Over-
run” Attack). That code ran under the
same super-user privileges as finger,
allowing the worm to gain entry into
the remote system. Had the program-
mer who wrote finger been more
conscientious, this particular attack
would not be possible.

In Java, as in C, all programmers
must be very careful not to overrun
array boundaries. However, in Java,
this error causes a run-time exception,
and it never corrupts memory outside
the array. This is one of the safety fea
tures of Java.

One may well speculate what would
possess the virus author to spend
many weeks to plan the antisocial act
of breaking into thousands of comput-
ers and disabling them. It appears that
the break-in was fully intended by the
author, but the disabling of the com-
puters was a bug, caused by continu-
ous reinfection. Morris was sentenced
to 3 years probation, 400 hours of com-
munity service, and a $10,000 fine.

In recent years, computer attacks
have intensified and the motives
have become more sinister. Instead

of disabling computers, viruses often
steal financial data or use the attacked
computers for sending spam e-mail.
Sadly, many of these attacks continue
to be possible because of poorly writ
ten programs that are susceptible to
buffer overrun errors.

Return address

Buffer for input
(512 bytes)

1 Before the attack

2 After the attack

Return address

Overrun buffer
(536 bytes)

Malicious
code

A “Buffer Overrun” Attack

Random Fact 6.1  An Early Internet Worm

6.2 T he Enhanced for Loop   257

6.2  The Enhanced for Loop
Often, you need to visit all elements of an array. The enhanced for loop makes this
process particularly easy to program.

Here is how you use the enhanced for loop to total up all elements in an array
named values:

double[] values = . . .;
double total = 0;
for (double element : values)
{
 total = total + element;
}

The loop body is executed for each element in the array values. At the beginning of
each loop iteration, the next element is assigned to the variable element. Then the loop
body is executed. You should read this loop as “for each element in values”.

This loop is equivalent to the following for loop and an explicit index variable:
for (int i = 0; i < values.length; i++)
{
 double element = values[i];
 total = total + element;
}

Note an important difference between the enhanced for loop and the basic for loop.
In the enhanced for loop, the element variable is assigned values[0], values[1], and so
on. In the basic for loop, the index variable i is assigned 0, 1, and so on.

Keep in mind that the enhanced for loop has a very specific purpose: getting the
elements of a collection, from the beginning to the end. It is not suitable for all array
algorithms. In particular, the enhanced for loop does not allow you to modify the
contents of an array. The following loop does not fill an array with zeroes:

for (double element : values)
{
 element = 0; // ERROR: this assignment does not modify array elements
}

When the loop is executed, the variable element is set to values[0]. Then element is set to
0, then to values[1], then to 0, and so on. The values array is not modified. The remedy
is simple: Use a basic for loop:

for (int i = 0; i < values.length; i++)
{
 values[i] = 0; // OK
}

The enhanced for loop is a convenient mechanism for
traversing all elements in a collection.

You can use the
enhanced for loop
to visit all elements
of an array.

Use the enhanced
for loop if you do
not need the index
values in the
loop body.

ON L INE E x a m p l e

An program that
demonstrates the
enhanced for loop.

258  Chapter 6  Arrays and Array Lists

8.	 What does this enhanced for loop do?

Syntax 6.2	 The Enhanced for Loop

for (double element : values)
{
 sum = sum + element;
}

An array

These statements
are executed for each

element.

This variable is set in each loop iteration.
It is only defined inside the loop.

The variable
contains an element,

not an index.

for (typeName variable : collection)
{
 statements
}

Syntax

int counter = 0;
for (double element : values)
{
 if (element == 0) { counter++; }
}

9.	 Write an enhanced for loop that prints all elements in the array values.
10.	 Write an enhanced for loop that multiplies all elements in a double[] array named

factors, accumulating the result in a variable named product.
11.	 Why is the enhanced for loop not an appropriate shortcut for the following basic

for loop?
for (int i = 0; i < values.length; i++) { values[i] = i * i; }

Practice It	 Now you can try these exercises at the end of the chapter: R6.7, R6.8, R6.9.

6.3  Common Array Algorithms
In the following sections, we discuss some of the most common algorithms for work-
ing with arrays. If you use a partially filled array, remember to replace values.length
with the companion variable that represents the current size of the array.

6.3.1  Filling

This loop fills an array with squares (0, 1, 4, 9, 16, ...). Note that the element with
index 0 contains 02, the element with index 1 contains 12, and so on.

for (int i = 0; i < values.length; i++)
{
 values[i] = i * i;
}

S e l f C h e c k

6.3  Common Array Algorithms   259

6.3.2  Sum and Average Value

You have already encountered this algorithm in Section 4.7.1. When the values are
located in an array, the code looks much simpler:

double total = 0;
for (double element : values)
{
 total = total + element;
}

double average = 0;
if (values.length > 0) { average = total / values.length; }

6.3.3  Maximum and Minimum

Use the algorithm from Section 4.7.5 that keeps a variable for the largest element
already encountered. Here is the implementation of that algorithm for an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Note that the loop starts at 1 because we initialize largest with values[0].
To compute the smallest element, reverse the comparison.
These algorithms require that the array contain at least one element.

6.3.4  Element Separators

When you display the elements of an array, you usually want to separate them, often
with commas or vertical lines, like this:

32 | 54 | 67.5 | 29 | 35

Note that there is one fewer separator than there are numbers. Print the separator
before each element in the sequence except the initial one (with index 0) like this:

for (int i = 0; i < values.length; i++)
{
 if (i > 0)
 {
 System.out.print(" | ");
 }
 System.out.print(values[i]);
}

If you want comma separators, you can use the Arrays.toString method. The
expression

Arrays.toString(values)

returns a string describing the contents of the array values in the form
[32, 54, 67.5, 29, 35]

When separating
elements, don’t place
a separator before
the first element.

To print five
elements, you need
four separators.

260  Chapter 6  Arrays and Array Lists

The elements are surrounded by a pair of brackets and separated by commas. This
method can be convenient for debugging:

System.out.println("values=" + Arrays.toString(values));

6.3.5  Linear Search

You often need to search for the position of a specific element in an array so that you
can replace or remove it. Visit all elements until you have found a match or you have
come to the end of the array. Here we search for the position of the first element in an
array that is equal to 100:

int searchedValue = 100;
int pos = 0;
boolean found = false;
while (pos < values.length && !found)
{
 if (values[pos] == searchedValue)
 {
 found = true;
 }
 else
 {
 pos++;
 }
}
if (found) { System.out.println("Found at position: " + pos); }
else { System.out.println("Not found"); }

This algorithm is called linear search or sequential search because you inspect the
elements in sequence. If the array is sorted, you can use the more efficient binary
search algorithm—see Special Topic 6.2 on page 267.

6.3.6  Removing an Element

Suppose you want to remove the element with index pos from the array values. As
explained in Section 6.1.3, you need a companion variable for tracking the number of
elements in the array. In this example, we use a companion variable called currentSize.

If the elements in the array are not in any particular order, simply overwrite the
element to be removed with the last element of the array, then decrement the current-
Size variable. (See Figure 4.)

To search for a
specific element,
visit the elements
and stop when you
encounter the match.

A linear search
inspects elements in
sequence until a
match is found.

Figure 4 
Removing an Element in an Unordered Array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

Decrement after
moving element

currentSize

32
54

67.5
29

34.5
80
115
44.5
100
65

Figure 5 
Removing an Element in an Ordered Array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

1
2
3
4
5

Decrement after
moving elements

32
54

67.5
29
80
115
44.5
100
65
65

6.3  Common Array Algorithms   261

values[pos] = values[currentSize - 1];
currentSize--;

The situation is more complex if the order of the elements matters. Then you must
move all elements following the element to be removed to a lower index, and then
decrement the variable holding the size of the array. (See Figure 5.)

for (int i = pos + 1; i < currentSize; i++)
{
 values[i - 1] = values[i];
}
currentSize--;

6.3.7  Inserting an Element

In this section, you will see how to insert an element into an array. Note that you
need a companion variable for tracking the array size, as explained in Section 6.1.3.

If the order of the elements does not matter, you can simply insert new elements at
the end, incrementing the variable tracking the size.

if (currentSize < values.length)
{
 currentSize++;
 values[currentSize - 1] = newElement;
}

It is more work to insert an element at a particular position in the middle of an array.
First, move all elements after the insertion location to a higher index. Then insert the
new element (see Figure 7).

Note the order of the movement: When you remove an element, you first move
the next element to a lower index, then the one after that, until you finally get to the
end of the array. When you insert an element, you start at the end of the array, move
that element to a higher index, then move the one before that, and so on until you
finally get to the insertion location.

if (currentSize < values.length)
{
 currentSize++;
 for (int i = currentSize - 1; i > pos; i--)
 {
 values[i] = values[i - 1];
 }
 values[pos] = newElement;
}

A N I M AT I O N
Removing from

an Array

A N I M AT I O N
Inserting into

an Array

Before inserting an
element, move
elements to the end
of the array starting
with the last one.

Figure 6 
Inserting an Element in an Unordered Array

[0]

[1]

[2]
...

[currentSize - 1]

Incremented before
inserting element

Insert new element here
currentSize

32
54

67.5
29

34.5
80
115
44.5
100

Figure 7 
Inserting an Element in an Ordered Array

[0]

[1]

[2]
...

[pos]

[currentSize - 1]

5
4
3
2
1

Incremented before
moving elements

Insert new element here

32
54

67.5
29

34.5
34.5
80
115
44.5
100

262  Chapter 6  Arrays and Array Lists

6.3.8  Swapping Elements

You often need to swap elements of an array. For example,
you can sort an array by repeatedly swapping elements
that are not in order.

Consider the task of swapping the elements at posi-
tions i and j of an array values. We’d like to set values[i]
to values[j]. But that overwrites the value that is currently
stored in values[i], so we want to save that first:

double temp = values[i];
values[i] = values[j];

Now we can set values[j] to the saved value.
values[j] = temp;

Figure 8 shows the process.

To swap two elements, you
need a temporary variable.

Use a temporary
variable when
swapping two
elements.

Figure 8  Swapping Array Elements

[0]

[1]

[2]

[3]

[4]

[i]

[j]

34.5
29

67.5
54
32

1

[i]

[j]

34.5
29

67.5
54
32

2

temp = 54

[i]

[j]

34.5
29

67.5
29
32

3

temp = 54

[i]

[j]

34.5
54

67.5
29
32

4

temp = 54

Values to be swapped
values =

values =

values =

values =

6.3  Common Array Algorithms   263

6.3.9  Copying Arrays

Array variables do not themselves hold array elements. They hold a reference to the
actual array. If you copy the reference, you get another reference to the same array
(see Figure 9):

double[] values = new double[6];
. . . // Fill array
double[] prices = values; 1

If you want to make a true copy of an array, call the Arrays.copyOf method (as shown
in Figure 9).

double[] prices = Arrays.copyOf(values, values.length); 2

The call Arrays.copyOf(values, n) allocates an array of length n, copies the first n elements
of values (or the entire values array if n > values.length) into it, and returns the new array.

In order to use the Arrays class, you need to add the following statement to the top of
your program:

import java.util.Arrays;

Another use for Arrays.copyOf is to grow an array that has run out of space. The fol-
lowing statements have the effect of doubling the length of an array (see Figure 10):

double[] newValues = Arrays.copyOf(values, 2 * values.length); 1
values = newValues; 2

The copyOf method was added in Java 6. If you use Java 5, replace
double[] newValues = Arrays.copyOf(values, n)

with

Use the Arrays.
copyOf method to
copy the elements of
an array into a
new array.

Figure 9  Copying an Array Reference versus Copying an Array

1 2

double[]
values =

prices =
32
54

67.5
29
35

47.5

double[]values =

double[]prices =

32
54

67.5
29
35

47.5

32
54

67.5
29
35

47.5

After the assignment prices = values After calling Arrays.copyOf

264  Chapter 6  Arrays and Array Lists

Figure 10  Growing an Array

double[] double[]values =

double[]newValues =

values =

double[]newValues =

1 2

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Move elements to a larger array Store the reference to the larger array in values

double[] newValues = new double[n];
for (int i = 0; i < n && i < values.length; i++)
{
 newValues[i] = values[i];
}

6.3.10  Reading Input

If you know how many inputs the user will supply, it is simple to place them into an
array:

double[] inputs = new double[NUMBER_OF_INPUTS];
for (i = 0; i < inputs.length; i++)
{
 inputs[i] = in.nextDouble();
}

However, this technique does not work if you need to read a sequence of arbitrary
length. In that case, add the inputs to an array until the end of the input has been
reached.

int currentSize = 0;
while (in.hasNextDouble() && currentSize < inputs.length)
{
 inputs[currentSize] = in.nextDouble();
 currentSize++;
}

6.3  Common Array Algorithms   265

Now inputs is a partially filled array, and the companion variable currentSize is set to
the number of inputs.

However, this loop silently throws away inputs that don’t fit into the array. A bet-
ter approach is to grow the array to hold all inputs.

double[] inputs = new double[INITIAL_SIZE];
int currentSize = 0;
while (in.hasNextDouble())
{
 // Grow the array if it has been completely filled
 if (currentSize >= inputs.length)
 {
 inputs = Arrays.copyOf(inputs, 2 * inputs.length); // Grow the inputs array
 }

 inputs[currentSize] = in.nextDouble();
 currentSize++;
}

When you are done, you can discard any excess (unfilled) elements:
inputs = Arrays.copyOf(inputs, currentSize);

The following program puts these algorithms to work, solving the task that we set our-
selves at the beginning of this chapter: to mark the largest value in an input sequence.

section_3/LargestInArray.java

1 import java.util.Scanner;
2
3 /**
4 This program reads a sequence of values and prints them, marking the largest value.
5 */
6 public class LargestInArray
7 {
8 public static void main(String[] args)
9 {

10 final int LENGTH = 100;
11 double[] values = new double[LENGTH];
12 int currentSize = 0;
13
14 // Read inputs
15
16 System.out.println("Please enter values, Q to quit:");
17 Scanner in = new Scanner(System.in);
18 while (in.hasNextDouble() && currentSize < values.length)
19 {
20 values[currentSize] = in.nextDouble();
21 currentSize++;
22 }
23
24 // Find the largest value
25
26 double largest = values[0];
27 for (int i = 1; i < currentSize; i++)
28 {
29 if (values[i] > largest)
30 {
31 largest = values[i];
32 }
33 }

266  Chapter 6  Arrays and Array Lists

34
35 // Print all values, marking the largest
36
37 for (int i = 0; i < currentSize; i++)
38 {
39 System.out.print(values[i]);
40 if (values[i] == largest)
41 {
42 System.out.print(" <== largest value");
43 }
44 System.out.println();
45 }
46 }
47 }

Program Run

Please enter values, Q to quit:
34.5 80 115 44.5 Q
34.5
80
115 <== largest value
44.5

12.	 Given these inputs, what is the output of the LargestInArray program?
20 10 20 Q

13.	 Write a loop that counts how many elements in an array are equal to zero.
14.	 Consider the algorithm to find the largest element in an array. Why don’t we

initialize largest and i with zero, like this?
double largest = 0;
for (int i = 0; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

15.	 When printing separators, we skipped the separator before the initial element.
Rewrite the loop so that the separator is printed after each element, except for
the last element.

16.	 What is wrong with these statements for printing an array with separators?
System.out.print(values[0]);
for (int i = 1; i < values.length; i++)
{
 System.out.print(", " + values[i]);
}

17.	 When finding the position of a match, we used a while loop, not a for loop. What
is wrong with using this loop instead?
for (pos = 0; pos < values.length && !found; pos++)
{
 if (values[pos] > 100)
 {
 found = true;
 }

S e l f C h e c k

6.3  Common Array Algorithms   267

}

18.	 When inserting an element into an array, we moved the elements with larger
index values, starting at the end of the array. Why is it wrong to start at the inser-
tion location, like this?
for (int i = pos; i < currentSize - 1; i++)
{
 values[i + 1] = values[i];
}

Practice It	 Now you can try these exercises at the end of the chapter: R6.17, R6.20, P6.15.

Underestimating the Size of a Data Set

Programmers commonly underestimate the amount of input data that a user will pour into an
unsuspecting program. Suppose you write a program to search for text in a file. You store each
line in a string, and keep an array of strings. How big do you make the array? Surely nobody
is going to challenge your program with an input that is more than 100 lines. Really? It is very
easy to feed in the entire text of Alice in Wonderland or War and Peace (which are available on
the Internet). All of a sudden, your program has to deal with tens or hundreds of thousands of
lines. You either need to allow for large inputs or politely reject the excess input.

Sorting with the Java Library

Sorting an array efficiently is not an easy task. You will
learn in Chapter 14 how to implement efficient sorting
algorithms. Fortunately, the Java library provides an effi-
cient sort method.

To sort an array values, call

Arrays.sort(values);

If the array is partially filled, call

Arrays.sort(values, 0, currentSize);

Binary Search

When an array is sorted, there is a much faster search algorithm than the linear search of Sec-
tion 6.3.5.

Consider the following sorted array values.

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We would like to see whether the number 15 is in the array. Let’s narrow our search by finding
whether the number is in the first or second half of the array. The last point in the first half of
the values array, values[3], is 9, which is smaller than the number we are looking for. Hence,
we should look in the second half of the array for a match, that is, in the sequence:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

Common Error 6.3

Special Topic 6.1

Special Topic 6.2

268  Chapter 6  Arrays and Array Lists

Now the last element of the first half of this sequence is 17; hence, the number must be located
in the sequence:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

The last element of the first half of this very short sequence is 12, which is smaller than the
number that we are searching, so we must look in the second half:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We still don’t have a match because 15 ≠ 17, and we cannot divide the subsequence further. If
we wanted to insert 15 into the sequence, we would need to insert it just before values[5].

This search process is called a binary search, because we cut the size of the search in half in
each step. That cutting in half works only because we know that the array is sorted. Here is an
implementation in Java:

boolean found = false;
int low = 0;
int high = values.length - 1;
int pos = 0;
while (low <= high && !found)
{
 pos = (low + high) / 2; // Midpoint of the subsequence
 if (values[pos] == searchedNumber) { found = true; }
 else if (values[pos] < searchedNumber) { low = pos + 1; } // Look in second half
 else { high = pos - 1; } // Look in first half
}
if (found) { System.out.println("Found at position " + pos); }
else { System.out.println("Not found. Insert before position " + pos); }

6.4  Using Arrays with Methods
In this section, we will explore how to write methods that process arrays.

When you define a method with an array argument, you provide a parameter vari-
able for the array. For example, the following method computes the sum of an array
of floating-point numbers:

public static double sum(double[] values)
{
 double total = 0;
 for (double element : values)
 {
 total = total + element;
 }
 return total;
}

This method visits the array elements, but it does not modify them. It is also possible
to modify the elements of an array. The following method multiplies all elements of
an array by a given factor:

public static void multiply(double[] values, double factor)
{
 for (int i = 0; i < values.length; i++)
 {

Arrays can occur as
method arguments
and return values.

6.4  Using Arrays with Methods   269

 values[i] = values[i] * factor;
 }
}

Figure 11 traces the method call
multiply(scores, 10);

Note these steps:

•	 The parameter variables values and factor are created. 1

•	 The parameter variables are initialized with the arguments that are passed in the
call. In our case, values is set to scores and factor is set to 10. Note that values and
scores are references to the same array. 2

•	 The method multiplies all array elements by 10. 3

•	 The method returns. Its parameter variables are removed. However, scores still
refers to the array with the modified elements. 4

Figure 11 
Trace of Call to
the multiply Method

scores =2

values =

factor = 10

Initializing method parameter variables

double[]

35
29

67.5
54
32

scores =1

values =

factor =

Method call

double[]

35
29

67.5
54
32

scores =3

values =

factor = 10

About to return to the caller

double[]

350
290
675
540
320

scores =4

After method call

double[]

350
290
675
540
320

270  Chapter 6  Arrays and Array Lists

A method can return an array. Simply build up the result in the method and return it.
In this example, the squares method returns an array of squares from 02 up to (n – 1)2:

public static int[] squares(int n)
{
 int[] result = new int[n];
 for (int i = 0; i < n; i++)
 {
 result[i] = i * i;
 }
 return result;
}

The following example program reads values from standard input, multiplies them
by 10, and prints the result in reverse order. The program uses three methods:

•	 The readInputs method returns an array, using the algorithm of Section 6.3.10.
•	 The multiply method has an array argument. It modifies the array elements.
•	 The printReversed method also has an array argument, but it does not modify the

array elements.

section_4/Reverse.java

1 import java.util.Scanner;
2
3 /**
4 This program reads, scales, and reverses a sequence of numbers.
5 */
6 public class Reverse
7 {
8 public static void main(String[] args)
9 {

10 double[] numbers = readInputs(5);
11 multiply(numbers, 10);
12 printReversed(numbers);
13 }
14
15 /**
16 Reads a sequence of floating-point numbers.
17 @param numberOfInputs the number of inputs to read
18 @return an array containing the input values
19 */
20 public static double[] readInputs(int numberOfInputs)
21 {
22 System.out.println("Enter " + numberOfInputs + " numbers: ");
23 Scanner in = new Scanner(System.in);
24 double[] inputs = new double[numberOfInputs];
25 for (int i = 0; i < inputs.length; i++)
26 {
27 inputs[i] = in.nextDouble();
28 }
29 return inputs;
30 }
31
32 /**
33 Multiplies all elements of an array by a factor.
34 @param values an array
35 @param factor the value with which element is multiplied
36 */

6.4  Using Arrays with Methods   271

37 public static void multiply(double[] values, double factor)
38 {
39 for (int i = 0; i < values.length; i++)
40 {
41 values[i] = values[i] * factor;
42 }
43 }
44
45 /**
46 Prints an array in reverse order.
47 @param values an array of numbers
48 @return an array that contains the elements of values in reverse order
49 */
50 public static void printReversed(double[] values)
51 {
52 // Traverse the array in reverse order, starting with the last element
53 for (int i = values.length - 1; i >= 0; i--)
54 {
55 System.out.print(values[i] + " ");
56 }
57 System.out.println();
58 }
59 }

Program Run

Enter 5 numbers:
12 25 20 0 10
100.0 0.0 200.0 250.0 120.0

19.	 How do you call the squares method to compute the first five squares and store
the result in an array numbers?

20.	 Write a method fill that fills all elements of an array of integers with a given
value. For example, the call fill(scores, 10) should fill all elements of the array
scores with the value 10.

21.	 Describe the purpose of the following method:
public static int[] mystery(int length, int n)
{
 int[] result = new int[length];
 for (int i = 0; i < result.length; i++)
 {
 result[i] = (int) (n * Math.random());
 }
 return result;
}

22.	 Consider the following method that reverses an array:
public static int[] reverse(int[] values)
{
 int[] result = new int[values.length];
 for (int i = 0; i < values.length; i++)
 {
 result[i] = values[values.length - 1 - i];
 }
 return result;
}

S e l f C h e c k

272  Chapter 6  Arrays and Array Lists

Suppose the reverse method is called with an array scores that contains the
numbers 1, 4, and 9. What is the contents of scores after the method call?

23.	 Provide a trace diagram of the reverse method when called with an array that
contains the values 1, 4, and 9.

Practice It	 Now you can try these exercises at the end of the chapter: R6.25, P6.6, P6.7.

Methods with a Variable Number of Parameters

Starting with Java version 5.0, it is possible to declare methods that receive a variable number
of parameters. For example, we can write a sum method that can compute the sum of any num-
ber of arguments:

int a = sum(1, 3); // Sets a to 4
int b = sum(1, 7, 2, 9); // Sets b to 19

The modified sum method must be declared as

public static void sum(int... values)

The ... symbol indicates that the method can receive any number of int arguments. The values
parameter variable is actually an int[] array that contains all arguments that were passed to the
method. The method implementation traverses the values array and processes the elements:

public void sum(int... values)
{
 int total = 0;
 for (int i = 0; i < values.length; i++) // values is an int[]
 {
 total = total + values[i];
 }
 return total;
}

6.5  Problem Solving: Adapting Algorithms
In Section 6.3, you were introduced to a number of fundamental array algorithms.
These algorithms form the building blocks for many programs that process arrays.
In general, it is a good problem-solving strategy to have a repertoire of fundamental
algorithms that you can combine and adapt.

Consider this example problem: You are given the quiz scores of a student. You are
to compute the final quiz score, which is the sum of all scores after dropping the low-
est one. For example, if the scores are

8 7 8.5 9.5 7 4 10

then the final score is 50.
We do not have a ready-made algorithm for this situation. Instead, consider which

algorithms may be related. These include:

•	 Calculating the sum (Section 6.3.2)
•	 Finding the minimum value (Section 6.3.3)
•	 Removing an element (Section 6.3.6)

Special Topic 6.3

By combining
fundamental
algorithms, you can
solve complex
programming tasks.

6.5 P roblem Solving: Adapting Algorithms   273

We can formulate a plan of attack that combines these algorithms:

Find the minimum.
Remove it from the array.
Calculate the sum.

Let’s try it out with our example. The minimum of

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

is 4. How do we remove it?
Now we have a problem. The removal algorithm in Section 6.3.6 locates the ele-

ment to be removed by using the position of the element, not the value.
But we have another algorithm for that:

•	 Linear search (Section 6.3.5)

We need to fix our plan of attack:

Find the minimum value.
Find its position.
Remove that position from the array.
Calculate the sum.

Will it work? Let’s continue with our example.
We found a minimum value of 4. Linear search tells us that the value 4 occurs at

position 5.

8

[0]

7

[1]

8.5

[2]

9.5

[3]

7

[4]

4

[5]

10

[6]

We remove it:

8

[0]

7

[1]

8.5

[2]

9.5

[3] [4]

7

[5]

10

Finally, we compute the sum: 8 + 7 + 8.5 + 9.5 + 7 + 10 = 50.
This walkthrough demonstrates that our strategy works.
Can we do better? It seems a bit inefficient to find the minimum and then make

another pass through the array to obtain its position.
We can adapt the algorithm for finding the minimum to yield the position of the

minimum. Here is the original algorithm:
double smallest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] < smallest)
 {
 smallest = values[i];
 }
}

When we find the smallest value, we also want to update the position:
 if (values[i] < smallest)
 {
 smallest = values[i];
 smallestPosition = i;
 }

You should be
familiar with the
implementation of
fundamental
algorithms so that
you can adapt them.

274  Chapter 6  Arrays and Array Lists

In fact, then there is no reason to keep track of the smallest value any longer. It is sim-
ply values[smallestPosition]. With this insight, we can adapt the algorithm as follows:

int smallestPosition = 0;
for (int i = 1; i < values.length; i++)
{
 if (values[i] < values[smallestPosition])
 {
 smallestPosition = i;
 }
}

With this adaptation, our problem is solved with the following strategy:

Find the position of the minimum.
Remove it from the array.
Calculate the sum.

The next section shows you a technique for discovering a new algorithm when none
of the fundamental algorithms can be adapted to a task.

24.	 Section 6.3.6 has two algorithms for removing an element. Which of the two
should be used to solve the task described in this section?

25.	 It isn’t actually necessary to remove the minimum in order to compute the total
score. Describe an alternative.

26.	 How can you print the number of positive and negative values in a given array,
using one or more of the algorithms in Section 4.7?

27.	 How can you print all positive values in an array, separated by commas?
28.	 Consider the following algorithm for collecting all matches in an array:

int matchesSize = 0;
for (int i = 0; i < values.length; i++)
{
 if (values[i] fulfills the condition)
 {
 matches[matchesSize] = values[i];
 matchesSize++;
 }
}

How can this algorithm help you with Self Check 27?

Practice It	 Now you can try these exercises at the end of the chapter: R6.26, R6.27.

Reading Exception Reports

You will sometimes have programs that terminate, reporting an “exception”, such as

Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException: 10
 at Homework1.processValues(Homework1.java:14)
 at Homework1.main(Homework1.java:36)

Quite a few students give up at that point, saying “it didn’t work”, or “my program died”,
without reading the error message. Admittedly, the format of the exception report is not very
friendly. But, with some practice, it is easy to decipher it.

O n l i n e E x a m p l e

A program that
computes the final
score using the
adapted algorithm
for finding the
minimum.

S e l f C h e c k

Programming Tip 6.2

6.5 P roblem Solving: Adapting Algorithms   275

There are two pieces of useful information:

1.	 The name of the exception, such as ArrayIndexOutOfBoundsException
2.	 The stack trace, that is, the method calls that led to the exception, such as

Homework1.java:14 and Homework1.java:36 in our example.

The name of the exception is always in the first line of the report, and it ends in Exception.
If you get an ArrayIndexOutOfBoundsException, then there was a problem with an invalid array
index. That is useful information.

To determine the line number of the offending code, look at the file names and line num-
bers. The first line of the stack trace is the method that actually generated the exception. The
last line of the stack trace is a line in main. In our example, the exception was caused by line 14
of Homework1.java. Open up the file, go to that line, and look at it! Also look at the name of the
exception. In most cases, these two pieces of information will make it completely obvious
what went wrong, and you can easily fix your error.

Sometimes, the exception was thrown by a method that is in the standard library. Here is a
typical example:

Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index
 out of range: -4
 at java.lang.String.substring(String.java:1444)
 at Homework2.main(Homework2.java:29)

The exception happened in the substring method of the String class, but the real culprit is the
first method in a file that you wrote. In this example, that is Homework2.main, and you should
look at line 29 of Homework2.java.

Step 1	 Decompose your task into steps.

You will usually want to break down your task into multiple steps, such as
•	 Reading the data into an array.
•	 Processing the data in one or more steps.
•	 Displaying the results.
When deciding how to process the data, you should be familiar with the array algorithms in
Section 6.3. Most processing tasks can be solved by using one or more of these algorithms.

How To 6.1	 Working with Arrays

In many data processing situations, you
need to process a sequence of values. This
How To walks you through the steps for
storing input values in an array and carrying
out computations with the array elements.

Consider again the problem from Sec-
tion 6.5: A final quiz score is computed by
adding all the scores, except for the lowest
one. For example, if the scores are

8 7 8.5 9.5 7 5 10

then the final score is 50.

276  Chapter 6  Arrays and Array Lists

In our sample problem, we will want to read the data. Then we will remove the minimum
and compute the total. For example, if the input is 8 7 8.5 9.5 7 5 10, we will remove the mini-
mum of 5, yielding 8 7 8.5 9.5 7 10. The sum of those values is the final score of 50.

Thus, we have identified three steps:

Read inputs.
Remove the minimum.
Calculate the sum.

Step 2	 Determine which algorithm(s) you need.

Sometimes, a step corresponds to exactly one of the basic array algorithms in Section 6.3. That
is the case with calculating the sum (Section 6.3.2) and reading the inputs (Section 6.3.10). At
other times, you need to combine several algorithms. To remove the minimum value, you can
find the minimum value (Section 6.3.3), find its position (Section 6.3.5), and remove the ele-
ment at that position (Section 6.3.6).

We have now refined our plan as follows:

Read inputs.
Find the minimum.
Find its position.
Remove the minimum.
Calculate the sum.

This plan will work—see Section 6.5. But here is an alternate approach. It is easy to compute
the sum and subtract the minimum. Then we don’t have to find its position. The revised plan is

Read inputs.
Find the minimum.
Calculate the sum.
Subtract the minimum.

Step 3	 Use methods to structure the program.

Even though it may be possible to put all steps into the main method, this is rarely a good idea.
It is better to make each processing step into a separate method. In our example, we will imple-
ment three methods:
•	 readInputs
•	 sum
•	 minimum
The main method simply calls these methods:

double[] scores = readInputs();
double total = sum(scores) - minimum(scores);
System.out.println("Final score: " + total);

Step 4	 Assemble and test the program.

Place your methods into a class. Review your code and check that you handle both normal
and exceptional situations. What happens with an empty array? One that contains a single ele-
ment? When no match is found? When there are multiple matches? Consider these boundary
conditions and make sure that your program works correctly.

In our example, it is impossible to compute the minimum if the array is empty. In that case,
we should terminate the program with an error message before attempting to call the minimum
method.

6.5 P roblem Solving: Adapting Algorithms   277

What if the minimum value occurs more than once? That means that a student had more
than one test with the same low score. We subtract only one of the occurrences of that low
score, and that is the desired behavior.

The following table shows test cases and their expected output:

Test Case Expected Output Comment

8 7 8.5 9.5 7 5 10 50 See Step 1.

8 7 7 9 24 Only one instance of the low score should be removed.

8 0 After removing the low score, no score remains.

(no inputs) Error That is not a legal input.

Here’s the complete program (how_to_1/Scores.java):

import java.util.Arrays;
import java.util.Scanner;

/**
 This program computes a final score for a series of quiz scores: the sum after dropping
 the lowest score. The program uses arrays.
*/
public class Scores
{
 public static void main(String[] args)
 {
 double[] scores = readInputs();
 if (scores.length == 0)
 {
 System.out.println("At least one score is required.");
 }
 else
 {
 double total = sum(scores) - minimum(scores);
 System.out.println("Final score: " + total);
 }
 }

 /**
 Reads a sequence of floating-point numbers.
 @return an array containing the numbers
 */
 public static double[] readInputs()
 {
 // Read the input values into an array

 final int INITIAL_SIZE = 10;
 double[] inputs = new double[INITIAL_SIZE];
 System.out.println("Please enter values, Q to quit:");
 Scanner in = new Scanner(System.in);
 int currentSize = 0;
 while (in.hasNextDouble())
 {
 // Grow the array if it has been completely filled

278  Chapter 6  Arrays and Array Lists

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

 if (currentSize >= inputs.length)
 {
 inputs = Arrays.copyOf(inputs, 2 * inputs.length);
 }
 inputs[currentSize] = in.nextDouble();
 currentSize++;
 }

 return Arrays.copyOf(inputs, currentSize);
 }

 /**
 Computes the sum of the values in an array.
 @param values an array
 @return the sum of the values in values
 */
 public static double sum(double[] values)
 {
 double total = 0;
 for (double element : values)
 {
 total = total + element;
 }
 return total;
 }

 /**
 Gets the minimum value from an array.
 @param values an array of size >= 1
 @return the smallest element of values
 */
 public static double minimum(double[] values)
 {
 double smallest = values[0];
 for (int i = 1; i < values.length; i++)
 {
 if (values[i] < smallest)
 {
 smallest = values[i];
 }
 }
 return smallest;
 }
}

Worked Example 6.1	 Rolling the Dice

This Worked Example shows how to analyze a set of die
tosses to see whether the die is “fair”.

6.6 P roblem Solving: Discovering Algorithms by Manipulating Physical Objects   279

6.6  Problem Solving: Discovering Algorithms by
Manipulating Physical Objects

In Section 6.5, you saw how to solve a problem by combining and adapting
known algorithms. But what do you do when none of the standard algorithms
is sufficient for your task? In this section, you will learn a technique for dis-
covering algorithms by manipulating physical objects.

Consider the following task: You are given an array whose size is an even
number, and you are to switch the first and the second half. For example, if the
array contains the eight numbers

9 13 21 4 11 7 1 3

then you should change it to

9 13 21 411 7 1 3

Many students find it quite challenging to come up with an algorithm. They may
know that a loop is required, and they may realize that elements should be inserted
(Section 6.3.7) or swapped (Section 6.3.8), but they do not have sufficient intuition to
draw diagrams, describe an algorithm, or write down pseudocode.

One useful technique for discovering an algorithm is to manipulate physical
objects. Start by lining up some objects to denote an array. Coins, playing cards, or
small toys are good choices.

Here we arrange eight coins:

Now let’s step back and see what we can do to change the order of the coins.
We can remove a coin (Section 6.3.6):

We can insert a coin (Section 6.3.7):

Manipulating physical objects
can give you ideas for
discovering algorithms.

Use a sequence of
coins, playing cards,
or toys to visualize
an array of values.

Visualizing the
removal of an
array element

Visualizing the
insertion of an
array element

280  Chapter 6  Arrays and Array Lists

Or we can swap two coins (Section 6.3.8).

Go ahead—line up some coins and try out these three operations right now so that
you get a feel for them.

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Next, we swap the coins in positions 1 and 5:

Two more swaps, and we are done:

Visualizing the
swapping of
two coins

6.6 P roblem Solving: Discovering Algorithms by Manipulating Physical Objects   281

Now an algorithm is becoming apparent:

i = 0
j = ... (we’ll think about that in a minute)
While (don’t know yet)
	 Swap elements at positions i and j
	 i++
	 j++

Where does the variable j start? When we have eight coins, the coin at position zero is
moved to position 4. In general, it is moved to the middle of the array, or to position
size / 2.

And how many iterations do we make? We need to swap all coins in the first half.
That is, we need to swap size / 2 coins. The pseudocode is

i = 0
j = size / 2
While (i < size / 2)
	 Swap elements at positions i and j
	 i++
	 j++

It is a good idea to make a walkthrough of the pseudocode (see Section 4.2). You can
use paper clips to denote the positions of the variables i and j. If the walkthrough is
successful, then we know that there was no “off-by-one” error in the pseudocode.
Self Check 29 asks you to carry out the walkthrough, and Exercise P6.8 asks you to
translate the pseudocode to Java. Exercise R6.28 suggests a different algorithm for
switching the two halves of an array, by repeatedly removing and inserting coins.

Many people find that the manipulation of physical objects is less intimidating
than drawing diagrams or mentally envisioning algorithms. Give it a try when you
need to design a new algorithm!

29.	 Walk through the algorithm that we developed in this section, using two paper
clips to indicate the positions for i and j. Explain why there are no bounds errors
in the pseudocode.

30.	 Take out some coins and simulate the following pseudocode, using two paper
clips to indicate the positions for i and j.

i = 0
j = size - 1
While (i < j)
	 Swap elements at positions i and j
	 i++
	 j--

What does the algorithm do?
31.	 Consider the task of rearranging all elements in an array so that the even num-

bers come first. Otherwise, the order doesn’t matter. For example, the array
1 4 14 2 1 3 5 6 23

could be rearranged to
4 2 14 6 1 5 3 23 1

O n l i n e E x a m p l e

A program that
implements the
algorithm that
switches the first
and second halves
of an array.

You can use paper
clips as position
markers or counters.

S e l f C h e c k

282  Chapter 6  Arrays and Array Lists

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Using coins and paperclips, discover an algorithm that solves this task by
swapping elements, then describe it in pseudocode.

32.	 Discover an algorithm for the task of Self Check 31 that uses removal and
insertion of elements instead of swapping.

33.	 Consider the algorithm in Section 4.7.4 that finds the
largest element in a sequence of inputs—not the largest
element in an array. Why is this algorithm better visual
ized by picking playing cards from a deck rather than
arranging toy soldiers in a sequence?

Practice It	 Now you can try these exercises at the end of the chapter: R6.28, R6.29, P6.8.

6.7  Two-Dimensional Arrays
It often happens that you want to store
collections of values that have a two-
dimensional layout. Such data sets com-
monly occur in financial and scientific
applications. An arrangement consisting
of rows and columns of values is called a
two-dimensional array, or a matrix.

Let’s explore how to store the example
data shown in Figure 12: the medal counts
of the figure skating competitions at the
2010 Winter Olympics.

Gold Silver Bronze

Canada 1 0 1
China 1 1 0
Germany 0 0 1
Korea 1 0 0
Japan 0 1 1
Russia 0 1 1
United States 1 1 0

Figure 12  Figure Skating Medal Counts

Video Example 6.1	 Removing Duplicates from an Array

In this Video Example, we will discover an algorithm for removing duplicates from an array.

6.7 T wo-Dimensional Arrays   283

6.7.1  Declaring Two-Dimensional Arrays

In Java, you obtain a two-dimensional array by supplying the number of rows and
columns. For example, new int[7][3] is an array with seven rows and three columns.
You store a reference to such an array in a variable of type int[][]. Here is a complete
declaration of a two-dimensional array, suitable for holding our medal count data:

final int COUNTRIES = 7;
final int MEDALS = 3;
int[][] counts = new int[COUNTRIES][MEDALS];

Alternatively, you can declare and initialize the array by grouping each row:
int[][] counts =
 {
 { 1, 0, 1 },
 { 1, 1, 0 },
 { 0, 0, 1 },
 { 1, 0, 0 },
 { 0, 1, 1 },
 { 0, 1, 1 },
 { 1, 1, 0 }
 };

As with one-dimensional arrays, you cannot change the size of a two-dimensional
array once it has been declared.

6.7.2 

Syntax 6.3	 Two-Dimensional Array Declaration

int[][] data = {
 { 16, 3, 2, 13 },
 { 5, 10, 11, 8 },
 { 9, 6, 7, 12 },
 { 4, 15, 14, 1 },
 };

Name
List of initial values

double[][] tableEntries = new double[7][3];

Name Element type
Number of rows

Numberof columns

All values are initialized with 0.

Accessing Elements

To access a particular element in the two-dimensional array, you need to specify two
index values in separate brackets to select the row and column, respectively (see Fig-
ure 13):

int medalCount = counts[3][1];

Use a two-
dimensional array to
store tabular data.

Individual elements
in a two-dimensional
array are accessed by
using two index
values, array[i][j].

284  Chapter 6  Arrays and Array Lists

To access all elements in a two-dimensional array, you use two nested loops. For
example, the following loop prints all elements of counts:

for (int i = 0; i < COUNTRIES; i++)
{
 // Process the ith row
 for (int j = 0; j < MEDALS; j++)
 {
 // Process the jth column in the ith row
 System.out.printf("%8d", counts[i][j]);
 }
 System.out.println(); // Start a new line at the end of the row
}

6.7.3  Locating Neighboring Elements

Some programs that work with two-dimensional arrays need to locate the elements
that are adjacent to an element. This task is particularly common in games. Figure 14
shows how to compute the index values of the neighbors of an element.

For example, the neighbors of counts[3][1] to the left and right are counts[3][0] and
counts[3][2]. The neighbors to the top and bottom are counts[2][1] and counts[4][1].

You need to be careful about computing neighbors at the boundary of the array.
For example, counts[0][1] has no neighbor to the top. Consider the task of computing
the sum of the neighbors to the top and bottom of the element count[i][j]. You need
to check whether the element is located at the top or bottom of the array:

int total = 0;
if (i > 0) { total = total + counts[i - 1][j]; }
if (i < ROWS - 1) { total = total + counts[i + 1][j]; }

Figure 13 
Accessing an Element in a
Two-Dimensional Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0][1][2]

counts[3][1]

Column index

R
ow

 in
de

x

Figure 14 
Neighboring Locations in a
Two-Dimensional Array

[i - 1][j - 1] [i - 1][j] [i - 1][j + 1]

[i][j - 1] [i][j] [i][j + 1]

[i + 1][j - 1] [i + 1][j] [i + 1][j + 1]

6.7 T wo-Dimensional Arrays   285

6.7.4  Computing Row and Column Totals

A common task is to compute row or column totals. In our example, the row totals
give us the total number of medals won by a particular country.

Finding the right index values is a bit tricky, and it is a good idea to make a quick
sketch. To compute the total of row i, we need to visit the following elements:

[i][0] [i][1] [i][2]row i

0 MEDALS - 1

As you can see, we need to compute the sum of counts[i][j], where j ranges from 0 to
MEDALS - 1. The following loop computes the total:

int total = 0;
for (int j = 0; j < MEDALS; j++)
{
 total = total + counts[i][j];
}

Computing column totals is similar. Form the sum of counts[i][j], where i ranges
from 0 to COUNTRIES - 1.

int total = 0;
for (int i = 0; i < COUNTRIES; i++)
{
 total = total + counts[i][j];

}

[0][j]

[1][j]

[2][j]

[3][j]

[4][j]

[5][j]

[6][j]

column j

COUNTRIES - 1

0

A N I M AT I O N
Tracing a Nested

Loop in a 2D Array

286  Chapter 6  Arrays and Array Lists

6.7.5  Two-Dimensional Array Parameters

When you pass a two-dimensional array to a method, you will want to recover the
dimensions of the array. If values is a two-dimensional array, then

•	 values.length is the number of rows.
•	 values[0].length is the number of columns. (See Special Topic 6.4 for an explana-

tion of this expression.)

For example, the following method computes the sum of all elements in a two-
dimensional array:

public static int sum(int[][] values)
{
 int total = 0;
 for (int i = 0; i < values.length; i++)
 {
 for (int j = 0; j < values[0].length; j++)
 {
 total = total + values[i][j];
 }
 }
 return total;
}

Working with two-dimensional arrays is illustrated in the following program. The
program prints out the medal counts and the row totals.

section_7/Medals.java

1 /**
2 This program prints a table of medal winner counts with row totals.
3 */
4 public class Medals
5 {
6 public static void main(String[] args)
7 {
8 final int COUNTRIES = 7;
9 final int MEDALS = 3;

10
11 String[] countries =
12 {
13 "Canada",
14 "China",
15 "Germany",
16 "Korea",
17 "Japan",
18 "Russia",
19 "United States"
20 };
21
22 int[][] counts =
23 {
24 { 1, 0, 1 },
25 { 1, 1, 0 },
26 { 0, 0, 1 },
27 { 1, 0, 0 },
28 { 0, 1, 1 },
29 { 0, 1, 1 },
30 { 1, 1, 0 }

6.7 T wo-Dimensional Arrays   287

31 };
32
33 System.out.println(" Country Gold Silver Bronze Total");
34
35 // Print countries, counts, and row totals
36 for (int i = 0; i < COUNTRIES; i++)
37 {
38 // Process the ith row
39 System.out.printf("%15s", countries[i]);
40
41 int total = 0;
42
43 // Print each row element and update the row total
44 for (int j = 0; j < MEDALS; j++)
45 {
46 System.out.printf("%8d", counts[i][j]);
47 total = total + counts[i][j];
48 }
49
50 // Display the row total and print a new line
51 System.out.printf("%8d\n", total);
52 }
53 }
54 }

Program Run

 Country Gold Silver Bronze Total
 Canada 1 0 1 2
 China 1 1 0 2
 Germany 0 0 1 1
 Korea 1 0 0 1
 Japan 0 1 1 2
 Russia 0 1 1 2
United States 1 1 0 2

34.	 What results do you get if you total the columns in our sample data?
35.	 Consider an 8 × 8 array for a board game:

int[][] board = new int[8][8];

Using two nested loops, initialize the board so that zeroes and ones alternate, as
on a checkerboard:
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
. . .
1 0 1 0 1 0 1 0

Hint: Check whether i + j is even.
36.	 Declare a two-dimensional array for representing a tic-tac-toe board. The board

has three rows and columns and contains strings "x", "o", and " ".
37.	 Write an assignment statement to place an "x" in the upper-right corner of the

tic-tac-toe board in Self Check 36.
38.	 Which elements are on the diagonal joining the upper-left and the lower-right

corners of the tic-tac-toe board in Self Check 36?

S e l f C h e c k

288  Chapter 6  Arrays and Array Lists

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Practice It	 Now you can try these exercises at the end of the chapter: R6.30, P6.18, P6.19.

Two-Dimensional Arrays with Variable Row Lengths

When you declare a two-dimensional array with the command

int[][] a = new int[3][3];

then you get a 3 × 3 matrix that can store 9 elements:

a[0][0] a[0][1] a[0][2]
a[1][0] a[1][1] a[1][2]
a[2][0] a[2][1] a[2][2]

In this matrix, all rows have the same length.
In Java it is possible to declare arrays in which the row length varies. For example, you can

store an array that has a triangular shape, such as:

b[0][0]
b[1][0] b[1][1]
b[2][0] b[2][1] b[2][2]

To allocate such an array, you must work harder. First, you allocate space to hold three rows.
Indicate that you will manually set each row by leaving the second array index empty:

double[][] b = new double[3][];

Then allocate each row separately (see Figure 15):

for (int i = 0; i < b.length; i++)
{
 b[i] = new double[i + 1];
}

You can access each array element as b[i][j]. The expression b[i] selects the ith row, and the
[j] operator selects the jth element in that row.

Worked Example 6.2	 A World Population Table

This Worked Example shows how to print world population data in a table with row and col-
umn headers, and with totals for each of the data columns.

Special Topic 6.4

Figure 15  A Triangular Array

double[]b =

[0]

[1]

[2]

[3]

double[] [0]

double[] [0] [1]

double[] [0] [1] [2]

double[] [0] [1] [2] [3]

6.8 A rray Lists   289

Note that the number of rows is b.length, and the length of the ith row is b[i].length. For
example, the following pair of loops prints a ragged array:

for (int i = 0; i < b.length; i++)
{
 for (int j = 0; j < b[i].length; j++)
 {
 System.out.print(b[i][j]);
 }
 System.out.println();
}

Alternatively, you can use two enhanced for loops:

for (double[] row : b)
{
 for (double element : row)
 {
 System.out.print(element);
 }
 System.out.println();
}

Naturally, such “ragged” arrays are not very common.
Java implements plain two-dimensional arrays in exactly the same way as ragged arrays:

as arrays of one-dimensional arrays. The expression new int[3][3] automatically allocates an
array of three rows, and three arrays for the rows’ contents.

Multidimensional Arrays

You can declare arrays with more than two dimensions. For example, here is a three-dimen-
sional array:

int[][][] rubiksCube = new int[3][3][3];

Each array element is specified by three index values:

rubiksCube[i][j][k]

6.8  Array Lists
When you write a program that collects inputs, you
don’t always know how many inputs you will have.
In such a situation, an array list offers two significant
advantages:

•	 Array lists can grow and shrink as needed.
•	 The ArrayList class supplies methods for common

tasks, such as inserting and removing elements.

In the following sections, you will learn how to work
with array lists.

An array list expands to hold as many elements as needed.

Special Topic 6.5

An array list stores
a sequence of
values whose
size can change.

290  Chapter 6  Arrays and Array Lists

6.8.1 

Syntax 6.4	 Array Lists

ArrayList<String> friends = new ArrayList<String>();

The index must be ≥ 0 and < friends.size().

An array list object of size 0

Use the
get and set methods
to access an element.

friends.add("Cindy");
String name = friends.get(i);
friends.set(i, "Harry");

Variable type Variable name

The add method
appends an element to the array list,

increasing its size.

To construct an array list: new ArrayList<typeName>()

To access an element: arraylistReference.get(index)
 arraylistReference.set(index, value)

Syntax

Declaring and Using Array Lists

The following statement declares an array list of strings:
ArrayList<String> names = new ArrayList<String>();

The ArrayList class is contained in the java.util package. In order to use array lists in
your program, you need to use the statement import java.util.ArrayList.

The type ArrayList<String> denotes an array list of String elements. The angle
brackets around the String type tell you that String is a type parameter. You can
replace String with any other class and get a different array list type. For that reason,
ArrayList is called a generic class. However, you cannot use primitive types as type
parameters—there is no ArrayList<int> or ArrayList<double>. Section 6.8.5 shows how
you can collect numbers in an array list.

It is a common error to forget the initialization:
ArrayList<String> names;
names.add("Harry"); // Error—names not initialized

Here is the proper initialization:
ArrayList<String> names = new ArrayList<String>();

Note the () after new ArrayList<String> on the right-hand side of the initialization. It
indicates that the constructor of the ArrayList<String> class is being called. We will
discuss constructors in Chapter 8.

The ArrayList class
is a generic class:
ArrayList<Type>
collects elements of
the specified type.

Figure 16  Adding an Element with add

1 Before add 2 After add

2

ArrayList<String>

names =

"Bob"
"Emily"

3

Size increased

New element
added at end

ArrayList<String>

names =

"Cindy"
"Bob"

"Emily"

6.8 A rray Lists   291

When the ArrayList<String> is first constructed, it has size 0. You use the add method
to add an element to the end of the array list.

names.add("Emily"); // Now names has size 1 and element "Emily"
names.add("Bob"); // Now names has size 2 and elements "Emily", "Bob"
names.add("Cindy"); // names has size 3 and elements "Emily", "Bob", and "Cindy"

The size increases after each call to add (see Figure 16). The size method yields the
current size of the array list.

To obtain an array list element, use the get method, not the [] operator. As with
arrays, index values start at 0. For example, names.get(2) retrieves the name with index
2, the third element in the array list:

String name = names.get(2);

As with arrays, it is an error to access a nonexistent element. A very common bounds
error is to use the following:

int i = names.size();
name = names.get(i); // Error

The last valid index is names.size() - 1.
To set an array list element to a new value, use the set method.
names.set(2, "Carolyn");

This call sets position 2 of the names array list to "Carolyn", overwriting whatever value
was there before.

The set method overwrites existing values. It is different from the add method,
which adds a new element to the array list.

You can insert an element in the middle of an array list. For example, the call names.
add(1, "Ann") adds a new element at position 1 and moves all elements with index 1 or
larger by one position. After each call to the add method, the size of the array list
increases by 1 (see Figure 17).

Use the size method
to obtain the current
size of an array list.

Use the get and set
methods to access an
array list element at a
given index.

An array list has
methods for adding
and removing ele­
ments in the middle.

Figure 17 
Adding and
Removing
Elements in the
Middle of an
Array List

1 Before add
ArrayList<String>names =

"Carolyn"
"Bob"

"Emily"

2 After names.add(1, "Ann")
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily"
"Ann" Moved from index 1 to 2

New element
added at index 1

Moved from index 2 to 3

3 After names.remove(1)
ArrayList<String>

names =

"Carolyn"
"Bob"

"Emily" Moved from index 2 to 1

Moved from index 3 to 2

292  Chapter 6  Arrays and Array Lists

 Conversely, the remove method removes the element at a given position, moves all
elements after the removed element down by one position, and reduces the size of the
array list by 1. Part 3 of Figure 17 illustrates the result of names.remove(1).

With an array list, it is very easy to get a quick printout. Simply pass the array list
to the println method:

System.out.println(names); // Prints [Emily, Bob, Carolyn]

6.8.2  Using the Enhanced for Loop with Array Lists

You can use the enhanced for loop to visit all elements of an array list. For example,
the following loop prints all names:

ArrayList<String> names = . . . ;
for (String name : names)
{
 System.out.println(name);
}

This loop is equivalent to the following basic for loop:
for (int i = 0; i < names.size(); i++)
{
 String name = names.get(i);
 System.out.println(name);
}

Table 2 Working with Array Lists

ArrayList<String> names = new ArrayList<String>(); Constructs an empty array list that can
hold strings.

names.add("Ann");
names.add("Cindy");

Adds elements to the end.

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1.
names is now [Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0.
names is now [Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value.
names is now [Bill, Cindy].

String name = names.get(i); Gets an element.

String last = names.get(names.size() - 1); Gets the last element.

ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 0; i < 10; i++)
{
 squares.add(i * i);
}

Constructs an array list holding the first
ten squares.

Use the add and
remove methods to
add and remove
array list elements.

6.8 A rray Lists   293

6.8.3  Copying Array Lists

As with arrays, you need to remember that array list variables hold references. Copy-
ing the reference yields two references to the same array list (see Figure 18).

ArrayList<String> friends = names;
friends.add("Harry");

Now both names and friends reference the same array list to which the string "Harry"
was added.

If you want to make a copy of an array list, construct the copy and pass the original
list into the constructor:

ArrayList<String> newNames = new ArrayList<String>(names);

6.8.4  Array Lists and Methods

Like arrays, array lists can be method arguments and return values. Here is an exam-
ple: a method that receives a list of strings and returns the reversed list.

public static ArrayList<String> reverse(ArrayList<String> names)
{
 // Allocate a list to hold the method result
 ArrayList<String> result = new ArrayList<String>();

 // Traverse the names list in reverse order, starting with the last element
 for (int i = names.size() - 1; i >= 0; i--)
 {
 // Add each name to the result
 result.add(names.get(i));
 }
 return result;
}

If this method is called with an array list containing the names Emily, Bob, Cindy, it
returns a new array list with the names Cindy, Bob, Emily.

6.8.5  Wrappers and Auto-boxing

In Java, you cannot directly insert primitive type values—numbers, characters, or
boolean values—into array lists. For example, you cannot form an ArrayList<double>.
Instead, you must use one of the wrapper classes shown in the following table.

Figure 18  Copying an Array List Reference

ArrayList<String>

"Emily"
"Bob"

"Carolyn"
"Harry"

names =

friends =

To collect numbers in
array lists, you must
use wrapper classes.

294  Chapter 6  Arrays and Array Lists

Primitive Type Wrapper Class

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

For example, to collect double values in an array list, you use an ArrayList<Double>.
Note that the wrapper class names start with uppercase letters, and that two of them
differ from the names of the corresponding primitive type: Integer and Character.

Conversion between primitive types and the corresponding wrapper classes is
automatic. This process is called auto-boxing (even though auto-wrapping would
have been more consistent).

For example, if you assign a double value to a Double variable, the number is auto-
matically “put into a box” (see Figure 19).

 Double wrapper = 29.95;

Conversely, wrapper values are automatically “unboxed” to primitive types.
double x = wrapper;

Because boxing and unboxing is automatic, you don’t need to think about it. Simply
remember to use the wrapper type when you declare array lists of numbers. From
then on, use the primitive type and rely on auto-boxing.

ArrayList<Double> values = new ArrayList<Double>();
values.add(29.95);
double x = values.get(0);

Like truffles that must be in a wrapper to be sold,
a number must be placed in a wrapper to be stored in an array list.

Figure 19  A Wrapper Class Variable

wrapper =

value =

Double

29.95

6.8 A rray Lists   295

6.8.6  Using Array Algorithms with Array Lists

The array algorithms in Section 6.3 can be converted to array lists simply by using the
array list methods instead of the array syntax (see Table 3 on page 297). For example, this
code snippet finds the largest element in an array:

double largest = values[0];
for (int i = 1; i < values.length; i++)
{
 if (values[i] > largest)
 {
 largest = values[i];
 }
}

Here is the same algorithm, now using an array list:
double largest = values.get(0);
for (int i = 1; i < values.size(); i++)
{
 if (values.get(i) > largest)
 {
 largest = values.get(i);
 }
}

6.8.7  Storing Input Values in an Array List

When you collect an unknown number of inputs, array lists are much easier to use
than arrays. Simply read inputs and add them to an array list:

ArrayList<Double> inputs = new ArrayList<Double>();
while (in.hasNextDouble())
{
 inputs.add(in.nextDouble());

}

6.8.8  Removing Matches

It is easy to remove elements from an array list, by calling the remove method. A com-
mon processing task is to remove all elements that match a particular condition. Sup-
pose, for example, that we want to remove all strings of length < 4 from an array list.

Of course, you traverse the array list and look for matching elements:
ArrayList<String> words = ...;
for (int i = 0; i < words.size(); i++)
{
 String word = words.get(i);
 if (word.length() < 4)
 {
 Remove the element at index i.
 }
}

But there is a subtle problem. After you remove the element, the for loop increments
i, skipping past the next element.

296  Chapter 6  Arrays and Array Lists

 Consider this concrete example, where words contains the strings "Welcome", "to",
"the", "island!". When i is 1, we remove the word "to" at index 1. Then i is incre-
mented to 2, and the word "the", which is now at position 1, is never examined.

 i words
 0 "Welcome", "to", "the", "island"
 1 "Welcome", "the", "island"
 2

We should not increment the index when removing a word. The appropriate pseudo-
code is

If the element at index i matches the condition
	 Remove the element.
Else
	 Increment i.

Because we don’t always increment the index, a for loop is not appropriate for this
algorithm. Instead, use a while loop:

int i = 0;
while (i < words.size())
{
 String word = words.get(i);
 if (word.length() < 4)
 {
 words.remove(i);
 }
 else
 {
 i++;
 }
}

6.8.9  Choosing Between Array Lists and Arrays

For most programming tasks, array lists are easier to use than arrays. Array lists can
grow and shrink. On the other hand, arrays have a nicer syntax for element access and
initialization.

Which of the two should you choose? Here are some recommendations.

•	 If the size of a collection never changes, use an array.

•	 If you collect a long sequence of primitive type values and you are concerned
about efficiency, use an array.

•	 Otherwise, use an array list.

The following program shows how to mark the largest value in a sequence of values.
This program uses an array list. Note how the program is an improvement over the
array version on page 265. This program can process input sequences of arbitrary length.

O n l i n e E x a m p l e

A version of the
Scores program
using an array list.

6.8 A rray Lists   297

Table 3 Comparing Array and Array List Operations

Operation Arrays Array Lists

Get an element. x = values[4]; x = values.get(4)

Replace an element. values[4] = 35; values.set(4, 35);

Number of elements. values.length values.size()

Number of filled elements. currentSize
(companion variable, see
Section 6.1.3)

values.size()

Remove an element. See Section 6.3.6 values.remove(4);

Add an element, growing
the collection.

See Section 6.3.7 values.add(35);

Initializing a collection. int[] values = { 1, 4, 9 }; No initializer list syntax;
call add three times.

section_8/LargestInArrayList.java

1 import java.util.ArrayList;
2 import java.util.Scanner;
3
4 /**
5 This program reads a sequence of values and prints them, marking the largest value.
6 */
7 public class LargestInArrayList
8 {
9 public static void main(String[] args)

10 {
11 ArrayList<Double> values = new ArrayList<Double>();
12
13 // Read inputs
14
15 System.out.println("Please enter values, Q to quit:");
16 Scanner in = new Scanner(System.in);
17 while (in.hasNextDouble())
18 {
19 values.add(in.nextDouble());
20 }
21
22 // Find the largest value
23
24 double largest = values.get(0);
25 for (int i = 1; i < values.size(); i++)
26 {
27 if (values.get(i) > largest)
28 {
29 largest = values.get(i);
30 }
31 }
32
33 // Print all values, marking the largest
34

298  Chapter 6  Arrays and Array Lists

35 for (double element : values)
36 {
37 System.out.print(element);
38 if (element == largest)
39 {
40 System.out.print(" <== largest value");
41 }
42 System.out.println();
43 }
44 }
45 }

Program Run

Please enter values, Q to quit:
35 80 115 44.5 Q
35
80
115 <== largest value
44.5

39.	 Declare an array list primes of integers that contains the first five prime numbers
(2, 3, 5, 7, and 11).

40.	 Given the array list primes declared in Self Check 39, write a loop to print its ele-
ments in reverse order, starting with the last element.

41.	 What does the array list names contain after the following statements?
ArrayList<String> names = new ArrayList<String>;
names.add("Bob");
names.add(0, "Ann");
names.remove(1);
names.add("Cal");

42.	 What is wrong with this code snippet?
ArrayList<String> names;
names.add(Bob);

43.	 Consider this method that appends the elements of one array list to another.
public static void append(ArrayList<String> target, ArrayList<String> source)
{
 for (int i = 0; i < source.size(); i++)
 {
 target.add(source.get(i));
 }
}

What are the contents of names1 and names2 after these statements?
ArrayList<String> names1 = new ArrayList<String>();
names1.add("Emily");
names1.add("Bob");
names1.add("Cindy");
ArrayList<String> names2 = new ArrayList<String>();
names2.add("Dave");
append(names1, names2);

44.	 Suppose you want to store the names of the weekdays. Should you use an array
list or an array of seven strings?

S e l f C h e c k

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

6.8 A rray Lists   299

45.	 The section_8 directory of your source code contains an alternate implementa-
tion of the problem solution in How To 6.1 on page 275. Compare the array and
array list implementations. What is the primary advantage of the latter?

Practice It	 Now you can try these exercises at the end of the chapter: R6.10, R6.34, P6.21,
P6.23.

Length and Size

Unfortunately, the Java syntax for determining the number of elements in an array, an array
list, and a string is not at all consistent.

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

It is a common error to confuse these. You just have to remember the correct syntax for every
data type.

The Diamond Syntax in Java 7

Java 7 introduces a convenient syntax enhancement for declaring array lists and other generic
classes. In a statement that declares and constructs an array list, you need not repeat the type
parameter in the constructor. That is, you can write

ArrayList<String> names = new ArrayList<>();

instead of

ArrayList<String> names = new ArrayList<String>();

This shortcut is called the “diamond syntax” because the empty brackets <> look like a dia-
mond shape.

Common Error 6.4

Special Topic 6.6

Video Example 6.2	 Game of Life

Conway’s Game of Life simulates the growth of a population,
using only two simple rules. This Video Example shows you how
to implement this famous “game”.

300  Chapter 6  Arrays and Array Lists

Use arrays for collecting values.

•	 An array collects a sequence of values of the same type.
•	 Individual elements in an array are accessed by an integer index i, using the

notation array[i].
•	 An array element can be used like any variable.
•	 An array index must be at least zero and less than the size of the array.
•	 A bounds error, which occurs if you supply an invalid array index, can cause your

program to terminate.
•	 Use the expression array.length to find the number of elements in an

array.
•	 An array reference specifies the location of an array. Copying the

reference yields a second reference to the same array.
•	 With a partially filled array, keep a companion variable for the

current size.

Know when to use the enhanced for loop.

•	 You can use the enhanced for loop to visit all elements of an array.
•	 Use the enhanced for loop if you do not need the index values in the loop body.

Know and use common array algorithms.

•	 When separating elements, don’t place a separator before the first element.
•	 A linear search inspects elements in sequence until a match is found.
•	 Before inserting an element, move elements to the end of the array starting with

the last one.

•	 Use a temporary variable when swapping two elements.
•	 Use the Arrays.copyOf method to copy the elements of an array into a new array.

Implement methods that process arrays.

•	 Arrays can occur as method arguments and return values.

Combine and adapt algorithms for solving a programming problem.

•	 By combining fundamental algorithms, you can solve complex programming
tasks.

•	 You should be familiar with the implementation of fundamental algorithms so
that you can adapt them.

Discover algorithms by manipulating physical objects.

•	 Use a sequence of coins, playing cards, or toys to visualize an array of values.
•	 You can use paper clips as position markers or counters.

C h a p t e r Summ a r y

Review Exercises  301

Use two-dimensional arrays for data that is arranged in rows and columns.

•	 Use a two-dimensional array to store tabular data.
•	 Individual elements in a two-dimensional array are

accessed by using two index values, array[i][j].

Use array lists for managing collections whose size can change.

•	 An array list stores a sequence of values whose size can change.
•	 The ArrayList class is a generic class: ArrayList<Type> collects elements of the

specified type.
•	 Use the size method to obtain the current size of an array list.
•	 Use the get and set methods to access an array list element

at a given index.
•	 Use the add and remove methods to add and remove array

list elements.
•	 To collect numbers in array lists, you must use wrapper

classes.

•• R6.1	 Write code that fills an array values with each set of numbers below.
a.	1	 2	 3	 4	 5	 6	 7	 8	 9	 10
b.	0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20
c.	1	 4	 9	 16	 25	 36	 49	 64	 81	 100
d.	0	 0	 0	 0	 0	 0	 0	 0	 0	 0
e.	1	 4	 9	 16	 9	 7	 4	 9	 11	
f.	 0	 1	 0 	 1 	 0 	 1 	 0 	 1 	 0 	 1
g.	0 	 1 	 2 	 3 	 4 	 0 	 1 	 2 	 3 	 4

java.lang.Boolean
java.lang.Double
java.lang.Integer
java.util.Arrays
 copyOf
 toString

java.util.ArrayList<E>
 add
 get
 remove
 set
 size

S ta n d a r d L i b r a r y I t e m s I n t r o d uc e d i n t h i s C h a p t e r

R e v i e w Ex e r c i s e s

302  Chapter 6  Arrays and Array Lists

•• R6.2	 Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What is the value of total after the following loops complete?
a.	int total = 0;

for (int i = 0; i < 10; i++) { total = total + a[i]; }

b.	int total = 0;
for (int i = 0; i < 10; i = i + 2) { total = total + a[i]; }

c.	int total = 0;
for (int i = 1; i < 10; i = i + 2) { total = total + a[i]; }

d.	int total = 0;
for (int i = 2; i <= 10; i++) { total = total + a[i]; }

e.	int total = 0;
for (int i = 1; i < 10; i = 2 * i) { total = total + a[i]; }

f.	 int total = 0;
for (int i = 9; i >= 0; i--) { total = total + a[i]; }

g.	int total = 0;
for (int i = 9; i >= 0; i = i - 2) { total = total + a[i]; }

h.	int total = 0;
for (int i = 0; i < 10; i++) { total = a[i] - total; }

•• R6.3	 Consider the following array:

int[] a = { 1, 2, 3, 4, 5, 4, 3, 2, 1, 0 };

What are the contents of the array a after the following loops complete?
a.	for (int i = 1; i < 10; i++) { a[i] = a[i - 1]; }
b.	for (int i = 9; i > 0; i--) { a[i] = a[i - 1]; }
c.	for (int i = 0; i < 9; i++) { a[i] = a[i + 1]; }
d.	for (int i = 8; i >= 0; i--) { a[i] = a[i + 1]; }
e.	for (int i = 1; i < 10; i++) { a[i] = a[i] + a[i - 1]; }
f.	 for (int i = 1; i < 10; i = i + 2) { a[i] = 0; }
g.	for (int i = 0; i < 5; i++) { a[i + 5] = a[i]; }
h.	for (int i = 1; i < 5; i++) { a[i] = a[9 - i]; }

••• R6.4	 Write a loop that fills an array values with ten random numbers between 1 and 100.
Write code for two nested loops that fill values with ten different random numbers
between 1 and 100.

•• R6.5	 Write Java code for a loop that simultaneously computes both the maximum and
minimum of an array.

• R6.6	 What is wrong with each of the following code segments?
a.	int[] values = new int[10];

for (int i = 1; i <= 10; i++)
{
 values[i] = i * i;
}

b.	int[] values;
for (int i = 0; i < values.length; i++)
{
 values[i] = i * i;
}

Review Exercises  303

•• R6.7	 Write enhanced for loops for the following tasks.
a.	Printing all elements of an array in a single row, separated by spaces.
b.	Computing the product of all elements in an array.
c.	Counting how many elements in an array are negative.

•• R6.8	 Rewrite the following loops without using the enhanced for loop construct. Here,
values is an array of floating-point numbers.

a.	for (double x : values) { total = total + x; }
b.	for (double x : values) { if (x == target) { return true; } }
c.	int i = 0;

for (double x : values) { values[i] = 2 * x; i++; }

•• R6.9	 Rewrite the following loops, using the enhanced for loop construct. Here, values is
an array of floating-point numbers.

a.	for (int i = 0; i < values.length; i++) { total = total + values[i]; }
b.	for (int i = 1; i < values.length; i++) { total = total + values[i]; }
c.	for (int i = 0; i < values.length; i++)

{
 if (values[i] == target) { return i; }
}

• R6.10	 What is wrong with each of the following code segments?
a.	ArrayList<int> values = new ArrayList<int>();
b.	ArrayList<Integer> values = new ArrayList();
c.	ArrayList<Integer> values = new ArrayList<Integer>;
d.	ArrayList<Integer> values = new ArrayList<Integer>();

for (int i = 1; i <= 10; i++)
{
 values.set(i - 1, i * i);
}

e.	ArrayList<Integer> values;
for (int i = 1; i <= 10; i++)
{
 values.add(i * i);
}

• R6.11	 What is an index of an array? What are the legal index values? What is a bounds
error?

• R6.12	 Write a program that contains a bounds error. Run the program. What happens on
your computer?

• R6.13	 Write a loop that reads ten numbers and a second loop that displays them in the
opposite order from which they were entered.

• R6.14	 Trace the flow of the linear search loop in Section 6.3.5, where values contains the
elements 80 90 100 120 110. Show two columns, for pos and found. Repeat the trace
when values contains 80 90 100 70.

• R6.15	 Trace both mechanisms for removing an element described in Section 6.3.6. Use an
array values with elements 110 90 100 120 80, and remove the element at index 2.

304  Chapter 6  Arrays and Array Lists

•• R6.16	 For the operations on partially filled arrays below, provide the header of a method.
Do not implement the methods.

a.	Sort the elements in decreasing order.
b.	Print all elements, separated by a given string.
c.	Count how many elements are less than a given value.
d.	Remove all elements that are less than a given value.
e.	Place all elements that are less than a given value in another array.

• R6.17	 Trace the flow of the loop in Section 6.3.4 with the given example. Show two col
umns, one with the value of i and one with the output.

• R6.18	 Consider the following loop for collecting all elements that match a condition; in
this case, that the element is larger than 100.

ArrayList<Double> matches = new ArrayList<Double>();
for (double element : values)
{
 if (element > 100)
 {
 matches.add(element);
 }
}

Trace the flow of the loop, where values contains the elements 110 90 100 120 80.
Show two columns, for element and matches.

• R6.19	 Trace the flow of the loop in Section 6.3.5, where values contains the elements 80
90 100 120 110. Show two columns, for pos and found. Repeat the trace when values
contains the elements 80 90 120 70.

•• R6.20	 Trace the algorithm for removing an element described in Section 6.3.6. Use an array
values with elements 110 90 100 120 80, and remove the element at index 2.

•• R6.21	 Give pseudocode for an algorithm that rotates the elements of an array by one posi
tion, moving the initial element to the end of the array, like this:

3 5 7 11 13 2

2 3 5 7 11 13

•• R6.22	 Give pseudocode for an algorithm that removes all negative values from an array,
preserving the order of the remaining elements.

•• R6.23	 Suppose values is a sorted array of integers. Give pseudocode that describes how
a new value can be inserted in its proper position so that the resulting array stays
sorted.

••• R6.24	 A run is a sequence of adjacent repeated values. Give pseudocode for computing the
length of the longest run in an array. For example, the longest run in the array with
elements

1 2 5 5 3 1 2 4 3 2 2 2 2 3 6 5 5 6 3 1

has length 4.

Review Exercises  305

••• R6.25	 What is wrong with the following method that aims to fill an array with random
numbers?

public static void fillWithRandomNumbers(double[] values)
{
 double[] numbers = new double[values.length];
 for (int i = 0; i < numbers.length; i++)
 {
 numbers[i] = Math.random();
 }
 values = numbers;
}

•• R6.26	 You are given two arrays denoting x- and y-coordinates of a set of
points in the plane. For plotting the point set, we need to know the
x- and y-coordinates of the smallest rectangle containing the
points.
How can you obtain these values from the fundamental algorithms
in Section 6.3?

• R6.27	 Solve the problem described in Section 6.5 by sorting the array first. How do you
need to modify the algorithm for computing the total?

•• R6.28	 Solve the task described in Section 6.6 using an algorithm that removes and inserts
elements instead of switching them. Write the pseudocode for the algorithm, assum-
ing that methods for removal and insertion exist. Act out the algorithm with a
sequence of coins and explain why it is less efficient than the swapping algorithm
developed in Section 6.6.

•• R6.29	 Develop an algorithm for finding the most frequently occurring value in an array of
numbers. Use a sequence of coins. Place paper clips below each coin that count how
many other coins of the same value are in the sequence. Give the pseudocode for an
algorithm that yields the correct answer, and describe how using the coins and paper
clips helped you find the algorithm.

•• R6.30	 Write Java statements for performing the following tasks with an array declared as

int[][] values = new int[ROWS][COLUMNS];

•	 Fill all entries with 0.
•	 Fill elements alternately with 0s and 1s in a checkerboard pattern.
•	 Fill only the elements at the top and bottom row with zeroes.
•	 Compute the sum of all elements.
•	 Print the array in tabular form.

•• R6.31	 Write pseudocode for an algorithm that fills the first and last column as well as the
first and last row of a two-dimensional array of integers with –1.

• R6.32	 Section 6.8.8 shows that you must be careful about updating the index value when
you remove elements from an array list. Show how you can avoid this problem by
traversing the array list backwards.

y

x

306  Chapter 6  Arrays and Array Lists

•• R6.33	 True or false?
a.	All elements of an array are of the same type.
b.	Arrays cannot contain strings as elements.
c.	Two-dimensional arrays always have the same number of rows and columns.
d.	Elements of different columns in a two-dimensional array can have

different types.
e.	A method cannot return a two-dimensional array.
f.	 A method cannot change the length of an array argument.
g.	A method cannot change the number of columns of an argument that is a

two-dimensional array.

•• R6.34	 How do you perform the following tasks with array lists in Java?
a.	Test that two array lists contain the same elements in the same order.
b.	Copy one array list to another.
c.	Fill an array list with zeroes, overwriting all elements in it.
d.	Remove all elements from an array list.

• R6.35	 True or false?
a.	All elements of an array list are of the same type.
b.	Array list index values must be integers.
c.	Array lists cannot contain strings as elements.
d.	Array lists can change their size, getting larger or smaller.
e.	A method cannot return an array list.
f.	 A method cannot change the size of an array list argument.

•• P6.1	 Write a program that initializes an array with ten random integers and then prints
four lines of output, containing

•	 Every element at an even index.
•	 Every even element.
•	 All elements in reverse order.
•	 Only the first and last element.

•• P6.2	 Write array methods that carry out the following tasks for an array of integers. For
each method, provide a test program.

a.	Swap the first and last elements in the array.
b.	Shift all elements by one to the right and move the last element into the first

position. For example, 1 4 9 16 25 would be transformed into 25 1 4 9 16.
c.	Replace all even elements with 0.
d.	Replace each element except the first and last by the larger of its two neighbors.

P r o g r a mm i n g Ex e r c i s e s

Programming Exercises  307

e.	Remove the middle element if the array length is odd, or the middle two
elements if the length is even.

f.	 Move all even elements to the front, otherwise preserving the order of the
elements.

g.	Return the second-largest element in the array.
h.	Return true if the array is currently sorted in increasing order.
i.	 Return true if the array contains two adjacent duplicate elements.
j.	 Return true if the array contains duplicate elements (which need not be

adjacent).

• P6.3	 Modify the LargestInArray.java program in Section 6.3 to mark both the smallest and
the largest elements.

•• P6.4	 Write a method sumWithoutSmallest that computes the sum of an array of values,
except for the smallest one, in a single loop. In the loop, update the sum and the
smallest value. After the loop, return the difference.

• P6.5	 Write a method public static void removeMin that removes the minimum value from a
partially filled array without calling other methods.

•• P6.6	 Compute the alternating sum of all elements in an array. For example, if your pro
gram reads the input

1  4  9  16  9  7  4  9  11
then it computes

1 – 4 + 9 – 16 + 9 – 7 + 4 – 9 + 11 = –2

• P6.7	 Write a method that reverses the sequence of elements in an array. For example, if
you call the method with the array

1  4  9  16  9  7  4  9  11
then the array is changed to

11  9  4  7  9  16  9  4  1

• P6.8	 Write a method that implements the algorithm developed in Section 6.6.

•• P6.9	 Write a method
public static boolean equals(int[] a, int[] b)

that checks whether two arrays have the same elements in the same order.

•• P6.10	 Write a method
public static boolean sameSet(int[] a, int[] b)

that checks whether two arrays have the same elements in some order, ignoring
duplicates. For example, the two arrays

1  4  9  16  9  7  4  9  11
and

11  11  7  9  16  4  1
would be considered identical. You will probably need one or more helper methods.

308  Chapter 6  Arrays and Array Lists

••• P6.11	 Write a method
public static boolean sameElements(int[] a, int[] b)

that checks whether two arrays have the same elements in some order, with the same
multiplicities. For example,

1  4  9  16  9  7  4  9  11
and

11  1  4  9  16  9  7  4  9
would be considered identical, but

1  4  9  16  9  7  4  9  11
and

11  11  7  9  16  4  1  4  9

would not. You will probably need one or more helper methods.

•• P6.12	 A run is a sequence of adjacent repeated values. Write a program that generates a
sequence of 20 random die tosses in an array and that prints the die values, marking
the runs by including them in parentheses, like this:

1 2 (5 5) 3 1 2 4 3 (2 2 2 2) 3 6 (5 5) 6 3 1

Use the following pseudocode:

Set a boolean variable inRun to false.
For each valid index i in the array
	 If inRun
		 If values[i] is different from the preceding value
			 Print).
			 inRun = false.
	 If not inRun
		 If values[i] is the same as the following value
			 Print (.
			 inRun = true.
	 Print values[i].
If inRun, print).

•• P6.13	 Write a program that generates a sequence of 20 random die tosses in an array and
that prints the die values, marking only the longest run, like this:

1 2 5 5 3 1 2 4 3 (2 2 2 2) 3 6 5 5 6 3 1

If there is more than one run of maximum length, mark the first one.

•• P6.14	 Write a program that generates a sequence of 20 random values between 0 and 99 in
an array, prints the sequence, sorts it, and prints the sorted sequence. Use the sort
method from the standard Java library.

••• P6.15	 Write a program that produces ten random permutations of the numbers 1 to 10. To
generate a random permutation, you need to fill an array with the numbers 1 to 10
so that no two entries of the array have the same contents. You could do it by brute
force, by generating random values until you have a value that is not yet in the array.
But that is inefficient. Instead, follow this algorithm.

Programming Exercises  309

Make a second array and fill it with the numbers 1 to 10.
Repeat 10 times
	 Pick a random element from the second array.
	 Remove it and append it to the permutation array.

•• P6.16	 It is a well-researched fact that men in a restroom generally prefer to maximize
their distance from already occupied stalls, by occupying the middle of the longest
sequence of unoccupied places.
For example, consider the situation where ten stalls are empty.

_ _ _ _ _ _ _ _ _ _

The first visitor will occupy a middle position:

_ _ _ _ _ X _ _ _ _

The next visitor will be in the middle of the empty area at the left.

_ _ X _ _ X _ _ _ _

Write a program that reads the number of stalls and then prints out diagrams in the
format given above when the stalls become filled, one at a time. Hint: Use an array of
boolean values to indicate whether a stall is occupied.

••• P6.17	 In this assignment, you will model the game of Bulgarian Solitaire. The game starts
with 45 cards. (They need not be playing cards. Unmarked index cards work just as
well.) Randomly divide them into some number of piles of random size. For exam
ple, you might start with piles of size 20, 5, 1, 9, and 10. In each round, you take one
card from each pile, forming a new pile with these cards. For example, the sample
starting configuration would be transformed into piles of size 19, 4, 8, 9, and 5. The
solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9, in some order. (It
can be shown that you always end up with such a configuration.)
In your program, produce a random starting configuration and print it. Then keep
applying the solitaire step and print the result. Stop when the solitaire final configu-
ration is reached.

••• P6.18	 Magic squares. An n × n matrix that is filled with the numbers 1, 2, 3, . . ., n2 is a
magic square if the sum of the elements in each row, in each column, and in the two
diagonals is the same value.

4 15 14 1

9 6 7 12

5 10 11 8

16 3 2 13

Write a program that reads in 16 values from the keyboard and tests whether they
form a magic square when put into a 4 × 4 array. You need to test two features:

1.	Does each of the numbers 1, 2, ..., 16 occur in the user input?

2.	When the numbers are put into a square, are the sums of the rows, columns,
and diagonals equal to each other?

310  Chapter 6  Arrays and Array Lists

••• P6.19	 Implement the following algorithm to construct magic n × n squares; it works only if
n is odd.

Set row = n - 1, column = n / 2.
For k = 1 ... n * n
	 Place k at [row][column].
	 Increment row and column.
	 If the row or column is n, replace it with 0.
	 If the element at [row][column] has already been filled
		 Set row and column to their previous values.
		 Decrement row.

Here is the 5 × 5 square that you get if you follow this method:

17 24 1 8

23 5 7 14

4 6 13 20

10 12 19 21

15

16

22

3

11 18 25 2 9

Write a program whose input is the number n and whose output is the magic square
of order n if n is odd.

•• P6.20	 Write a method that computes the average of the neighbors of a two-dimensional
array element in the eight directions shown in Figure 14.

public static double neighborAverage(int[][] values, int row, int column)

However, if the element is located at the boundary of the array, only include the
neighbors that are in the array. For example, if row and column are both 0, there are
only three neighbors.

•• P6.21	 Write a program that reads a sequence of input values and displays a bar chart of the
values, using asterisks, like this:

**

You may assume that all values are positive. First figure out the maximum value.
That value’s bar should be drawn with 40 asterisks. Shorter bars should use propor-
tionally fewer asterisks.

••• P6.22	 Improve the program of Exercise P6.21 to work correctly when the data set contains
negative values.

•• P6.23	 Improve the program of Exercise P6.21 by adding captions for each bar. Prompt the
user for the captions and data values. The output should look like this:

 Egypt **********************
 France **
 Japan ****************************
 Uruguay **************************
Switzerland **************

Programming Exercises  311

•• P6.24	 A theater seating chart is implemented as a two-dimensional array of ticket prices,
like this:

10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 20 20 20 20 20 20 10 10
10 10 20 20 20 20 20 20 10 10
10 10 20 20 20 20 20 20 10 10
20 20 30 30 40 40 30 30 20 20
20 30 30 40 50 50 40 30 30 20
30 40 50 50 50 50 50 50 40 30

Write a program that prompts users to
pick either a seat or a price. Mark sold
seats by changing the price to 0. When
a user specifies a seat, make sure it is
available. When a user specifies a price,
find any seat with that price.

••• P6.25	 Write a program that plays tic-tac-toe. The tic-tac-toe
game is played on a 3 × 3 grid as in the photo at right. The
game is played by two players, who take turns. The first
player marks moves with a circle, the second with a cross.
The player who has formed a horizontal, vertical, or diag-
onal sequence of three marks wins. Your program should
draw the game board, ask the user for the coordinates of
the next mark, change the players after every successful
move, and pronounce the winner.

• P6.26	 Write a method
public static ArrayList<Integer> append(ArrayList<Integer> a, ArrayList<Integer> b)

that appends one array list after another. For example, if a is

1  4  9  16
and b is

9  7  4  9  11
then append returns the array list

1  4  9  16  9  7  4  9  11

•• P6.27	 Write a method
public static ArrayList<Integer> merge(ArrayList<Integer> a, ArrayList<Integer> b)

that merges two array lists, alternating elements from both array lists. If one array
list is shorter than the other, then alternate as long as you can and then append the
remaining elements from the longer array list. For example, if a is

1  4  9  16
and b is

9  7  4  9  11
then merge returns the array list

1  9  4  7  9  4  16  9  11

312  Chapter 6  Arrays and Array Lists

•• P6.28	 Write a method
public static ArrayList<Integer> mergeSorted(ArrayList<Integer> a,
 ArrayList<Integer> b)

that merges two sorted array lists, producing a new sorted array list. Keep an index
into each array list, indicating how much of it has been processed already. Each time,
append the smallest unprocessed element from either array list, then advance the
index. For example, if a is

1  4  9  16
and b is

4  7  9  9  11

then mergeSorted returns the array list

1  4  4  7  9  9  9  11  16

•• Business P6.29	 A pet shop wants to give a discount to its
clients if they buy one or more pets and
at least five other items. The discount is
equal to 20 percent of the cost of the other
items, but not the pets.
Implement a method

public static void discount(double[] prices, boolean[] isPet, int nItems)

The method receives information about a particular sale. For the ith item, prices[i] is
the price before any discount, and isPet[i] is true if the item is a pet.
Write a program that prompts a cashier to enter each price and then a Y for a pet or N
for another item. Use a price of –1 as a sentinel. Save the inputs in an array. Call the
method that you implemented, and display the discount.

•• Business P6.30	 A supermarket wants to reward its best customer of each day, showing the custom-
er’s name on a screen in the supermarket. For that purpose, the customer’s purchase
amount is stored in an ArrayList<Double> and the customer’s name is stored in a cor-
responding ArrayList<String>.
Implement a method

public static String nameOfBestCustomer(ArrayList<Double> sales,
 ArrayList<String> customers)

that returns the name of the customer with the largest sale.
Write a program that prompts the cashier to enter all prices and names, adds them to
two array lists, calls the method that you implemented, and displays the result. Use a
price of 0 as a sentinel.

••• Business P6.31	 Improve the program of Exercise P6.30 so that it displays the top customers, that
is, the topN customers with the largest sales, where topN is a value that the user of the
program supplies.
Implement a method

public static ArrayList<String> nameOfBestCustomers(ArrayList<Double> sales,
 ArrayList<String> customers, int topN)

If there were fewer than topN customers, include all of them.

Programming Exercises  313

•• Science P6.32	 Sounds can be represented by an array of “sample
values” that describe the intensity of the sound at a
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a
method process for processing the sample values, and
saves the sound file. Your task is to implement the
process method by introducing an echo. For each
sound value, add the value from 0.2 seconds ago.
Scale the result so that no value is larger than 32767.

••• Science P6.33	 You are given a two-dimensional array of values that give the height of a terrain at
different points in a square. Write a method

public static void floodMap(double[][] heights, double waterLevel)

that prints out a flood map, showing which of the points in the terrain would be
flooded if the water level was the given value. In the flood map, print a * for each
flooded point and a space for each point that is not flooded.
Here is a sample map:

* * * * * *
* * * * * * * *
* * * * * *
* * * * * *
* * * * * * * *
* * * * * * * * * *
* * * * *
* * * * * *
 * *
 * * *

Then write a program that reads one hundred terrain height values and shows how
the terrain gets flooded when the water level increases in ten steps from the lowest
point in the terrain to the highest.

•• Science P6.34	 Sample values from an experiment often need to be smoothed out. One simple
approach is to replace each value in an array with the average of the value and its
two neighboring values (or one neighboring value if it is at either end of the array).
Implement a method

public static void smooth(double[] values, int size)

that carries out this operation. You should not create another array in your solution.

•• Science P6.35	 Modify the ch06/animation/BlockAnimation.java program to show an animated sine
wave. In the ith frame, shift the sine wave by i degrees.

••• Science P6.36	 Write a program that models the movement of an object
with mass m that is attached to an oscillating spring.
When a spring is displaced from its equilibrium posi-
tion by an amount x, Hooke’s law states that the restor-
ing force is

F = –kx
where k is a constant that depends on the spring. (Use
10 N̸m for this simulation.)
Start with a given displacement x (say, 0.5 meter). Set
the initial velocity v to 0. Compute the acceleration a

x

F

Unstretched
spring

314  Chapter 6  Arrays and Array Lists

from Newton’s law (F = ma) and Hooke’s law, using a mass of 1 kg. Use a small time
interval Δt = 0.01 second. Update the velocity––it changes by aΔt. Update the
displacement––it changes by vΔt.
Every ten iterations, plot the spring displacement as a bar, where 1 pixel represents
1 cm. Use the technique in Special Topic 4.3 for creating an image.

•• Graphics P6.37	 Using the technique of Special Topic 4.3, generate the image of a checkerboard.

• Graphics P6.38	 Using the technique of Special Topic 4.3, generate the image of a sine wave. Draw a
line of pixels for every five degrees.

A n s w e r s t o S e lf - C h e c k Q u e s t i o n s

1.	 int[] primes = { 2, 3, 5, 7, 11 };
2.	 2, 3, 5, 3, 2
3.	 3, 4, 6, 8, 12
4.	 values[0] = 10;

values[9] = 10;

or better: values[values.length - 1] = 10;

5.	 String[] words = new String[10];
6.	 String[] words = { "Yes", "No" };
7.	 No. Because you don’t store the values, you

need to print them when you read them. But

you don’t know where to add the <= until you
have seen all values.

8.	 It counts how many elements of values are
zero.

9.	 for (double x : values)
{
 System.out.println(x);
}

10.	 double product = 1;
for (double f : factors)
{
 product = product * f;

Answers to Self-Check Questions  315

}

11.	 The loop writes a value into values[i]. The
enhanced for loop does not have the index
variable i.

12.	 20 <== largest value
10
20 <== largest value

13.	 int count = 0;
for (double x : values)
{
 if (x == 0) { count++; }
}

14.	 If all elements of values are negative, then the
result is incorrectly computed as 0.

15.	 for (int i = 0; i < values.length; i++)
{
 System.out.print(values[i]);
 if (i < values.length - 1)
 {
 System.out.print(" | ");
 }
}

Now you know why we set up the loop the
other way.

16.	 If the array has no elements, then the program
terminates with an exception.

17.	 If there is a match, then pos is incremented
before the loop exits.

18.	 This loop sets all elements to values[pos].
19.	 int[] numbers = squares(5);
20.	 public static void fill(int[] values, int value)

{
 for (int i = 0; i < values.length; i++)
 {
 values[i] = value; }
 }

21.	 The method returns an array whose length is
given in the first argument. The array is filled
with random integers between 0 and n - 1.

22.	 The contents of scores is unchanged. The
reverse method returns a new array with the
reversed numbers.

23.	

24.	 Use the first algorithm. The order of elements
does not matter when computing the sum.

25.	 Find the minimum value.
Calculate the sum.
Subtract the minimum value.

26.	 Use the algorithm for counting matches
(Section 4.7.2) twice, once for counting the
positive values and once for counting the
negative values.

27.	 You need to modify the algorithm in
Section 6.3.4.
boolean first = true;
for (int i = 0; i < values.length; i++)
{
 if (values[i] > 0))
 {
 if (first) { first = false; }
 else { System.out.print(", "); }
 }
 System.out.print(values[i]);
}

Note that you can no longer use i > 0 as the
criterion for printing a separator.

28.	 Use the algorithm to collect all positive ele-
ments in an array, then use the algorithm in
Section 6.3.4 to print the array of matches.

29.	 The paperclip for i assumes positions 0, 1, 2,
3. When i is incremented to 4, the condition
i < size / 2 becomes false, and the loop ends.
Similarly, the paperclip for j assumes positions
4, 5, 6, 7, which are the valid positions for the
second half of the array.

30.	 It reverses the elements in the array.
31.	 Here is one solution. The basic idea is to move

all odd elements to the end. Put one paper clip
at the beginning of the array and one at the
end. If the element at the first paper clip is odd,
swap it with the one at the other paper clip and
move that paper clip to the left. Otherwise,
move the first paper clip to the right. Stop
when the two paper clips meet. Here is the
pseudocode:

i = 0
j = size - 1

 values result i
 [1, 4, 9] [0, 0, 0] 0
 [9, 0, 0] 1
 [9, 4, 0] 2
 [9, 4, 1]

316  Chapter 6  Arrays and Array Lists

While (i < j)
	 If (a[i] is odd)
		 Swap elements at positions i and j.
		 j--
	 Else
		 i++

32.	 Here is one solution. The idea is to remove
all odd elements and move them to the end.
The trick is to know when to stop. Nothing is
gained by moving odd elements into the area
that already contains moved elements, so we
want to mark that area with another paper clip.

i = 0
moved = size
While (i < moved)
	 If (a[i] is odd)
		 Remove the element at position i and add it

		 at the end.
		 moved--

33.	 When you read inputs, you get to see values
one at a time, and you can’t peek ahead. Pick-
ing cards one at a time from a deck of cards
simulates this process better than looking at a
sequence of items, all of which are revealed.

34.	 You get the total number of gold, silver, and
bronze medals in the competition. In our
example, there are four of each.

35.	 for (int i = 0; i < 8; i++)
{
 for (int j = 0; j < 8; j++)
 {
 board[i][j] = (i + j) % 2;
 }
}

36.	 String[][] board = new String[3][3];
37.	 board[0][2] = "x";
38.	 board[0][0], board[1][1], board[2][2]
39.	 ArrayList<Integer> primes =

 new ArrayList<Integer>();
primes.add(2);
primes.add(3);
primes.add(5);
primes.add(7);
primes.add(11);

40.	 for (int i = primes.size() - 1; i >= 0; i--)
{
 System.out.println(primes.get(i));
}

41.	 "Ann", "Cal"
42.	 The names variable has not been initialized.
43.	 names1 contains “Emily”, “Bob”, “Cindy”,

“Dave”; names2 contains “Dave”
44.	 Because the number of weekdays doesn’t

change, there is no disadvantage to using an
array, and it is easier to initialize:
String[] weekdayNames = { "Monday", "Tuesday",
 "Wednesday", "Thursday", “Friday”,
 "Saturday", "Sunday" };

45.	 Reading inputs into an array list is much easier.

7C h a p t e r

317

To read and write text files

To process command line arguments

To throw and catch exceptions

To implement programs that propagate checked exceptions

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

7.1  Reading and Writing Text
Files  318

Common Error 7.1: Backslashes in
File Names  321

Common Error 7.2: Constructing a Scanner
with a String  321

Special Topic 7.1: Reading Web Pages  321
Special Topic 7.2: File Dialog Boxes  321
Special Topic 7.3: Reading and Writing

Binary Data  322

7.2  Text Input and Output  323

Special Topic 7.4: Regular Expressions  330
Video Example 7.1: Computing a Document’s

Readability 

7.3  Command Line Arguments  330

How To 7.1: Processing Text Files  333
Random Fact 7.1: Encryption Algorithms  336
Worked Example 7.1: Analyzing Baby Names 

7.4  Exception Handling  337

Syntax 7.1: Throwing an Exception  338
Syntax 7.2: Catching Exceptions  341
Syntax 7.3: The throws Clause  343
Syntax 7.4: The finally Clause  344
Programming Tip 7.1: Throw Early,

Catch Late  345
Programming Tip 7.2: Do Not Squelch

Exceptions  345
Programming Tip 7.3: Do Not Use catch and

finally in the Same try Statement  346
Special Topic 7.5: Automatic Resource

Management in Java 7  346
Random Fact 7.2: The Ariane Rocket Incident  347

7.5  Application: Handling
Input Errors  347

Video Example 7.2: Detecting
Accounting Fraud 

Input/Output
and Exception
Handling

318

In this chapter, you will learn how to read and write
files—a very useful skill for processing real world data. As
an application, you will learn how to encrypt data. (The
Enigma machine shown at left is an encryption device used
by Germany in World War II. Pioneering British computer
scientists broke the code and were able to intercept
encoded messages, which was a significant help in winning
the war.) The remainder of this chapter tells you how your
programs can report and recover from problems, such as
missing files or malformed content, using the exception-
handling mechanism of the Java language.

7.1  Reading and Writing Text Files
We begin this chapter by discussing the common task of reading and writing files that
contain text. Examples of text files include not only files that are created with a simple
text editor, such as Windows Notepad, but also Java source code and HTML files.

In Java, the most convenient mechanism for reading text is to use the Scanner class.
You already know how to use a Scanner for reading console input. To read input from
a disk file, the Scanner class relies on another class, File, which describes disk files and
directories. (The File class has many methods that we do not discuss in this book; for
example, methods that delete or rename a file.)

To begin, construct a File object with the name of the input file:

File inputFile = new File("input.txt");

Then use the File object to construct a Scanner object:

Scanner in = new Scanner(inputFile);

This Scanner object reads text from the file input.txt. You can use the Scanner methods
(such as nextInt, nextDouble, and next) to read data from the input file.

For example, you can use the following loop to process numbers in the input file:

while (in.hasNextDouble())
{
 double value = in.nextDouble();
 Process value.
}

To write output to a file, you construct a PrintWriter object with the desired file name,
for example

PrintWriter out = new PrintWriter("output.txt");

If the output file already exists, it is emptied before the new data are written into it. If
the file doesn’t exist, an empty file is created.

The PrintWriter class is an enhancement of the PrintStream class that you already
know—System.out is a PrintStream object. You can use the familiar print, println, and
printf methods with any PrintWriter object:

out.println("Hello, World!");
out.printf("Total: %8.2f\n", total);

Use the Scanner class
for reading text files.

When writing text
files, use the
PrintWriter class
and the print/
println/printf
methods.

7.1 R eading and Writing Text Files   319

When you are done processing a file, be sure to close the Scanner or PrintWriter:

in.close();
out.close();

If your program exits without closing the PrintWriter, some of the output may not be
written to the disk file.

The following program puts these concepts to work. It reads a file containing
numbers, and writes the numbers to another file, lined up in a column and followed
by their total.

For example, if the input file has the contents

32 54 67.5 29 35 80
115 44.5 100 65

then the output file is

 32.00
 54.00
 67.50
 29.00
 35.00
 80.00
 115.00
 44.50
 100.00
 65.00
Total: 622.00

There is one additional issue that we need to tackle. If the input or output file for a
Scanner doesn’t exist, a FileNotFoundException occurs when the Scanner object is con-
structed. The compiler insists that we specify what the program should do when that
happens. Similarly, the PrintWriter constructor generates this exception if it cannot
open the file for writing. (This can happen if the name is illegal or the user does not
have the authority to create a file in the given location.) In our sample program, we
want to terminate the main method if the exception occurs. To achieve this, we label
the main method with a throws declaration:

public static void main(String[] args) throws FileNotFoundException

You will see in Section 7.4 how to deal with exceptions in a more professional way.
The File, PrintWriter, and FileNotFoundException classes are contained in the java.io

package.

section_1/Total.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.PrintWriter;
4 import java.util.Scanner;
5
6 /**
7 This program reads a file with numbers, and writes the numbers to another
8 file, lined up in a column and followed by their total.
9 */

10 public class Total
11 {
12 public static void main(String[] args) throws FileNotFoundException
13 {

Close all files when
you are done
processing them.

320  Chapter 7  Input/Output and Exception Handling

14 // Prompt for the input and output file names
15
16 Scanner console = new Scanner(System.in);
17 System.out.print("Input file: ");
18 String inputFileName = console.next();
19 System.out.print("Output file: ");
20 String outputFileName = console.next();
21
22 // Construct the Scanner and PrintWriter objects for reading and writing
23
24 File inputFile = new File(inputFileName);
25 Scanner in = new Scanner(inputFile);
26 PrintWriter out = new PrintWriter(outputFileName);
27
28 // Read the input and write the output
29
30 double total = 0;
31
32 while (in.hasNextDouble())
33 {
34 double value = in.nextDouble();
35 out.printf("%15.2f\n", value);
36 total = total + value;
37 }
38
39 out.printf("Total: %8.2f\n", total);
40
41 in.close();
42 out.close();
43 }
44 }

1.	 What happens when you supply the same name for the input and output files to
the Total program? Try it out if you are not sure.

2.	 What happens when you supply the name of a nonexistent input file to the Total
program? Try it out if you are not sure.

3.	 Suppose you wanted to add the total to an existing file instead of writing a new
file. Self Check 1 indicates that you cannot simply do this by specifying the same
file for input and output. How can you achieve this task? Provide the pseudo-
code for the solution.

4.	 How do you modify the program so that it shows the average, not the total, of
the inputs?

5.	 How can you modify the Total program so that it writes the values in two
columns, like this:
 32.00 54.00
 67.50 29.00
 35.00 80.00
 115.00 44.50
 100.00 65.00
Total: 622.00

Practice It	 Now you can try these exercises at the end of the chapter: R7.1, R7.2, P7.1.

S e l f C h e c k

7.1 R eading and Writing Text Files   321

Backslashes in File Names

When you specify a file name as a string literal, and the name contains backslash characters (as
in a Windows file name), you must supply each backslash twice:

File inputFile = new File("c:\\homework\\input.dat");

A single backslash inside a quoted string is an escape character that is combined with the
following character to form a special meaning, such as \n for a newline character. The \\ com-
bination denotes a single backslash.

When a user supplies a file name to a program, however, the user should not type the back-
slash twice.

Constructing a Scanner with a String

When you construct a PrintWriter with a string, it writes to a file:

PrintWriter out = new PrintWriter("output.txt");

However, this does not work for a Scanner. The statement

Scanner in = new Scanner("input.txt"); // Error?

does not open a file. Instead, it simply reads through the string: in.next() returns the string
"input.txt". (This is occasionally useful—see Section 7.2.4.)

You must simply remember to use File objects in the Scanner constructor:

Scanner in = new Scanner(new File("input.txt")); // OK

Reading Web Pages

You can read the contents of a web page with this sequence of commands:

String address = "http://horstmann.com/index.html";
URL pageLocation = new URL(address);
Scanner in = new Scanner(pageLocation.openStream());

Now simply read the contents of the web page with the Scanner
in the usual way. The URL constructor and the openStream method
can throw an IOException, so you need to tag the main method with
throws IOException. (See Section 7.4.3 for more information on the
throws clause.)

The URL class is contained in the java.net package.

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the figure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call.

Common Error 7.1

Common Error 7.2

Special Topic 7.1

O NLINE E x a m p l e

A program that reads
data from a web page.

Special Topic 7.2

322  Chapter 7  Input/Output and Exception Handling

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFileChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{
 File selectedFile = chooser.getSelectedFile();
 in = new Scanner(selectedFile);
 . . .
}

Reading and Writing Binary Data

You use the Scanner and PrintWriter classes to read and write text files. Text files contain
sequences of characters. Other files, such as images, are not made up of characters but of bytes.
A byte is a fundamental storage unit in a computer—a number consisting of eight binary dig-
its. (A byte can represent unsigned integers between 0 and 255 or signed integers between –128
and 127.) The Java library has a different set of classes, called streams, for working with binary
files. While modifying binary files is quite challenging and beyond the scope of this book, we
give you a simple example of copying binary data from a web site to a file.

You use an InputStream to read binary data. For example,

URL imageLocation = new URL("http://horstmann.com/java4everyone/duke.gif");
InputStream in = imageLocation.openStream();

To write binary data to a file, use a FileOutputStream:

FileOutputStream out = new FileOutputStream("duke.gif");

O n l i n e E x a m p l e

A program that
demonstrates how to
use a file chooser.

A JFileChooser Dialog Box

Call with
showOpenDialog

method

Button is “Save” when
showSaveDialog method

is called

Special Topic 7.3

7.2 T ext Input and Output   323

The read method of an input stream reads a single byte and returns –1 when no further input is
available. The write method of an output stream writes a single byte.

The following loop copies all bytes from an input stream to an output stream:

boolean done = false;
while (!done)
{
 int input = in.read(); // -1 or a byte between 0 and 255
 if (input == -1) { done = true; }
 else { out.write(input); }
}

7.2  Text Input and Output
In the following sections, you will learn how to process text with complex contents,
and you will learn how to cope with challenges that often occur with real data.

7.2.1  Reading Words

The next method of the Scanner class reads the next string. Consider the loop
while (in.hasNext())
{
 String input = in.next();
 System.out.println(input);
}

If the user provides the input:
Mary had a little lamb

this loop prints each word on a separate line:
Mary
had
a
little
lamb

However, the words can contain punctuation marks and other symbols. The next
method returns any sequence of characters that is not white space. White space
includes spaces, tab characters, and the newline characters that separate lines. For
example, the following strings are considered “words” by the next method:

snow.
1729
C++

(Note the period after snow—it is considered a part of the word because it is not white
space.)

Here is precisely what happens when the next method is executed. Input characters
that are white space are consumed—that is, removed from the input. However, they
do not become part of the word. The first character that is not white space becomes
the first character of the word. More characters are added until either another white
space character occurs, or the end of the input file has been reached. However, if the
end of the input file is reached before any character was added to the word, a “no such
element exception” occurs.

The next method
reads a string that
is delimited by
white space.

324  Chapter 7  Input/Output and Exception Handling

 Sometimes, you want to read just the words and discard anything that isn’t a letter.
You achieve this task by calling the useDelimiter method on your Scanner object:

Scanner in = new Scanner(. . .);
in.useDelimiter("[^A-Za-z]+");

Here, we set the character pattern that separates words to “any sequence of charac-
ters other than letters”. (See Special Topic 7.4.) With this setting, punctuation and
numbers are not included in the words returned by the next method.

7.2.2  Reading Characters

Sometimes, you want to read a file one character at a time. You will see an example in
Section 7.3 where we encrypt the characters of a file. You achieve this task by calling
the useDelimiter method on your Scanner object with an empty string:

Scanner in = new Scanner(. . .);
in.useDelimiter("");

Now each call to next returns a string consisting of a single character. Here is how you
can process the characters:

while (in.hasNext())
{
 char ch = in.next().charAt(0);
 Process ch.
}

7.2.3  Classifying Characters

When you read a character, or when you analyze the characters in a word or line,
you often want to know what kind of character it is. The Character class declares sev-
eral useful methods for this purpose. Each of them has an argument of type char and
returns a boolean value (see Table 1).

For example, the call
Character.isDigit(ch)

returns true if ch is a digit ('0' . . . '9' or a digit in another writing system—see Random
Fact 2.2), false otherwise.

Table 1 Character Testing Methods

Method
Examples of

 Accepted Characters

isDigit 0, 1, 2

isLetter A, B, C, a, b, c

isUpperCase A, B, C

isLowerCase a, b, c

isWhiteSpace space, newline, tab

The Character class
has methods for
classifying
characters.

7.2 T ext Input and Output   325

7.2.4  Reading Lines

When each line of a file is a data record, it is often best to read entire lines with the
nextLine method:

String line = in.nextLine();

The next input line (without the newline character) is placed into the string line. You
can then take the line apart for further processing.

The hasNextLine method returns true if there is at least one more line in the input,
false when all lines have been read. To ensure that there is another line to process, call
the hasNextLine method before calling nextLine.

Here is a typical example of processing lines in a file. A file with population data
from the CIA Fact Book site (https://www.cia.gov/library/publications/the-world-
factbook/index.html) contains lines such as the following:

China 1330044605
India 1147995898
United States 303824646
. . .

Because some country names have more than one word, it would be tedious to read
this file using the next method. For example, after reading United, how would your pro-
gram know that it needs to read another word before reading the population count?

Instead, read each input line into a string:
while (in.hasNextLine())
{
 String line = nextLine();
 Process line.
}

Use the isDigit and isWhiteSpace methods introduced to find out where the name ends
and the number starts.

Locate the first digit:
int i = 0;
while (!Character.isDigit(line.charAt(i))) { i++; }

Then extract the country name and population:
String countryName = line.substring(0, i);
String population = line.substring(i);

However, the country name contains one or more spaces at the end. Use the trim
method to remove them:

countryName = countryName.trim();

setatSdetinU 3 0 3 8 2 4 6 4 6

i starts here i ends here
Use trim to

remove this space.

countryName

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

population

The trim method returns the string with all white space at the beginning and end
removed.

The nextLine method
reads an entire line.

326  Chapter 7  Input/Output and Exception Handling

There is one additional problem. The population is stored in a string, not a num-
ber. In Section 7.2.6, you will see how to convert the string to a number.

7.2.5  Scanning a String

In the preceding section, you saw how to break a string into parts by looking at
individual characters. Another approach is occasionally easier. You can use a Scanner
object to read the characters from a string:

Scanner lineScanner = new Scanner(line);

Then you can use lineScanner like any other Scanner object, reading words and
numbers:

String countryName = lineScanner.next(); // Read first word
// Add more words to countryName until number encountered
while (!lineScanner.hasNextInt())
{
 countryName = countryName + " " + lineScanner.next();
}
int populationValue = lineScanner.nextInt();

7.2.6  Converting Strings to Numbers

Sometimes you have a string that contains a number, such as the population string
in Section 7.2.4. For example, suppose that the string is the character sequence
"303824646". To get the integer value 303824646, you use the Integer.parseInt method:

int populationValue = Integer.parseInt(population);
 // populationValue is the integer 303824646

To convert a string containing floating-point digits to its floating-point value, use the
Double.parseDouble method. For example, suppose input is the string "3.95".

double price = Double.parseDouble(input);
 // price is the floating-point number 3.95

You need to be careful when calling the Integer.parseInt and Double.parseDouble meth-
ods. The argument must be a string containing the digits of an integer, without any
additional characters. Not even spaces are allowed! In our situation, we happen to
know that there won’t be any spaces at the beginning of the string, but there might be
some at the end. Therefore, we use the trim method:

int populationValue = Integer.parseInt(population.trim());

How To 7.1 on page 333 continues this example.

7.2.7  Avoiding Errors When Reading Numbers

You have used the nextInt and nextDouble methods of the Scanner class many times, but
here we will have a look at what happens in “abnormal” situations. Suppose you call

int value = in.nextInt();

The nextInt method recognizes numbers such as 3 or -21. However, if the input is not
a properly formatted number, an “input mismatch exception” occurs. For example,
consider an input containing the characters

If a string contains
the digits of a
number, you use the
Integer.parseInt or
Double.parseDouble
method to obtain the
number value.

7.2 T ext Input and Output   327

2 1 s t c e n t u r y

White space is consumed and the word 21st is read. However, this word is not a prop-
erly formatted number, causing an input mismatch exception in the nextInt method.

If there is no input at all when you call nextInt or nextDouble, a “no such element
exception” occurs. To avoid exceptions, use the hasNextInt method to screen the input
when reading an integer. For example,

if (in.hasNextInt())
{
 int value = in.nextInt();
 . . .
}

Similarly, you should call the hasNextDouble method before calling nextDouble.

7.2.8  Mixing Number, Word, and Line Input

The nextInt, nextDouble, and next methods do not consume the white space that follows
the number or word. This can be a problem if you alternate between calling nextInt/
nextDouble/next and nextLine. Suppose a file contains country names and population
values in this format:

China
1330044605
India
1147995898
United States
303824646

Now suppose you read the file with these instructions:
while (in.hasNextLine())
{
 String countryName = in.nextLine();
 int population = in.nextInt();
 Process the country name and population.
}

Initially, the input contains

400331\nanihC 4 6 0 \n5 I n d i a \n

After the first call to the nextLine method, the input contains

400331 4 6 0 \n5 I n d i a \n

After the call to nextInt, the input contains

\n I n d i a \n

Note that the nextInt call did not consume the newline character. Therefore, the sec-
ond call to nextLine reads an empty string!

The remedy is to add a call to nextLine after reading the population value:
String countryName = in.nextLine();
int population = in.nextInt();
in.nextLine(); // Consume the newline

The call to nextLine consumes any remaining white space and the newline character.

328  Chapter 7  Input/Output and Exception Handling

7.2.9  Formatting Output

When you write numbers or strings, you often want to control how they appear. For
example, dollar amounts are usually formatted with two significant digits, such as

Cookies: 3.20

You know from Section 2.3.2 how to achieve this output with the printf method. In
this section, we discuss additional options of the printf method.

Suppose you need to print a table of items and prices, each stored in an array, such
as this one:

Cookies: 3.20
Linguine: 2.95
Clams: 17.29

Note that the item strings line up to the left, whereas the numbers line up to the right.
By default, the printf method lines up values to the right. To specify left alignment,
you add a hyphen (-) before the field width:

System.out.printf("%-10s%10.2f", items[i] + ":", prices[i]);

Here, we have two format specifiers.

•	 %-10s formats a left-justified string. The string items[i] + ":" is padded with spaces
so it becomes ten characters wide. The - indicates that the string is placed on the
left, followed by sufficient spaces to reach a width of 10.

•	 %10.2f formats a floating-point number, also in a field that is ten characters wide.
However, the spaces appear to the left and the value to the right.

C l a m s : 1 7 . 2 9

Two digits after
the decimal point

A left-justified
string width 10 width 10

A construct such as %-10s or %10.2f is called a format specifier: it describes how a value
should be formatted.

Table 2 Format Flags

Flag Meaning Example

- Left alignment 1.23 followed by spaces

0 Show leading zeroes 001.23

+ Show a plus sign for positive numbers +1.23

(Enclose negative numbers in parentheses (1.23)

, Show decimal separators 12,300

^ Convert letters to uppercase 1.23E+1

7.2 T ext Input and Output   329

Table 3 Format Types

Code Type Example

d Decimal integer 123

f Fixed floating-point 12.30

e Exponential floating-point 1.23e+1

g General floating-point
(exponential notation is used for
very large or very small values)

12.3

s String Tax:

A format specifier has the following structure:

•	 The first character is a %
•	 Next, there are optional “flags” that modify the format, such as - to indicate left

alignment. See Table 2 for the most common format flags.
•	 Next is the field width, the total number of characters in the field (including the

spaces used for padding), followed by an optional precision for floating-point
numbers.

•	 The format specifier ends with the format type, such as f for floating-point values
or s for strings. There are quite a few format types—Table 3 shows the most
important ones.

6.	 Suppose the input contains the characters Hello, World!. What are the values of
word and input after this code fragment?
String word = in.next();
String input = in.nextLine();

7.	 Suppose the input contains the characters 995.0 Fred. What are the values of
number and input after this code fragment?
int number = 0;
if (in.hasNextInt()) { number = in.nextInt(); }
String input = in.next();

8.	 Suppose the input contains the characters 6E6 6,995.00. What are the values of x1
and x2 after this code fragment?
double x1 = in.nextDouble();
double x2 = in.nextDouble();

9.	 Your input file contains a sequence of numbers, but sometimes a value is not
available and is marked as N/A. How can you read the numbers and skip over the
markers?

10.	 How can you remove spaces from the country name in Section 7.2.4 without
using the trim method?

Practice It	 Now you can try these exercises at the end of the chapter: P7.2, P7.4, P7.5.

O NLINE E x a m p l e

A program that
processes a file
containing a mixture
of text and numbers.

S e l f C h e c k

330  Chapter 7  Input/Output and Exception Handling

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Regular Expressions

Regular expressions describe character patterns. For example, numbers have a simple form.
They contain one or more digits. The regular expression describing numbers is [0-9]+. The set
[0-9] denotes any digit between 0 and 9, and the + means “one or more”.

The search commands of professional programming editors understand regular expres-
sions. Moreover, several utility programs use regular expressions to locate matching text. A
commonly used program that uses regular expressions is grep (which stands for “global regu-
lar expression print”). You can run grep from a command line or from inside some compila-
tion environments. Grep is part of the UNIX operating system, and versions are available for
Windows. It needs a regular expression and one or more files to search. When grep runs, it
displays a set of lines that match the regular expression.

Suppose you want to find all magic numbers (see Programming Tip 2.2) in a file.

grep [0-9]+ Homework.java

lists all lines in the file Homework.java that contain sequences of digits. That isn’t terribly useful;
lines with variable names x1 will be listed. OK, you want sequences of digits that do not imme-
diately follow letters:

grep [^A-Za-z][0-9]+ Homework.java

The set [^A-Za-z] denotes any characters that are not in the ranges A to Z and a to z. This works
much better, and it shows only lines that contain actual numbers.

The useDelimiter method of the Scanner class accepts a regular expression to describe delim-
iters—the blocks of text that separate words. As already mentioned, if you set the delimiter
pattern to [^A-Za-z]+, a delimiter is a sequence of one or more characters that are not letters.

For more information on regular expressions, consult one of the many tutorials on the
Internet by pointing your search engine to “regular expression tutorial”.

7.3  Command Line Arguments
Depending on the operating system and Java development environment used, there
are different methods of starting a program—for example, by selecting “Run” in
the compilation environment, by clicking on an icon, or by typing the name of the
program at the prompt in a command shell window. The latter method is called
“invoking the program from the command line”. When you use this method, you
must of course type the name of the program, but you can also type in additional
information that the program can use. These additional strings are called command
line arguments. For example, if you start a program with the command line

java ProgramClass -v input.dat

then the program receives two command line arguments: the strings "-v" and "input.
dat". It is entirely up to the program what to do with these strings. It is customary to
interpret strings starting with a hyphen (-) as program options.

Special Topic 7.4

Video Example 7.1	 Computing a Document’s Readability

In this Video Example, we develop a program that computes the Flesch
Readability Index for a document.

7.3  Command Line Arguments   331

Should you support command line arguments for your programs, or should you
prompt users, perhaps with a graphical user interface? For a casual and infrequent
user, an interactive user interface is much better. The user interface guides the user
along and makes it possible to navigate the application without much knowledge. But
for a frequent user, a command line interface has a major advantage: it is easy to auto-
mate. If you need to process hundreds of files every day, you could spend all your
time typing file names into file chooser dialog boxes. However, by using batch files or
shell scripts (a feature of your computer’s operating system), you can automatically
call a program many times with different command line arguments.

Your program receives its command line arguments in the args parameter of the
main method:

public static void main(String[] args)

In our example, args is an array of length 2, containing the strings
args[0]: "-v"
args[1]: "input.dat"

Let us write a program that encrypts a file—that is,
scrambles it so that it is unreadable except to those who
know the decryption method. Ignoring 2,000 years of
progress in the field of encryption, we will use a method
familiar to Julius Caesar, replacing A with a D, B with
an E, and so on (see Figure 1).

The program takes the following command line
arguments:

•	 An optional -d flag to indicate decryption instead of
encryption

•	 The input file name
•	 The output file name

For example,
java CaesarCipher input.txt encrypt.txt

encrypts the file input.txt and places the result into
encrypt.txt.

java CaesarCipher -d encrypt.txt output.txt

decrypts the file encrypt.txt and places the result into output.txt.

section_3/CaesarCipher.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.PrintWriter;
4 import java.util.Scanner;

Programs that start
from the command
line receive the
command line
arguments in the
main method.

The emperor Julius Caesar
used a simple scheme to
encrypt messages.

Figure 1  Caesar Cipher

M e e t m e a t t h e

P h h w p h d w w k h

Plain text

Encrypted text

332  Chapter 7  Input/Output and Exception Handling

5
6 /**
7 This program encrypts a file using the Caesar cipher.
8 */
9 public class CaesarCipher

10 {
11 public static void main(String[] args) throws FileNotFoundException
12 {
13 final int DEFAULT_KEY = 3;
14 int key = DEFAULT_KEY;
15 String inFile = "";
16 String outFile = "";
17 int files = 0; // Number of command line arguments that are files
18
19 for (int i = 0; i < args.length; i++)
20 {
21 String arg = args[i];
22 if (arg.charAt(0) == '-')
23 {
24 // It is a command line option
25
26 char option = arg.charAt(1);
27 if (option == 'd') { key = -key; }
28 else { usage(); return; }
29 }
30 else
31 {
32 // It is a file name
33
34 files++;
35 if (files == 1) { inFile = arg; }
36 else if (files == 2) { outFile = arg; }
37 }
38 }
39 if (files != 2) { usage(); return; }
40
41 Scanner in = new Scanner(new File(inFile));
42 in.useDelimiter(""); // Process individual characters
43 PrintWriter out = new PrintWriter(outFile);
44
45 while (in.hasNext())
46 {
47 char from = in.next().charAt(0);
48 char to = encrypt(from, key);
49 out.print(to);
50 }
51 in.close();
52 out.close();
53 }
54
55 /**
56 Encrypts upper- and lowercase characters by shifting them
57 according to a key.
58 @param ch the letter to be encrypted
59 @param key the encryption key
60 @return the encrypted letter
61 */
62 public static char encrypt(char ch, int key)
63 {
64 int base = 0;

7.3  Command Line Arguments   333

65 if ('A' <= ch && ch <= 'Z') { base = 'A'; }
66 else if ('a' <= ch && ch <= 'z') { base = 'a'; }
67 else { return ch; } // Not a letter
68 int offset = ch - base + key;
69 final int LETTERS = 26; // Number of letters in the Roman alphabet
70 if (offset > LETTERS) { offset = offset - LETTERS; }
71 else if (offset < 0) { offset = offset + LETTERS; }
72 return (char) (base + offset);
73 }
74
75 /**
76 Prints a message describing proper usage.
77 */
78 public static void usage()
79 {
80 System.out.println("Usage: java CaesarCipher [-d] infile outfile");
81 }
82 }

11.	 If the program is invoked with java CaesarCipher -d file1.txt, what are the
elements of args?

12.	 Trace the program when it is invoked as in Self Check 11.
13.	 Will the program run correctly if the program is invoked with java CaesarCipher

file1.txt file2.txt -d? If so, why? If not, why not?
14.	 Encrypt CAESAR using the Caesar cipher.
15.	 How can you modify the program so that the user can specify an encryption key

other than 3 with a -k option, for example
java CaesarCipher -k15 input.txt output.txt

Practice It	 Now you can try these exercises at the end of the chapter: R7.4, P7.8, P7.9.

S e l f C h e c k

How To 7.1	 Processing Text Files

Processing text files that contain real data can be
surprisingly challenging. This How To gives you step-
by-step guidance.

As an example, we will consider this task: Read
two country data files, worldpop.txt and worldarea.txt
(supplied with the book’s companion code). Both files
contain the same countries in the same order. Write a
file world_pop_density.txt that contains country names
and population densities (people per square km), with
the country names aligned left and the numbers aligned
right:

Afghanistan 	 50.56
Akrotiri 	 127.64
Albania 	 125.91
Algeria 	 14.18
American Samoa 	 288.92
. . .

Singapore is one of the most densely
populated countries in the world.

334  Chapter 7  Input/Output and Exception Handling

Step 1	 Understand the processing task.

As always, you need to have a clear understanding of the task before designing a solution. Can
you carry out the task by hand (perhaps with smaller input files)? If not, get more information
about the problem.

One important aspect that you need to consider is whether you can process the data as it
becomes available, or whether you need to store it first. For example, if you are asked to write
out sorted data, you first need to collect all input, perhaps by placing it in an array list. How-
ever, it is often possible to process the data “on the go”, without storing it.

In our example, we can read each file a line at a time and compute the density for each line
because our input files store the population and area data in the same order.

The following pseudocode describes our processing task.

While there are more lines to be read
	 Read a line from each file.
	 Extract the country name.
	 population = number following the country name in the line from the first file
	 area = number following the country name in the line from the second file
	 If area != 0
		 density = population / area
	 Print country name and density.

Step 2	 Determine which files you need to read and write.

This should be clear from the problem. In our example, there are two input files, the popula-
tion data and the area data, and one output file.

Step 3	 Choose a mechanism for obtaining the file names.

There are three options:
•	 Hard-coding the file names (such as "worldpop.txt").
•	 Asking the user:

Scanner in = new Scanner(System.in);
System.out.print("Enter filename: ");
String inFile = in.nextLine();

•	 Using command-line arguments for the file names.
In our example, we use hard-coded file names for simplicity.

Step 4	 Choose between line, word, and character-based input.

As a rule of thumb, read lines if the input data is grouped by lines. That is the case with tabular
data, such as in our example, or when you need to report line numbers.

When gathering data that can be distributed over several lines, then it makes more sense to
read words. Keep in mind that you lose all white space when you read words.

Reading characters is mostly useful for tasks that require access to individual characters.
Examples include analyzing character frequencies, changing tabs to spaces, or encryption.

Step 5	 With line-oriented input, extract the required data.

It is simple to read a line of input with the nextLine method. Then you need to get the data out
of that line. You can extract substrings, as described in Section 7.2.4.

Typically, you will use methods such as Character.isWhitespace and Character.isDigit to
find the boundaries of substrings.

If you need any of the substrings as numbers, you must convert them, using Integer.parseInt
or Double.parseDouble.

7.3  Command Line Arguments   335

Step 6	 Use methods to factor out common tasks.

Processing input files usually has repetitive tasks, such as skipping over white space or extract-
ing numbers from strings. It really pays off to develop a set of methods to handle these tedious
operations.

In our example, we have two common tasks that call for helper methods: extracting the
country name and the value that follows. We will implement methods

public static String extractCountry(String line)
public static double extractValue(String line)

These methods are implemented as described in Section 7.2.4.
Here is the complete source code (how_to_1/PopulationDensity.java).

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;

/**
 This program reads data files of country populations and areas and prints the
 population density for each country.
*/
public class PopulationDensity
{
 public static void main(String[] args) throws FileNotFoundException
 {
 // Construct Scanner objects for input files

 Scanner in1 = new Scanner(new File("worldpop.txt"));
 Scanner in2 = new Scanner(new File("worldarea.txt"));

 // Construct PrintWriter for the output file

 PrintWriter out = new PrintWriter("world_pop_density.txt");

 // Read lines from each file

 while (in1.hasNextLine() && in2.hasNextLine())
 {
 String line1 = in1.nextLine();
 String line2 = in2.nextLine();

 // Extract country and associated value
 String country = extractCountry(line1);
 double population = extractValue(line1);
 double area = extractValue(line2);

 // Compute and print the population density
 double density = 0;
 if (area != 0) // Protect against division by zero
 {
 density = population / area;
 }
 out.printf("%-40s%15.2f\n", country, density);
 }

 in1.close();
 in2.close();
 out.close();
 }

336  Chapter 7  Input/Output and Exception Handling

 /**
 Extracts the country from an input line.
 @param line a line containing a country name, followed by a number
 @return the country name
 */
 public static String extractCountry(String line)
 {
 int i = 0; // Locate the start of the first digit
 while (!Character.isDigit(line.charAt(i))) { i++; }
 return line.substring(0, i).trim(); // Extract the country name
 }

 /**
 Extracts the value from an input line.
 @param line a line containing a country name, followed by a value
 @return the value associated with the country
 */
 public static double extractValue(String line)
 {
 int i = 0; // Locate the start of the first digit
 while (!Character.isDigit(line.charAt(i))) { i++; }
 // Extract and convert the value
 return Double.parseDouble(line.substring(i).trim());
 }
}

The exercises at the
end of this chapter

give a few algorithms for encrypting
text. Don’t actually use any of those
methods to send secret messages
to your lover. Any skilled cryptogra-
pher can break these schemes in a
very short time—that is, reconstruct
the original text without knowing the
secret keyword.

In 1978, Ron Rivest, Adi Shamir,
and Leonard Adleman introduced an
encryption method that is much more
powerful. The method is called RSA
encryption, after the last names of its
inventors. The exact scheme is too
complicated to present here, but it is
not actually difficult to follow. You can
find the details in http://theory.lcs.
mit.edu/~rivest/rsapaper.pdf.

RSA is a remarkable encryption
method. There are two keys: a pub-
lic key and a private key. (See the fig-
ure.) You can print the public key on
your business card (or in your e-mail
signature block) and give it to any-

one. Then anyone can send you mes-
sages that only you can decrypt. Even
though everyone else knows the public
key, and even if they intercept all the
messages coming to you, they cannot
break the scheme and actually read
the messages. In 1994, hundreds of
researchers, collaborating over the
Internet, cracked an RSA message
encrypted with a 129-digit key. Mes
sages encrypted with a key of 230 dig-
its or more are expected to be secure.

The inventors of the algorithm
obtained a patent for it. A patent is a
deal that society makes with an inven
tor. For a period of 20 years, the inven-
tor has an exclusive right for its com-
mercialization, may collect royalties
from others wishing to manufacture
the invention, and may even stop com-
petitors from using it altogether. In
return, the inventor must publish the
invention, so that others may learn
from it, and must relinquish all claim
to it after the monopoly period ends.
The presumption is that in the absence

of patent law, inventors would be
reluctant to go through the trouble of
inventing, or they would try to cloak
their techniques to prevent others
from copying their devices.

There has been some controversy
about the RSA patent. Had there not
been patent protection, would the
inventors have published the method
anyway, thereby giving the benefit to
society without the cost of the 20-year
monopoly? In this case, the answer is
probably yes. The inventors were aca
demic researchers, who live on sala
ries rather than sales receipts and are
usually rewarded for their discover-
ies by a boost in their reputation and
careers. Would their followers have
been as active in discovering (and pat
enting) improvements? There is no
way of knowing, of course. Is an algo
rithm even patentable, or is it a math
ematical fact that belongs to nobody?
The patent office did take the latter
attitude for a long time. The RSA inven-
tors and many others described their

Random Fact 7.1  Encryption Algorithms

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

7.4 E xception Handling   337

 /**
 Extracts the country from an input line.
 @param line a line containing a country name, followed by a number
 @return the country name
 */
 public static String extractCountry(String line)
 {
 int i = 0; // Locate the start of the first digit
 while (!Character.isDigit(line.charAt(i))) { i++; }
 return line.substring(0, i).trim(); // Extract the country name
 }

 /**
 Extracts the value from an input line.
 @param line a line containing a country name, followed by a value
 @return the value associated with the country
 */
 public static double extractValue(String line)
 {
 int i = 0; // Locate the start of the first digit
 while (!Character.isDigit(line.charAt(i))) { i++; }
 // Extract and convert the value
 return Double.parseDouble(line.substring(i).trim());
 }
}

The exercises at the
end of this chapter

give a few algorithms for encrypting
text. Don’t actually use any of those
methods to send secret messages
to your lover. Any skilled cryptogra-
pher can break these schemes in a
very short time—that is, reconstruct
the original text without knowing the
secret keyword.

In 1978, Ron Rivest, Adi Shamir,
and Leonard Adleman introduced an
encryption method that is much more
powerful. The method is called RSA
encryption, after the last names of its
inventors. The exact scheme is too
complicated to present here, but it is
not actually difficult to follow. You can
find the details in http://theory.lcs.
mit.edu/~rivest/rsapaper.pdf.

RSA is a remarkable encryption
method. There are two keys: a pub-
lic key and a private key. (See the fig-
ure.) You can print the public key on
your business card (or in your e-mail
signature block) and give it to any-

one. Then anyone can send you mes-
sages that only you can decrypt. Even
though everyone else knows the public
key, and even if they intercept all the
messages coming to you, they cannot
break the scheme and actually read
the messages. In 1994, hundreds of
researchers, collaborating over the
Internet, cracked an RSA message
encrypted with a 129-digit key. Mes
sages encrypted with a key of 230 dig-
its or more are expected to be secure.

The inventors of the algorithm
obtained a patent for it. A patent is a
deal that society makes with an inven
tor. For a period of 20 years, the inven-
tor has an exclusive right for its com-
mercialization, may collect royalties
from others wishing to manufacture
the invention, and may even stop com-
petitors from using it altogether. In
return, the inventor must publish the
invention, so that others may learn
from it, and must relinquish all claim
to it after the monopoly period ends.
The presumption is that in the absence

of patent law, inventors would be
reluctant to go through the trouble of
inventing, or they would try to cloak
their techniques to prevent others
from copying their devices.

There has been some controversy
about the RSA patent. Had there not
been patent protection, would the
inventors have published the method
anyway, thereby giving the benefit to
society without the cost of the 20-year
monopoly? In this case, the answer is
probably yes. The inventors were aca
demic researchers, who live on sala
ries rather than sales receipts and are
usually rewarded for their discover-
ies by a boost in their reputation and
careers. Would their followers have
been as active in discovering (and pat
enting) improvements? There is no
way of knowing, of course. Is an algo
rithm even patentable, or is it a math
ematical fact that belongs to nobody?
The patent office did take the latter
attitude for a long time. The RSA inven-
tors and many others described their

Random Fact 7.1  Encryption Algorithms

7.4  Exception Handling
There are two aspects to dealing with program errors: detection and handling. For
example, the Scanner constructor can detect an attempt to read from a non-existent
file. However, it cannot handle that error. A satisfactory way of handling the error
might be to terminate the program, or to ask the user for another file name. The Scan-
ner class cannot choose between these alternatives. It needs to report the error to
another part of the program.

In Java, exception handling provides a flexible mechanism for passing control from
the point of error detection to a handler that can deal with the error. In the following
sections, we will look into the details of this mechanism.

Worked Example 7.1	 Analyzing Baby Names

In this Worked Example, you will use data from the
Social Security Administration to analyze the most
popular baby names.

inventions in terms of imaginary elec-
tronic devices, rather than algorithms,
to circumvent that restriction. Nowa-
days, the patent office will award soft-
ware patents.

There is another interesting aspect
to the RSA story. A programmer, Phil
Zimmermann, developed a program
called PGP (for Pretty Good Privacy)
that is based on RSA. Anyone can use
the program to encrypt messages, and
decryption is not feasible even with
the most powerful computers. You can
get a copy of a free PGP implementa-
tion from the GNU project (http://www.
gnupg.org). The existence of strong
encryption methods bothers the
United States government to no end.
Criminals and foreign agents can send
communications that the police and
intelligence agencies cannot decipher.
The government considered charging
Zimmermann with breaching a law
that forbids the unauthorized export of
munitions, arguing that he should have
known that his program would appear

on the Internet. There have been seri-
ous proposals to make it illegal for pri-
vate citizens to use these encryption

methods, or to keep the keys secret
from law enforcement.

Public-Key Encryption

Meet
me at
the
toga
party

Meet
me at
the
toga
party

Xwya
Txu%
*(Wt
&93ya
=9

Alice The message
is encrypted with
Bob’s public key

Bob

Decrypted
text

Plain
text Encrypted

text
The message is

decypted with Bob’s
matching private key

338  Chapter 7  Input/Output and Exception Handling

7.4.1  Throwing Exceptions

When you detect an error condition, your job is really easy. You just throw an appro-
priate exception object, and you are done. For example, suppose someone tries to
withdraw too much money from a bank account.

if (amount > balance)
{
 // Now what?
}

First look for an appropriate exception class. The Java library provides many classes
to signal all sorts of exceptional conditions. Figure 2 shows the most useful ones.
(The classes are arranged as a tree-shaped hierarchy, with more specialized classes at
the bottom of the tree. We will discuss such hierarchies in more detail in Chapter 9.)

Look around for an exception type that might describe your situation. How about
the ArithmeticException? Is it an arithmetic error to have a negative balance? No—Java
can deal with negative numbers. Is the amount to be withdrawn illegal? Indeed it is. It
is just too large. Therefore, let’s throw an IllegalArgumentException.

if (amount > balance)
{
 throw new IllegalArgumentException("Amount exceeds balance");
}

When you throw an exception, execution does not
continue with the next statement but with an excep­
tion handler. That is the topic of the next section.

When you throw an exception, the normal control flow
is terminated. This is similar to a circuit breaker that

cuts off the flow of electricity in a dangerous situation.

To signal an
exceptional
condition, use the
throw statement
to throw an
exception object.

When you throw 
an exception,
processing  
continues in an
exception handler.

Syntax 7.1	 Throwing an Exception

A new
exception object
is constructed,
then thrown.

if (amount > balance)
{
 throw new IllegalArgumentException("Amount exceeds balance");
}
balance = balance - amount;

Most exception objects
can be constructed with
an error message.

This line is not executed when
the exception is thrown.

throw exceptionObject;Syntax

7.4 E xception Handling   339

7.4.2 

Figure 2  A Part of the Hierarchy of Exception Classes

ClassNot
Found

Exception

IndexOut
OfBounds
Exception

Illegal
Argument
Exception

ClassCast
Exception

Arithmetic
Exception

Runtime
Exception

Exception

IOException

FileNotFound
Exception

MalformedURL
Exception

UnknownHost
Exception

NumberFormat
Exception

NullPointer
Exception

NoSuch
Element
Exception

Throwable

Error

InputMismatch
Exception

Import from
java.io

Import from
java.util

Catching Exceptions

Every exception should be handled somewhere in your program. If an exception has
no handler, an error message is printed, and your program terminates. Of course,
such an unhandled exception is confusing to program users.

You handle exceptions with the try/catch statement. Place the statement into a
location of your program that knows how to handle a particular exception. The try
block contains one or more statements that may cause an exception of the kind that

Place the statements
that can cause an
exception inside a
try block, and the
handler inside a
catch clause.

340  Chapter 7  Input/Output and Exception Handling

you are willing to handle. Each catch clause contains the handler for an exception
type. Here is an example:

try
{
 String filename = . . .;
 Scanner in = new Scanner(new File(filename));
 String input = in.next();
 int value = Integer.parseInt(input);
 . . .
}
catch (IOException exception)
{
 exception.printStackTrace();
}
catch (NumberFormatException exception)
{
 System.out.println(exception.getMessage());
}

Three exceptions may be thrown in this try block:

•	 The Scanner constructor can throw a FileNotFoundException.
•	 Scanner.next can throw a NoSuchElementException.
•	 Integer.parseInt can throw a NumberFormatException.

If any of these exceptions is actually thrown, then the rest of the instructions in the
try block are skipped. Here is what happens for the various exception types:

•	 If a FileNotFoundException is thrown, then the catch clause for the IOException is
executed. (If you look at Figure 2, you will note that FileNotFoundException is a
descendant of IOException.) If you want to show the user a different message for a
FileNotFoundException, you must place the catch clause before the clause for an
IOException.

•	 If a NumberFormatException occurs, then the second catch clause is executed.
•	 A NoSuchElementException is not caught by any of the catch clauses. The exception

remains thrown until it is caught by another try block.

Each catch clause contains a handler. When the catch (IOException exception) block is
executed, then some method in the try block has failed with an IOException (or one of
its descendants).
In this handler, we produce a printout of the chain of method calls that led to the
exception, by calling

exception.printStackTrace()

A N I M AT I O N
Exception Handling

You should only catch those exceptions
that you can handle.

7.4 E xception Handling   341

Syntax 7.2	 Catching Exceptions

try
{
 statement
 statement
 . . .
}
catch (ExceptionClass exceptionObject)
{
 statement
 statement
 . . .
}

Syntax

This constructor can throw a
FileNotFoundException.

try
{
 Scanner in = new Scanner(new File("input.txt"));
 String input = in.next();
 process(input);
}
catch (IOException exception)
{
 System.out.println("Could not open input file");
}
catch (Exception except)
{
 System.out.println(except.getMessage);
}

This is the exception that was thrown.

A FileNotFoundException
is a special case of an IOException.

When an IOException is thrown,
execution resumes here.

Additional catch clauses
can appear here. Place
more specific exceptions
before more general ones.

In the second exception handler, we call exception.getMessage() to retrieve the message
associated with the exception. When the parseInt method throws a NumberFormatExcep-
tion, the message contains the string that it was unable to format. When you throw an
exception, you can provide your own message string. For example, when you call

throw new IllegalArgumentException("Amount exceeds balance");

the message of the exception is the string provided in the constructor.
In these sample catch clauses, we merely inform the user of the source of the prob-

lem. Often, it is better to give the user another chance to provide a correct input—see
Section 7.5 for a solution.

7.4.3  Checked Exceptions

In Java, the exceptions that you can throw and catch fall into three categories.

•	 Internal errors are reported by descendants of the type Error. One example is the
OutOfMemoryError, which is thrown when all available computer memory has been
used up. These are fatal errors that happen rarely, and we will not consider them
in this book.

•	 Descendants of RuntimeException, such as as IndexOutOfBoundsException or Illegal-
ArgumentException indicate errors in your code. They are called unchecked
exceptions.

342  Chapter 7  Input/Output and Exception Handling

•	 All other exceptions are checked exceptions. These exceptions indicate that
something has gone wrong for some external reason beyond your control. In
Figure 2, the checked exceptions are shaded in a darker color.

Why have two kinds of exceptions? A checked exception describes a problem that
can occur, no matter how careful you are. For example, an IOException can be caused
by forces beyond your control, such as a disk error or a broken network connection.
The compiler takes checked exceptions very seriously and ensures that they are han-
dled. Your program will not compile if you don’t indicate how to deal with a checked
exception.

The unchecked exceptions, on the other hand, are your fault. The compiler does
not check whether you handle an unchecked exception, such as an IndexOutOfBounds
Exception. After all, you should check your index values rather than install a handler
for that exception.

If you have a handler for a checked exception in the same method that may throw
it, then the compiler is satisfied. For example,

try
{
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile); // Throws FileNotFoundException
 . . .
}
catch (FileNotFoundException exception) // Exception caught here
{
 . . .
}

However, it commonly happens that the current method cannot handle the excep-
tion. In that case, you need to tell the compiler that you are aware of this exception
and that you want your method to be terminated when it occurs. You supply a
method with a throws clause.

public static String readData(String filename) throws FileNotFoundException
{
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 . . .
}

The throws clause signals the caller of your method that it may encounter a
FileNotFoundException. Then the caller needs to make the same decision—han
dle the exception, or declare that the exception may be thrown.

It sounds somehow irresponsible not to handle an exception when you
know that it happened. Actually, the opposite is true. Java provides an
exception handling facility so that an exception can be sent to the appropri-
ate handler. Some methods detect errors, some methods handle them, and
some methods just pass them along. The throws clause simply ensures that no
exceptions get lost along the way.

Just as trucks with large or hazardous loads carry warning signs,
the throws clause warns the caller that an exception may occur.

Checked exceptions
are due to external
circumstances that
the programmer
cannot prevent.
The compiler
checks that your
program handles
these exceptions.

Add a throws clause
to a method that can
throw a checked
exception.

7.4 E xception Handling   343

7.4.4 

Syntax 7.3	 The throws Clause

You may also list unchecked exceptions.You must specify all checked exceptions
that this method may throw.

public static String readData(String filename)
 throws FileNotFoundException, NumberFormatException

modifiers returnType methodName(parameterType parameterName, . . .)
 throws ExceptionClass, ExceptionClass, . . .

Syntax

The finally Clause

Occasionally, you need to take some action whether or not an exception is thrown.
The finally construct is used to handle this situation. Here is a typical situation.

It is important to close a PrintWriter to ensure that all output is written to the file.
In the following code segment, we open a stream, call one or more methods, and then
close the stream:

PrintWriter out = new PrintWriter(filename);
writeData(out);
out.close(); // May never get here

Now suppose that one of the methods before the last line throws an exception. Then
the call to close is never executed! You solve this problem by placing the call to close
inside a finally clause:

PrintWriter out = new PrintWriter(filename);
try
{
 writeData(out);
}
finally
{
 out.close();
}

In a normal case, there will be no problem. When the
try block is completed, the finally clause is executed,
and the writer is closed. However, if an exception
occurs, the finally clause is also executed before the
exception is passed to its handler.

Use the finally clause whenever you need to do
some clean up, such as closing a file, to ensure that
the clean up happens no matter how the method
exits.

All visitors to a foreign country have to go through
passport control, no matter what happened on their
trip. Similarly, the code in a finally clause is always

executed, even when an exception has occurred.

Once a try block
is entered, the
statements in a
finally clause are
guaranteed to be
executed, whether
or not an exception
is thrown.

O n l i n e E x a m p l e

A program that
demonstrates
throwing and
catching exceptions.

344  Chapter 7  Input/Output and Exception Handling

16.	

Syntax 7.4	 The finally Clause

try
{
 statement
 statement
 . . .
}
finally
{
 statement
 statement
 . . .
}

Syntax

PrintWriter out = new PrintWriter(filename);
try
{
 writeData(out);
}
finally
{
 out.close();
}

This variable must be declared outside the try block
so that the finally clause can access it.

This code is
always executed,
even if an exception occurs.

This code may
throw exceptions.

Suppose balance is 100 and amount is 200. What is the value of balance after these
statements?
if (amount > balance)
{
 throw new IllegalArgumentException("Amount exceeds balance");
}
balance = balance - amount;

17.	 When depositing an amount into a bank account, we don’t have to worry about
overdrafts—except when the amount is negative. Write a statement that throws
an appropriate exception in that case.

18.	 Consider the method
public static void main(String[] args)
{
 try
 {
 Scanner in = new Scanner(new File("input.txt"));
 int value = in.nextInt();
 System.out.println(value);
 }
 catch (IOException exception)
 {
 System.out.println("Error opening file.");
 }
}

S e l f C h e c k

7.4 E xception Handling   345

Suppose the file with the given file name exists and has no contents. Trace the
flow of execution.

19.	 Why is an ArrayIndexOutOfBoundsException not a checked exception?
20.	 Is there a difference between catching checked and unchecked exceptions?
21.	 What is wrong with the following code, and how can you fix it?

public static void writeAll(String[] lines, String filename)
{
 PrintWriter out = new PrintWriter(filename);
 for (String line : lines)
 {
 out.println(line.toUpperCase());
 }
 out.close();
}

Practice It	 Now you can try these exercises at the end of the chapter: R7.7, R7.8, R7.9.

Throw Early, Catch Late

When a method detects a problem that it cannot solve, it is better
to throw an exception rather than try to come up with an imperfect
fix. For example, suppose a method expects to read a number from a
file, and the file doesn’t contain a number. Simply using a zero value
would be a poor choice because it hides the actual problem and per-
haps causes a different problem elsewhere.

Conversely, a method should only catch an exception if it can
really remedy the situation. Otherwise, the best remedy is simply to have the exception propa-
gate to its caller, allowing it to be caught by a competent handler.

These principles can be summarized with the slogan “throw early, catch late”.

Do Not Squelch Exceptions

When you call a method that throws a checked exception and you haven’t specified a handler,
the compiler complains. In your eagerness to continue your work, it is an understandable
impulse to shut the compiler up by squelching the exception:

try
{
 Scanner in = new Scanner(new File(filename));
 // Compiler complained about FileNotFoundException
 . . .
}
catch (FileNotFoundException e) {} // So there!

The do-nothing exception handler fools the compiler into thinking that the exception has
been handled. In the long run, this is clearly a bad idea. Exceptions were designed to transmit
problem reports to a competent handler. Installing an incompetent handler simply hides an
error condition that could be serious.

Programming Tip 7.1

Throw an exception
as soon as a
problem is detected.
Catch it only
when the problem
can be handled.

Programming Tip 7.2

346  Chapter 7  Input/Output and Exception Handling

Do Not Use catch and finally in the Same try Statement

It is possible to have a finally clause following one or more catch clauses. Then the code in the
finally clause is executed whenever the try block is exited in any of three ways:

1.	 After completing the last statement of the try block
2.	 After completing the last statement of a catch clause, if this try block caught an

exception
3.	 When an exception was thrown in the try block and not caught

It is tempting to combine catch and finally clauses, but the resulting code can be hard to
understand, and it is often incorrect. Instead, use two statements:
•	 a try/finally statement to close resources
•	 a separate try/catch statement to handle errors
For example,

try
{
 PrintWriter out = new PrintWriter(filename);
 try
 {
 Write output.
 }
 finally
 {
 out.close();
 }
}
catch (IOException exception)
{
 Handle exception.
}

Note that the nested statements work correctly if the PrintWriter constructor throws an excep-
tion, too.

Automatic Resource Management in Java 7

In Java 7, you can use a new form of the try block that automatically closes a PrintWriter or
Scanner object. Here is the syntax:

try (PrintWriter out = new PrintWriter(filename))
{
 Write output to out.
}

The close method is automatically invoked on the out object when the try block ends, whether
or not an exception has occurred. A finally statement is not required.

Programming Tip 7.3

Special Topic 7.5

7.5 A pplication: Handling Input Errors   347

7.5  Application: Handling Input Errors
This section walks through an example program that includes exception handling.
The program, DataAnalyzer.java, asks the user for the name of a file. The file is expected
to contain data values. The first line of the file should contain the total number of val-
ues, and the remaining lines contain the data. A typical input file looks like this:

3
1.45
-2.1
0.05

The European Space
Agency (ESA), Europe’s

counterpart to NASA, had developed a
rocket model called Ariane that it had
successfully used several times to
launch satellites and scientific experi-
ments into space. However, when a new
version, the Ariane 5, was launched on
June 4, 1996, from ESA’s launch site
in Kourou, French Guiana, the rocket
veered off course about 40 seconds
after liftoff. Flying at an angle of more
than 20 degrees, rather than straight
up, exerted such an aerodynamic force
that the boosters separated, which trig-
gered the automatic self-destruction
mechanism. The rocket blew itself up.

The ultimate cause of this accident
was an unhandled exception! The
rocket contained two identical devices
(called inertial reference systems) that
processed flight data from measuring
devices and turned the data into infor
mation about the rocket position.

The onboard computer used the posi-
tion information for controlling the
boosters. The same inertial reference
systems and computer software had
worked fine on the Ariane 4.

However, due to design changes
to the rocket, one of the sensors mea-
sured a larger acceleration force than
had been encountered in the Ariane 4.
That value, expressed as a floating-
point value, was stored in a 16-bit
integer (like a short variable in Java).
Unlike Java, the Ada language, used
for the device software, generates an
exception if a floating-point number is
too large to be converted to an integer.
Unfortunately, the programmers of the
device had decided that this situation
would never happen and didn’t provide
an exception handler.

When the overflow did happen, the
exception was triggered and, because
there was no handler, the device shut
itself off. The onboard computer sensed

the failure and switched over to the
backup device. However, that device
had shut itself off for exactly the same
reason, something that the designers
of the rocket had not expected. They
figured that the devices might fail for
mechanical reasons, and the chance of
two devices having the same mechani-
cal failure was considered remote. At
that point, the rocket was without reli-
able position information and went off
course.

Perhaps it would have been better if
the software hadn’t been so thorough?
If it had ignored the overflow, the
device wouldn’t have been shut off. It
would have computed bad data. But
then the device would have reported
wrong position data, which could have
been just as fatal. Instead, a correct
implementation should have caught
overflow exceptions and come up with
some strategy to recompute the flight
data. Clearly, giving up was not a
reasonable option in this context.

The advantage of
the exception-handling
mechanism is that it
makes these issues
explicit to program-
mers—something to
think about when you
curse the Java compiler
for complaining about
uncaught exceptions.

The Explosion of the Ariane Rocket

Random Fact 7.2  The Ariane Rocket Incident

348  Chapter 7  Input/Output and Exception Handling

What can go wrong? There are two principal risks.

•	 The file might not exist.
•	 The file might have data in the wrong format.

Who can detect these faults? The Scanner constructor will throw an exception when
the file does not exist. The methods that process the input values need to throw an
exception when they find an error in the data format.

What exceptions can be thrown? The Scanner constructor throws a FileNot
FoundException when the file does not exist, which is appropriate in our situation.
When there are fewer data items than expected, or when the file doesn’t start with the
count of values, the program will throw an NoSuchElementException. Finally, when there
are more inputs than expected, an IOException should be thrown.

Who can remedy the faults that the exceptions report? Only the main method of
the DataAnalyzer program interacts with the user, so it catches the exceptions, prints
appropriate error messages, and gives the user another chance to enter a correct file:

// Keep trying until there are no more exceptions
boolean done = false;
while (!done)
{
 try
 {
 Prompt user for file name.

 double[] data = readFile(filename);

 Process data.

 done = true;
 }
 catch (FileNotFoundException exception)
 {
 System.out.println("File not found.");
 }
 catch (NoSuchElementException exception)
 {
 System.out.println("File contents invalid.");
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
}

The first two catch clauses in the main method give a human-readable error report if
bad data was encountered or the file was not found. However, if another IOException
occurs, then it prints a stack trace so that a programmer can diagnose the problem.

The following readFile method constructs the Scanner object and calls the readData
method. It does not handle any exceptions. If there is a problem with the input file, it
simply passes the exception to its caller.

public static double[] readFile(String filename) throws IOException
{
 File inFile = new File(filename);
 Scanner in = new Scanner(inFile);
 try
 {

When designing a
program, ask your-
self what kinds of
exceptions can occur.

For each exception,
you need to decide
which part of
your program
can competently
handle it.

7.5 A pplication: Handling Input Errors   349

 return readData(in);
 }
 finally
 {
 in.close();
 }
}

Note how the finally clause ensures that the file is closed even when an exception
occurs.

Also note that the throws clause of the readFile method need not include the File-
NotFoundException class because it is a special case of an IOException.

The readData method reads the number of values, constructs an array, and fills it
with the data values.

public static double[] readData(Scanner in) throws IOException
{
 int numberOfValues = in.nextInt(); // May throw NoSuchElementException
 double[] data = new double[numberOfValues];

 for (int i = 0; i < numberOfValues; i++)
 {
 data[i] = in.nextDouble(); // May throw NoSuchElementException
 }

 if (in.hasNext())
 {
 throw new IOException("End of file expected");
 }
 return data;
}

As discussed in Section 7.2.7, the calls to the nextInt and nextDouble methods can throw
a NoSuchElementException when there is no input at all or an InputMismatchException if the
input is not a number. As you can see from Figure 2 on page 340, an InputMismatch-
Exception is a special case of a NoSuchElementException.

You need not declare the NoSuchElementException in the throws clause because it is not
a checked exception, but you can include it for greater clarity.

There are three potential errors:

•	 The file might not start with an integer.
•	 There might not be a sufficient number of data values.
•	 There might be additional input after reading all data values.

In the first two cases, the Scanner throws a NoSuchElementException. Note again that this
is not a checked exception—we could have avoided it by calling hasNextInt/hasNext-
Double first. However, this method does not know what to do in this case, so it allows
the exception to be sent to a handler elsewhere.

When we find that there is additional unexpected input, we throw an IOException.
To see the exception handling at work, look at a specific error scenario.

1.	main calls readFile.
2.	readFile calls readData.
3.	readData calls Scanner.nextInt.
4.	There is no integer in the input, and Scanner.nextInt throws a NoSuchElement

Exception.

350  Chapter 7  Input/Output and Exception Handling

5.	readData has no catch clause. It terminates immediately.

6.	readFile has no catch clause. It terminates immediately after executing the
finally clause and closing the file.

7.	The first catch clause in main is for a FileNotFoundException. The exception that is
currently being thrown is a NoSuchElementException, and this handler doesn’t
apply.

8.	The next catch clause is for a NoSuchElementException, and execution resumes
here. That handler prints a message to the user. Afterward, the user is given
another chance to enter a file name. Note that the statements for processing the
data have been skipped.

This example shows the separation between error detection (in the readData method)
and error handling (in the main method). In between the two is the readFile method,
which simply passes the exceptions along.

section_5/DataAnalyzer.java

1 import java.io.File;
2 import java.io.FileNotFoundException;
3 import java.io.IOException;
4 import java.util.Scanner;
5 import java.util.NoSuchElementException;
6
7 /**
8 This program processes a file containing a count followed by data values.
9 If the file doesn’t exist or the format is incorrect, you can specify another file.

10 */
11 public class DataAnalyzer
12 {
13 public static void main(String[] args)
14 {
15 Scanner in = new Scanner(System.in);
16
17 // Keep trying until there are no more exceptions
18
19 boolean done = false;
20 while (!done)
21 {
22 try
23 {
24 System.out.print("Please enter the file name: ");
25 String filename = in.next();
26
27 double[] data = readFile(filename);
28
29 // As an example for processing the data, we compute the sum
30
31 double sum = 0;
32 for (double d : data) { sum = sum + d; }
33 System.out.println("The sum is " + sum);
34
35 done = true;
36 }
37 catch (FileNotFoundException exception)
38 {
39 System.out.println("File not found.");

7.5 A pplication: Handling Input Errors   351

40 }
41 catch (NoSuchElementException exception)
42 {
43 System.out.println("File contents invalid.");
44 }
45 catch (IOException exception)
46 {
47 exception.printStackTrace();
48 }
49 }
50 }
51
52 /**
53 Opens a file and reads a data set.
54 @param filename the name of the file holding the data
55 @return the data in the file
56 */
57 public static double[] readFile(String filename) throws IOException
58 {
59 File inFile = new File(filename);
60 Scanner in = new Scanner(inFile);
61 try
62 {
63 return readData(in);
64 }
65 finally
66 {
67 in.close();
68 }
69 }
70
71 /**
72 Reads a data set.
73 @param in the scanner that scans the data
74 @return the data set
75 */
76 public static double[] readData(Scanner in) throws IOException
77 {
78 int numberOfValues = in.nextInt(); // May throw NoSuchElementException
79 double[] data = new double[numberOfValues];
80
81 for (int i = 0; i < numberOfValues; i++)
82 {
83 data[i] = in.nextDouble(); // May throw NoSuchElementException
84 }
85
86 if (in.hasNext())
87 {
88 throw new IOException("End of file expected");
89 }
90 return data;
91 }
92 }

22.	 Why doesn’t the readFile method catch any exceptions?
23.	 Consider the try/finally statement in the readFile method. Why was the in vari-

able declared outside the try block?

S e l f C h e c k

352  Chapter 7  Input/Output and Exception Handling

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

24.	 Suppose the user specifies a file that exists and is empty. Trace the flow of execu-
tion in the DataAnalyzer program.

25.	 Why didn’t the readData method call hasNextInt/hasNextDouble to ensure that the
NoSuchElementException is not thrown?

Practice It	 Now you can try these exercises at the end of the chapter: R7.15, R7.16, P7.13.

Develop programs that read and write files.

•	 Use the Scanner class for reading text files.
•	 When writing text files, use the PrintWriter class and the print/println/printf

methods.
•	 Close all files when you are done processing them.

Be able to process text in files.

•	 The next method reads a string that is delimited by white space.
•	 The Character class has methods for classifying characters.
•	 The nextLine method reads an entire line.
•	 If a string contains the digits of a number, you use the Integer.parseInt or

Double.parseDouble method to obtain the number value.

Process the command line arguments of a program.

•	 Programs that start from the command line receive the com-
mand line arguments in the main method.

Use exception handling to transfer control from an error location to an error handler.

•	 To signal an exceptional condition, use the throw statement to throw an exception
object.

•	 When you throw an exception, processing continues in an exception handler.
•	 Place the statements that can cause an exception inside a try

block, and the handler inside a catch clause.

Video Example 7.2	 Detecting Accounting Fraud

In this Video Example, you will see how to detect accounting fraud
by analyzing digit distributions. You will learn how to read data
from the Internet and handle exceptional situations.

C h a p t e r Summ a r y

Review Exercises  353

•	 Checked exceptions are due to external circumstances that the programmer
cannot prevent. The compiler checks that your program handles these exceptions.

•	 Add a throws clause to a method that can throw a checked exception.
•	 Once a try block is entered, the statements in a finally clause are

guaranteed to be executed, whether or not an exception is
thrown.

•	 Throw an exception as soon as a problem is detected. Catch it
only when the problem can be handled.

Use exception handling in a program that processes input.

•	 When designing a program, ask yourself what kinds of exceptions can occur.
•	 For each exception, you need to decide which part of your program can compe-

tently handle it.

•• R7.1	 What happens if you try to open a file for reading that doesn’t exist? What happens if
you try to open a file for writing that doesn’t exist?

•• R7.2	 What happens if you try to open a file for writing, but the file or device is write-
protected (sometimes called read-only)? Try it out with a short test program.

• R7.3	 How do you open a file whose name contains a backslash, like c:temp\output.dat?

• R7.4	 If a program Woozle is started with the command

java Woozle -Dname=piglet -I\eeyore -v heff.txt a.txt lump.txt

what are the values of args[0], args[1], and so on?

• R7.5	 What is the difference between throwing an exception and catching an exception?

java.io.File
java.io.FileNotFoundException
java.io.IOException
java.io.PrintWriter
 close
java.lang.Character
 isDigit
 isLetter
 isLowerCase
 isUpperCase
 isWhiteSpace
java.lang.Double
 parseDouble
java.lang.Error
java.lang.Integer
 parseInt
java.lang.IllegalArgumentException
java.lang.NullPointerException

java.lang.NumberFormatException
java.lang.RuntimeException
java.lang.Throwable
 getMessage
 printStackTrace
java.net.URL
 openStream
java.util.InputMismatchException
java.util.NoSuchElementException
java.util.Scanner
 close
 hasNextLine
 nextLine
 useDelimiter
javax.swing.JFileChooser
 getSelectedFile
 showOpenDialog
 showSaveDialog

S ta n d a r d Lib r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e vi e w E x e r ci s e s

354  Chapter 7  Input/Output and Exception Handling

• R7.6	 What is a checked exception? What is an unchecked exception? Give an example for
each. Which exceptions do you need to declare with the throws reserved word?

•• R7.7	 Why don’t you need to declare that your method might throw an IndexOutOfBounds
Exception?

•• R7.8	 When your program executes a throw statement, which statement is executed next?

•• R7.9	 What happens if an exception does not have a matching catch clause?

•• R7.10	 What can your program do with the exception object that a catch clause receives?

•• R7.11	 Is the type of the exception object always the same as the type declared in the catch
clause that catches it? If not, why not?

• R7.12	 What is the purpose of the finally clause? Give an example of how it can be used.

•• R7.13	 What happens when an exception is thrown, the code of a finally clause executes,
and that code throws an exception of a different kind than the original one? Which
one is caught by a surrounding catch clause? Write a sample program to try it out.

•• R7.14	 Which exceptions can the next and nextInt methods of the Scanner class throw? Are
they checked exceptions or unchecked exceptions?

•• R7.15	 Suppose the program in Section 7.5 reads a file containing the following values:
1
2
3
4

What is the outcome? How could the program be improved to give a more accurate
error report?

•• R7.16	 Can the readFile method in Section 7.5 throw a NullPointerException? If so, how?

• P7.1	 Write a program that carries out the following tasks:

Open a file with the name hello.txt.
Store the message “Hello, World!” in the file.
Close the file.
Open the same file again.
Read the message into a string variable and print it.

• P7.2	 Write a program that reads a file containing text. Read each line and send it to the
output file, preceded by line numbers. If the input file is

Mary had a little lamb
Whose fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go!

then the program produces the output file
/* 1 */ Mary had a little lamb
/* 2 */ Whose fleece was white as snow.
/* 3 */ And everywhere that Mary went,
/* 4 */ The lamb was sure to go!

P r o g r a mmi n g E x e r ci s e s

Programming Exercises  355

The line numbers are enclosed in /* */ delimiters so that the program can be used for
numbering Java source files.

Prompt the user for the input and output file names.

• P7.3	 Repeat Exercise P7.2, but allow the user to specify the file name on the command-
line. If the user doesn’t specify any file name, then prompt the user for the name.

• P7.4	 Write a program that reads a file containing two columns of floating-point numbers.
Prompt the user for the file name. Print the average of each column.

•• P7.5	 Write a program that asks the user for a file name and prints the number of charac
ters, words, and lines in that file.

•• P7.6	 Write a program Find that searches all files specified on the command line and prints
out all lines containing a specified word. For example, if you call

java Find ring report.txt address.txt Homework.java

then the program might print
report.txt: has broken up an international ring of DVD bootleggers that
address.txt: Kris Kringle, North Pole
address.txt: Homer Simpson, Springfield
Homework.java: String filename;

The specified word is always the first command line argument.

•• P7.7	 Write a program that checks the spelling of all words in a file. It should read each
word of a file and check whether it is contained in a word list. A word list is avail
able on most Linux systems in the file /usr/share/dict/words. (If you don’t have access
to a Linux system, your instructor should be able to get you a copy.) The program
should print out all words that it cannot find in the word list.

•• P7.8	 Write a program that replaces each line of a file with its reverse. For example, if you
run

java Reverse HelloPrinter.java

then the contents of HelloPrinter.java are changed to
retnirPolleH ssalc cilbup
{
)sgra][gnirtS(niam diov citats cilbup
{
wodniw elosnoc eht ni gniteerg a yalpsiD //

;)"!dlroW ,olleH"(nltnirp.tuo.metsyS
}
}

Of course, if you run Reverse twice on the same file, you get back the original file.

•• P7.9	 Write a program that reads each line in a file, reverses its lines, and writes them to
another file. For example, if the file input.txt contains the lines

Mary had a little lamb
Its fleece was white as snow
And everywhere that Mary went
The lamb was sure to go.

and you run
reverse input.txt output.txt

then output.txt contains

356  Chapter 7  Input/Output and Exception Handling

The lamb was sure to go.
And everywhere that Mary went
Its fleece was white as snow
Mary had a little lamb

•• P7.10	 Get the data for names in prior decades from the Social Security Administration.
Paste the table data in files named babynames80s.txt, etc. Modify the worked_example_1/
BabyNames.java program so that it prompts the user for a file name. The numbers in
the files have comma separators, so modify the program to handle them. Can you
spot a trend in the frequencies?	

•• P7.11	 Write a program that reads in worked_example_1/babynames.txt and produces two files,
boynames.txt and girlnames.txt, separating the data for the boys and girls.

••• P7.12	 Write a program that reads a file in the same format as worked_example_1/babynames.txt
and prints all names that are both boy and girl names (such as Alexis or Morgan).

•• P7.13	 Write a program that asks the user to input a set of floating-point values. When the
user enters a value that is not a number, give the user a second chance to enter the
value. After two chances, quit reading input. Add all correctly specified values and
print the sum when the user is done entering data. Use exception handling to detect
improper inputs.

•• P7.14	 Using the mechanism described in Special Topic 7.1, write a program that reads all
data from a web page and writes them to a file. Prompt the user for the web page
URL and the file.

•• P7.15	 Using the mechanism described in Special Topic 7.1, write a program that reads all
data from a web page and prints all hyperlinks of the form

link text

Extra credit if your program can follow the links that it finds and find links in those
web pages as well. (This is the method that search engines such as Google use to find
web sites.)

•• Business P7.16	 A hotel salesperson enters sales in a text file. Each line contains the following,
separated by semicolons: The name of the client, the service sold (such as Dinner,
Conference, Lodging, and so on), the amount of the sale, and the date of that event.
Write a program that reads such a file and displays the total amount for each service
category. Display an error if the file does not exist or the format is incorrect.

•• Business P7.17	 Write a program that reads a text file as described in Exercise P7.16, and that writes a
separate file for each service category, containing the entries for that category. Name
the output files Dinner.txt, Conference.txt, and so on.

•• Business P7.18	 A store owner keeps a record of daily cash transactions in a text file. Each line
contains three items: The invoice number, the cash amount, and the letter P if the
amount was paid or R if it was received. Items are separated by spaces. Write a pro-
gram that prompts the store owner for the amount of cash at the beginning and end
of the day, and the name of the file. Your program should check whether the actual
amount of cash at the end of the day equals the expected value.

Programming Exercises  357

••• Science P7.19	 After the switch in the figure below closes, the voltage (in volts) across the capacitor
is represented by the equation

v t B e t RC() = −()−1 ()

+

–

v (t)+
– C

t = 0
R

B

Suppose the parameters of the electric circuit are B = 12 volts, R = 500 Ω, and
C = 0.25 μF. Consequently

v t e t() = − −()12 1 0 008.

where t has units of μs. Read a file params.txt containing the values for B, R, C, and
the starting and ending values for t. Write a file rc.txt of values for the time t and the
corresponding capacitor voltage v(t), where t goes from the given starting value to
the given ending value in 100 steps. In our example, if t goes from 0 to 1,000 μs, the
twelfth entry in the output file would be:

110 7.02261

••• Science P7.20	 The figure below shows a plot of the capacitor voltage from the circuit shown in
Exercise P7.19. The capacitor voltage increases from 0 volts to B volts. The “rise
time” is defined as the time required for the capacitor voltage to change from
v1 = 0.05 × B to v2 = 0.95 × B.

0 t (µs)
0

B

The file rc.txt contains a list of values of time t and the corresponding capacitor
voltage v(t). A time in μs and the corresponding voltage in volts are printed on the
same line. For example, the line

110 7.02261

indicates that the capacitor voltage is 7.02261 volts when the time is 110 μs. The time
is increasing in the data file.
Write a program that reads the file rc.txt and uses the data to calculate the rise time.
Approximate B by the voltage in the last line of the file, and find the data points that
are closest to 0.05 × B and 0.95 × B.

358  Chapter 7  Input/Output and Exception Handling

•• Science P7.21	 Suppose a file contains bond energies and bond lengths for covalent bonds in the
following format:

Single, double,
or triple bond

Bond energy
(kJ/mol)

Bond length
(nm)

C|C 370 0.154

C||C 680 0.13

C|||C 890 0.12

C|H 435 0.11

C|N 305 0.15

C|O 360 0.14

C|F 450 0.14

C|Cl 340 0.18

O|H 500 0.10

O|O 220 0.15

O|Si 375 0.16

N|H 430 0.10

N|O 250 0.12

F|F 160 0.14

H|H 435 0.074

Write a program that accepts data from one column and returns the corresponding
data from the other columns in the stored file. If input data matches different rows,
then return all matching row data. For example, a bond length input of 0.12 should
return triple bond C|||C and bond energy 890 kJ̸mol and single bond N|O and bond
energy 250 kJ̸mol.

Answers to Self-Check Questions  359

1.	 When the PrintWriter object is created, the out-
put file is emptied. Sadly, that is the same file as
the input file. The input file is now empty and
the while loop exits immediately.

2.	 The program throws a FileNotFoundException
and terminates.

3.	 Open a scanner for the file.
For each number in the scanner
	 Add the number to an array.
Close the scanner.
Set total to 0.
Open a print writer for the file.
For each number in the array
	 Write the number to the print writer.
	 Add the number to total.
Write total to the print writer.
Close the print writer.

4.	 Add a variable count that is incremented when-
ever a number is read. In the end, print the
average, not the total, as
out.printf("Average: %8.2f\n", total / count);

Because the string "Average" is three characters
longer than "Total", change the other output to
out.printf("%18.2f\n", value).

5.	 Add a variable count that is incremented when-
ever a number is read. Only write a new line
when it is even.
count++;
out.printf("%8.2f", value);
if (count % 2 == 0) { out.println(); }

At the end of the loop, write a new line if count
is odd, then write the total:
if (count % 2 == 1) { out.println(); }
out.printf("Total: %10.2f\n", total);

6.	 word is "Hello," and input is "World!"
7.	 Because 995.0 is not an integer, the call

in.hasNextInt() returns false, and the call
in.nextInt() is skipped. The value of number
stays 0, and input is set to the string "995.0".

8.	 x1 is set to 6000000. Because a comma is not
considered a part of a floating-point number
in Java, the second call to nextDouble causes an
input mismatch exception and x2 is not set.

9.	 Read them as strings, and convert those strings
to numbers that are not equal to N/A:
String input = in.next();
if (!input.equals("N/A"))
{
 double value = Double.parseDouble(input);
 Process value.
}

10.	 Locate the last character of the country name:
int j = i - 1;
while (!Character.isWhiteSpace(line.charAt(j)))
{
 j--;
}

Then extract the country name:
String countryName = line.substring(0, j + 1);

11.	 args[0] is "-d" and args[1] is "file1.txt"
12.	

Then the program prints a message
Usage: java CaesarCipher [-d] infile outfile

13.	 The program will run correctly. The loop that
parses the options does not depend on the
positions in which the options appear.

14.	 FDHVDU
15.	 Add the lines

else if (option == 'k')
{
 key = Integer.parseInt(
 args[i].substring(2));
}

after line 27 and update the usage information.
16.	 It is still 100. The last statement was not

executed because the exception was thrown.
17.	 if (amount < 0)

{
 throw new IllegalArgumentException(
 "Negative amount");
}

 key inFile outFile i arg
 3 null null 0 -d
 -3 file1.txt 1 file1.txt
 2

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

360  Chapter 7  Input/Output and Exception Handling

18.	 The Scanner constructor succeeds because
the file exists. The nextInt method throws
a NoSuchElementException. This is not an
IOException. Therefore, the error is not caught.
Because there is no other handler, an error
message is printed and the program terminates.

19.	 Because programmers should simply check
that their array index values are valid instead
of trying to handle an ArrayIndexOutOfBounds
Exception.

20.	 No. You can catch both exception types in the
same way, as you can see in the code example
on page 339.

21.	 There are two mistakes. The PrintWriter con-
structor can throw a FileNotFoundException. You
should supply a throws clause. And if one of the
array elements is null, a NullPointerException is
thrown. In that case, the out.close() statement
is never executed. You should use a try/finally
statement.

22.	 The exceptions are better handled in the main
method.

23.	 If it had been declared inside the try block, its
scope would only have extended until the end
of the try block, and it would not have been
accessible in the finally clause.

24.	 main calls readFile, which calls readData. The call
in.nextInt() throws a NoSuchElementException.
The readFile method doesn’t catch it, so it
propagates back to main, where it is caught.
An error message is printed, and the user can
specify another file.

25.	 We want to throw that exception, so that
someone else can handle the problem of a bad
data file.

8C h a p t e r

361

Objects and
Classes

To understand the concepts of classes,
objects, and encapsulation

To implement instance variables, methods, and constructors

To be able to design, implement, and test your own classes

To understand the behavior of object references, static variables, and static methods

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

8.1  Object-Oriented
Programming  362

8.2  Implementing a Simple Class  364

Syntax 8.1:  Instance Variable Declaration  365

8.3  Specifying the Public Interface
of a Class  367

Special Topic 8.1: The javadoc Utility  370

8.4  Designing the Data
Representation  371

8.5  Implementing Instance
Methods  372

Syntax 8.2:  Instance Methods  373
Programming Tip 8.1: All Instance Variables

Should Be Private; Most Methods Should
Be Public  374

8.6  Constructors  375

Syntax 8.3: Constructors  376
Common Error 8.1: Forgetting to Initialize Object

References in a Constructor  378
Common Error 8.2: Trying to Call

a Constructor  379
Common Error 8.3: Declaring a Constructor

as void  379

Special Topic 8.2: Overloading  380

8.7  Testing a Class  380

How To 8.1:  Implementing a Class  382
Worked Example 8.1:  Implementing a Bank

Account Class 
Video Example 8.1: Paying Off a Loan 

8.8  Problem Solving:
Tracing Objects  386

8.9  Problem Solving: Patterns
for Object Data  388

Video Example 8.2: Modeling a Robot Escaping
from a Maze 

Random Fact 8.1: Electronic Voting Machines  394

8.10  Object References  395

Special Topic 8.3: Calling One Constructor
from Another  399

8.11  Static Variables and
Methods  400

Random Fact 8.2: Open Source and
Free Software  402

362

This chapter introduces you to object-oriented program-
ming, an important technique for writing complex pro-
grams. In an object-oriented program, you don’t simply
manipulate numbers and strings, but you work with objects
that are meaningful for your application. Objects with
the same behavior (such as the windmills to the left) are
grouped into classes. A programmer provides the desired
behavior by specifying and implementing methods for
these classes. In this chapter, you will learn how to discover,
specify, and implement your own classes, and how to use
them in your programs.

8.1  Object-Oriented Programming
You have learned how to structure your programs by decomposing tasks into meth-
ods. This is an excellent practice, but experience shows that it does not go far enough.
It is difficult to understand and update a program that consists of a large collection of
methods.

To overcome this problem, computer scientists invented object-oriented pro-
gramming, a programming style in which tasks are solved by collaborating objects.
Each object has its own set of data, together with a set of methods that act upon the
data.

You have already experienced this programming style when you used strings, the
System.out object, or a Scanner object. Each of these objects has a set of methods. For
example, you can use the length and sub­string methods to work with String objects.

When you develop an object-oriented program, you create your own objects that
describe what is important in your application. For example, in a student database
you might work with Student and Course objects. Of course, then you must supply
methods for these objects.

In Java, a programmer doesn’t implement a single object. Instead, the program-
mer provides a class. A class describes a set of objects with the same behavior. For
example, the String class describes the behavior of all strings. The class specifies how

A Car class describes passenger vehicles that can
carry 4–5 people and a small amount of luggage.

A class describes a
set of objects with
the same behavior.

8.1  Object-Oriented Programming   363

a string stores its characters, which methods can be used with strings, and how the
methods are implemented.

In contrast, the PrintStream class describes the behavior of objects that can be used
to produce output. One such object is System.out, and you have seen in Chapter 7 how
to create PrintStream objects that send output to a file.

Each class defines a specific set of methods that you can use with its objects. For
example, when you have a String object, you can invoke the length method:

"Hello, World".length()

We say that the length method is a method of the String class. The PrintStream class has
a different set of methods. For example, the call

System.out.length()

would be illegal––the PrintStream class has no length method. However, PrintStream
has a println method, and the call

out.println("Hello, World!")

is legal.
The set of all methods provided by a class, together with a description of their

behavior, is called the public interface of the class.
When you work with an object of a class, you do not know how the object stores

its data, or how the methods are implemented. You need not know how a String orga-
nizes a character sequence, or how a PrintWriter object sends data to a file. All you
need to know is the public interface––which methods you can apply, and what these
methods do. The process of providing a public interface, while hiding the implemen-
tation details, is called encapsulation.

When you design your own classes, you will use encapsulation. That is, you will
specify a set of public methods and hide the implementation details. Other program-
mers on your team can then use your classes without having to know their imple-
mentations, just as you are able to make use of the String and PrintStream classes.

If you work on a program that is being developed over a long period of time, it is
common for implementation details to change, usually to make objects more efficient
or more capable. When the implementation is hidden, the improvements do not affect
the programmers that use the objects.

Every class has a
public interface: a
collection of methods
through which the
objects of the class
can be manipulated.

Encapsulation is
the act of providing
a public interface and
hiding the implemen
tation details.

Encapsulation
enables changes in
the implementation
without affecting
users of a class.

You can drive a car by operating the
steering wheel and pedals, without
knowing how the engine works.
Similarly, you use an object through its
methods. The implementation is hidden.

364  Chapter 8  Objects and Classes

1.	

A driver of an electric car doesn’t
have to learn new controls even
though the car engine is very
different. Neither does the program-
mer who uses an object with an
improved implementation—as long
as the same methods are used.

Is the method call "Hello, World".println() legal? Why or why not?
2.	 When using a String object, you do not know how it stores its characters. How

can you access them?
3.	 Describe a way in which a String object might store its characters.
4.	 Suppose the providers of your Java compiler decide to change the way that a

String object stores its characters, and they update the String method implemen-
tations accordingly. Which parts of your code do you need to change when you
get the new compiler?

Practice It	 Now you can try these exercises at the end of the chapter: R8.1, R8.4.

8.2  Implementing a Simple Class
In this section, we look at the implementation of
a very simple class. You will see how objects store
their data, and how methods access the data of an
object. Knowing how a very simple class operates
will help you design and implement more com-
plex classes later in this chapter.

Our first example is a class that models a tally
counter, a mechanical device that is used to count
people—for example, to find out how many peo-
ple attend a concert or board a bus (see Figure 1).

Whenever the operator pushes a button, the
counter value advances by one. We model this
operation with a count method. A physical coun-
ter has a display to show the current value. In our
simulation, we use a getValue method instead.

S e l f C h e c k

Figure 1  A Tally Counter

8.2  Implementing a Simple Class   365

Here is an example of using the Counter class. First, we construct an object of the
class:

Counter tally = new Counter();

In Java, you use the new operator to construct objects. We will discuss object con-
struction in more detail in Section 8.6.

Next, we invoke methods on our object. First, we invoke the count method twice,
simulating two button pushes. Then we invoke the getValue method to check how
many times the button was pushed.

tally.count();
tally.count();

int result = tally.getValue(); // Sets result to 2

We can invoke the methods again, and the result will be different.
tally.count();
tally.count();

result = tally.getValue(); // Sets result to 4

As you can see, the tally object remembers the effect of prior method calls.
When implementing the Counter class, we need to specify how each counter object

stores its data. In this simple example, that is very straightforward. Each counter
needs a variable that keeps track of how many times the counter has been advanced.

An object stores its data in instance variables. An instance of a class is an object of
the class. Thus, an instance variable is a storage location that is present in each object
of the class.

You specify instance variables in the class declaration:
public class Counter
{
 private int value;
 . . .
}

An instance variable declaration consists of the following parts:

•	 An modifier (private)
•	 The type of the instance variable (such as int)
•	 The name of the instance variable (such as value)

An object’s instance
variables store
the data required
for executing
its methods.

Syntax 8.1	 Instance Variable Declaration

public class ClassName
{
 private typeName variableName;
 . . .
}

Syntax

public class Counter
{
 private int value;
 . . .
}

Each object of this class
has a separate copy of
this instance variable.

Instance variables should
always be private.

Type of the variable

366  Chapter 8  Objects and Classes

Each object of a class has its own set of instance variables. For example, if concert-
Counter and boarding­Counter are two objects of the Counter class, then each object has its
own value variable (see Figure 2).

As you will see in Section 8.6, the instance variable value is set to 0 when a Counter
object is constructed.

Next, let us have a quick look at the implementation of the methods of the Counter
class. The count method advances the counter value by 1.

public void count()
{
 value = value + 1;
}

We will cover the syntax of the method header in Section 8.3. For now, focus on the
body of the method inside the braces.

Note how the count method increments the instance variable value. Which instance
variable? The one belonging to the object on which the method is invoked. For exam-
ple, consider the call

concertCounter.count();

This call advances the value variable of the concertCounter object.
The methods that you invoke on an object are called instance methods to distin-

guish them from the static methods of Chapter 5.
Finally, look at the other instance method of the Counter class. The getValue method

returns the current value:
public int getValue()
{
 return value;
}

This method is required so that users of the Counter class can find out how often a
particular counter has been clicked. A user cannot simply access the value instance
variable. That variable has been declared with the access specifier private.

The private specifier restricts access to the methods of the same class. For example,
the value variable can be accessed by the count and getValue methods of the Counter
class but not a method of another class. Those other methods need to use the getValue
method if they want to find out the counter’s value, or the count method if they want
to change it.

Each object of a class
has its own set of
instance variables.

An instance method
can access the
instance variables
of the object on
which it acts.

A private instance
variable can only
be accessed by the
methods of its
own class.

O NLINE E x a m p l e

The complete
Counter class and a
CounterTester
program.

Figure 2  Instance Variables

concertCounter =

value =

Counter

value =

CounterboardingCounter =

Instance
variables

8.3 S pecifying the Public Interface of a Class   367

These clocks have common behavior, but each of them has a different state. Similarly, objects of
a class can have their instance variables set to different values.

Private instance variables are an essential part of encapsulation. They allow a pro-
grammer to hide the implementation of a class from a class user.

5.	 Supply the body of a method public void reset() that resets the counter back to
zero.

6.	 Consider a change to the implementation of the counter. Instead of using an
integer counter, we use a string of | characters to keep track of the clicks, just like
a human might do.
public class Counter
{
 private String strokes = "";
 public void count()
 {
 strokes = strokes + "|";
 }
 . . .
}

How do you implement the getValue method with this data representation?
7.	 Suppose another programmer has used the original Counter class. What changes

does that programmer have to make in order to use the modified class?
8.	 Suppose you use a class Clock with private instance variables hours and minutes.

How can you access these variables in your program?

Practice It	 Now you can try these exercises at the end of the chapter: P8.1, P8.2.

8.3  Specifying the Public Interface of a Class
When designing a class, you start by specifying its public interface. The public inter-
face of a class consists of all methods that a user of the class may want to apply to its
objects.

Let’s consider a simple example. We want to use objects that simulate cash registers.
A cashier who rings up a sale presses a key to start the sale, then rings up each item. A
display shows the amount owed as well as the total number of items purchased.

S e l f C h e c k

368  Chapter 8  Objects and Classes

In our simulation, we want to call the following methods on a cash register object:

•	 Add the price of an item.
•	 Get the total amount owed, and the count of

items purchased.
•	 Clear the cash register to start a new sale.

Here is an outline of the CashRegister class. We sup-
ply comments for all of the methods to document
their purpose.

/**
 A simulated cash register that tracks the item
 count and the total amount due.
*/
public class CashRegister
{
 private data—see Section 8.4

 /**
 Adds an item to this cash register.
 @param price the price of this item
 */
 public void addItem(double price)
 {
 implementation—see Section 8.5
 }

 /**
 Gets the price of all items in the current sale.
 @return the total price
 */
 public double getTotal()
 {
 implementation—see Section 8.5
 }

 /**
 Gets the number of items in the current sale.
 @return the item count
 */
 public int getCount()
 {
 implementation—see Section 8.5
 }

 /**
 Clears the item count and the total.
 */
 public void clear()
 {
 implementation—see Section 8.5
 }
}

The method declarations and comments make up the public interface of the class. The
data and the method bodies make up the private implementation of the class.

Note that the methods of the CashRegister class are instance methods. They are not
declared as static. You invoke them on objects (or instances) of the CashRegister class.

You can use method
headers and method
comments to specify
the public interface
of a class.

O n l i n e E x a m p l e

The documentation
of the public
interface of the
CashRegister class.

8.3 S pecifying the Public Interface of a Class   369

Figure 3 
An Object Reference
and an Object

register1 = CashRegister

To see an instance method in action, we first need to construct an object:
CashRegister register1 = new CashRegister();
 // Constructs a CashRegister object

This statement initializes the register1 variable with a reference to a new CashRegister
object—see Figure 3. (We discuss the process of object construction in Section 8.6
and object references in Section 8.10.)

Once the object has been constructed, we are ready to invoke a method:
register1.addItem(1.95); // Invokes a method

When you look at the public interface of a class, it is useful to classify its methods as
mutators and accessors. A mutator method modifies the object on which it operates.
The CashRegister class has two mutators: addItem and clear. After you call either of
these methods, the object has changed. You can observe that change by calling the
getTotal or getCount method.

An accessor method queries the object for some information without changing
it. The CashRegister class has two accessors: getTotal and getCount. Applying either of
these methods to a CashRegister object simply returns a value and does not modify the
object. For example, the following statement prints the current total and count:

System.out.println(register1.getTotal()) + " " + register1.getCount());

Now we know what a CashRegister object can do, but not how it does it. Of course, to
use CashRegister objects in our programs, we don’t need to know.

In the next sections, you will see how the CashRegister class is implemented.

9.	 What does the following code segment print?
CashRegister reg = new CashRegister();
reg.clear();
reg.addItem(0.95);
reg.addItem(0.95);
System.out.println(reg.getCount() + " " + reg.getTotal());

10.	 What is wrong with the following code segment?
CashRegister reg = new CashRegister();
reg.clear();
reg.addItem(0.95);
System.out.println(reg.getAmountDue());

11.	 Declare a method getDollars of the CashRegister class that yields the amount of
the total sale as a dollar value without the cents.

12.	 Name two accessor methods of the String class.
13.	 Is the nextInt method of the Scanner class an accessor or a mutator?
14.	 Provide documentation comments for the Counter class of Section 8.2.

Practice It	 Now you can try these exercises at the end of the chapter: R8.2, R8.8.

A mutator method
changes the object
on which it operates.

An accessor method
does not change
the object on which
it operates.

S e l f C h e c k

370  Chapter 8  Objects and Classes

The javadoc Utility

The javadoc utility formats documentation comments into a neat set of documents that you
can view in a web browser. It makes good use of the seemingly repetitive phrases. The first
sentence of each method comment is used for a summary table of all methods of your class
(see Figure 4). The @param and @return comments are neatly formatted in the detail description
of each method (see Figure 5). If you omit any of the comments, then javadoc generates docu-
ments that look strangely empty.

This documentation format may look familiar. It is the same format that is used in the offi-
cial Java documentation. The programmers who implement the Java library use javadoc them-
selves. They too document every class, every method, every parameter, and every return value,
and then use javadoc to extract the documentation.

Many integrated programming environments can execute javadoc for you. Alternatively,
you can invoke the javadoc utility from a shell window, by issuing the command

javadoc MyClass.java

Special Topic 8.1

Figure 4  A Method Summary Generated by javadoc

Figure 5  Method Detail Generated by javadoc

8.4 D esigning the Data Representation   371

The javadoc utility produces files such as MyClass.html in HTML format, which you can inspect
in a browser. You can use hyperlinks to navigate to other classes and methods.

You can run javadoc before implementing any methods. Just leave all the method bodies
empty. Don’t run the compiler—it would complain about missing return values. Simply run
javadoc on your file to generate the documentation for the public interface that you are about
to implement.

The javadoc tool is wonderful because it does one thing right: It allows you to put the docu-
mentation together with your code. That way, when you update your programs, you can see
right away which documentation needs to be updated. Hopefully, you will update it right then
and there. Afterward, run javadoc again and get updated information that is timely and nicely
formatted.

8.4  Designing the Data Representation
An object stores its data in instance variables. These are variables that are declared
inside the class (see Syntax 8.1).

When implementing a class, you have to determine which data each object needs to
store. The object needs to have all the information necessary to carry out any method
call.

Go through all methods and consider their data requirements. It is a good idea to
start with the accessor methods. For example, a CashRegister object must be able to
return the correct value for the getTotal method. That means, it must either store all
entered prices and compute the total in the method call, or it must store the total.

Now apply the same reasoning to the getCount method. If the cash register stores all
entered prices, it can count them in the getCount method. Otherwise, you need to have
a variable for the count.

The addItem method receives a price as an
argument, and it must record the price. If the
CashRegister object stores an array of entered
prices, then the addItem method appends the
price. On the other hand, if we decide to store
just the item total and count, then the addItem
method updates these two variables.

Finally, the clear method must prepare the
cash register for the next sale, either by emp-
tying the array of prices or by setting the total
and count to zero.

We have now discovered two different
ways of representing the data that the object
needs. Either of them will work, and we have
to make a choice. We will choose the simpler
one: variables for the total price and the item
count. (Other options are explored in Exer-
cises P8.16 and P8.17.)

int itemCount;
double totalPrice;

For each accessor
method, an object
must either store or
compute the result.

Like a wilderness explorer who needs to
carry all items that may be needed, an
object needs to store the data required
for any method calls.

Commonly, there is
more than one way of
representing the data
of an object, and you
must make a choice.

372  Chapter 8  Objects and Classes

The instance variables are declared in the class, but outside any methods, with the
private modifier:

public class CashRegister
{
 private int itemCount;
 private double totalPrice;
 . . .
}

Note that method calls can come in any order. For example, consider the CashRegister
class. After calling

register1.getTotal()

a program can make another call to
register1.addItem(1.95)

You should not assume that you can clear the sum in a call to getTotal. Your data rep-
resentation should allow for method calls that come in arbitrary order, in the same
way that occupants of a car can push the various buttons and levers in any order they
choose.

15.	 What is wrong with this code segment?
CashRegister register2 = new CashRegister();
register2.clear();
register2.addItem(0.95);
System.out.println(register2.totalPrice);

16.	 Consider a class Time that represents a point in time, such as 9 a.m. or 3:30 p.m.
Give two sets of instance variables that can be used for implementing the Time
class. (Hint for the second set: Military time.)

17.	 Suppose the implementor of the Time class changes from one implementation
strategy to another, keeping the public interface unchanged. What do the pro-
grammers who use the Time class need to do?

18.	 Consider a class Grade that represents a letter grade, such as A+ or B. Give two dif-
ferent sets of instance variables that can be used for implementing the Grade class.

Practice It	 Now you can try these exercises at the end of the chapter: R8.6, R8.16.

8.5  Implementing Instance Methods
When implementing a class, you need to provide the bodies for all methods. Imple-
menting an instance method is very similar to implementing a static method, with one
essential difference: You can access the instance variables of the class in the method
body.

For example, here is the implementation of the addItem method of the CashRegister
class. (You can find the remaining methods at the end of the next section.)

public void addItem(double price)
{
 itemCount++;
 totalPrice = totalPrice + price;

}

Be sure that your
data representation
supports method
calls in any order.

O n l i n e E x a m p l e

The CashRegister
class with instance
variables.

S e l f C h e c k

8.5  Implementing Instance Methods   373

Syntax 8.2	 Instance Methods

public class CashRegister
{
 . . .
 public void addItem(double price)
 {
 itemCount++;
 totalPrice = totalPrice + price;
 }
 . . .
}

Explicit parameter

Instance variables of
the implicit parameter

modifiers returnType methodName(parameterType parameterName, . . .)
{
 method body
}

Syntax

Whenever you use an instance variable, such as itemCount or totalPrice, in a method, it
denotes that instance variable of the object on which the method was invoked. For
example, consider the call

register1.addItem(1.95);

The first statement in the addItem method is
itemCount++;

Which itemCount is incremented? In this call, it is the itemCount of the register1 object.
(See Figure 6.)

The object on which
a method is applied
is the implicit
parameter.

Figure 6 
Implicit and Explicit
Parameters

2 After the method call register1.addItem(1.95).

1 Before the method call.

itemCount =

CashRegister

totalPrice =

1

1.95

itemCount =

CashRegister

totalPrice =

0

0

register1 =

register1 =

The implicit parameter
references this object.

The explicit parameter
is set to this argument.

374  Chapter 8  Objects and Classes

When an item is added, it affects the
instance variables of the cash register
object on which the method is invoked.

The object on which a method is invoked is called the implicit parameter of the
method. In Java, you do not actually write the implicit parameter in the method dec-
laration. For that reason, the parameter is called “implicit”.

In contrast, parameters that are explicitly mentioned in the method declaration,
such as the totalPrice parameter variable, are called explicit parameters. Every
method has exactly one implicit parameter and zero or more explicit parameters.

19.	 What are the values of register1.itemCount, register1.totalPrice, register2.
itemCount, and register2.total­Price after these statements?
CashRegister register1 = new CashRegister();
register1.addItem(0.90);
register1.addItem(0.95);
CashRegister register2 = new CashRegister();
register2.addItem(1.90);

20.	 Implement a method getDollars of the CashRegister class that yields the amount of
the total sale as a dollar value without the cents.

21.	 Consider the substring method of the String class that is described in Section
2.5.6. How many parameters does it have, and what are their types?

22.	 Consider the length method of the String class. How many parameters does it
have, and what are their types?

Practice It	 Now you can try these exercises at the end of the chapter: R8.10, P8.16, P8.17, P8.18.

All Instance Variables Should Be Private; Most Methods
Should Be Public

It is possible to declare instance variables as public, but you should not do that in your own
code. Always use encapsulation, with private instance variables that are manipulated with
methods.

Typically, methods are public. However, sometimes you have a method that is used only
as a helper method by other methods. In that case, you can make the helper method private.
Simply use the private reserved word when declaring the method.

Explicit parameters
of a method are listed
in the method
declaration.

O n l i n e E x a m p l e

The CashRegister
class with method
implementations.

S e l f C h e c k

Programming Tip 8.1

8.6  Constructors   375

8.6  Constructors
A constructor initializes the instance variables of an object. The constructor is
automatically called whenever an object is created with the new operator.

You have seen the new operator in Chapter 2. It is used whenever a new object is
required. For example, the expression new Scanner(System.in) in the statement

Scanner in = new Scanner(System.in);

constructs a new object of the Scanner class. Specifically, a constructor of the Scan-
ner class is called with the argument System.in. That constructor initializes the Scanner
object.

The name of a constructor is identical to the name of its class. For example:
public class CashRegister
{
 . . .

 /**
 Constructs a cash register with cleared item count and total.
 */
 public CashRegister() // A constructor
 {
 itemCount = 0;
 totalPrice = 0;
 }
}

Constructors never return values, but you do not use the void reserved word when
declaring them.

Many classes have more than one constructor. This allows you to declare objects
in different ways. Consider for example a BankAccount class that has two constructors:

public class BankAccount
{
 . . .

 /**
 Constructs a bank account with a zero balance.
 */
 public BankAccount() { . . . }

 /**
 Constructs a bank account with a given balance.
 @param initialBalance the initial balance
 */
 public BankAccount(double initialBalance) { . . . }
}

Both constructors have the same name as the class, BankAccount. The first constructor
has no parameter variables, whereas the second constructor has a parameter variable
of type double.

When you construct an object, the compiler chooses the constructor that matches
the arguments that you supply. For example,

BankAccount joesAccount = new BankAccount();
 // Uses BankAccount() constructor
BankAccount lisasAccount = new BankAccount(499.95);
 // Uses BankAccount(double) constructor

A constructor
initializes the
instance variables
of an object.

A constructor is
invoked when an
object is created with
the new operator.

The name of a
constructor is
the same as the
class name.

A class can have
multiple
constructors.

The compiler picks
the constructor
that matches the
construction
arguments.

376  Chapter 8  Objects and Classes

Syntax 8.3	 Constructors

public class BankAccount
{
 private double balance;

 public BankAccount()
 {
 balance = 0;
 }

 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }
 . . .
}

A constructor
has no return type,
not even void.

A constructor has the
same name as the class.

This constructor is
picked for the expression

new BankAccount(499.95).

These constructors
initialize the balance

instance variable.

If you do not initialize an instance variable in a constructor, it is automatically set to a
default value:

•	 Numbers are set to zero.
•	 Boolean variables are initialized as false.
•	 Object and array references are set to the special value null that indicates that no

object is associated with the variable (see Section 8.10). This is usually not desir-
able, and you should initialize object references in your constructors (see Com-
mon Error 8.1 on page 378).

In this regard, instance variables differ from local variables declared inside methods.
The computer reports an error if you use a local variable that has not been explicitly
initialized.

If you do not supply any constructor for a class, the compiler automatically gener-
ates a constructor. That constructor has no arguments, and it initializes all instance
variables with their default values. Therefore, every class has at least one constructor.

You have now encountered all concepts that are necessary to implement the
CashRegister class.

By default, numbers
are initialized as 0,
Booleans as false,
and object references
as null.

If you do not provide
a constructor, a
constructor with
no arguments
is generated.

A constructor is like a set of
assembly instructions for an object.

8.6  Constructors   377

The complete code for the class is given here. In the next section, you will see how
to test the class.

section_6/CashRegister.java

1 /**
2 A simulated cash register that tracks the item count and
3 the total amount due.
4 */
5 public class CashRegister
6 {
7 private int itemCount;
8 private double totalPrice;
9

10 /**
11 Constructs a cash register with cleared item count and total.
12 */
13 public CashRegister()
14 {
15 itemCount = 0;
16 totalPrice = 0;
17 }
18
19 /**
20 Adds an item to this cash register.
21 @param price the price of this item
22 */
23 public void addItem(double price)
24 {
25 itemCount++;
26 totalPrice = totalPrice + price;
27 }
28
29 /**
30 Gets the price of all items in the current sale.
31 @return the total amount
32 */
33 public double getTotal()
34 {
35 return totalPrice;
36 }
37
38 /**
39 Gets the number of items in the current sale.
40 @return the item count
41 */
42 public int getCount()
43 {
44 return itemCount;
45 }
46
47 /**
48 Clears the item count and the total.
49 */
50 public void clear()
51 {
52 itemCount = 0;
53 totalPrice = 0;
54 }
55 }

378  Chapter 8  Objects and Classes

23.	 Consider this class:
public class Person
{
 private String name;

 public Person(String firstName, String lastName)
 {
 name = lastName + ", " + firstName;
 }
 . . .
}

If an object is constructed as
Person harry = new Person("Harry", "Morgan");

what is its name instance variable?
24.	 Provide an implementation for a Person constructor so that after the call

Person p = new Person();

the name instance variable of p is "unknown".
25.	 What happens if you supply no constructor for the CashRegister class?
26.	 Consider the following class:

public class Item
{
 private String description;
 private double price;

 public Item() { . . . }
 // Additional methods omitted
}

Provide an implementation for the constructor. Be sure that no instance variable
is set to null.

27.	 Which constructors should be supplied in the Item class so that each of the fol-
lowing declarations compiles?
a.	 Item item2 = new Item("Corn flakes");
b.	Item item3 = new Item(3.95);
c.	 Item item4 = new Item("Corn flakes", 3.95);
d.	Item item1 = new Item();
e.	 Item item5;

Practice It	 Now you can try these exercises at the end of the chapter: R8.12, P8.4, P8.5.

Forgetting to Initialize Object References in a Constructor

Just as it is a common error to forget to initialize a local variable, it is easy to forget about
instance variables. Every constructor needs to ensure that all instance variables are set to
appropriate values.

If you do not initialize an instance variable, the Java compiler will initialize it for you.
Numbers are initialized with 0, but object references—such as string variables—are set to the
null reference.

S e l f C h e c k

Common Error 8.1

8.6  Constructors   379

Of course, 0 is often a convenient default for numbers. However, null is hardly ever a con-
venient default for objects. Consider this “lazy” constructor for a modified version of the
BankAccount class:

public class BankAccount
{
 private double balance;
 private String owner;
 . . .
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }
}

In this case, balance is initialized, but the owner variable is set to a null reference. This can be a
problem—it is illegal to call methods on the null reference.

To avoid this problem, it is a good idea to initialize every instance variable:

public BankAccount(double initialBalance)
{
 balance = initialBalance;
 owner = "None";
}

Trying to Call a Constructor

A constructor is not a method. You must use it in combination with the new reserved word:

CashRegister register1 = new CashRegister();

After an object has been constructed, you cannot invoke the constructor on that object again.
For example, you cannot call the constructor to clear an object:

. . .
register1.CashRegister(); // Error

It is true that the constructor can set a new CashRegister object to the cleared state, but you
cannot invoke a constructor on an existing object. However, you can replace the object with a
new one:

register1 = new CashRegister(); // OK

Declaring a Constructor as void

Do not use the void reserved word when you declare a constructor:

public void BankAccount() // Error—don’t use void!

This would declare a method with return type void and not a constructor. Unfortunately, the
Java compiler does not consider this a syntax error.

Common Error 8.2

Common Error 8.3

380  Chapter 8  Objects and Classes

Overloading

When the same method name is used for more than one method, then the name is overloaded.
In Java you can overload method names provided that the parameter types are different. For
example, you can declare two methods, both called print:

public void print(CashRegister register)
public void print(BankAccount account)

When the print method is called,

print(x);

the compiler looks at the type of x. If x is a CashRegister object, the first method is called. If x is an
BankAccount object, the second method is called. If x is neither, the compiler generates an error.

We have not used the overloading feature in this book. Instead, we gave each method a
unique name, such as printRegister or printAccount. However, we have no choice with con-
structors. Java demands that the name of a constructor equal the name of the class. If a class has
more than one constructor, then that name must be overloaded.

8.7  Testing a Class
In the preceding section, we completed the implementation of the CashRegister class.
What can you do with it? Of course, you can compile the file CashRegister.java. How-
ever, you can’t execute the CashRegister class. It doesn’t contain a main method. That is
normal—most classes don’t contain a main method. They are meant to be combined
with a class that has a main method.

In the long run, your class may become a part
of a larger program that interacts with users, stores
data in files, and so on. However, before integrat-
ing a class into a program, it is always a good idea
to test it in isolation. Testing in isolation, outside a
complete program, is called unit testing.

To test your class, you have two choices. Some
interactive development environments, such as
BlueJ (http://bluej.org) and Dr. Java (http://drjava.
org), have commands for constructing objects and
invoking methods. Then you can test a class sim-
ply by constructing an object, calling methods, and
verifying that you get the expected return values.
Figure 7 shows the result of calling the getTotal
method on a CashReg­ister object in BlueJ.

Alternatively, you can write a tester class. A
tester class is a class with a main method that contains statements to run methods of
another class. A tester class typically carries out the following steps:

1.	Construct one or more objects of the class that is being tested.
2.	Invoke one or more methods.
3.	Print out one or more results.
4.	Print the expected results.

Special Topic 8.2

An engineer tests a part in isolation.
This is an example of unit testing.

A unit test verifies
that a class works
correctly in isolation,
outside a complete
program.

To test a class, use
an environment for
interactive testing,
or write a tester
class to execute
test instructions.

8.7 T esting a Class   381

Figure 7  The Return Value of the getTotal Method in BlueJ

Here is a class to run methods of the CashRegister class. The main method constructs
an object of type CashRegister, invokes the addItem method three times, and then dis-
plays the result of the getCount and get­Total methods.

section_7/CashRegisterTester.java

1 /**
2 This program tests the CashRegister class.
3 */
4 public class CashRegisterTester
5 {
6 public static void main(String[] args)
7 {
8 CashRegister register1 = new CashRegister();
9 register1.addItem(1.95);

10 register1.addItem(0.95);
11 register1.addItem(2.50);
12 System.out.println(register1.getCount());
13 System.out.println("Expected: 3");
14 System.out.printf("%.2f\n", register1.getTotal());
15 System.out.println("Expected: 5.40");
16 }
17 }

Program Run

3
Expected: 3
5.40
Expected: 5.40

In our sample program, we add three items totaling $5.40. When displaying the
method results, we also display messages that describe the values we expect to see.

382  Chapter 8  Objects and Classes

This is a very important step. You want to spend some time thinking about what
the expected result is before you run a test program. This thought process will help
you understand how your program should behave, and it can help you track down
errors at an early stage.

To produce a program, you need to combine the CashRegister and Cash­RegisterTester
classes. The details for building the program depend on your compiler and develop-
ment environment. In most environments, you need to carry out these steps:

1.	Make a new subfolder for your program.
2.	Make two files, one for each class.
3.	Compile both files.
4.	Run the test program.

Many students are surprised that such a simple program contains two classes. How-
ever, this is normal. The two classes have entirely different purposes. The CashRegister
class describes objects that model cash registers. The CashRegisterTester class runs a
test that puts a CashRegister object through its paces.

28.	 How would you enhance the tester class to test the clear method?
29.	 When you run the CashRegisterTester program, how many objects of class

CashRegister are constructed? How many objects of type CashRegisterTester?
30.	 Why is the CashRegisterTester class unnecessary in development environments

that allow interactive testing, such as BlueJ?

Practice It	 Now you can try these exercises at the end of the chapter: P8.10, P8.11, P8.21.

Step 1	 Get an informal list of the responsibilities of your objects.

Be careful that you restrict yourself to features that are actually required in the problem. With
real-world items, such as cash registers or bank accounts, there are potentially dozens of fea-
tures that might be worth implementing. But your job is not to faithfully model the real world.
You need to determine only those responsibilities that you need for solving your specific
problem.

In the case of the menu, you need to

Display the menu.
Get user input.

Determining the
expected result
in advance is an
important part
of testing.

S e l f C h e c k

How To 8.1	 Implementing a Class

A very common task is to implement a class whose objects can carry out a set of specified
actions. This How To walks you through the necessary steps.

As an example, consider a class Menu. An object of this
class can display a menu such as

1) Open new account
2) Log into existing account
3) Help
4) Quit

Then the menu waits for the user to supply a value. If the
user does not supply a valid value, the menu is redisplayed,
and the user can try again.

8.7 T esting a Class   383

Now look for hidden responsibilities that aren’t part of the problem description. How do
objects get created? Which mundane activities need to happen, such as clearing the cash regis-
ter at the beginning of each sale?

In the menu example, consider how a menu is produced. The programmer creates an empty
menu object and then adds options “Open new account”, “Help”, and so on. That is another
responsibility:

Add an option.

Step 2	 Specify the public interface.

Turn the list in Step 1 into a set of methods, with specific types for the parameter variables and
the return values. Many programmers find this step simpler if they write out method calls that
are applied to a sample object, like this:

Menu mainMenu = new Menu();
mainMenu.addOption(“Open new account”);
// Add more options
int input = mainMenu.getInput();

Now we have a specific list of methods.
•	 void addOption(String option)

•	 int getInput()

What about displaying the menu? There is no sense in displaying the menu without also ask-
ing the user for input. However, getInput may need to display the menu more than once if the
user provides a bad input. Thus, display is a good candidate for a private method.

To complete the public interface, you need to specify the constructors. Ask yourself what
information you need in order to construct an object of your class. Sometimes you will want
two constructors: one that sets all instance variables to a default and one that sets them to user-
supplied values.

In the case of the menu example, we can get by with a single constructor that creates an
empty menu.

Here is the public interface:

public class Menu
{
 public Menu() { . . . }
 public void addOption(String option) { . . . }
 public int getInput() { . . . }
}

Step 3	 Document the public interface.

Supply a documentation comment for the class, then comment each method.

/**
 A menu that is displayed on a console.
*/
public class Menu
{
 /**
 Constructs a menu with no options.
 */
 public Menu() { . . . }

 /**
 Adds an option to the end of this menu.
 @param option the option to add
 */
 public void addOption(String option) { . . . }

384  Chapter 8  Objects and Classes

 /**
 Displays the menu, with options numbered starting with 1,
 and prompts the user for input. Repeats until a valid input
 is supplied.
 @return the number that the user supplied
 */
 public int getInput() { . . . }
}

Step 4	 Determine instance variables.

Ask yourself what information an object needs to store to do its job. The object needs to be
able to process every method using just its instance variables and the method arguments.

Go through each method, perhaps starting with a simple one or an interesting one, and ask
yourself what the object needs to carry out the method’s task. Which data items are required in
addition to the method arguments? Make instance variables for those data items.

In our example, let’s start with the addOption method. We clearly need to store the added
menu option so that the menu can be displayed later. How should we store the options? As an
array list of strings? As one long string? Both approaches can be made to work. We will use an
array list here. Exercise P8.3 asks you to implement the other approach.

public class Menu
{
 private ArrayList<String> options;
 . . .
}

Now consider the getInput method. It shows the stored options and reads an integer. When
checking that the input is valid, we need to know the number of menu items. Because we store
them in an array list, the number of menu items is simply obtained as the size of the array list.
If you stored the menu items in one long string, you might want to keep another instance vari-
able that stores the item count.

We will also need a scanner to read the user input, which we will add as another instance
variable:

private Scanner in;

Step 5	 Implement constructors and methods.

Implement the constructors and methods in your class, one at a time, starting with the easiest
ones. For example, here is the implementation of the addOption method:

public void addOption(String option)
{
 options.add(option);
}

Here is the getInput method. This method is a bit more sophisticated. It loops until a valid
input has been obtained, displaying the menu options before reading the input.

public int getInput()
{
 int input;
 do
 {
 for (int i = 0; i < options.size(); i++)
 {
 int choice = i + 1;
 System.out.println(choice + ") " + options.get(i));
 }
 input = in.nextInt();
 }
 while (input < 1 || input > options.size());

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

8.7 T esting a Class   385

 return input;
}

Finally, we need to supply a constructor to initialize the instance variables:

public Menu()
{
 options = new ArrayList<String>();
 in = new Scanner(System.in);
}

If you find that you have trouble with the implementation of some of your methods, you may
need to rethink your choice of instance variables. It is common for a beginner to start out with
a set of instance variables that cannot accurately describe the state of an object. Don’t hesitate
to go back and rethink your implementation strategy.

Once you have completed the implementation, compile your class and fix any compiler
errors.

Step 6	 Test your class.

Write a short tester program and execute it. The tester program should carry out the method
calls that you found in Step 2.

public class MenuTester
{
 public static void main(String[] args)
 {
 Menu mainMenu = new Menu();
 mainMenu.addOption("Open new account");
 mainMenu.addOption("Log into existing account");
 mainMenu.addOption("Help");
 mainMenu.addOption("Quit");
 int input = mainMenu.getInput();
 System.out.println("Input: " + input);
 }

}

Program Run

1) Open new account
2) Log into existing account
3) Help
4) Quit
5
1) Open new account
2) Log into existing account
3) Help
4) Quit
3
Input: 3

O NLINE E x a m p l e

The complete Menu
and MenuTester
classes.

Worked Example 8.1	 Implementing a Bank Account Class

This Worked Example shows how to develop a class that simulates a bank account.

386  Chapter 8  Objects and Classes

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

8.8  Problem Solving: Tracing Objects
You have seen how the technique of hand-tracing is useful for understanding how a
program works. When your program contains objects, it is useful to adapt the tech-
nique so that you gain a better understanding about object data and encapsulation.

Use an index card or a sticky note for each object. On the front, write the methods
that the object can execute. On the back, make a table for the values of the instance
variables.

Here is a card for a CashRegister object:

CashRegister reg1
clear
addItem(price)
getTotal
getCount

itemCount totalPrice

front back

In a small way, this gives you a feel for encapsulation. An object is manipulated
through its public interface (on the front of the card), and the instance variables are
hidden in the back.

When an object is constructed, fill in the initial values of the instance variables:

itemCount totalPrice

0 0

Whenever a mutator method is executed, cross out the old values and write the new
ones below. Here is what happens after a call to the addItem method:

itemCount totalPrice

0 0
1 19.95

Video Example 8.1	 Paying Off a Loan

When you take out a loan, the bank tells you how much you need
to pay and for how long. Where do these numbers come from?
This Video Example uses a Loan object to demonstrate how a loan
is paid off.

Write the methods
on the front of a
card, and the
instance variables
on the back.

Update the values of
the instance
variables when a
mutator method
is called.

8.8 P roblem Solving: Tracing Objects   387

If you have more than one object in your program, you will have multiple cards, one
for each object:

itemCount totalPrice

0 0
1 19.95
2 34.95

itemCount totalPrice

0 0
1 19.95

These diagrams are also useful when you design a class. Suppose you are asked to
enhance the CashRegister class to compute the sales tax. Add a method getSalesTax to
the front of the card. Now turn the card over, look over the instance variables, and
ask yourself whether the object has sufficient information to compute the answer.
Remember that each object is an autonomous unit. Any data value that can be used in
a computation must be

•	 An instance variable.
•	 A method argument.
•	 A static variable (uncommon; see Section 8.11).

To compute the sales tax, we need to know the tax rate and the total of the taxable
items. (Food items are usually not subject to sales tax.) We don’t have that informa-
tion available. Let us introduce additional instance variables for the tax rate and the
taxable total. The tax rate can be set in the constructor (assuming it stays fixed for the
lifetime of the object). When adding an item, we need to be told whether the item is
taxable. If so, we add its price to the taxable total.

For example, consider the following statements.
CashRegister reg2(7.5); // 7.5 percent sales tax
reg2.addItem(3.95, false); // Not taxable
reg2.addItem(19.95, true); // Taxable

When you record the effect on a card, it looks like this:

taxableTotal taxRate

0 7.5

19.95

itemCount totalPrice

0 0
1 3.95
2 23.90

With this information, it becomes easy to compute the tax. It is taxableTotal x taxRate / 100.
Tracing the object helped us understand the need for additional instance variables.

31.	 Consider a Car class that simulates fuel consumption in a car. We will assume a
fixed efficiency (in miles per gallon) that is supplied in the constructor. There are
methods for adding gas, driving a given distance, and checking the amount of gas

O NLINE E x a m p l e

An enhanced
CashRegister class
that computes the
sales tax.

S e l f C h e c k

388  Chapter 8  Objects and Classes

left in the tank. Make a card for a Car object, choosing suitable instance variables
and showing their values after the object was constructed.

32.	 Trace the following method calls:
Car myCar(25);
myCar.addGas(20);
myCar.drive(100);
myCar.drive(200);
myCar.addGas(5);

33.	 Suppose you are asked to simulate the odometer of
the car, by adding a method getMilesDriven. Add an
instance variable to the object’s card that is suitable
for computing this method.

34.	 Trace the methods of Self Check 32, updating the
instance variable that you added in Self Check 33.

Practice It	 Now you can try these exercises at the end of the chapter: R8.13, R8.14, R8.15.

8.9  Problem Solving: Patterns for Object Data
When you design a class, you first consider the needs of the programmers who use
the class. You provide the methods that the users of your class will call when they
manipulate objects. When you implement the class, you need to come up with the
instance variables for the class. It is not always obvious how to do this. Fortunately,
there is a small set of recurring patterns that you can adapt when you design your
own classes. We introduce these patterns in the following sections.

8.9.1  Keeping a Total

Many classes need to keep track of a quantity that can go up or down as certain meth-
ods are called. Examples:

•	 A bank account has a balance that is increased by a deposit, decreased by a
withdrawal.

•	 A cash register has a total that is increased when an item is added to the sale,
cleared after the end of the sale.

•	 A car has gas in the tank, which is increased when fuel is added and decreased
when the car drives.

In all of these cases, the implementation strategy is similar. Keep an instance variable
that represents the current total. For example, for the cash register:

private double totalPrice;

Locate the methods that affect the total. There is usually a method to increase it by a
given amount.

public void addItem(double price)
{
 totalPrice = totalPrice + price;
}

An instance variable
for the total is
updated in methods
that increase or
decrease the total
amount.

8.9 P roblem Solving: Patterns for Object Data   389

Depending on the nature of the class, there may be a method that reduces or clears the
total. In the case of the cash register, there is a clear method:

public void clear()
{
 total = 0;
}

There is usually a method that yields the current total. It is easy to implement:
public double getTotal()
{
 return totalPrice;
}

All classes that manage a total follow the same basic pattern. Find the methods that
affect the total and provide the appropriate code for increasing or decreasing it. Find
the methods that report or use the total, and have those methods read the current total.

8.9.2  Counting Events

You often need to count how often certain events occur in the life of an object. For
example:

•	 In a cash register, you want to know how many items have been added in a sale.
•	 A bank account charges a fee for each transaction; you need to count them.

Keep a counter, such as
private int itemCount;

Increment the counter in those methods that correspond to the events that you want
to count.

public void addItem(double price)
{
 totalPrice = totalPrice + price;
 itemCount++;
}

You may need to clear the counter, for example at the end of a sale or a statement
period.

public void clear()
{
 total = 0;
 itemCount = 0;
}

There may or may not be a method that reports the count to the class user. The count
may only be used to compute a fee or an average. Find out which methods in your
class make use of the count, and read the current value in those methods.

8.9.3  Collecting Values

Some objects collect numbers, strings, or other objects. For example, each multiple-
choice question has a number of choices. A cash register may need to store all prices
of the current sale.

A counter that
counts events is
incremented in
methods that
correspond to
the events.

390  Chapter 8  Objects and Classes

Use an array list or an array to store the values.
(An array list is usually simpler because you won’t
need to track the number of values.) For example,

public class Question
{
 private ArrayList<String> choices;
 . . .
}

In the constructor, initialize the instance variable to
an empty collection:

public Question()
{
 choices = new ArrayList<String>();
}

You need to supply some mechanism for adding values. It is common to provide a
method for appending a value to the collection:

public void add(String question)
{
 choices.add(question);
}

The user of a Question object can call this method multiple times to add the various
choices.

8.9.4  Managing Properties of an Object

A property is a value of an object that an object user can set and retrieve. For example,
a Student object may have a name and an ID.

Provide an instance variable to store the property’s value and methods to get and
set it.

public class Student
{
 private String name;
 . . .
 public String getName() { return name; }
 public void setName(String newName) { name = newName; }
 . . .
}

It is common to add error checking to the setter method. For example, we may want
to reject a blank name:

public void setName(String newName)
{
 if (newName.length() > 0) { name = newName; }
}

Some properties should not change after they have been set in the constructor. For
example, a student’s ID may be fixed (unlike the student’s name, which may change).
In that case, don’t supply a setter method.

public class Student
{

An object can collect
other objects in an
array or array list.

A shopping cart object needs to
manage a collection of items.

An object property
can be accessed
with a getter method
and changed with
a setter method.

8.9 P roblem Solving: Patterns for Object Data   391

 private int id;
 . . .
 public Student(int anId) { id = anId; }
 public String getId() { return id; }
 // No setId method
 . . .
}

8.9.5  Modeling Objects with Distinct States

Some objects have behavior that varies depending on what has happened in the past.
For example, a Fish object may look for food when it is hungry and ignore food after
it has eaten. Such an object would need to remember whether it has recently eaten.

Supply an instance variable that models the state, together with some constants for
the state values:

public class Fish
{
 private int hungry;

 public static final int NOT_HUNGRY = 0;
 public static final int SOMEWHAT_HUNGRY = 1;
 public static final int VERY_HUNGRY = 2;
 . . .
}

(Alternatively, you can use an enumeration––see Special Topic 3.4.)
Determine which methods change the state. In this example, a fish that has just

eaten food, won’t be hungry. But as the fish moves, it will get hungrier.

public void eat()
{
 hungry = NOT_HUNGRY;
 . . .
}

public void move()
{
 . . .
 if (hungry < VERY_HUNGRY) { hungry++; }
}

If your object can
have one of several
states that affect the
behavior, supply an
instance variable
for the current state.

If a fish is in a hungry state,
its behavior changes.

392  Chapter 8  Objects and Classes

Finally, determine where the state affects behavior. A fish that is very hungry will
want to look for food first.

public void move()
{
 if (hungry == VERY_HUNGRY)
 {
 Look for food.
 }
 . . .
}

8.9.6  Describing the Position of an Object

Some objects move around during their lifetime, and they remember their current
position. For example,

•	 A train drives along a track and keeps track of the distance from the terminus.
•	 A simulated bug living on a grid crawls from one grid location to the next, or

makes 90 degree turns to the left or right.
•	 A cannonball is shot into the air, then descends as it is pulled by the gravitational

force.

Such objects need to store their position. Depending on the nature of their move-
ment, they may also need to store their orientation or velocity.

If the object moves along a line, you can represent the position as a distance from
a fixed point.

private double distanceFromTerminus;

If the object moves in a grid, remember its current location and direction in the grid:
private int row;
private int column;
private int direction; // 0 = North, 1 = East, 2 = South, 3 = West

When you model a physical object such as a cannonball, you need to track both the
position and the velocity, possibly in two or three dimensions. Here we model a can-
nonball that is shot upward into the air:

private double zPosition;
private double zVelocity;

There will be methods that update the position. In the simplest case, you may be told
by how much the object moves:

public void move(double distanceMoved)
{
 distanceFromTerminus = distanceFromTerminus + distanceMoved;
}

To model a moving
object, you need to
store and update
its position.

A bug in a grid needs to store its row,
column, and direction.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

8.9 P roblem Solving: Patterns for Object Data   393

If the movement happens in a grid, you need to update the row or column, depending
on the current orientation.

public void moveOneUnit()
{
 if (direction == NORTH) { row--; }
 else if (direction == EAST) { column++; }
 . . .
}

Exercise P8.25 shows you how to update the position of a physical object with known
velocity.

Whenever you have a moving object, keep in mind that your program will simu-
late the actual movement in some way. Find out the rules of that simulation, such as
movement along a line or in a grid with integer coordinates. Those rules determine
how to represent the current position. Then locate the methods that move the object,
and update the positions according to the rules of the simulation.

35.	 Suppose we want to count the number of transactions in a bank account in a
statement period, and we add a counter to the BankAccount class:
public class BankAccount
{
 private int transactionCount;
 . . .
}

In which methods does this counter need to be updated?
36.	 In the example in Section 8.9.3, why is the add method required? That is, why

can’t the user of a Question object just call the add method of the ArrayList<String>
class?

37.	 Suppose we want to enhance the CashRegister class in Section 8.6 to track the
prices of all purchased items for printing a receipt. Which instance variable
should you provide? Which methods should you modify?

38.	 Consider an Employee class with properties for tax ID number and salary. Which
of these properties should have only a getter method, and which should have
getter and setter methods?

39.	 Look at the direction instance variable in the bug example in Section 8.9.6. This
is an example of which pattern?

Practice It	 Now you can try these exercises at the end of the chapter: P8.6, P8.7, P8.12.

S e l f C h e c k

Video Example 8.2	 Modeling a Robot Escaping from a Maze

In this Video Example, we will program classes that model a robot
escaping from a maze.

394  Chapter 8  Objects and Classes

In the 2000 presiden
tial elections in the

United States, votes were tallied by a
variety of machines. Some machines
processed cardboard ballots into
which voters punched holes to indicate
their choices (see below). When voters
were not careful, remains of paper—
the now infamous “chads”—were par-
tially stuck in the punch cards, caus-
ing votes to be miscounted. A manual
recount was necessary, but it was not
carried out everywhere due to time
constraints and procedural wrangling.
The election was very close, and there
remain doubts in the minds of many
people whether the election outcome
would have been different if the voting
machines had accurately counted the
intent of the voters.

Punch Card Ballot

Subsequently, voting machine man
ufacturers have argued that electronic
voting machines would avoid the prob-
lems caused by punch cards or opti-
cally scanned forms. In an electronic
voting machine, voters indicate their
preferences by pressing buttons or
touching icons on a computer screen.
Typically, each voter is presented with
a summary screen for review before
casting the ballot. The process is very
similar to using a bank's automated
teller machine.

It seems plausible that these
machines make it more likely that a
vote is counted in the same way that
the voter intends. However, there
has been significant controversy
surrounding some types of electronic
voting machines. If a machine simply

records the votes and prints out the
totals after the election has been com
pleted, then how do you know that the
machine worked correctly? Inside the
machine is a computer that executes a
program, and, as you may know from
your own experience, programs can
have bugs.

In fact, some electronic voting
machines do have bugs. There have
been isolated cases where machines
reported tallies that were impossible.
When a machine reports far more or far
fewer votes than voters, then it is clear
that it malfunctioned. Unfortunately, it
is then impossible to find out the
actual votes. Over time, one would
expect these bugs to be fixed in the
software. More insidiously, if the
results are plausible, nobody may ever
investigate.

Many computer scientists have spo-
ken out on this issue and confirmed
that it is impossible, with today’s tech-
nology, to tell that software is error
free and has not been tampered with.
Many of them recommend that elec-
tronic voting machines should employ
a voter verifiable audit trail. (A good
source of information is http://veri-
fiedvoting.org.) Typically, a voter-
verifiable machine prints out a ballot.
Each voter has a chance to review the
printout, and then deposits it in an
old-fashioned ballot box. If there is

a problem with the electronic equip-
ment, the printouts can be scanned or
counted by hand.

As this book is written, this con
cept is strongly resisted both by
manufacturers of electronic voting
machines and by their customers,
the cities and counties that run elec-
tions. Manufacturers are reluctant
to increase the cost of the machines
because they may not be able to pass
the cost increase on to their custom
ers, who tend to have tight budgets.
Election officials fear problems with
malfunctioning printers, and some of
them have publicly stated that they
actually prefer equipment that elimi
nates bothersome recounts.

What do you think? You probably
use an automated bank teller machine
to get cash from your bank account.
Do you review the paper record that
the machine issues? Do you check your
bank statement? Even if you don’t, do
you put your faith in other people who
double-check their balances, so that
the bank won’t get away with wide-
spread cheating?

Is the integrity of banking equip-
ment more important or less impor-
tant than that of voting machines?
Won’t every voting process have some
room for error and fraud anyway? Is
the added cost for equipment, paper,
and staff time reasonable to combat

a potentially slight
risk of malfunction
and fraud? Computer
scientists cannot
answer these ques
tions—an informed
society must make
these tradeoffs. But,
like all professionals,
they have an obliga-
tion to speak out
and give accurate
testimony about the
capabilities and limi-
tations of computing
equipment.

Touch Screen Voting Machine

Random Fact 8.1  Electronic Voting Machines

8.10  Object References   395

8.10  Object References
In Java, a variable whose type is a class does not actually hold an object. It merely
holds the memory location of an object. The object itself is stored elsewhere—see
Figure 8.

We use the technical term object reference to denote the memory location of an
object. When a variable contains the memory location of an object, we say that it
refers to an object. For example, after the statement

CashRegister reg1 = new CashRegister();

the variable reg1 refers to the CashRegister object that the new operator constructed.
Technically speaking, the new operator returned a reference to the new object, and that
reference is stored in the reg1 variable.

8.10.1  Shared References

You can have two (or more) object variables that store references to the same object,
for example by assigning one to the other.

CashRegister reg2 = reg1;

Now you can access the same CashRegister object both as reg1 and as reg2, as shown in
Figure 9.

In this regard, object variables differ from variables for primitive types (numbers,
characters, and boolean values). When you declare

int num1 = 0;

then the num1 variable holds the number 0, not a reference to the number (see
Figure 10).

An object reference
specifies the location
of an object.

Figure 8 
An Object Variable Containing
an Object Reference

reg1 =

itemCount =

CashRegister

totalPrice =

0

0.0

Multiple object
variables can contain
references to the
same object.

Figure 9 
Two Object Variables
Referring to the Same Object

reg1 =

reg2 =
itemCount =

CashRegister

totalPrice =

0

0.0

Primitive type
variables store
values. Object
variables store
references.

Figure 10  A Variable of Type int Stores a Number

num1 = 0

396  Chapter 8  Objects and Classes

You can see the difference between primitive type variables and object variables when
you make a copy of a variable. When you copy a number, the original and the copy of
the number are independent values. But when you copy an object reference, both the
original and the copy are references to the same object.

Consider the following code, which copies a
number and then changes the copy (see Figure 11):

int num1 = 0; 1
int num2 = num1; 2
num2++; 3

Now the variable num1 contains the value 0, and
num2 contains 1.

Now consider the seemingly analogous code
with CashRegister objects (see Figure 12):

CashRegister reg1 = new CashRegister(); 1

CashRegister reg2 = reg1; 2
reg2.addItem(2.95); 3

Because reg1 and reg2 refer to the same cash regis-
ter after step   2 , both variables now refer to a cash
register with item count 1 and total price 2.95.

A N I M AT I O N
Object References

Figure 11  Copying Numbers

num1 = 0

num2 = 0

num1 = 01

2

num1 = 0

num2 = 1

3

When copying an
object reference, you
have two references
to the same object.

Figure 12  Copying Object References

1

2

3 reg1 =

reg2 =
itemCount =

CashRegister

totalPrice =

1

2.95

reg1 =

reg2 =
itemCount =

CashRegister

totalPrice =

0

0.0

reg1 =

itemCount =

CashRegister

totalPrice =

0

0.0

8.10  Object References   397

There is a reason for the difference between numbers and objects. In the computer,
each number requires a small amount of memory. But objects can be very large. It is
far more efficient to manipulate only the memory location.

8.10.2  The null Reference

An object reference can have the special value null if it refers to no object at all. It is
common to use the null value to indicate that a value has never been set. For example,

String middleInitial = null; // No middle initial

You use the == operator (and not equals) to test whether an object reference is a null
reference:

if (middleInitial == null)
{
 System.out.println(firstName + " " + lastName);
}
else
{
 System.out.println(firstName + " " + middleInitial + ". " + lastName);
}

Note that the null reference is not the same as the empty string "". The empty string
is a valid string of length 0, whereas a null indicates that a String variable refers to no
string at all.

It is an error to invoke a method on a null reference. For example,
CashRegister reg = null;
System.out.println(reg.getTotal()); // Error—cannot invoke a method on null

This code causes a “null pointer exception” at run time.
The null reference is the default value for an object reference that is contained

inside another object or an array of objects. In order to avoid run-time errors, you
need to replace these null references with references to actual objects.

For example, suppose you construct an array of bank accounts:
BankAccount[] accounts = new BankAccount[NACCOUNTS];

You now have an array filled with null references. If you want an array of actual bank
accounts, you need to construct them:

for (int i = 0; i < accounts.length; i++)
{
 accounts[i] = new BankAccount();
}

8.10.3  The this Reference

Every instance method receives the implicit parameter in a variable called this.
For example, consider the method call
reg1.addItem(2.95);

When the method is called, the parameter variable this refers to the same object as
reg1 (see Figure 13).

The null reference
refers to no object.

In a method, the
this reference
refers to the
implicit parameter.

398  Chapter 8  Objects and Classes

Figure 13  The Implicit Parameter of a Method Call

reg1 =

this =

price = 2.95

itemCount =

CashRegister

totalPrice =

1

2.95

You don’t usually need to use the this reference, but you can. For example, you
can write the addItem method like this:

void addItem(double price)
{
 this.itemCount++;
 this.totalPrice = this.totalPrice + price;
}

Some programmers like to use the this reference to make it clear that itemCount and
totalPrice are instance variables and not local variables. You may want to try it out
and see if you like that style.

There is another situation where the this reference can make your programs eas-
ier to read. Consider a constructor or instance method that calls another instance
method on the same object. For example, the CashRegister constructor can call the
clear method instead of duplicating its code:

public CashRegister()
{
 clear();
}

This call is easier to understand when you use the this reference:
public CashRegister()
{
 this.clear();
}

It is now more obvious that the method is invoked on the object that is being
constructed.

Finally, some people like to use the this reference in constructors. Here is a typical
example:

public class Student
{
 private int id;
 private String name;

 public Student(int id, String name)
 {
 this.id = id;
 this.name = name;
 }
}

8.10  Object References   399

The expression id refers to the parameter variable, and this.id to the instance variable.
In general, if both a local variable and an instance variable have the same name, you can
access the local variable by its name, and the instance variable with the this reference.

You can implement the constructor without using the this reference. Simply
choose other names for the parameter variables:

 public Student(int anId, String aName)
 {
 id = anId;
 name = aName;
 }

40.	 Suppose we have a variable
String greeting = "Hello";

What is the effect of this statement?
String greeting2 = greeting;

41.	 After calling String greeting3 = greeting2.toUpperCase(), what are the contents of
greeting and greeting2?

42.	 What is the value of s.length() if s is
a.	 the empty string ""?
b.	null?

43.	 What is the type of this in the call greeting.substring(1, 4)?
44.	 Supply a method addItems(int quantity, double price) in the CashRegister class to

add multiple instances of the same item. Your implementation should repeatedly
call the addItem method. Use the this reference.

Practice It	 Now you can try these exercises at the end of the chapter: R8.19, R8.20.

Calling One Constructor from Another

Consider the BankAccount class outlined in Section 8.6. It has two constructors: a construc-
tor without arguments to initialize the balance with zero, and another constructor to supply
an initial balance. Rather than explicitly setting the balance to zero, one constructor can call
another constructor of the same class instead. There is a shorthand notation to achieve this
result:

public class BankAccount
{
 public BankAccount (double initialBalance)
 {
 balance = initialBalance;
 }

 public BankAccount()
 {
 this(0);
 }
 . . .
}

The command this(0); means “Call another constructor of this class and supply the value 0”.
Such a call to another constructor can occur only as the first line in a constructor.

S e l f C h e c k

Special Topic 8.3

400  Chapter 8  Objects and Classes

This syntax is a minor convenience. We will not use it in this book. Actually, the use of
the reserved word this is a little confusing. Normally, this denotes a reference to the implicit
parameter, but if this is followed by parentheses, it denotes a call to another constructor of this
class.

8.11  Static Variables and Methods
Sometimes, a value properly belongs to a class, not
to any object of the class. You use a static variable
for this purpose. Here is a typical example: We want
to assign bank account numbers sequentially. That
is, we want the bank account constructor to con-
struct the first account with number 1001, the next
with number 1002, and so on. To solve this prob-
lem, we need to have a single value of lastAssigned-
Number that is a property of the class, not any object
of the class. Such a variable is called a static variable,
because you declare it using the static reserved
word.

public class BankAccount
{
 private double balance;
 private int accountNumber;
 private static int lastAssignedNumber = 1000;

 public BankAccount()
 {
 lastAssignedNumber++;
 accountNumber = lastAssignedNumber;
 }
 . . .
}

Every BankAccount object has its own balance and accountNumber instance variables, but
there is only a single copy of the lastAssignedNumber variable (see Figure 14). That vari-
able is stored in a separate location, outside any BankAccount objects.

Like instance variables, static variables should always be declared as private to
ensure that methods of other classes do not change their values. However, static con-
stants may be either private or public. For example, the Bank­Account class can define a
public constant value, such as

public class BankAccount
{
 public static final double OVERDRAFT_FEE = 29.95;
 . . .
}

Methods from any class can refer to such a constant as BankAccount.OVERDRAFT_FEE.
Sometimes a class defines methods that are not invoked on an object. Such a

method is called a static method. A typical example of a static method is the sqrt
method in the Math class. Because numbers aren’t objects, you can’t invoke methods
on them. For example, if x is a number, then the call x.sqrt() is not legal in Java.

The reserved word static is a
holdover from the C++ language.
Its use in Java has no relationship
to the normal use of the term.

A static variable
belongs to the class,
not to any object of
the class.

A static method is
not invoked on
an object.

8.11 S tatic Variables and Methods   401

Figure 14  A Static Variable and Instance Variables

collegeFund =

balance =

accountNumber =

BankAccount

10000
1001

momsSavings =

balance =

accountNumber =

BankAccount

8000
1002

harrysChecking =

balance =

accountNumber =

BankAccount

0
1003

Each
BankAccount

object has its own
accountNumber
instance variable.

BankAccount.lastAssignedNumber = 1003

There is a single
lastAssignedNumber

static variable for the
BankAccount

class.

Therefore, the Math class provides a static method that is invoked as Math.sqrt(x). No
object of the Math class is constructed. The Math qualifier simply tells the compiler
where to find the sqrt method.

You can define your own static methods for use in other classes. Here is an example:
public class Financial
{
 /**
 Computes a percentage of an amount.
 @param percentage the percentage to apply
 @param amount the amount to which the percentage is applied
 @return the requested percentage of the amount
 */
 public static double percentOf(double percentage, double amount)
 {
 return (percentage / 100) * amount;
 }
}

When calling this method, supply the name of the class containing it:
double tax = Financial.percentOf(taxRate, total);

You had to use static methods in Chapter 5 before you knew how to implement your
own objects. However, in object-oriented programming, static methods are not very
common.

O NLINE E x a m p l e

A program with static
methods and
variables.

402  Chapter 8  Objects and Classes

Nevertheless, the main method is always static. When the program starts, there
aren’t any objects. Therefore, the first method of a program must be a static method.

45.	 Name two static variables of the System class.
46.	 Name a static constant of the Math class.
47.	 The following method computes the average of an array of numbers:

public static double average(double[] values)

Why should it not be defined as an instance method?
48.	 Harry tells you that he has found a great way to avoid those pesky objects: Put

all code into a single class and declare all methods and variables static. Then main
can call the other static methods, and all of them can access the static variables.
Will Harry’s plan work? Is it a good idea?

Practice It	 Now you can try these exercises at the end of the chapter: P8.14, P8.15.

S e l f C h e c k

Most companies that
produce software

regard the source code as a trade
secret. After all, if customers or com­
petitors had access to the source code,
they could study it and create similar
programs without paying the original
vendor. For the same reason, custom­
ers dislike secret source code. If a com­
pany goes out of business or decides
to discontinue support for a computer
program, its users are left stranded.
They are unable to fix bugs or adapt
the program to a new operating sys­
tem. Nowadays, some software pack­
ages are distributed with “open source”
or “free software” licenses. Here, the
term “free” doesn’t refer to price, but
to the freedom to inspect and modify
the source code. Richard Stallman, a
famous computer scientist and win­
ner of a MacArthur “genius” grant, pio­
neered the concept of free software.
He is the inventor of the Emacs text
editor and the originator of the GNU
project that aims to create an entirely
free version of a UNIX compatible oper­
ating system. All programs of the GNU
project are licensed under the General
Public License or GPL. The GPL allows
you to make as many copies as you
wish, make any modifications to the
source, and redistribute the original
and modified programs, charging noth­
ing at all or whatever the market will
bear. In return, you must agree that

your modifications also fall under the
GPL. You must give out the source code
to any changes that you distribute,
and anyone else can distribute them
under the same conditions. The GPL,
and similar open source licenses, form
a social contract. Users of the software
enjoy the freedom to use and modify
the software, and in return they are
obligated to share any improvements
that they make. Many programs, such
as the Linux operating system and
the GNU C++ compiler, are distributed
under the GPL.

Some commercial software vendors
have attacked the GPL as “viral” and
“undermining the commercial software
sector”. Other companies have a more
nuanced strategy, producing propri­
etary software while also contributing
to open source projects.

Frankly, open source is not a pana­
cea and there is plenty of room for
the commercial software sector. Open
source software often lacks the polish
of commercial software because many
of the programmers are volunteers
who are interested in solving their
own problems, not in making a prod­
uct that is easy to use by others. Some
product categories are not available at
all as open source software because
the development work is unattractive
when there is little promise of com­
mercial gain. Open source software has
been most successful in areas that are

of interest to programmers, such as
the Linux operating system, Web serv­
ers, and programming tools.

On the positive side, the open soft­
ware community can be very competi­
tive and creative. It is quite common
to see several competing projects that
take ideas from each other, all rap­
idly becoming more capable. Having
many programmers involved, all read­
ing the source code, often means that
bugs tend to get squashed quickly.
Eric Raymond describes open source
development in his famous article “The
Cathedral and the Bazaar” (http://
catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/index.html).
He writes “Given enough eyeballs, all
bugs are shallow”.

Richard Stallman, a pioneer of the
free source movement.

Random Fact 8.2  Open Source and Free Software

Chapter Summary  403

Understand the concepts of classes, objects, and encapsulation.

•	 A class describes a set of objects with the same behavior.
•	 Every class has a public interface: a collection of methods

through which the objects of the class can be manipulated.
•	 Encapsulation is the act of providing a public interface and

hiding the implementation details.
•	 Encapsulation enables changes in the implementation

without affecting users of a class.

Understand instance variables and method implementations of a simple class.

•	 An object’s instance variables store the data required for
executing its methods.

•	 Each object of a class has its own set of instance variables.
•	 An instance method can access the instance variables of

the object on which it acts.
•	 A private instance variable can only be accessed by the methods of its own class.

Write method headers that describe the public interface of a class.

•	 You can use method headers and method comments to specify the public interface
of a class.

•	 A mutator method changes the object on which it operates.
•	 An accessor method does not change the object on which it operates.

Choose an appropriate data representation for a class.

•	 For each accessor method, an object must either store or compute the result.
•	 Commonly, there is more than one way of representing the data of an object, and

you must make a choice.
•	 Be sure that your data representation supports method calls in any order.

Provide the implementation of instance methods for a class.

•	 The object on which a method is applied is the implicit parameter.
•	 Explicit parameters of a method are listed in the method

declaration.

Design and implement constructors.

•	 A constructor initializes the instance variables of an object.
•	 A constructor is invoked when an object is created with the new operator.
•	 The name of a constructor is the same as the class name.
•	 A class can have multiple constructors.
•	 The compiler picks the constructor that matches the construction arguments.

C h a p t e r Summ a r y

404  Chapter 8  Objects and Classes

•	 By default, numbers are initialized as 0, Booleans as false, and object references
as null.

•	 If you do not provide a constructor, a constructor with no arguments is generated.

Write tests that verify that a class works correctly.

•	 A unit test verifies that a class works correctly in isolation, outside a complete
program.

•	 To test a class, use an environment for interactive testing, or write a tester class to
execute test instructions.

•	 Determining the expected result in advance is an important part of testing.

Use the technique of object tracing for visualizing object behavior.

•	 Write the methods on the front of a card, and the instance variables on the back.
•	 Update the values of the instance variables when a mutator method is called.

Use patterns to design the data representation of a class.

•	 An instance variable for the total is updated in methods that increase or decrease
the total amount.

•	 A counter that counts events is incremented in methods that correspond to the
events.

•	 An object can collect other objects in an array or array list.
•	 An object property can be accessed with a getter method and changed with a

setter method.
•	 If your object can have one of several states that affect the

behavior, supply an instance variable for the current state.
•	 To model a moving object, you need to store and update its

position.

Describe the behavior of object references.

•	 An object reference specifies the location of an object.
•	 Multiple object variables can contain references to the same object.
•	 Primitive type variables store values. Object variables store references.
•	 When copying an object reference, you have two references to the same object.
•	 The null reference refers to no object.
•	 In a method, the this reference refers to the implicit parameter.

Understand the behavior of static variables and methods.

•	 A static variable belongs to the class, not to any object of the class.
•	 A static method is not invoked on an object.

Review Exercises  405

• R8.1	 What is encapsulation? Why is it useful?

• R8.2	 What values are returned by the calls reg1.getCount(), reg1.getTotal(), reg2.getCount(),
and reg2.getTotal() after these statements?

CashRegister reg1 = new CashRegister();
reg1.addItem(3.25);
reg1.addItem(1.95);
CashRegister reg2 = new CashRegister();
reg2.addItem(3.25);
reg2.clear();

• R8.3	 Consider the Menu class in How To 8.1 on page 382. What is displayed when the fol
lowing calls are executed?

Menu simpleMenu = new Menu();
simpleMenu.addOption("Ok");
simpleMenu.addOption("Cancel");
int response = simpleMenu.getInput();

• R8.4	 What is the public interface of a class? How does it differ from the implementation of
a class?

•• R8.5	 Consider the data representation of a cash register that keeps track of sales tax in
Section 8.8. Instead of tracking the taxable total, track the total sales tax. Redo the
walkthrough with this change.

••• R8.6	 Suppose the CashRegister needs to support a method void undo() that undoes the
addition of the preceding item. This enables a cashier to quickly undo a mistake.
What instance variables should you add to the CashRegister class to support this
modification?

• R8.7	 What is an instance method, and how does it differ from a static method?

• R8.8	 What is a mutator method? What is an accessor method?

• R8.9	 What is an implicit parameter? How does it differ from an explicit parameter?

• R8.10	 How many implicit parameters can an instance method have? How many implicit
parameters can a static method have? How many explicit parameters can an instance
method have?

• R8.11	 What is a constructor?

• R8.12	 How many constructors can a class have? Can you have a class with no construc
tors? If a class has more than one constructor, which of them gets called?

• R8.13	 Using the object tracing technique described in Section 8.8, trace the program at the
end of Section 8.7.

•• R8.14	 Using the object tracing technique described in Section 8.8, trace the program in
Worked Example 8.1.

••• R8.15	 Design a modification of the BankAccount class in Worked Example 8.1 in which the
first five transactions per month are free and a $1 fee is charged for every additional
transaction. Provide a method that deducts the fee at the end of a month. What addi-
tional instance variables do you need? Using the object tracing technique described

R e vi e w E x e r ci s e s

406  Chapter 8  Objects and Classes

in Section 8.8, trace a scenario that shows how the fees are computed over two
months.

••• R8.16	 Instance variables are “hidden” by declaring them as private, but they aren’t hidden
very well at all. Anyone can read the class declaration. Explain to what extent the
private reserved word hides the private implementation of a class.

••• R8.17	 You can read the itemCount instance variable of the CashRegister class with the get­Count
accessor method. Should there be a setCount mutator method to change it? Explain
why or why not.

••• R8.18	 In a static method, it is easy to differentiate between calls to instance methods and
calls to static methods. How do you tell them apart? Why is it not as easy for meth
ods that are called from an instance method?

•• R8.19	 What is the this reference? Why would you use it?

•• R8.20	 What is the difference between the number zero, the null reference, the value false,
and the empty string?

• P8.1	 We want to add a button to the tally counter in Section 8.2 that allows an operator to
undo an accidental button click. Provide a method

public void undo()

that simulates such a button. As an added precaution, make sure that the operator
cannot click the undo button more often than the count button.

• P8.2	 Simulate a tally counter that can be used to admit a limited number of people. First,
the limit is set with a call

public void setLimit(int maximum)

If the count button was clicked more often than the limit, simulate an alarm by
printing out a message “Limit exceeded”.

••• P8.3	 Reimplement the Menu class so that it stores all menu items in one long string.
Hint: Keep a separate counter for the number of options. When a new option is
added, append the option count, the option, and a newline character.

•• P8.4	 Implement a class Address. An address has a house number, a street, an optional
apartment number, a city, a state, and a postal code. Supply two constructors: one
with an apartment number and one without. Supply a print method that prints the
address with the street on one line and the city, state, and zip code on the next line.
Supply a method public boolean comesBefore(Address other) that tests whether this
address comes before another when the addresses are compared by postal code.

• P8.5	 Implement a class SodaCan with methods getSurfaceArea() and get­
Volume(). In the constructor, supply the height and radius of the can.

•• P8.6	 Implement a class Car with the following properties. A car has a certain
fuel efficiency (measured in miles/gallon) and a certain amount of fuel
in the gas tank. The efficiency is specified in the constructor, and the
initial fuel level is 0. Supply a method drive that simulates driving the

P r og r a mmi n g E x e r ci s e s

Programming Exercises  407

car for a certain distance, reducing the fuel level in the gas tank, and methods getGas-
Level, to return the current fuel level, and addGas, to tank up. Sample usage:

Car myHybrid = new Car(50); // 50 miles per gallon
myHybrid.addGas(20); // Tank 20 gallons
myHybrid.drive(100); // Drive 100 miles
System.out.println(myHybrid.getGasLevel()); // Print fuel remaining

•• P8.7	 Implement a class Student. For the purpose of this exercise, a student has a name
and a total quiz score. Supply an appropriate constructor and methods getName(),
addQuiz(int score), getTotalScore(), and getAverageScore(). To compute the latter, you
also need to store the number of quizzes that the student took.

•• P8.8	 Modify the Student class of Exercise P8.7 to compute grade point averages. Methods
are needed to add a grade and get the current GPA. Specify grades as elements of a
class Grade. Supply a constructor that constructs a grade from a string, such as "B+".
You will also need a method that translates grades into their numeric values (for
example, "B+" becomes 3.3).

••• P8.9	 Declare a class ComboLock that works like the combination lock
in a gym locker, as shown here. The lock is constructed with a
combination—three numbers between 0 and 39. The reset method
resets the dial so that it points to 0. The turnLeft and turnRight
methods turn the dial by a given number of ticks to the left or
right. The open method attempts to open the lock. The lock opens
if the user first turned it right to the first number in the combina-
tion, then left to the second, and then right to the third.

public class ComboLock
{
 . . .
 public ComboLock(int secret1, int secret2, int secret3) { . . . }
 public void reset() { . . . }
 public void turnLeft(int ticks) { . . . }
 public void turnRight(int ticks) { . . . }
 public boolean open() { . . . }
}

•• P8.10	 Implement a VotingMachine class that can be used for a simple election. Have methods
to clear the machine state, to vote for a Democrat, to vote for a Republican, and to
get the tallies for both parties.

•• P8.11	 Provide a class for authoring a simple letter. In the constructor, supply the names of
the sender and the recipient:

public Letter(String from, String to)

Supply a method
public void addLine(String line)

to add a line of text to the body of the letter. Supply a method
public String getText()

that returns the entire text of the letter. The text has the form:
Dear recipient name:
blank line
first line of the body
second line of the body
. . .

408  Chapter 8  Objects and Classes

last line of the body
blank line
Sincerely,
blank line
sender name

Also supply a main method that prints this letter.
Dear John:

I am sorry we must part.
I wish you all the best.

Sincerely,

Mary

Construct an object of the Letter class and call addLine twice.

•• P8.12	 Write a class Bug that models a bug moving along a horizontal line. The bug moves
either to the right or left. Initially, the bug moves to the right, but it can turn to
change its direction. In each move, its position changes by one unit in the current
direction. Provide a constructor

public Bug(int initialPosition)

and methods
•	 public void turn()

•	 public void move()

•	 public int getPosition()

Sample usage:
Bug bugsy = new Bug(10);
bugsy.move(); // Now the position is 11
bugsy.turn();
bugsy.move(); // Now the position is 10

Your main method should construct a bug, make it move and turn a few times, and
print the actual and expected positions.

•• P8.13	 Implement a class Moth that models a moth flying in a straight line. The moth has a
position, the distance from a fixed origin. When the moth moves toward a point of
light, its new position is halfway between its old position and the position of the
light source. Supply a constructor

public Moth(double initialPosition)

and methods
•	 public void moveToLight(double lightPosition)

•	 public void getPosition()

Your main method should construct a moth, move it toward a couple of light sources,
and check that the moth’s position is as expected.

••• P8.14	 Write static methods
•	 public static double sphereVolume(double r)

•	 public static double sphereSurface(double r)

•	 public static double cylinderVolume(double r, double h)

•	 public static double cylinderSurface(double r, double h)

Programming Exercises  409

•	 public static double coneVolume(double r, double h)

•	 public static double coneSurface(double r, double h)

that compute the volume and surface area of a sphere with a radius r, a cylinder with
a circular base with radius r and height h, and a cone with a circular base with radius r
and height h. Place them into a class Geom­etry. Then write a program that prompts the
user for the values of r and h, calls the six methods, and prints the results.

•• P8.15	 Solve Exercise P8.14 by implementing classes Sphere, Cylinder, and Cone. Which
approach is more object-oriented?

•• Business P8.16	 Reimplement the CashRegister class so that it keeps track of the price of each added
item in an ArrayList<Double>. Remove the itemCount and totalPrice instance variables.
Reimplement the clear, addItem, getTotal, and getCount methods. Add a method
displayAll that displays the prices of all items in the current sale.

•• Business P8.17	 Reimplement the CashRegister class so that it keeps track of the total price as an
integer: the total cents of the price. For example, instead of storing 17.29, store the
integer 1729. Such an implementation is commonly used because it avoids the accu-
mulation of roundoff errors. Do not change the public interface of the class.

•• Business P8.18	 After closing time, the store manager would like to know how much business was
transacted during the day. Modify the CashRegister class to enable this functionality.
Supply methods getSalesTotal and getSalesCount to get the total amount of all sales
and the number of sales. Supply a method resetSales that resets any counters and
totals so that the next day’s sales start from zero.

•• Business P8.19	 Implement a class Portfolio. This class has two objects, checking and savings, of the
type BankAccount that was developed in Worked Example 8.1 (ch08/worked_example_1/
Bank­­Account.java in your code files). Implement four methods:

•	 public void deposit(double amount, String account)

•	 public void withdraw(double amount, String account)

•	 public void transfer(double amount, String account)

•	 public double getBalance(String account)

Here the account string is "S" or "C". For the deposit or withdrawal, it indicates which
account is affected. For a transfer, it indicates the account from which the money is
taken; the money is automatically transferred to the other account.

•• Business P8.20	 Design and implement a class Country that stores the name of the country, its popula-
tion, and its area. Then write a program that reads in a set of countries and prints

•	 The country with the largest area.
•	 The country with the largest population.
•	 The country with the largest population density (people per square

kilometer (or mile)).

•• Business P8.21	 Design a class Message that models an e-mail message. A message has a recipient, a
sender, and a message text. Support the following methods:

•	 A constructor that takes the sender and recipient
•	 A method append that appends a line of text to the message body
•	 A method toString that makes the message into one long string like this: "From:

Harry Morgan\nTo: Rudolf Reindeer\n . . ."

Write a program that uses this class to make a message and print it.

410  Chapter 8  Objects and Classes

•• Business P8.22	 Design a class Mailbox that stores e-mail messages, using the Message class of Exercise
P8.21. Implement the following methods:

•	 public void addMessage(Message m)

•	 public Message getMessage(int i)

•	 public void removeMessage(int i)

•• Business P8.23	 Design a Customer class to handle a customer loyalty marketing campaign. After
accumulating $100 in purchases, the customer receives a $10 discount on the next
purchase. Provide methods

•	 void makePurchase(double amount)

•	 boolean discountReached()

Provide a test program and test a scenario in which a customer has earned a discount
and then made over $90, but less than $100 in purchases. This should not result in a
second discount. Then add another purchase that results in the second discount.

••• Business P8.24	 The Downtown Marketing Association wants
to promote downtown shopping with a loyalty
program similar to the one in Exercise P8.23.
Shops are identified by a number between
1 and 20. Add a new parameter variable to the
makePurchase method that indicates the shop.
The discount is awarded if a customer makes
purchases in at least three different shops,
spending a total of $100 or more.

•••   Science P8.25	 Design a class Cannonball to model a cannonball that is fired into the air. A ball has
•	 An x- and a y-position.
•	 An x- and a y-velocity.

Supply the following methods:
•	 A constructor with an x-position (the y-position is initially 0)
•	 A method move(double sec) that moves the ball to the next position (First

compute the distance traveled in sec seconds, using the current velocities, then
update the x- and y-positions; then update the y-velocity by taking into
account the gravitational acceleration of –9.81 m/s2; the x-velocity is
unchanged.)

•	 Methods getX and getY that get the current location of the cannonball
•	 A method shoot whose arguments are the angle a and initial velocity v (Com-

pute the x-velocity as v cos a and the y-velocity as v sin a; then keep calling
move with a time interval of 0.1 seconds until the y-position is 0; call getX and
getY after every move and display the position.)

Use this class in a program that prompts the user for the starting angle and the initial
velocity. Then call shoot.

•• Science P8.26	 The colored bands on the top-most resistor shown in the photo below indicate a
resistance of 6.2 kΩ ±5 percent. The resistor tolerance of ±5 percent indicates the
acceptable variation in the resistance. A 6.2 kΩ ±5 percent resistor could have a
resistance as small as 5.89 kΩ or as large as 6.51 kΩ. We say that 6.2 kΩ is the nominal
value of the resistance and that the actual value of the resistance can be any value
between 5.89 kΩ and 6.51 kΩ.

Programming Exercises  411

Write a program that represents a
resistor as a class. Provide a single
constructor that accepts values for the
nominal resistance and tolerance and
then determines the actual value ran-
domly. The class should provide public
methods to get the nominal resistance,
tolerance, and the actual resistance.
Write a main method for the program that demonstrates that the class works properly
by displaying actual resistances for ten 330 Ω ±10 percent resistors.

•• Science P8.27	 In the Resistor class from Exercise P8.26, supply a
method that returns a description of the “color bands”
for the resistance and tolerance. A resistor has four color
bands:

•	 The first band is the first significant digit of the
resistance value.

•	 The second band is the second significant digit of the resistance value.
•	 The third band is the decimal multiplier.
•	 The fourth band indicates the tolerance.

Color DIgit Multiplier Tolerance

Black 0 ×100 —

Brown 1 ×101 ±1%

Red 2 ×102 ±2%

Orange 3 ×103 —

Yellow 4 ×104 —

Green 5 ×105 ±0.5%

Blue 6 ×106 ±0.25%

Violet 7 ×107 ±0.1%

Gray 8 ×108 ±0.05%

White 9 ×109 —

Gold — ×10–1 ±5%

Silver — ×10–2 ±10%

None — — ±20%

For example (using the values from the table as a key), a resistor with red, violet,
green, and gold bands (left to right) will have 2 as the first digit, 7 as the second digit,
a multiplier of 105, and a tolerance of ±5 percent, for a resistance of 2,700 kΩ, plus or
minus 5 percent.

First band

Second band Multiplier

Tolerance

412  Chapter 8  Objects and Classes

••• Science P8.28	 The figure below shows a frequently used electric circuit called a “voltage divider”.
The input to the circuit is the voltage vi. The output is the voltage vo. The output of
a voltage divider is proportional to the input, and the constant of proportionality is
called the “gain” of the circuit. The voltage divider is represented by the equation

G

v
v

R
R R

o

i
= =

+
2

1 2

where G is the gain and R1 and R2 are the resistances of the two resistors that com-
prise the voltage divider.

+
–

vi

R1

vo

+

–

R2

Manufacturing variations cause the actual resistance values to deviate from the
nominal values, as described in Exercise P8.26. In turn, variations in the resistance
values cause variations in the values of the gain of the voltage divider. We calculate
the nominal value of the gain using the nominal resistance values and the actual
value of the gain using actual resistance values.
Write a program that contains two classes, VoltageDivider and Resistor. The Resistor
class is described in Exercise P8.26. The VoltageDivider class should have two instance
variables that are objects of the Resistor class. Provide a single constructor that
accepts two Resistor objects, nominal values for their resistances, and the resistor
tolerance. The class should provide public methods to get the nominal and actual
values of the voltage divider’s gain.
Write a main method for the program that demonstrates that the class works properly
by displaying nominal and actual gain for ten voltage dividers each consisting of 5%
resistors having nominal values R1 = 250 Ω and R2 = 750 Ω.

A n s w e r s t o S e l f - C h e c k Q u e s t io n s

1.	 No––the object "Hello, World" belongs to the
String class, and the String class has no println
method.

2.	 Through the substring and charAt methods.
3.	 As an ArrayList<Character>. As a char array.
4.	 None. The methods will have the same effect,

and your code could not have manipulated
String objects in any other way.

5.	 public void reset()
{
 value = 0;
}

6.	 public int getValue()
{

 return strokes.length();
}

7.	 None––the public interface has not changed.
8.	 You cannot access the instance variables

directly. You must use the methods provided
by the Clock class.

9.	 2 1.90
10.	 There is no method named getAmountDue.
11.	 public int getDollars();
12.	 length, substring. In fact, all methods of the

String class are accessors.
13.	 A mutator. Getting the next number removes

it from the input, thereby modifying it. Not

Answers to Self-Check Questions  413

convinced? Consider what happens if you call
the nextInt method twice. You will usually
get two different numbers. But if you call an
accessor twice on an object (without a muta-
tion between the two calls), you are sure to get
the same result.

14.	 /**
 This class models a tally counter.
*/
public class Counter
{
 private int value;

 /**
 Gets the current value of this counter.
 @return the current value
 */
 public int getValue()
 {
 return value;
 }

 /**
 Advances the value of this counter by 1.
 */
 public void count()
 {
 value = value + 1;

 }

15.	 The code tries to access a private instance
variable.

16.	 (1) int hours; // Between 1 and 12
int minutes; // Between 0 and 59
boolean pm; // True for p.m., false for a.m.

(2) int hours; // Military time, between 0 and 23
int minutes; // Between 0 and 59

(3) int totalMinutes // Between 0 and 60 * 24 - 1

17.	 They need not change their programs at all
because the public interface has not changed.
They need to recompile with the new version
of the Time class.

18.	 (1) String letterGrade; // "A+", "B"
(2) double numberGrade; // 4.3, 3.0

19.	 2 1.85 1 1.90
20.	 public int getDollars()

{
 int dollars = (int) totalPrice; ­
 // Truncates cents
 return dollars;
}

21.	 Three parameters: two explicit parameters of
type int, and one implicit parameter of type
String.

22.	 One parameter: the implicit parameter of type
String. The method has no explicit parameters.

23.	 "Morgan, Harry"

24.	 public Person() { name = "unknown"; }

25.	 A constructor is generated that has the same
effect as the constructor provided in this sec-
tion. It sets both instance variables to zero.

26.	 public Item()
{
 price = 0;
 description = "";
}

The price instance variable need not be initial-
ized because it is set to zero by default, but it is
clearer to initialize it explicitly.

27.	 (a) Item(String)  (b) Item(double) 
(c) Item(String, double)  (d) Item() 
(e) No constructor has been called.

28.	 Add these lines:
 register1.clear();
 System.out.println(register1.getCount());
 System.out.println("Expected: 0");
 System.out.printf("%.2f\n",
 register1.getTotal());
 System.out.println("Expected: 0.00");

29.	 1, 0
30.	 These environments allow you to call methods

on an object without creating a main method.

31.	
Car myCar

Car(mpg)
addGas(amount)
drive(distance)
getGasLeft

front

gasLeft milesPerGallon

0 25

back

414  Chapter 8  Objects and Classes

32.	
gasLeft milesPerGallon

0
20
16
8
13

25

33.	
gasLeft milesPerGallon

0 25

totalMiles

0

34.	

0
20
16
8
13

25 0

100
300

gasLeft milesPerGallon totalMiles

35.	 It needs to be incremented in the deposit and
withdraw methods. There also needs to be some
method to reset it after the end of a statement
period.

36.	 The ArrayList<String> instance variable is pri-
vate, and the class users cannot acccess it.

37.	 Add an ArrayList<Double> prices. In the addItem
method, add the current price. In the reset
method, replace the array list with an empty
one. Also supply a method printReceipt that
prints the prices.

38.	 The tax ID of an employee does not change,
and no setter method should be supplied. The
salary of an employee can change, and both
getter and setter methods should be supplied.

39.	 It is an example of the “state pattern”
described in Section 8.9.5. The direction is a
state that changes when the bug turns, and it
affects how the bug moves.

40.	 Both greeting and greeting2 refer to the same
string "Hello".

41.	 They both still refer to the string "Hello".
The toUpperCase method computes the string
"HELLO", but it is not a mutator—the original
string is unchanged.

42.	 (a) 0
(b) A null pointer exception is thrown.

43.	 It is a reference of type String.
44.	 public void addItems(int quantity, double price)

{
 for (int i = 1; i <= quantity; i++)
 {
 this.addItem(price);
 }
}

45.	 System.in and System.out
46.	 Math.PI

47.	 The method needs no data of any object. The
only required input is the values argument.

48.	 Yes, it works. Static methods can call each
other and access static variables—any method
can. But it is a terrible idea. A program that
consists of a single class with many methods is
hard to understand.

9C h a p t e r

415

Inheritance
and
Interfaces

To learn about inheritance

To implement subclasses that inherit and override superclass methods

To understand the concept of polymorphism

To be familiar with the common superclass Object and its methods

To work with interface types

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

9.1  Inheritance Hierarchies  416

Programming Tip 9.1: Use a Single Class for
Variation in Values, Inheritance for Variation
in Behavior  420

9.2  Implementing Subclasses  420

Syntax 9.1: Subclass Declaration  422
Common Error 9.1: Replicating Instance Variables

from the Superclass  423
Common Error 9.2: Confusing Super- and

Subclasses  424

9.3  Overriding Methods  424

Common Error 9.3: Accidental Overloading  428
Common Error 9.4: Forgetting to Use super

When Invoking a Superclass Method  429
Special Topic 9.1: Calling the Superclass

Constructor  429
Syntax 9.2: Constructor with

Superclass Initializer  430

9.4  Polymorphism  430

Special Topic 9.2: Dynamic Method Lookup and
the Implicit Parameter  433

Special Topic 9.3: Abstract Classes  434
Special Topic 9.4: Final Methods and Classes  435

Special Topic 9.5: Protected Access  436
How To 9.1: Developing an Inheritance

Hierarchy  436
Worked Example 9.1:  Implementing an Employee

Hierarchy for Payroll Processing 
Video Example 9.1: Building a

Discussion Board 

9.5  Object: The Cosmic
Superclass  441

Syntax 9.3: The instanceof Operator  445
Common Error 9.5: Don’t Use Type Tests  446
Special Topic 9.6:  Inheritance and the

toString Method  446
Special Topic 9.7:  Inheritance and the

equals Method  447

9.6  Interface Types  448

Syntax 9.4:  Interface Types  449
Common Error 9.6: Forgetting to Declare

Implementing Methods as Public  453
Special Topic 9.8: Constants in Interfaces  453
Special Topic 9.9: Function Objects  454
Video Example 9.2: Drawing

Geometric Shapes 

416

Objects from related classes usually share common
behavior. For example, shovels, rakes, and clippers all
perform gardening tasks. In this chapter, you will learn
how the notion of inheritance expresses the relationship
between specialized and general classes. By using
inheritance, you will be able to share code between classes
and provide services that can be used by multiple classes.

9.1  Inheritance Hierarchies
In object-oriented design, inheritance is a relationship between a more general class
(called the super­class) and a more specialized class (called the subclass). The subclass
inherits data and behavior from the superclass. For example, consider the relation-
ships between different kinds of vehicles depicted in Figure 1.

Every car is a vehicle. Cars share the common traits of all vehicles, such as the abil-
ity to transport people from one place to another. We say that the class Car inherits
from the class Vehicle. In this relationship, the Vehicle class is the superclass and the
Car class is the subclass. In Figure 2, the superclass and subclass are joined with an
arrow that points to the superclass.

Suppose we have an algorithm that manipulates a Vehicle object. Because a car is a
special kind of vehicle, we can use a Car object in such an algorithm, and it will work
correctly. The substitution principle states that you can always use a subclass object
when a superclass object is expected. For example, consider a method that takes an
argument of type Vehicle:

void processVehicle(Vehicle v)

A subclass inherits
data and behavior
from a superclass.

You can always use
a subclass object
in place of a
superclass object.

Figure 1  An Inheritance Hierarchy of Vehicle Classes

Vehicle

Motorcycle Car Truck

Sedan SUV

9.1  Inheritance Hierarchies   417

Figure 2 
An Inheritance Diagram

Vehicle

Car

Because Car is a subclass of Vehicle, you can call that method with a Car object:
Car myCar = new Car(. . .);
processVehicle(myCar);

Why provide a method that processes Vehicle objects instead of Car objects? That
method is more useful because it can handle any kind of vehicle (including Truck and
Motorcycle objects). In general, when we group classes into an inheritance hierarchy,
we can share common code among the classes.

In this chapter, we will consider a simple hierar-
chy of classes. Most likely, you have taken computer-
graded quizzes. A quiz consists of questions, and there
are different kinds of questions:

•	 Fill-in-the-blank
•	 Choice (single or multiple)
•	 Numeric (where an approximate answer is ok;

e.g., 1.33 when the actual answer is 4/3)
•	 Free response

Figure 3 shows an inheritance hierarchy for these
question types.

We will develop a simple but
flexible quiz-taking program
to illustrate inheritance.

Figure 3 
Inheritance Hierarchy
of Question Types

Choice
Question

FillIn
Question

Numeric
Question

FreeResponse
Question

MultiChoice
Question

Question

418  Chapter 9  Inheritance and Interfaces

At the root of this hierarchy is the Question type. A question can display its text,
and it can check whether a given response is a correct answer.

section_1/Question.java

1 /**
2 A question with a text and an answer.
3 */
4 public class Question
5 {
6 private String text;
7 private String answer;
8
9 /**

10 Constructs a question with empty question and answer.
11 */
12 public Question()
13 {
14 text = "";
15 answer = "";
16 }
17
18 /**
19 Sets the question text.
20 @param questionText the text of this question
21 */
22 public void setText(String questionText)
23 {
24 text = questionText;
25 }
26
27 /**
28 Sets the answer for this question.
29 @param correctResponse the answer
30 */
31 public void setAnswer(String correctResponse)
32 {
33 answer = correctResponse;
34 }
35
36 /**
37 Checks a given response for correctness.
38 @param response the response to check
39 @return true if the response was correct, false otherwise
40 */
41 public boolean checkAnswer(String response)
42 {
43 return response.equals(answer);
44 }
45
46 /**
47 Displays this question.
48 */
49 public void display()
50 {
51 System.out.println(text);
52 }
53 }

9.1  Inheritance Hierarchies   419

This question class is very basic. It does not handle multiple-choice questions,
numeric questions, and so on. In the following sections, you will see how to form
subclasses of the Question class.

Here is a simple test program for the Question class:

section_1/QuestionDemo1.java

1 import java.util.ArrayList;
2 import java.util.Scanner;
3
4 /**
5 This program shows a simple quiz with one question.
6 */
7 public class QuestionDemo1
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12
13 Question q = new Question();
14 q.setText("Who was the inventor of Java?");
15 q.setAnswer("James Gosling");
16
17 q.display();
18 System.out.print("Your answer: ");
19 String response = in.nextLine();
20 System.out.println(q.checkAnswer(response));
21 }
22 }

Program Run

Who was the inventor of Java?
Your answer: James Gosling
true

1.	 Consider classes Manager and Employee. Which should be the superclass and which
should be the subclass?

2.	 What are the inheritance relationships between classes BankAccount, Checking­
Account, and SavingsAccount?

3.	 Figure 7.2 shows an inheritance diagram of exception classes in Java. List all
superclasses of the class RuntimeException.

4.	 Consider the method doSomething(Car c). List all vehicle classes from Figure 1
whose objects cannot be passed to this method.

5.	 Should a class Quiz inherit from the class Question? Why or why not?

Practice It	 Now you can try these exercises at the end of the chapter: R9.1, R9.7, R9.9.

S e l f C h e c k

420  Chapter 9  Inheritance and Interfaces

Use a Single Class for Variation in Values, Inheritance for
Variation in Behavior

The purpose of inheritance is to model objects with different behavior. When students first
learn about inheritance, they have a tendency to overuse it, by creating multiple classes even
though the variation could be expressed with a simple instance variable.

Consider a program that tracks the fuel efficiency of a fleet of cars by logging the distance
traveled and the refueling amounts. Some cars in the fleet are hybrids. Should you create a sub-
class HybridCar? Not in this application. Hybrids don’t behave any differently than other cars
when it comes to driving and refueling. They just have a better fuel efficiency. A single Car class
with an instance variable

double milesPerGallon;

is entirely sufficient.
However, if you write a program that shows how to repair different kinds of vehicles, then

it makes sense to have a separate class HybridCar. When it comes to repairs, hybrid cars behave
differently from other cars.

9.2  Implementing Subclasses
In this section, you will see how to form a subclass and how a subclass automatically
inherits functionality from its superclass.

Suppose you want to write a program that handles questions such as the following:
In which country was the inventor of Java born?
1. Australia
2. Canada
3. Denmark
4. United States

You could write a ChoiceQuestion class from scratch, with methods to set up the ques-
tion, display it, and check the answer. But you don’t have to. Instead, use inheritance
and implement ChoiceQuestion as a subclass of the Question class (see Figure 4).

In Java, you form a subclass by specifying what makes the subclass different from
its superclass.

Subclass objects automatically have the instance variables that are declared in the
superclass. You only declare instance variables that are not part of the superclass
objects.

Programming Tip 9.1

A subclass inherits all
methods that it does
not override.

Figure 4 
The ChoiceQuestion Class is a
Subclass of the Question Class

Question

Choice
Question

9.2  Implementing Subclasses   421

Like the manufacturer of a
stretch limo, who starts with a
regular car and modifies it, a
programmer makes a subclass
by modifying another class.

The subclass inherits all public methods from the superclass. You declare any
methods that are new to the subclass, and change the implementation of inherited
methods if the inherited behavior is not appropriate. When you supply a new imple-
mentation for an inherited method, you override the method.

A ChoiceQuestion object differs from a Question object in three ways:

•	 Its objects store the various choices for the answer.
•	 There is a method for adding answer choices.
•	 The display method of the ChoiceQuestion class shows these choices so that the

respondent can choose one of them.

When the ChoiceQuestion class inherits from the Question class, it needs to spell out
these three differences:

public class ChoiceQuestion extends Question
{
 // This instance variable is added to the subclass
 private ArrayList<String> choices;

 // This method is added to the subclass
 public void addChoice(String choice, boolean correct) { . . . }

 // This method overrides a method from the superclass
 public void display() { . . . }
}

The reserved word extends denotes inheritance.
Figure 5 shows the layout of a ChoiceQuestion object. It has the text and answer

instance variables that are declared in the Question superclass, and it adds an additional
instance variable, choices.

The addChoice method is specific to the ChoiceQuestion class. You can only apply it to
ChoiceQuestion objects, not general Question objects.

In contrast, the display method is a method that already exists in the superclass.
The subclass overrides this method, so that the choices can be properly displayed.

A subclass can
override a
superclass method
by providing a new
implementation.

The extends reserved
word indicates that a
class inherits from a
superclass.

Figure 5  Data Layout of Subclass Object

text =

ChoiceQuestion

answer =

choices =

Question portion

422  Chapter 9  Inheritance and Interfaces

Syntax 9.1	 Subclass Declaration

public class SubclassName extends SuperclassName
{
 instance variables
 methods
}

Syntax

public class ChoiceQuestion extends Question
{
 private ArrayList<String> choices

 public void addChoice(String choice, boolean correct) { . . . }

 public void display() { . . . }
}

Subclass Superclass

The reserved word extends
denotes inheritance.

Declare methods that are
added to the subclass.

Declare instance variables
that are added to
the subclass.

Declare methods that
the subclass overrides.

All other methods of the Question class are automatically inherited by the Choice­
Question class.

You can call the inherited methods on a subclass object:
choiceQuestion.setAnswer("2");

However, the private instance variables of the superclass are inaccessible. Because
these variables are private data of the superclass, only the superclass has access to
them. The subclass has no more access rights than any other class.

In particular, the ChoiceQuestion methods cannot directly access the instance vari-
able answer. These methods must use the public interface of the Question class to access
its private data, just like every other method.

To illustrate this point, let’s implement the addChoice method. The method has two
arguments: the choice to be added (which is appended to the list of choices), and a
Boolean value to indicate whether this choice is correct. For example,

question.addChoice("Canada", true);

The first argument is added to the choices variable. If the second argument is true, then
the answer instance variable becomes the number of the current choice. For example, if
choices.size() is 2, then answer is set to the string "2".

public void addChoice(String choice, boolean correct)
{
 choices.add(choice);
 if (correct)
 {
 // Convert choices.size() to string
 String choiceString = "" + choices.size();
 setAnswer(choiceString);
 }
}

You can’t just access the answer variable in the superclass. Fortunately, the Ques­
tion class has a setAnswer method. You can call that method. On which object? The

9.2  Implementing Subclasses   423

question that you are currently modifying—that is, the implicit parameter of the
ChoiceQuestion.addChoice method. As you saw in Chapter 8, if you invoke a method on
the implicit parameter, you don’t have to specify the implicit parameter and can write
just the method name:

setAnswer(choiceString);

If you prefer, you can make it clear that the method is executed on the implicit
parameter:

this.setAnswer(choiceString);

6.	 Suppose q is an object of the class Question and cq an object of the class Choice­
Question. Which of the following calls are legal?
a.	 q.setAnswer(response)
b.	cq.setAnswer(response)

c.	 q.addChoice(choice, true)

d.	cq.addChoice(choice, true)
7.	 Suppose the class Employee is declared as follows:

public class Employee
{
 private String name;
 private double baseSalary;

 public void setName(String newName) { . . . }
 public void setBaseSalary(double newSalary) { . . . }
 public String getName() { . . . }
 public double getSalary() { . . . }
}

Declare a class Manager that inherits from the class Employee and adds an instance
variable bonus for storing a salary bonus. Omit constructors and methods.

8.	 Which instance variables does the Manager class from Self Check 7 have?
9.	 In the Manager class, provide the method header (but not the implementation) for

a method that overrides the getSalary method from the class Employee.
10.	 Which methods does the Manager class from Self Check 9 inherit?

Practice It	 Now you can try these exercises at the end of the chapter: R9.3, P9.6, P9.10.

Replicating Instance Variables from the Superclass

A subclass has no access to the private instance variables of the superclass.

public ChoiceQuestion(String questionText)
{
 text = questionText; // Error—tries to access private superclass variable
}

When faced with a compiler error, beginners commonly “solve” this issue by adding another
instance variable with the same name to the subclass:

public class ChoiceQuestion extends Question
{

O n l i n e E x a m p l e

A program that
shows a simple Car
class extending a
Vehicle class.

S e l f C h e c k

Common Error 9.1

424  Chapter 9  Inheritance and Interfaces

 private ArrayList<String> choices;
 private String text; // Don’t!
 . . .
}

Sure, now the constructor compiles, but it doesn’t set the correct text! Such a ChoiceQuestion
object has two instance variables, both named text. The constructor sets one of them, and the
display method displays the other.

Confusing Super- and Subclasses

If you compare an object of type ChoiceQuestion with an object of type Question, you find that
•	 The reserved word extends suggests that the ChoiceQuestion object is an extended version of

a Question.
•	 The ChoiceQuestion object is larger; it has an added instance variable, choices.
•	 The ChoiceQuestion object is more capable; it has an addChoice method.
It seems a superior object in every way. So why is ChoiceQuestion called the subclass and
Question the superclass?

The super/sub terminology comes from set theory. Look at the set of all questions. Not all
of them are ChoiceQuestion objects; some of them are other kinds of questions. Therefore, the
set of ChoiceQuestion objects is a subset of the set of all Question objects, and the set of Question
objects is a superset of the set of ChoiceQuestion objects. The more specialized objects in the
subset have a richer state and more capabilities.

9.3  Overriding Methods
The subclass inherits the methods from the superclass. If you are not satisfied with
the behavior of an inherited method, you override it by specifying a new implemen-
tation in the subclass.

Consider the display method of the ChoiceQuestion class. It overrides the superclass
display method in order to show the choices for the answer. This method extends the
functionality of the superclass version. This means that the subclass method carries
out the action of the superclass method (in our case, displaying the question text), and
it also does some additional work (in our case, displaying the choices). In other cases,
a subclass method replaces the functionality of a superclass method, implementing an
entirely different behavior.

Let us turn to the implementation of the display method of the ChoiceQuestion class.
The method needs to

•	 Display the question text.
•	 Display the answer choices.

text =

ChoiceQuestion

answer =

choices =

text =

Question portion

Common Error 9.2

An overriding
method can extend
or replace the
functionality of the
superclass method.

9.3 O verriding Methods   425

The second part is easy because the answer choices are an instance variable of the
subclass.

public class ChoiceQuestion
{
 . . .
 public void display()
 {
 // Display the question text
 . . .
 // Display the answer choices
 for (int i = 0; i < choices.size(); i++)
 {
 int choiceNumber = i + 1;
 System.out.println(choiceNumber + ": " + choices.get(i));
 }
 }
}

But how do you get the question text? You can’t access the text variable of the super-
class directly because it is private.

Instead, you can call the display method of the superclass, by using the reserved
word super:

public void display()
{
 // Display the question text
 super.display(); // OK
 // Display the answer choices
 . . .
}

If you omit the reserved word super, then the method will not work as intended.
public void display()
{
 // Display the question text
 display(); // Error—invokes this.display()
 . . .
}

Because the implicit parameter this is of type ChoiceQuestion, and there is a method
named display in the ChoiceQuestion class, that method will be called—but that is just
the method you are currently writing! The method would call itself over and over.

Here is the complete program that lets you take a quiz consisting of two Choice­
Question objects. We construct both objects and pass them to a method presentQuestion.
That method displays the question to the user and checks whether the user response
is correct.

section_3/QuestionDemo2.java

1 import java.util.Scanner;
2
3 /**
4 This program shows a simple quiz with two choice questions.
5 */
6 public class QuestionDemo2
7 {
8 public static void main(String[] args)
9 {

Use the reserved
word super to call a
superclass method.

A N I M AT I O N
Inheritance

426  Chapter 9  Inheritance and Interfaces

10 ChoiceQuestion first = new ChoiceQuestion();
11 first.setText("What was the original name of the Java language?");
12 first.addChoice("*7", false);
13 first.addChoice("Duke", false);
14 first.addChoice("Oak", true);
15 first.addChoice("Gosling", false);
16
17 ChoiceQuestion second = new ChoiceQuestion();
18 second.setText("In which country was the inventor of Java born?");
19 second.addChoice("Australia", false);
20 second.addChoice("Canada", true);
21 second.addChoice("Denmark", false);
22 second.addChoice("United States", false);
23
24 presentQuestion(first);
25 presentQuestion(second);
26 }
27
28 /**
29 Presents a question to the user and checks the response.
30 @param q the question
31 */
32 public static void presentQuestion(ChoiceQuestion q)
33 {
34 q.display();
35 System.out.print("Your answer: ");
36 Scanner in = new Scanner(System.in);
37 String response = in.nextLine();
38 System.out.println(q.checkAnswer(response));
39 }
40 }

section_3/ChoiceQuestion.java

1 import java.util.ArrayList;
2
3 /**
4 A question with multiple choices.
5 */
6 public class ChoiceQuestion extends Question
7 {
8 private ArrayList<String> choices;
9

10 /**
11 Constructs a choice question with no choices.
12 */
13 public ChoiceQuestion()
14 {
15 choices = new ArrayList<String>();
16 }
17
18 /**
19 Adds an answer choice to this question.
20 @param choice the choice to add
21 @param correct true if this is the correct choice, false otherwise
22 */
23 public void addChoice(String choice, boolean correct)
24 {

9.3 O verriding Methods   427

25 choices.add(choice);
26 if (correct)
27 {
28 // Convert choices.size() to string
29 String choiceString = "" + choices.size();
30 setAnswer(choiceString);
31 }
32 }
33
34 public void display()
35 {
36 // Display the question text
37 super.display();
38 // Display the answer choices
39 for (int i = 0; i < choices.size(); i++)
40 {
41 int choiceNumber = i + 1;
42 System.out.println(choiceNumber + ": " + choices.get(i));
43 }
44 }
45 }

Program Run

What was the original name of the Java language?
1: *7
2: Duke
3: Oak
4: Gosling
Your answer: *7
false
In which country was the inventor of Java born?
1: Australia
2: Canada
3: Denmark
4: United States
Your answer: 2
true

11.	 What is wrong with the following implementation of the display method?
public class ChoiceQuestion
{
 . . .
 public void display()
 {
 System.out.println(text);
 for (int i = 0; i < choices.size(); i++)
 {
 int choiceNumber = i + 1;
 System.out.println(choiceNumber + ": " + choices.get(i));
 }
 }
}

12.	 What is wrong with the following implementation of the display method?
public class ChoiceQuestion
{

S e l f C h e c k

428  Chapter 9  Inheritance and Interfaces

 . . .
 public void display()
 {
 this.display();
 for (int i = 0; i < choices.size(); i++)
 {
 int choiceNumber = i + 1;
 System.out.println(choiceNumber + ": " + choices.get(i));
 }
 }
}

13.	 Look again at the implementation of the addChoice method that calls the setAnswer
method of the superclass. Why don’t you need to call super.setAnswer?

14.	 In the Manager class of Self Check 7, override the getName method so that managers
have a * before their name (such as *Lin, Sally).

15.	 In the Manager class of Self Check 9, override the getSalary method so that it re-
turns the sum of the salary and the bonus.

Practice It	 Now you can try these exercises at the end of the chapter: P9.1, P9.2, P9.11.

Accidental Overloading

In Java, two methods can have the same name, provided they differ in their parameter types.
For example, the PrintStream class has methods called println with headers

void println(int x)

and

void println(String x)

These are different methods, each with its own implementation. The Java compiler considers
them to be completely unrelated. We say that the println name is overloaded. This is different
from overriding, where a subclass method provides an implementation of a method whose
parameter variables have the same types.

If you mean to override a method but use a parameter variable with a different type, then
you accidentally introduce an overloaded method. For example,

public class ChoiceQuestion extends Question
{
 . . .
 public void display(PrintStream out)
 // Does not override void display()
 {
 . . .
 }
}

The compiler will not complain. It thinks that you want to provide a method just for Print­
Stream arguments, while inheriting another method void display().

When overriding a method, be sure to check that the types of the parameter variables match
exactly.

Common Error 9.3

9.3 O verriding Methods   429

Forgetting to Use super When Invoking a Superclass Method

A common error in extending the functionality of a superclass method is to forget the reserved
word super. For example, to compute the salary of a manager, get the salary of the underlying
Employee object and add a bonus:

public class Manager
{
 . . .
 public double getSalary()
 {
 double baseSalary = getSalary();
 // Error: should be super.getSalary()
 return baseSalary + bonus;
 }
}

Here getSalary() refers to the getSalary method applied to the implicit parameter of the
method. The implicit parameter is of type Manager, and there is a getSalary method in the Man­
ager class. Calling that method is a recursive call, which will never stop. Instead, you must tell
the compiler to invoke the superclass method.

Whenever you call a superclass method from a subclass method with the same name, be
sure to use the reserved word super.

Calling the Superclass Constructor

Consider the process of constructing a subclass object. A subclass
constructor can only initialize the instance variables of the sub-
class. But the superclass instance variables also need to be initial-
ized. Unless you specify otherwise, the superclass instance variables
are initialized with the constructor of the superclass that has no
arguments.

In order to specify another constructor, you use the super reserved
word, together with the arguments of the superclass constructor, as
the first statement of the subclass constructor.

For example, suppose the Question superclass had a construc-
tor for setting the question text. Here is how a subclass constructor
could call that superclass constructor:

public ChoiceQuestion(String questionText)
{
 super(questionText);
 choices = new ArrayList<String>();
}

In our example program, we used the superclass constructor with no
arguments. However, if all superclass constructors have arguments,
you must use the super syntax and provide the arguments for a super-
class constructor.

When the reserved word super is followed by a parenthesis, it
indicates a call to the superclass constructor. When used in this way,
the constructor call must be the first statement of the subclass
constructor. If super is followed by a period and a method name, on the other hand, it indicates
a call to a superclass method, as you saw in the preceding section. Such a call can be made any-
where in any subclass method.

Common Error 9.4

Special Topic 9.1

Unless specified
otherwise, the
subclass constructor
calls the superclass
constructor with no
arguments.

To call a superclass
constructor, use the
super reserved word
in the first statement
of the subclass
constructor.

The constructor of
a subclass can pass
arguments to a
superclass construc-
tor, using the
reserved word super.

430  Chapter 9  Inheritance and Interfaces

Syntax 9.2	 Constructor with Superclass Initializer

public ClassName(parameterType parameterName, . . .)
{
 super(arguments);
 . . .
}

Syntax

public ChoiceQuestion(String questionText)
{
 super(questionText);
 choices = new ArrayList<String>;
}

The superclass
constructor
is called first. If you omit the superclass

constructor call, the superclass
constructor with no arguments

is invoked.
The constructor
body can contain
additional statements.

9.4  Polymorphism
In this section, you will learn how to use inheritance for processing objects of differ-
ent types in the same program.

Consider our first sample program. It presented two Question objects to the user.
The second sample program presented two ChoiceQuestion objects. Can we write a
program that shows a mixture of both question types?

With inheritance, this goal is very easy to realize. In order to present a question to
the user, we need not know the exact type of the question. We just display the ques-
tion and check whether the user supplied the correct answer. The Question superclass
has methods for this purpose. Therefore, we can simply declare the parameter vari-
able of the presentQuestion method to have the type Question:

public static void presentQuestion(Question q)
{
 q.display();
 System.out.print("Your answer: ");
 Scanner in = new Scanner(System.in);
 String response = in.nextLine();
 System.out.println(q.checkAnswer(response));
}

As discussed in Section 9.1, we can substitute a subclass object whenever a superclass
object is expected:

ChoiceQuestion second = new ChoiceQuestion();
. . .
presentQuestion(second); // OK to pass a ChoiceQuestion

When the presentQuestion method executes, the object references stored in second and
q refer to the same object of type ChoiceQuestion (see Figure 6).

However, the variable q knows less than the full story about the object to which it
refers (see Figure 7).

Because q is a variable of type Question, you can call the display and checkAnswer
methods. You cannot call the addChoice method, though—it is not a method of the
Question superclass.

A subclass reference
can be used when a
superclass reference
is expected.

9.4 P olymorphism   431

Figure 6  Variables of Different Types Referring to the Same Object

text =

ChoiceQuestion

answer =

choices =

Variable of type
ChoiceQuestion

second =

q =

Variable of type
Question

This is as it should be. After all, it happens that in this method call, q refers to a
ChoiceQuestion. In another method call, q might refer to a plain Question or an entirely
different subclass of Question.

Now let’s have a closer look inside the presentQuestion method. It starts with the
call

q.display(); // Does it call Question.display or ChoiceQuestion.display?

Which display method is called? If you look at the program output on page 433, you will
see that the method called depends on the contents of the parameter variable q. In the
first case, q refers to a Question object, so the Question.display method is called. But in
the second case, q refers to a ChoiceQuestion, so the ChoiceQuestion.display method is
called, showing the list of choices.

In Java, method calls are always determined by the type of the actual object, not the
type of the variable containing the object reference. This is called dynamic method
lookup.

Dynamic method lookup allows us to treat objects of different classes in a uniform
way. This feature is called polymorphism. We ask multiple objects to carry out a task,
and each object does so in its own way.

Polymorphism makes programs easily extensible. Suppose we want to have a new
kind of question for calculations, where we are willing to accept an approximate
answer. All we need to do is to declare a new class NumericQuestion that extends Ques­
tion, with its own checkAnswer method. Then we can call the presentQuestion method
with a mixture of plain questions, choice questions, and numeric questions. The
presentQuestion method need not be changed at all! Thanks to dynamic method
lookup, method calls to the display and checkAnswer methods automatically select the
correct method of the newly declared classes.

A N I M AT I O N
Polymorphism

Polymorphism
(“having multiple
shapes”) allows us to
manipulate objects
that share a set of
tasks, even though
the tasks are
executed in
different ways.

Figure 7  A Question Reference Can Refer to an Object of Any Subclass of Question

text =

?

answer =

q =

Variable of type
Question

432  Chapter 9  Inheritance and Interfaces

section_4/

In the same way that vehicles can differ in their method of locomotion,
polymorphic objects carry out tasks in different ways.

QuestionDemo3.java

1 import java.util.Scanner;
2
3 /**
4 This program shows a simple quiz with two question types.
5 */
6 public class QuestionDemo3
7 {
8 public static void main(String[] args)
9 {

10 Question first = new Question();
11 first.setText("Who was the inventor of Java?");
12 first.setAnswer("James Gosling");
13
14 ChoiceQuestion second = new ChoiceQuestion();
15 second.setText("In which country was the inventor of Java born?");
16 second.addChoice("Australia", false);
17 second.addChoice("Canada", true);
18 second.addChoice("Denmark", false);
19 second.addChoice("United States", false);
20
21 presentQuestion(first);
22 presentQuestion(second);
23 }
24
25 /**
26 Presents a question to the user and checks the response.
27 @param q the question
28 */
29 public static void presentQuestion(Question q)
30 {
31 q.display();
32 System.out.print("Your answer: ");
33 Scanner in = new Scanner(System.in);
34 String response = in.nextLine();
35 System.out.println(q.checkAnswer(response));
36 }
37 }

9.4 P olymorphism   433

Program Run

Who was the inventor of Java?
Your answer: Bjarne Stroustrup
false
In which country was the inventor of Java born?
1: Australia
2: Canada
3: Denmark
4: United States
Your answer: 2
true

16.	 Assuming SavingsAccount is a subclass of BankAccount, which of the following code
fragments are valid in Java?
a.	 BankAccount account = new SavingsAccount();
b.	SavingsAccount account2 = new BankAccount();
c.	 BankAccount account = null;
d.	SavingsAccount account2 = account;

17.	 If account is a variable of type BankAccount that holds a non-null reference, what
do you know about the object to which account refers?

18.	 Declare an array quiz that can hold a mixture of Question and ChoiceQuestion
objects.

19.	 Consider the code fragment
ChoiceQuestion cq = . . .; // A non-null value
cq.display();

Which actual method is being called?
20.	 Is the method call Math.sqrt(2) resolved through dynamic method lookup?

Practice It	 Now you can try these exercises at the end of the chapter: R9.6, P9.4, P9.20.

Dynamic Method Lookup and the Implicit Parameter

Suppose we add the presentQuestion method to the Question class itself:

void presentQuestion()
{
 display();
 System.out.print("Your answer: ");
 Scanner in = new Scanner(System.in);
 String response = in.nextLine();
 System.out.println(checkAnswer(response));
}

Now consider the call

ChoiceQuestion cq = new ChoiceQuestion();
cq.setText("In which country was the inventor of Java born?");
. . .
cq.presentQuestion();

S e l f C h e c k

Special Topic 9.2

434  Chapter 9  Inheritance and Interfaces

Which display and checkAnswer method will the presentQuestion method call? If you look inside
the code of the presentQuestion method, you can see that these methods are executed on the
implicit parameter.

public class Question
{
 public void presentQuestion()
 {
 this.display();
 System.out.print("Your answer: ");
 Scanner in = new Scanner(System.in);
 String response = in.nextLine();
 System.out.println(this.checkAnswer(response));
 }
}

The implicit parameter this in our call is a reference to an object of type ChoiceQuestion.
Because of dynamic method lookup, the ChoiceQuestion versions of the display and checkAnswer
methods are called automatically. This happens even though the presentQuestion method is
declared in the Question class, which has no knowledge of the ChoiceQuestion class.

As you can see, polymorphism is a very powerful mechanism. The Question class supplies
a presentQuestion method that specifies the common nature of presenting a question, namely
to display it and check the response. How the displaying and checking are carried out is left to
the subclasses.

Abstract Classes

When you extend an existing class, you have the choice whether or not to override the meth-
ods of the superclass. Sometimes, it is desirable to force programmers to override a method.
That happens when there is no good default for the superclass, and only the subclass program-
mer can know how to implement the method properly.

Here is an example: Suppose the First National Bank of Java decides that every account
type must have some monthly fees. Therefore, a deductFees method should be added to the
Account class:

public class Account
{
 public void deductFees() { . . . }
 . . .
}

But what should this method do? Of course, we could have the method do nothing. But then
a programmer implementing a new subclass might simply forget to implement the deductFees
method, and the new account would inherit the do-nothing method of the superclass. There is
a better way—declare the deductFees method as an abstract method:

public abstract void deductFees();

An abstract method has no implementation. This forces the imple-
mentors of subclasses to specify concrete implementations of this
method. (Of course, some subclasses might decide to implement a
do-nothing method, but then that is their choice—not a silently
inherited default.)

You cannot construct objects of classes with abstract methods.
For example, once the Account class has an abstract method, the com-
piler will flag an attempt to create a new Account() as an error.

Special Topic 9.3

An abstract method
is a method whose
implementation is
not specified.

An abstract class is a
class that cannot be
instantiated.

9.4 P olymorphism   435

A class for which you cannot create objects is called an abstract class. A class for which you
can create objects is sometimes called a concrete class. In Java, you must declare all abstract
classes with the reserved word abstract:

public abstract class Account
{
 public abstract void deductFees();
 . . .
}

public class SavingsAccount extends Account // Not abstract
{
 . . .
 public void deductFees() // Provides an implementation
 {
 . . .
 }
}

Note that you cannot construct an object of an abstract class, but you can still have an object
reference whose type is an abstract class. Of course, the actual object to which it refers must be
an instance of a concrete subclass:

Account anAccount; // OK
anAccount = new Account(); // Error—Account is abstract
anAccount = new SavingsAccount(); // OK
anAccount = null; // OK

The reason for using abstract classes is to force programmers to create subclasses. By speci-
fying certain methods as abstract, you avoid the trouble of coming up with useless default
methods that others might inherit by accident.

Final Methods and Classes

In Special Topic 9.3 you saw how you can force other programmers to create subclasses of
abstract classes and override abstract methods. Occasionally, you may want to do the opposite
and prevent other programmers from creating subclasses or from overriding certain methods.
In these situations, you use the final reserved word. For example, the String class in the stan-
dard Java library has been declared as

public final class String { . . . }

That means that nobody can extend the String class. When you have a reference of type String,
it must contain a String object, never an object of a subclass.

You can also declare individual methods as final:

public class SecureAccount extends BankAccount
{
 . . .
 public final boolean checkPassword(String password)
 {
 . . .
 }
}

This way, nobody can override the checkPassword method with another method that simply
returns true.

Special Topic 9.4

436  Chapter 9  Inheritance and Interfaces

Protected Access

We ran into a hurdle when trying to implement the display method of the ChoiceQuestion class.
That method wanted to access the instance variable text of the superclass. Our remedy was to
use the appropriate method of the superclass to display the text.

Java offers another solution to this problem. The superclass can declare an instance variable
as protected:

public class Question
{
 protected String text;
 . . .
}

Protected data in an object can be accessed by the methods of the object’s class and all its
subclasses. For example, ChoiceQuestion inherits from Question, so its methods can access the
protected instance variables of the Question superclass.

Some programmers like the protected access feature because it seems to strike a balance
between absolute protection (making instance variables private) and no protection at all (mak-
ing instance variables public). However, experience has shown that protected instance vari-
ables are subject to the same kinds of problems as public instance variables. The designer of
the superclass has no control over the authors of subclasses. Any of the subclass methods can
corrupt the superclass data. Furthermore, classes with protected variables are hard to modify.
Even if the author of the superclass would like to change the data implementation, the pro-
tected variables cannot be changed, because someone somewhere out there might have written
a subclass whose code depends on them.

In Java, protected variables have another drawback—they are accessible not just by sub-
classes, but also by other classes in the same package (see Section 12.4 for information about
packages).

It is best to leave all data private. If you want to grant access to the data to subclass methods
only, consider making the accessor method protected.

Special Topic 9.5

How To 9.1	 Developing an Inheritance Hierarchy

When you work with a set of classes, some of which are more general and others more spe
cialized, you want to organize them into an inheritance hierarchy. This enables you to process
objects of different classes in a uniform way.

As an example, we will consider a bank that offers customers the following account types:
•	 A savings account that earns interest. The interest compounds monthly and is computed on the minimum

monthly balance.
•	 A checking account that has no interest, gives you three free withdrawals per month, and charges a $1

transaction fee for each additional withdrawal.

The program will manage a set of accounts of both types, and it should be structured so that
other account types can be added without affecting the main processing loop. Supply a menu

D)eposit W)ithdraw M)onth end Q)uit

For deposits and withdrawals, query the account number and amount. Print the balance of the
account after each transaction.

In the “Month end” command, accumulate interest or clear the transaction counter,
depending on the type of the bank account. Then print the balance of all accounts.

9.4 P olymorphism   437

Step 1	 List the classes that are part of the hierarchy.

In our case, the problem description yields two classes: SavingsAccount and CheckingAccount.
Of course, you could implement each of them separately. But that would not be a good idea
because the classes would have to repeat common functionality, such as updating an account
balance. We need another class that can be responsible for that common functionality. The
problem statement does not explicitly mention such a class. Therefore, we need to discover
it. Of course, in this case, the solution is simple. Savings accounts and checking accounts are
special cases of a bank account. Therefore, we will introduce a common superclass BankAccount.

Step 2	 Organize the classes into an inheritance hierarchy.

Draw an inheritance diagram that shows super- and subclasses. Here is one for our example:

Savings
Account

Checking
Account

BankAccount

Step 3	 Determine the common responsibilities.

In Step 2, you will have identified a class at the base of the hierarchy. That class needs to have
sufficient responsibilities to carry out the tasks at hand. To find out what those tasks are, write
pseudocode for processing the objects.

For each user command
	 If it is a deposit or withdrawal
		 Deposit or withdraw the amount from the specified account.
		 Print the balance.
	 If it is month end processing
		 For each account
			 Call month end processing.
			 Print the balance.

From the pseudocode, we obtain the following list of common responsibilities that every bank
account must carry out:

Deposit money.
Withdraw money.
Get the balance.
Carry out month end processing.

Step 4	 Decide which methods are overridden in subclasses.

For each subclass and each of the common responsibilities, decide whether the behavior can be
inherited or whether it needs to be overridden. Be sure to declare any methods that are inher-
ited or overridden in the root of the hierarchy.

public class BankAccount
{
 . . .

438  Chapter 9  Inheritance and Interfaces

 /**
 Makes a deposit into this account.
 @param amount the amount of the deposit
 */
 public void deposit(double amount) { . . . }

 /**
 Makes a withdrawal from this account, or charges a penalty if
 sufficient funds are not available.
 @param amount the amount of the withdrawal
 */
 public void withdraw(double amount) { . . . }

 /**
 Carries out the end of month processing that is appropriate
 for this account.
 */
 public void monthEnd() { . . . }

 /**
 Gets the current balance of this bank account.
 @return the current balance
 */
 public double getBalance() { . . . }
}

The SavingsAccount and CheckingAccount classes both override the monthEnd method. The
SavingsAccount class must also override the withdraw method to track the minimum balance.
The CheckingAccount class must update a transaction count in the withdraw method.

Step 5	 Declare the public interface of each subclass.

Typically, subclasses have responsibilities other than those of the superclass. List those, as well
as the methods that need to be overridden. You also need to specify how the objects of the
subclasses should be constructed.

In this example, we need a way of setting the interest rate for the savings account. In addi-
tion, we need to specify constructors and overridden methods.

public class SavingsAccount extends BankAccount
{
 . . .
 /**
 Constructs a savings account with a zero balance.
 */
 public SavingsAccount() { . . . }

 /**
 Sets the interest rate for this account.
 @param rate the monthly interest rate in percent
 */
 public void setInterestRate(double rate) { . . . }

 // These methods override superclass methods
 public void withdraw(double amount) { . . . }
 public void monthEnd() { . . . }
}

public class CheckingAccount extends BankAccount
{
 . . .
 /**

9.4 P olymorphism   439

 Constructs a checking account with a zero balance.
 */
 public CheckingAccount() { . . . }

 // These methods override superclass methods
 public void withdraw(double amount) { . . . }
 public void monthEnd() { . . . }
}

Step 6	 Identify instance variables.

List the instance variables for each class. If you find an instance variable that is common to all
classes, be sure to place it in the base of the hierarchy.

All accounts have a balance. We store that value in the BankAccount superclass:

public class BankAccount
{
 private double balance;
 . . .
}

The SavingsAccount class needs to store the interest rate. It also needs to store the minimum
monthly balance, which must be updated by all withdrawals.

public class SavingsAccount extends BankAccount
{
 private double interestRate;
 private double minBalance;
 . . .
}

The CheckingAccount class needs to count the withdrawals, so that the charge can be applied
after the free withdrawal limit is reached.

public class CheckingAccount extends BankAccount
{
 private int withdrawals;
 . . .
}

Step 7	 Implement constructors and methods.

The methods of the BankAccount class update or return the balance.

public void deposit(double amount)
{
 balance = balance + amount;
}

public void withdraw(double amount)
{
 balance = balance - amount;
}

public double getBalance()
{
 return balance;
}

At the level of the BankAccount superclass, we can say nothing about end of month processing.
We choose to make that method do nothing:

public void monthEnd()
{
}

440  Chapter 9  Inheritance and Interfaces

In the withdraw method of the SavingsAccount class, the minimum balance is updated. Note the
call to the superclass method:

public void withdraw(double amount)
{
 super.withdraw(amount);
 double balance = getBalance();
 if (balance < minBalance)
 {
 minBalance = balance;
 }
}

In the monthEnd method of the SavingsAccount class, the interest is deposited into the account.
We must call the deposit method because we have no direct access to the balance instance vari-
able. The minimum balance is reset for the next month.

public void monthEnd()
{
 double interest = minBalance * interestRate / 100;
 deposit(interest);
 minBalance = getBalance();
}

The withdraw method of the CheckingAccount class needs to check the withdrawal count. If there
have been too many withdrawals, a charge is applied. Again, note how the method invokes the
superclass method:

public void withdraw(double amount)
{
 final int FREE_WITHDRAWALS = 3;
 final int WITHDRAWAL_FEE = 1;

 super.withdraw(amount);
 withdrawals++;
 if (withdrawals > FREE_WITHDRAWALS)
 {
 super.withdraw(WITHDRAWAL_FEE);
 }
}

End of month processing for a checking account simply resets the withdrawal count.

public void monthEnd()
{
 withdrawals = 0;
}

Step 8	 Construct objects of different subclasses and process them.

In our sample program, we allocate 5 checking accounts and 5 savings accounts and store their
addresses in an array of bank accounts. Then we accept user commands and execute deposits,
withdrawals, and monthly processing.

BankAccount[] accounts = . . .;
. . .
Scanner in = new Scanner(System.in);
boolean done = false;
while (!done)
{
 System.out.print("D)eposit W)ithdraw M)onth end Q)uit: ");
 String input = in.next();
 if (input.equals("D") || input.equals("W")) // Deposit or withdrawal
 {

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

9.5 O bject: The Cosmic Superclass   441

 System.out.print("Enter account number and amount: ");
 int num = in.nextInt();
 double amount = in.nextDouble();

 if (input.equals("D")) { accounts[num].deposit(amount); }
 else { accounts[num].withdraw(amount); }

 System.out.println("Balance: " + accounts[num].getBalance());
 }
 else if (input.equals("M")) // Month end processing
 {
 for (int n = 0; n < accounts.length; n++)
 {
 accounts[n].monthEnd();
 System.out.println(n + " " + accounts[n].getBalance());
 }
 }
 else if (input == "Q")
 {
 done = true;
 }
}

9.5  Object: The Cosmic Superclass
In Java, every class that is declared without an explicit extends clause automatically
extends the class Object. That is, the class Object is the direct or indirect superclass of
every class in Java (see Figure 8). The Object class defines several very general meth-
ods, including

•	 toString, which yields a string describing the object (Section 9.5.1).
•	 equals, which compares objects with each other (Section 9.5.2).
•	 hashCode, which yields a numerical code for storing the object in a set (see Special

Topic 15.1).

O NL I NE E x a m p l e

The complete
program with
BankAccount,
SavingsAccount, and
CheckingAccount
classes.

Worked Example 9.1	 Implementing an Employee
Hierarchy for Payroll Processing

This Worked Example shows how to implement payroll
processing that works for different kinds of employees.

Video Example 9.1	 Building a Discussion Board

In this Video Example, we will build a discussion
board for students and instructors.

442  Chapter 9  Inheritance and Interfaces

9.5.1 

Figure 8  The Object Class Is the Superclass of Every Java Class

Object

Question

ChoiceQuestion NumericQuestion

RectangleString Scanner

Overriding the toString Method

The toString method returns a string representation for each object. It is often used
for debugging. For example, consider the Rectangle class in the standard Java library.
Its toString method shows the state of a rectangle:

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
 // Sets s to "java.awt.Rectangle[x=5,y=10,width=20,height=30]"

The toString method is called automatically whenever you concatenate a string with
an object. Here is an example:

"box=" + box;

On one side of the + concatenation operator is a string, but on the other side is an
object reference. The Java compiler automatically invokes the toString method to
turn the object into a string. Then both strings are concatenated. In this case, the
result is the string

"box=java.awt.Rectangle[x=5,y=10,width=20,height=30]"

The compiler can invoke the toString method, because it knows that every object has
a toString method: Every class extends the Object class, and that class declares toString.

As you know, numbers are also converted to strings when they are concatenated
with other strings. For example,

int age = 18;
String s = "Harry's age is " + age;
 // Sets s to "Harry's age is 18"

In this case, the toString method is not involved. Numbers are not objects, and there is
no toString method for them. Fortunately, there is only a small set of primitive types,
and the compiler knows how to convert them to strings.

9.5 O bject: The Cosmic Superclass   443

Let’s try the toString method for the BankAccount class:
BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString(); // Sets s to something like "BankAccount@d24606bf"

That’s disappointing—all that’s printed is the name of the class, followed by the hash
code, a seemingly random code. The hash code can be used to tell objects apart—dif-
ferent objects are likely to have different hash codes. (See Special Topic 15.1 for the
details.)

We don’t care about the hash code. We want to know what is inside the object.
But, of course, the toString method of the Object class does not know what is inside
the BankAccount class. Therefore, we have to override the method and supply our own
version in the BankAccount class. We’ll follow the same format that the toString method
of the Rectangle class uses: first print the name of the class, and then the values of the
instance variables inside brackets.

public class BankAccount
{
 . . .
 public String toString()
 {
 return "BankAccount[balance=" + balance + "]";
 }
}

This works better:
BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString(); // Sets s to "BankAccount[balance=5000]"

9.5.2  The equals Method

In addition to the toString method, the Object class also provides an equals method,
whose purpose is to check whether two objects have the same contents:

if (stamp1.equals(stamp2)) . . . // Contents are the same—see Figure 9

This is different from the test with the == operator, which tests whether two refer-
ences are identical, referring to the same object:

if (stamp1 == stamp2) . . . // Objects are the same—see Figure 10

Override the
toString method to
yield a string that
describes the
object’s state.

The equals method
checks whether two
objects have the
same contents.

Figure 9  Two References to Equal Objects

stamp1 =

color =

Stamp

value = 7

olive

stamp2 =

color =

Stamp

value = 20

fuchsia

Figure 10  Two References to the Same Object

stamp1 =

color =

Stamp

value = 7

olive
stamp2 =

444  Chapter 9  Inheritance and Interfaces

Let’s implement the equals method for a Stamp class.
You need to override the equals method of the
Object class:

public class Stamp
{
 private String color;
 private int value;
 . . .
 public boolean equals(Object otherObject)
 {
 . . .
 }
 . . .
}

Now you have a slight problem. The Object class knows nothing about stamps, so
it declares the otherObject parameter variable of the equals method to have the type
Object. When overriding the method, you are not allowed to change the type of the
parameter variable. Cast the parameter variable to the class Stamp:

Stamp other = (Stamp) otherObject;

Then you can compare the two stamps:
public boolean equals(Object otherObject)
{
 Stamp other = (Stamp) otherObject;
 return color.equals(other.color)
 && value == other.value;
}

Note that this equals method can access the instance variables of any Stamp object: the
access other.color is perfectly legal.

9.5.3  The instanceof Operator

 As you have seen, it is legal to store a subclass reference in a superclass variable:
ChoiceQuestion cq = new ChoiceQuestion();
Question q = cq; // OK
Object obj = cq; // OK

Very occasionally, you need to carry out the opposite conversion, from a superclass
reference to a subclass reference.

For example, you may have a variable of type Object, and you happen to know that
it actually holds a Question reference. In that case, you can use a cast to convert the
type:

Question q = (Question) obj;

However, this cast is somewhat dangerous. If you are wrong, and obj actually refers
to an object of an unrelated type, then a “class cast” exception is thrown.

To protect against bad casts, you can use the instanceof operator. It tests whether
an object belongs to a particular type. For example,

obj instanceof Question

returns true if the type of obj is convertible to Question. This happens if obj refers to an
actual Question or to a subclass such as ChoiceQuestion.

The equals method checks whether
two objects have the same contents.

If you know that an
object belongs to
a given class, use
a cast to convert
the type.

The instanceof
operator tests
whether an object
belongs to a
particular type.

9.5 O bject: The Cosmic Superclass   445

Syntax 9.3	 The instanceof Operator

if (anObject instanceof Question)
{
 Question q = (Question) anObject;
 . . .
}

If anObject is null,
instanceof returns false.

Returns true if anObject
can be cast to a Question.

Two references
to the same object.

You can invoke Question
methods on this variable.

The object may belong to a
subclass of Question.

object instanceof TypeNameSyntax

Using the instanceof operator, a safe cast can be programmed as follows:
if (obj instanceof Question)
{
 Question q = (Question) obj;
}

Note that instanceof is not a method. It is an operator, just like + or <. However, it does
not operate on numbers. To the left is an object, and to the right a type name.

Do not use the instanceof operator to bypass polymorphism:
if (q instanceof ChoiceQuestion) // Don’t do this—see Common Error 9.5 on page 446
{
 // Do the task the ChoiceQuestion way
}
else if (q instanceof Question)
{
 // Do the task the Question way
}

In this case, you should implement a method doTheTask in the Question class, override it
in ChoiceQuestion, and call

q.doTheTask();

21.	 Why does the call
System.out.println(System.out);

produce a result such as java.io.PrintStream@7a84e4?
22.	 Will the following code fragment compile? Will it run? If not, what error is

reported?
Object obj = "Hello";
System.out.println(obj.length());

O NL I NE E x a m p l e

A program that
demonstrates the
toString method and
the instanceof
operator.

S e l f C h e c k

446  Chapter 9  Inheritance and Interfaces

23.	 Will the following code fragment compile? Will it run? If not, what error is
reported?
Object obj = "Who was the inventor of Java?";
Question q = (Question) obj;
q.display();

24.	 Why don’t we simply store all objects in variables of type Object?
25.	 Assuming that x is an object reference, what is the value of x instanceof Object?

Practice It	 Now you can try these exercises at the end of the chapter: P9.7, P9.8, P9.12.

Don’t Use Type Tests

Some programmers use specific type tests in order to implement behavior that varies with each
class:

if (q instanceof ChoiceQuestion) // Don’t do this
{
 // Do the task the ChoiceQuestion way
}
else if (q instanceof Question)
{
 // Do the task the Question way
}

This is a poor strategy. If a new class such as NumericQuestion is added, then you need to revise
all parts of your program that make a type test, adding another case:

else if (q instanceof NumericQuestion)
{
 // Do the task the NumericQuestion way
}

In contrast, consider the addition of a class NumericQuestion to our quiz program. Nothing
needs to change in that program because it uses polymorphism, not type tests.

Whenever you find yourself trying to use type tests in a hierarchy of classes, reconsider
and use polymorphism instead. Declare a method doTheTask in the superclass, override it in the
subclasses, and call

q.doTheTask();

Inheritance and the toString Method

You just saw how to write a toString method: Form a string consisting of the class name and
the names and values of the instance variables. However, if you want your toString method to
be usable by subclasses of your class, you need to work a bit harder. Instead of hardcoding the
class name, call the getClass method (which every class inherits from the Object class) to obtain
an object that describes a class and its properties. Then invoke the getName method to get the
name of the class:

public String toString()
{
 return getClass().getName() + "[balance=" + balance + "]";
}

Then the toString method prints the correct class name when you apply it to a subclass, say a
SavingsAccount.

Common Error 9.5

Special Topic 9.6

9.5 O bject: The Cosmic Superclass   447

SavingsAccount momsSavings = . . . ;
System.out.println(momsSavings);
// Prints "SavingsAccount[balance=10000]"

Of course, in the subclass, you should override toString and add the values of the subclass
instance variables. Note that you must call super.toString to get the instance variables of the
superclass—the subclass can’t access them directly.

public class SavingsAccount extends BankAccount
{
 . . .
 public String toString()
 {
 return super.toString() + "[interestRate=" + interestRate + "]";
 }
}

Now a savings account is converted to a string such as SavingsAccount[balance= 10000][interest­
Rate=5]. The brackets show which variables belong to the superclass.

Inheritance and the equals Method

You just saw how to write an equals method: Cast the otherObject parameter variable to the
type of your class, and then compare the instance variables of the implicit parameter and the
explicit parameter.

But what if someone called stamp1.equals(x) where x wasn’t a Stamp object? Then the bad
cast would generate an exception. It is a good idea to test whether otherObject really is an
instance of the Stamp class. The easiest test would be with the instanceof operator. However,
that test is not specific enough. It would be possible for otherObject to belong to some subclass
of Stamp. To rule out that possibility, you should test whether the two objects belong to the
same class. If not, return false.

if (getClass() != otherObject.getClass()) { return false; }

Moreover, the Java language specification demands that the equals method return false when
otherObject is null.

Here is an improved version of the equals method that takes these two points into account:

public boolean equals(Object otherObject)
{
 if (otherObject == null) { return false; }
 if (getClass() != otherObject.getClass()) { return false; }
 Stamp other = (Stamp) otherObject;
 return color.equals(other.color) && value == other.value;
}

When you implement equals in a subclass, you should first call equals in the superclass to
check whether the superclass instance variables match. Here is an example:

public CollectibleStamp extends Stamp
{
 private int year;
 . . .
 public boolean equals(Object otherObject)
 {
 if (!super.equals(otherObject)) { return false; }
 CollectibleStamp other = (CollectibleStamp) otherObject;
 return year == other.year;
 }
}

Special Topic 9.7

448  Chapter 9  Inheritance and Interfaces

9.6  Interface Types
It is often possible to design a general and reusable mechanism for processing objects
by focusing on the essential operations that an algorithm needs. You use interface
types to express these operations.

9.6.1  Defining an Interface

Consider the following method that computes the average balance in an array of
BankAccount objects:

public static double average(BankAccount[] objects)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (BankAccount obj : objects)
 {
 sum = sum + obj.getBalance();
 }
 return sum / objects.length;
}

Now suppose you have an array of Country objects and want to determine the average
of the areas:

public static double average(Country[] objects)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (Country obj : objects)
 {
 sum = sum + obj.getArea();
 }
 return sum / objects.length;
}

Clearly, the algorithm for computing the result is the same in both cases, but the
details of measurement differ. How can we write a single method that computes the
averages of both bank accounts and countries?

This standmixer provides the “rotation”
service to any attachment that
conforms to a common interface.
Similarly, the average method at the
end of this section works with any class
that implements a common interface.

9.6  Interface Types   449

Syntax 9.4	 Interface Types

public interface Measurable
{
 double getMeasure();
}

public class BankAccount implements Measurable
{
 . . .

 public double getMeasure()
 {
 return balance;
 }
}

Other
BankAccount

methods.

Interface methods
are always public.

A class can implement one
or more interface types.

Interface methods
have no implementation.

Implementation for the method that
was declared in the interface type.

Declaring: public interface InterfaceName
 {
 method declarations
 }

Implementing: public class ClassName implements InterfaceName, InterfaceName, . . .
 {
 instance variables
 methods
 }

Syntax

Suppose that the classes agree on a single method getMeasure that obtains the mea-
sure to be used in the data analysis. For bank accounts, getMeasure returns the balance.
For countries, getMeasure returns the area. Other classes can participate too, provided
that their getMeasure method returns an appropriate value.

Then we can implement a single method that computes
sum = sum + obj.getMeasure();

What is the type of the variable obj? Any class that has a getMeasure method.
In Java, an interface type is used to specify required operations. We will declare an

interface type that we call Measurable:
public interface Measurable
{
 double getMeasure();
}

The interface declaration lists all methods that the interface type requires. The Mea­
surable interface type requires a single method, but in general, an interface type can
require multiple methods. (Note that the Measurable type is not a type in the standard
library—it is a type that was created specifically for this book.)

An interface type is similar to a class, but there are several important differences:

•	 All methods in an interface type are abstract; that is, they have a name, parameter
variables, and a return type, but they don’t have an implementation.

•	 All methods in an interface type are automatically public.
•	 An interface type cannot have instance variables.
•	 An interface type cannot have static methods.

A Java interface type
contains the return
types, names, and
parameter variables
of a set of methods.

Unlike a class, an
interface type
provides no
implementation.

450  Chapter 9  Inheritance and Interfaces

We can use the interface type Measurable to implement a “universal” method for com-
puting averages:

public static double average(Measurable[] objects)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (Measurable obj : objects)
 {
 sum = sum + obj.getMeasure();
 }
 return sum / objects.length;
}

9.6.2  Implementing an Interface

The average method is usable for objects of any class that implements the Measurable
interface. A class implements an interface type if it declares the interface in an imple­
ments clause, and if it implements the method or methods that the interface requires.
Let’s modify the BankAccount class to implement the Measurable interface.

public class BankAccount implements Measurable
{
 public double getMeasure()
 {
 return balance;
 }
 . . .
}

Note that the class must declare the method as public, whereas the interface type need
not—all methods in an interface type are public.

Similarly, it is an easy matter to implement a Country class that implements the
Measurable interface.

public class Country implements Measurable
{
 public double getMeasure()
 {
 return area;
 }
 . . .
}

By using an interface
type for a parameter
variable, a method
can accept objects
from many classes.

The implements
reserved word
indicates which
interfaces a class
implements.

Figure 11 
Classes that Implement
the Measurable Interface

BankAccount Country

‹‹interface››
Measurable

The average method
accepts any Measurable objects.

9.6  Interface Types   451

A reference to a BankAccount or Country can be converted to a Measurable reference. The
sample program at the end of this section shows how the same average method can
compute the average of a collection of bank accounts or countries.

In summary, the Measurable interface expresses what all measurable objects have in
common. This commonality makes it possible to write methods such as average that
are usable for many classes.

Figure 11 shows a diagram of the classes and interfaces in this program. A dotted
arrow with a triangular tip denotes the “implements” relationship.

section_6/MeasurableDemo.java

1 /**
2 This program demonstrates the measurable BankAccount and Country classes.
3 */
4 public class MeasurableDemo
5 {
6 public static void main(String[] args)
7 {
8 Measurable[] accounts = new Measurable[3];
9 accounts[0] = new BankAccount(0);

10 accounts[1] = new BankAccount(10000);
11 accounts[2] = new BankAccount(2000);
12
13 System.out.println("Average balance: "
14 + average(accounts));
15
16 Measurable[] countries = new Measurable[3];
17 countries[0] = new Country("Uruguay", 176220);
18 countries[1] = new Country("Thailand", 514000);
19 countries[2] = new Country("Belgium", 30510);
20
21 System.out.println("Average area: "
22 + average(countries));
23 }
24
25 /**
26 Computes the average of the measures of the given objects.
27 @param objects an array of Measurable objects
28 @return the average of the measures
29 */
30 public static double average(Measurable[] objects)
31 {
32 if (objects.length == 0) { return 0; }
33 double sum = 0;
34 for (Measurable obj : objects)
35 {
36 sum = sum + obj.getMeasure();
37 }
38 return sum / objects.length;
39 }
40 }

Program Run

Average balance: 4000.0
Average area: 240243.33333333334

452  Chapter 9  Inheritance and Interfaces

9.6.3  The Comparable Interface

In the preceding sections, we defined the Measurable interface and provided an average
method that works with any classes implementing that interface. In this section, you
will learn about the Comparable interface of the standard Java library.

The Measurable interface is used for measuring a single object. The Comparable inter-
face is more complex because comparisons involve two objects. The interface declares
a compareTo method. The call

a.compareTo(b)

must return a negative number if a should come before b, zero if a and b are the same,
and a positive number otherwise.

The Comparable interface has a single method:
public interface Comparable
{
 int compareTo(Object otherObject);
}

For example, the BankAccount class can implement Comparable like this:
public class BankAccount implements Comparable
{
 . . .
 public int compareTo(Object otherObject)
 {
 BankAccount other = (BankAccount) otherObject;
 if (balance < other.balance) { return -1; }
 if (balance > other.balance) { return 1; }
 return 0;
 }
 . . .
}

This compareTo method compares bank accounts by their balance. Note that the
compareTo method has a parameter variable of type Object. To turn it into a BankAccount
reference, we use a cast:

BankAccount other = (BankAccount) otherObject;

Once the BankAccount class implements the Comparable interface, you can sort an array
of bank accounts with the Arrays.sort method:

BankAccount[] accounts = new BankAccount[3];
accounts[0] = new BankAccount(10000);
accounts[1] = new BankAccount(0);
accounts[2] = new BankAccount(2000);
Arrays.sort(accounts);

The compareTo method checks whether
another object is larger or smaller.

Implement the
Comparable interface
so that objects of
your class can be
compared, for
example, in a sort
method.

9.6  Interface Types   453

The accounts array is now sorted by increasing balance.

26.	 Suppose you want to use the average method to find the average salary of Employee
objects. What condition must the Employee class fulfill?

27.	 Why can’t the average method have a parameter variable of type Object[]?
28.	 Why can’t you use the average method to find the average length of String

objects?
29.	 What is wrong with this code?

Measurable meas = new Measurable();
System.out.println(meas.getMeasure());

30.	 How can you sort an array of Country objects by increasing area?
31.	 Can you use the Arrays.sort method to sort an array of String objects? Check the

API documentation for the String class.

Practice It	 Now you can try these exercises at the end of the chapter: R9.14, P9.15, P9.16.

Forgetting to Declare Implementing Methods as Public

The methods in an interface are not declared as public, because they are public by default.
However, the methods in a class are not public by default. It is a common error to forget the
public reserved word when declaring a method from an interface:

public class BankAccount implements Measurable
{
 double getMeasure() // Oops—should be public
 {
 return balance;
 }
 . . .
}

Then the compiler complains that the method has a weaker access level, namely package access
instead of public access (see Section 12.4). The remedy is to declare the method as public.

Constants in Interfaces

Interfaces cannot have instance variables, but it is legal to specify constants.
When declaring a constant in an interface, you can (and should) omit the reserved words

public static final, because all variables in an interface are automatically public static final.
For example,

public interface Measurable
{
 double OUNCES_PER_LITER = 33.814;
 . . .
}

To use this constant in your programs, add the interface name:

Measurable.OUNCES_PER_LITER

S e l f C h e c k

Common Error 9.6

Special Topic 9.8

454  Chapter 9  Inheritance and Interfaces

Function Objects

In the preceding section, you saw how the Measurable interface type makes it possible to pro-
vide services that work for many classes—provided they are willing to implement the interface
type. But what can you do if a class does not do so? For example, we might want to compute
the average length of a collection of strings, but String does not implement Measurable.

Let’s rethink our approach. The average method needs to measure each object. When the
objects are required to be of type Measurable, the responsibility for measuring lies with the
objects themselves, which is the cause of the limitation that we noted. It would be better if
another object could carry out the measurement. Let’s move the measurement method into a
different interface:

public interface Measurer
{
 double measure(Object anObject);
}

The measure method measures an object and returns its measurement. We use a parameter vari-
able of type Object, the “lowest common denominator” of all classes in Java, because we do not
want to restrict which classes can be measured.

We add a parameter variable of type Measurer to the average method:

public static double average(Object[] objects, Measurer meas)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (Object obj : objects)
 {
 sum = sum + meas.measure(obj);
 }
 return sum / objects.length;
}

When calling the method, you need to supply a Measurer object. That is, you need to imple-
ment a class with a measure method, and then create an object of that class. Let’s do that for
measuring strings:

public class StringMeasurer implements Measurer
{
 public double measure(Object obj)
 {
 String str = (String) obj; // Cast obj to String type
 return str.length();
 }
}

Note that the measure method must accept an argument of type Object, even though this partic-
ular measurer just wants to measure strings. The parameter variable must have the same type
as in the Measurer interface. Therefore, the Object parameter variable is cast to the String type.

Finally, we are ready to compute the average length of an array of strings:

String[] words = { "Mary", "had", "a", "little", "lamb" };
Measurer lengthMeasurer = new StringMeasurer();
double result = average(words, lengthMeasurer); // result is set to 3.6

An object such as lengthMeasurer is called a function object. The sole purpose of the object is to
execute a single method, in our case measure. (In mathematics, as well as many other program-
ming languages, the term “function” is used where Java uses “method”.)

The Comparator interface, discussed in Special Topic 14.5, is another example of an interface
for function objects.

Special Topic 9.9

O n l i n e E x a m p l e

A complete program
that demonstrates
the string measurer.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter Summary  455

Explain the notions of inheritance, superclass, and subclass.

•	 A subclass inherits data and behavior from a
superclass.

•	 You can always use a subclass object in place
of a superclass object.

Implement subclasses in Java.

•	 A subclass inherits all methods that it does not override.
•	 A subclass can override a superclass method by

providing a new implementation.
•	 The extends reserved word indicates that a class

inherits from a superclass.

Implement methods that override methods from a superclass.

•	 An overriding method can extend or replace the functionality of the superclass
method.

•	 Use the reserved word super to call a superclass method.
•	 Unless specified otherwise, the subclass constructor calls the superclass con

structor with no arguments.
•	 To call a superclass constructor, use the super reserved word in the first statement

of the subclass constructor.
•	 The constructor of a subclass can pass arguments to a superclass constructor,

using the reserved word super.

Use polymorphism for processing objects of related types.

•	 A subclass reference can be used when a superclass reference is expected.
•	 Polymorphism (“having multiple shapes”) allows us to manipulate objects

that share a set of tasks, even though the tasks are executed in different ways.
•	 An abstract method is a method whose implementation is not specified.
•	 An abstract class is a class that cannot be instantiated.

Use the toString method and instanceof operator with objects.

•	 Override the toString method to yield a string that describes the object’s state.
•	 The equals method checks whether two objects have the same contents.

Video Example 9.2	 Drawing Geometric Shapes

In this Video Example, you will see how to use inheritance to
describe and draw different geometric shapes.

C h a p t e r Summ a r y

Vehicle

Motorcycle Car Truck

456  Chapter 9  Inheritance and Interfaces

•	 If you know that an object belongs to a given class, use a cast to convert the type.
•	 The instanceof operator tests whether an object belongs to a particular type.

Use interface types for algorithms that process objects of different classes.

•	 A Java interface type contains the return types, names, and parameter variables of
a set of methods.

•	 Unlike a class, an interface type provides no implementation.
•	 By using an interface type for a parameter variable, a method can accept objects

from many classes.
•	 The implements reserved word indicates which interfaces a class implements.
•	 Implement the Comparable interface so that objects of your class can be compared,

for example, in a sort method.

• R9.1	 Identify the superclass and subclass in each of the following pairs of classes.
a.	Employee, Manager
b.	GraduateStudent, Student
c.	Person, Student
d.	Employee, Professor
e.	BankAccount, CheckingAccount
f.	 Vehicle, Car
g.	Vehicle, Minivan
h.	Car, Minivan
i.	 Truck, Vehicle

• R9.2	 Consider a program for managing inventory in a small appliance store. Why isn’t it
useful to have a superclass SmallAppliance and subclasses Toaster, CarVacuum, TravelIron,
and so on?

• R9.3	 Which methods does the ChoiceQuestion class inherit from its superclass? Which
methods does it override? Which methods does it add?

• R9.4	 Which methods does the SavingsAccount class in How To 9.1 inherit from its super-
class? Which methods does it override? Which methods does it add?

• R9.5	 List the instance variables of a CheckingAccount object from How To 9.1.

•• R9.6	 Suppose the class Sub extends the class Sandwich. Which of the following assignments
are legal?

Sandwich x = new Sandwich();
Sub y = new Sub();

a.	x = y;
b.	y = x;
c.	y = new Sandwich();
d.	x = new Sub();

R e vi e w E x e r ci s e s

Review Exercises  457

• R9.7	 Draw an inheritance diagram that shows the inheritance relationships between these
classes.

•	 Person
•	 Employee
•	 Student
•	 Instructor
•	 Classroom
•	 Object

• R9.8	 In an object-oriented traffic simulation system, we have the classes listed below.
Draw an inheritance diagram that shows the relationships between these classes.

•	 Vehicle
•	 Car
•	 Truck
•	 Sedan
•	 Coupe
•	 PickupTruck

•	 SportUtilityVehicle
•	 Minivan
•	 Bicycle
•	 Motorcycle

• R9.9	 What inheritance relationships would you establish among the following classes?
•	 Student
•	 Professor
•	 TeachingAssistant
•	 Employee
•	 Secretary
•	 DepartmentChair
•	 Janitor

•	 SeminarSpeaker
•	 Person
•	 Course
•	 Seminar
•	 Lecture
•	 ComputerLab

•• R9.10	 How does a cast such as (BankAccount) x differ from a cast of number values such as
(int) x?

••• R9.11	 Which of these conditions returns true? Check the Java documentation for the
inheritance patterns. Recall that System.out is an object of the PrintStream class.

a.	System.out instanceof PrintStream
b.	System.out instanceof OutputStream
c.	System.out instanceof LogStream
d.	System.out instanceof Object
e.	System.out instanceof Closeable
f.	 System.out instanceof Writer

•• R9.12	 Suppose C is a class that implements the interfaces I and J. Which of the following
assignments require a cast?

C c = . . .;
I i = . . .;
J j = . . .;

a.	c = i;
b.	j = c;
c.	i = j;

•• R9.13	 Suppose C is a class that implements the interfaces I and J, and i is declared as

I i = new C();

458  Chapter 9  Inheritance and Interfaces

Which of the following statements will throw an exception?
a.	C c = (C) i;
b.	J j = (J) i;
c.	i = (I) null;

•• R9.14	 Suppose the class Sandwich implements the Edible interface, and you are given the
variable declarations

Sandwich sub = new Sandwich();
Rectangle cerealBox = new Rectangle(5, 10, 20, 30);
Edible e = null;

Which of the following assignment statements are legal?
a.	e = sub;
b.	sub = e;
c.	sub = (Sandwich) e;
d.	sub = (Sandwich) cerealBox;
e.	e = cerealBox;
f.	 e = (Edible) cerealBox;
g.	e = (Rectangle) cerealBox;
h.	e = (Rectangle) null;

•• P9.1	 Add a class NumericQuestion to the question hierarchy of Section 9.1. If the response
and the expected answer differ by no more than 0.01, then accept the response as
correct.

•• P9.2	 Add a class FillInQuestion to the question hierarchy of Section 9.1. Such a question is
constructed with a string that contains the answer, surrounded by _ _, for example,
"The inventor of Java was _James Gosling_". The question should be displayed as

The inventor of Java was _____

• P9.3	 Modify the checkAnswer method of the Question class so that it does not take into
account different spaces or upper/lowercase characters. For example, the response
"JAMES gosling" should match an answer of "James Gosling".

•• P9.4	 Add a class AnyCorrectChoiceQuestion to the question hierarchy of Section 9.1 that
allows multiple correct choices. The respondent should provide any one of the cor
rect choices. The answer string should contain all of the correct choices, separated by
spaces. Provide instructions in the question text.

•• P9.5	 Add a class MultiChoiceQuestion to the question hierarchy of Section 9.1 that allows
multiple correct choices. The respondent should provide all correct choices, sepa
rated by spaces. Provide instructions in the question text.

•• P9.6	 Add a method addText to the Question superclass and provide a different implementa
tion of ChoiceQuestion that calls addText rather than storing an array list of choices.

• P9.7	 Provide toString methods for the Question and ChoiceQuestion classes.

P r o g r a mmi n g E x e r ci s e s

Programming Exercises  459

•• P9.8	 Implement a superclass Person. Make two classes, Student and Instructor, that inherit
from Person. A person has a name and a year of birth. A student has a major, and
an instructor has a salary. Write the class declarations, the constructors, and the
methods toString for all classes. Supply a test program that tests these classes and
methods.

•• P9.9	 Make a class Employee with a name and salary. Make a class Manager inherit from
Employee. Add an instance variable, named department, of type String. Supply a method
toString that prints the manager’s name, department, and salary. Make a class Execu­
tive inherit from Manager. Supply appropriate toString methods for all classes. Supply
a test program that tests these classes and methods.

•• P9.10	 The Rectangle class of the standard Java library does not supply a method to com
pute the area or the perimeter of a rectangle. Provide a subclass BetterRectangle of the
Rectangle class that has getPerimeter and getArea methods. Do not add any instance
variables. In the constructor, call the setLocation and setSize methods of the Rectangle
class. Provide a program that tests the methods that you supplied.

••• P9.11	 Repeat Exercise P9.10, but in the BetterRectangle constructor, invoke the superclass
constructor.

•• P9.12	 A labeled point has x- and y-coordinates and a string label. Provide a class Labeled­
Point with a constructor LabeledPoint(int x, int y, String label) and a toString
method that displays x, y, and the label.

•• P9.13	 Reimplement the LabeledPoint class of Exercise P9.12 by storing the location in a
java.awt.Point object. Your toString method should invoke the toString method of
the Point class.

•• P9.14	 Modify the SodaCan class of Exercise P8.5 to implement the Measurable interface. The
measure of a soda can should be its surface area. Write a program that computes the
average surface area of an array of soda cans.

•• P9.15	 A person has a name and a height in centimeters. Use the average method in Section
9.6 to process a collection of Person objects.

••• P9.16	 Write a method
public static Measurable maximum(Measurable[] objects)

that returns the object with the largest measure. Use that method to determine the
country with the largest area from an array of countries.

••• P9.17	 Declare an interface Filter as follows:
public interface Filter
{
 boolean accept(Object x);
}

Write a method
public static ArrayList<Object> collectAll(ArrayList<Object> objects, Filter f)

that returns all objects in the objects array that are accepted by the given filter.
Provide a class ShortWordFilter whose filter method accepts all strings of length < 5.
Then write a program that reads all words from System.in, puts them into an Array­
List<Object>, calls collectAll, and prints a list of the short words.

460  Chapter 9  Inheritance and Interfaces

••• P9.18	 The System.out.printf method has predefined formats for printing integers, floating-
point numbers, and other data types. But it is also extensible. If you use the S format,
you can print any class that implements the Formattable interface. That interface has a
single method:

void formatTo(Formatter formatter, int flags, int width, int precision)

In this exercise, you should make the BankAccount class implement the Formattable
interface. Ignore the flags and precision and simply format the bank balance, using
the given width. In order to achieve this task, you need to get an Appendable reference
like this:

Appendable a = formatter.out();

Appendable is another interface with a method
void append(CharSequence sequence)

CharSequence is yet another interface that is implemented by (among others) the String
class. Construct a string by first converting the bank balance into a string and then
padding it with spaces so that it has the desired width. Pass that string to the append
method.

••• P9.19	 Enhance the formatTo method of Exercise P9.18 by taking into account the precision.

•• Business P9.20	 Change the CheckingAccount class in How To 9.1 so that a $1 fee is levied for deposits
or withdrawals in excess of three free monthly transactions. Place the code for
computing the fee into a separate method that you call from the deposit and withdraw
methods.

•• Business P9.21	 Implement a superclass Appointment and subclasses
Onetime, Daily, and Monthly. An appointment has a
description (for example, “see the dentist”) and a
date. Write a method occursOn(int year, int month,
int day) that checks whether the appointment
occurs on that date. For example, for a monthly
appointment, you must check whether the day of
the month matches. Then fill an array of Appoint­
ment objects with a mixture of appointments.
Have the user enter a date and print out all appointments that occur on that date.

•• Business P9.22	 Improve the appointment book program of Exercise P9.21. Give the user the option
to add new appointments. The user must specify the type of the appointment, the
description, and the date.

••• Business P9.23	 Improve the appointment book program of Exercises P9.21 and P9.22 by letting the
user save the appointment data to a file and reload the data from a file. The saving
part is straightforward: Make a method save. Save the type, description, and date to
a file. The loading part is not so easy. First determine the type of the appointment to
be loaded, create an object of that type, and then call a load method to load the data.

••• Science P9.24	 In this problem, you will model a circuit consisting of an arbitrary configuration of
resistors. Provide a superclass Circuit with a instance method getResistance. Pro
vide a subclass Resistor representing a single resistor. Provide subclasses Serial and
Parallel, each of which contains an ArrayList<Circuit>. A Serial circuit models a
series of circuits, each of which can be a single resistor or another circuit. Similarly, a

Programming Exercises  461

Parallel circuit models a set of circuits in parallel. For example, the following circuit
is a Parallel circuit containing a single resistor and one Serial circuit:

A Serial circuit

Use Ohm’s law to compute the combined resistance.

•• Science P9.25	 Part (a) of the figure below shows a symbolic representation of an electric circuit
called an amplifier. The input to the amplifier is the voltage vi and the output is the
voltage vo. The output of an amplifier is proportional to the input. The constant of
proportionality is called the “gain” of the amplifier.
Parts (b), (c), and (d) show schematics of three specific types of amplifier: the
inverting amplifier, noninverting amplifier, and voltage divider amplifier. Each of
these three amplifiers consists of two resistors and an op amp. The value of the gain
of each amplifier depends on the values of its resistances. In particular, the gain, g, of

the inverting amplifier is given by g
R
R

= − 2

1
. Similarly the gains of the noninverting

amplifier and voltage divider amplifier are given by g
R
R

= +1 2

1
 and g

R
R R

=
+

2

1 2
,

respectively.

–

+

–

+

–

+

R2

R1

R1

vi R2

R1 R2

vo

vovi

vi
vo

vovi

(a) Amplifier (b) Inverting amplifier

(c) Noninverting amplifier (d) Voltage divider amplifier

Write a Java program that represents the amplifier as a superclass and represents
the inverting, noninverting, and voltage divider amplifiers as subclasses. Give the
subclass two methods, getGain and a getDescription method that returns a string
identifying the amplifier. Each subclass should have a constructor with two argu-
ments, the resistances of the amplifier.

462  Chapter 9  Inheritance and Interfaces

The subclasses need to override the getGain and getDescription methods of the
superclass.
Supply a class that demonstrates that the subclasses all work properly for sample val-
ues of the resistances.

•• Science P9.26	 Resonant circuits are used to select a signal (e.g., a radio station or TV channel)
from among other competing signals. Resonant circuits are characterized by the
frequency response shown in the figure below. The resonant frequency response
is completely described by three parameters: the resonant frequency, ωo, the band-
width, B, and the gain at the resonant frequency, k.

Frequency (rad/s, log scale)

k

ωo

B0.707k

Two simple resonant circuits are shown in the figure below. The circuit in (a) is
called a parallel resonant circuit. The circuit in (b) is called a series resonant circuit.
Both resonant circuits consist of a resistor having resistance R, a capacitor having
capacitance C, and an inductor having inductance L.

R L C C

L

R

(a) Parallel resonant circuit (b) Series resonant circuit

These circuits are designed by determining values of R, C, and L that cause the
resonant frequency response to be described by specified values of ωo, B, and k. The
design equations for the parallel resonant circuit are:

R k C
BR

L
C

= = =, , and
o

1 1
2ω

Similarly, the design equations for the series resonant circuit are:

R
k

L
R
B

C
L

= = =1 1
2

, , and
oω

Write a Java program that represents ResonantCircuit as a superclass and represents
the SeriesResonantCircuit and ParallelResonantCircuit as subclasses. Give the super-
class three private instance variables representing the parameters ωo, B, and k of the
resonant frequency response. The superclass should provide public instance

Answers to Self-Check Questions  463

methods to get and set each of these variables. The superclass should also provide a
display method that prints a description of the resonant frequency response.
Each subclass should provide a method that designs the corresponding resonant
circuit. The subclasses should also override the display method of the superclass to
print descriptions of both the frequency response (the values of ωo, B, and k) and the
circuit (the values of R, C, and L).
All classes should provide appropriate constructors.
Supply a class that demonstrates that the subclasses all work properly.

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 Because every manager is an employee but not
the other way around, the Manager class is more
specialized. It is the subclass, and Employee is
the superclass.

2.	 CheckingAccount and SavingsAccount both inherit
from the more general class BankAccount.

3.	 Exception, Throwable
4.	 Vehicle, truck, motorcycle
5.	 It shouldn’t. A quiz isn’t a question; it has

questions.
6.	 a, b, d
7.	 public class Manager extends Employee

{
 private double bonus;
 // Constructors and methods omitted
}

8.	 name, baseSalary, and bonus
9.	 public class Manager extends Employee

{
 . . .
 public double getSalary() { . . . }
}

10.	 getName, setName, setBaseSalary
11.	 The method is not allowed to access the

instance variable text from the superclass.
12.	 The type of the this reference is ChoiceQuestion.

Therefore, the display method of ChoiceQuestion
is selected, and the method calls itself.

13.	 Because there is no ambiguity. The subclass
doesn’t have a setAnswer method.

14.	 public String getName()
{
 return "*" + super.getName();
}

15.	 public double getSalary()
{
 return super.getSalary() + bonus;
}

16.	 a only.
17.	 It belongs to the class BankAccount or one of its

subclasses.
18.	 Question[] quiz = new Question[SIZE];
19.	 You cannot tell from the fragment—cq may

be initialized with an object of a subclass of
ChoiceQuestion. The display method of whatever
object cq references is invoked.

20.	 No. This is a static method of the Math class.
There is no implicit parameter object that
could be used to dynamically look up a
method.

21.	 Because the implementor of the PrintStream
class did not supply a toString method.

22.	 The second line will not compile. The class
Object does not have a method length.

23.	 The code will compile, but the second line will
throw a class cast exception because Question is
not a subclass of String.

24.	 There are only a few methods that can be
invoked on variables of type Object.

25.	 The value is false if x is null and true otherwise.
26.	 It must implement the Measurable interface

and provide a getMeasure method returning the
salary.

27.	 The Object class doesn’t have a getMeasure
method.

28.	 You cannot modify the String class to imple-
ment Measurable—it is a library class.
See Special Topic 9.9 for a solution.

464  Chapter 9  Inheritance and Interfaces

29.	 Measurable is not a class. You cannot construct
objects of type Measurable.

30.	 Have the Country class implement the Comparable
interface, as shown below, and call Arrays.sort.
public class Country implements Comparable
{
 . . .
 public int compareTo(Object otherObject)
 {
 Country other = (Country) otherObject;
 if (area < other.area) return -1;
 if (area > other.area) return 1;
 return 0;
 }
}

31.	 Yes, you can, because String implements the
Comparable interface type.

10C h a p t e r

465

Graphical
User
Interfaces

To implement simple graphical user interfaces

To add buttons, text fields, and other components to a frame window

To handle events that are generated by buttons

To write programs that display simple drawings

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

10.1  Frame Windows  466

Special Topic 10.1: Adding the main Method to
the Frame Class  470

10.2  Events and Event Handling  470

Common Error 10.1: Modifying Parameter Types
in the Implementing Method  478

Common Error 10.2: Forgetting to Attach
a Listener  478

Programming Tip 10.1: Don’t Use a Frame as
a Listener  478

Special Topic 10.2: Local Inner Classes  479
Special Topic 10.3: Anonymous Inner Classes  480

10.3  Processing Text Input  481

10.4  Creating Drawings  487

Common Error 10.3: Forgetting to Repaint  496
Common Error 10.4: By Default, Components

Have Zero Width and Height  497
How To 10.1: Drawing Graphical Shapes  497
Worked Example 10.1: Coding a Bar

Chart Creator 
Video Example 10.1: Solving

Crossword Puzzles 

466

In this chapter, you will learn how to write graphical
user-interface applications that contain buttons, text
components, and graphical components such as charts.
You will be able to process the events that are generated
by button clicks, process the user input, and update the
textual and graphical output.

10.1  Frame Windows
A graphical application shows information inside a frame: a
window with a title bar, as shown in Figure 1. In the follow-
ing sections, you will learn how to display a frame and how to
place user-interface components inside it.

10.1.1  Displaying a Frame

To show a frame, carry out the following steps:

1.	Construct an object of the JFrame class:
JFrame frame = new JFrame();

2.	Set the size of the frame:
final int FRAME_WIDTH = 300;
final int FRAME_HEIGHT = 400;
frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);

This frame will be 300 pixels wide and 400 pixels tall. If you omit this step the
frame will be 0 by 0 pixels, and you won’t be able to see it. (Pixels are the tiny
dots from which digital images are composed.)

A graphical user
interface is displayed
inside a frame.

To show a frame,
construct a JFrame
object, set its size,
and make it visible.

Figure 1  A Frame Window

Title bar Close button

10.1 F rame Windows   467

3.	If you’d like, set the title of the frame:
frame.setTitle("An empty frame");

If you omit this step, the title bar is simply left blank.
4.	Set the “default close operation”:

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

When the user closes the frame, the program automatically exits. Don’t omit
this step. If you do, the program keeps running even after the frame is closed.

5.	Make the frame visible:
frame.setVisible(true);

The simple program below shows all of these steps. It produces the empty frame
shown in Figure 1.

The JFrame class is a part of the javax.swing package. Swing is the nickname for the
graphical user-interface library in Java. The “x” in javax denotes the fact that Swing
started out as a Java extension before it was added to the standard library.

section_1_1/EmptyFrameViewer.java

1 import javax.swing.JFrame;
2
3 /**
4 This program displays an empty frame.
5 */
6 public class EmptyFrameViewer
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new JFrame();
11
12 final int FRAME_WIDTH = 300;
13 final int FRAME_HEIGHT = 400;
14 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
15 frame.setTitle("An empty frame");
16 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17
18 frame.setVisible(true);
19 }
20 }

10.1.2  Adding User-Interface Components to a Frame

An empty frame is not very interesting. You will want to
add some user-interface components, such as buttons and
text labels. However, if you add components directly to the
frame, they get placed on top of each other.

When building a graphical user interface,
you add components to a frame.

468  Chapter 10  Graphical User Interfaces

If you have more than one component, put them into a panel (a container for other
user-interface components), and then add the panel to the frame:

JPanel panel = new JPanel();
panel.add(button);
panel.add(label);
frame.add(panel);

You first construct the components, providing the text that should appear on them:
JButton button = new JButton("Click me!");
JLabel label = new JLabel("Hello, World!");

Then you add the components to the frame, as shown above. Figure 2 shows the
result. When you run the program, you can click the button, but nothing will happen.
You will see in Section 10.2 how to attach an action to a button.

section_1_2/FIlledFrameViewer.java

1 import javax.swing.JButton;
2 import javax.swing.JFrame;
3 import javax.swing.JLabel;
4 import javax.swing.JPanel;
5
6 /**
7 This program shows a frame that is filled with two components.
8 */
9 public class FilledFrameViewer

10 {
11 public static void main(String[] args)
12 {
13 JFrame frame = new JFrame();
14
15 JButton button = new JButton("Click me!");
16 JLabel label = new JLabel("Hello, World!");
17
18 JPanel panel = new JPanel();
19 panel.add(button);
20 panel.add(label);
21 frame.add(panel);
22
23 final int FRAME_WIDTH = 300;
24 final int FRAME_HEIGHT = 100;
25 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
26 frame.setTitle("A frame with two components");
27 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28
29 frame.setVisible(true);
30 }
31 }

Use a JPanel to
group multiple
user-interface
components together.

Figure 2  A Frame with a Button and a Label

10.1 F rame Windows   469

10.1.3  Using Inheritance to Customize Frames

As you add more user-interface components to a
frame, the frame can get quite complex. Your pro-
grams will become easier to understand when you
use inheritance for complex frames.

To do so, design a subclass of JFrame. Store the
components as instance variables. Initialize them
in the constructor of your subclass. This approach
makes it easy to add helper methods for organiz-
ing your code.

It is also a good idea to set the frame size in the
frame constructor. The frame usually has a better
idea of the preferred size than the program dis-
playing it.

For example,
public class FilledFrame extends JFrame
{
 // Use instance variables for components
 private JButton button;
 private JLabel label;

 private static final int FRAME_WIDTH = 300;
 private static final int FRAME_HEIGHT = 100;

 public FilledFrame()
 {
 // Now we can use a helper method
 createComponents();

 // It is a good idea to set the size in the frame constructor
 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 }

 private void createComponents()
 {
 button = new JButton("Click me!");
 label = new JLabel("Hello, World!");
 JPanel panel = new JPanel();
 panel.add(button);
 panel.add(label);
 add(panel);
 }
}

Of course, we still need a class with a main method:
public class FilledFrameViewer2
{
 public static void main(String[] args)
 {
 JFrame frame = new FilledFrame();
 frame.setTitle("A frame with two components");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

In Java, you can use inheritance to
customize a frame.

Declare a JFrame
subclass for a
complex frame.

ONLINE E x a m p l e

The complete
FilledFrame
program.

470  Chapter 10  Graphical User Interfaces

1.	 How do you display a square frame with a title bar that reads “Hello, World!”?
2.	 How can a program display two frames at once?
3.	 How can a program show a frame with two buttons labeled Yes and No?
4.	 Why does the FilledFrameViewer2 class declare the frame variable to have class

JFrame, not FilledFrame?
5.	 How many Java source files are required by the application in Section 10.1.3

when we use inheritance to declare the frame class?
6.	 Why does the createComponents method of FilledFrame call add(panel), whereas the

main method of FilledFrameViewer calls frame.add(panel)?

Practice It	 Now you can try these exercises at the end of the chapter: R10.1, R10.4, P10.1.

Adding the main Method to the Frame Class

Have another look at the FilledFrame and FilledFrameViewer2 classes. Some programmers prefer
to combine these two classes, by adding the main method to the frame class:

public class FilledFrame extends JFrame
{
 . . .
 public static void main(String[] args)
 {
 JFrame frame = new FilledFrame();
 frame.setTitle("A frame with two components");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

 public FilledFrame()
 {
 createComponents();
 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 }
 . . .
}

This is a convenient shortcut that you will find in many programs, but it does not separate the
responsibilities between the frame class and the program.

10.2  Events and Event Handling
In an application that interacts with the user through a console window, user input
is under control of the program. The program asks the user for input in a specific
order. For example, a program might ask the user to supply first a name, then a dol-
lar amount. But the programs that you use every day on your computer don’t work
like that. In a program with a modern graphical user interface, the user is in control.
The user can use both the mouse and the keyboard and can manipulate many parts of
the user interface in any desired order. For example, the user can enter information
into text fields, pull down menus, click buttons, and drag scroll bars in any order. The

S e l f Ch e c kS e l f Ch e c k

Special Topic 10.1

10.2 E vents and Event Handling   471

program must react to the user commands in whatever order they arrive. Having to
deal with many possible inputs in random order is quite a bit harder than simply forc-
ing the user to supply input in a fixed order.

In the following sections, you will learn how to write Java programs that can react
to user-interface events.

10.2.1  Listening to Events

Whenever the user of a graphical program types
characters or uses the mouse anywhere inside one of
the windows of the program, the program receives
a notification that an event has occurred. For exam-
ple, whenever the mouse moves a tiny interval over a
window, a “mouse move” event is generated. Click-
ing a button or selecting a menu item generates an
“action” event.

Most programs don’t want to be flooded by irrel-
evant events. For example, when a button is clicked
with the mouse, the mouse moves over the button,
then the mouse button is pressed, and finally the but-
ton is released. Rather than receiving all these mouse
events, a program can indicate that it only cares
about button clicks, not about the underlying mouse
events. On the other hand, if the mouse input is used
for drawing shapes on a virtual canvas, a program needs to closely track mouse events.

Every program must indicate which events it needs to receive. It does that by
installing event listener objects. These objects are instances of classes that you must
provide. The methods of your event listener classes contain the instructions that you
want to have executed when the events occur.

To install a listener, you need to know the event source. The event source is the
user-interface component, such as a button, that generates a particular event. You add
an event listener object to the appropriate event sources. Whenever the event occurs,
the event source calls the appropriate methods of all attached event listeners.

This sounds somewhat abstract, so let’s run through an extremely simple program
that prints a message whenever a button is clicked. Button listeners must belong to a
class that implements the ActionListener interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

This particular interface has a single method, actionPerformed. It is your job to supply a
class whose actionPerformed method contains the instructions that you want executed
whenever the button is clicked. Here is a very simple example of such a listener class:

section_2_1/ClickListener.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3

User-interface events
include key presses,
mouse moves,
button clicks, menu
selections, and so on.

In an event-driven user interface,
the program receives an event
whenever the user manipulates
an input component.

An event listener
belongs to a class
created by the
application
programmer. Its
methods describe
the actions to be
taken when an
event occurs.

Event sources report
on events. When an
event occurs, the
event source notifies
all event listeners.

472  Chapter 10  Graphical User Interfaces

4 /**
5 An action listener that prints a message.
6 */
7 public class ClickListener implements ActionListener
8 {
9 public void actionPerformed(ActionEvent event)

10 {
11 System.out.println("I was clicked.");
12 }
13 }

We ignore the event parameter variable of the actionPerformed method—it contains
additional details about the event, such as the time at which it occurred. Note that the
event handling classes are defined in the java.awt.event package. (AWT is the Abstract
Window Toolkit, the Java library for dealing with windows and events.)

Once the listener class has been declared, we need to construct an object of the
class and add it to the button:

ActionListener listener = new ClickListener();
button.addActionListener(listener);

Whenever the button is clicked, the Java event handling library calls
listener.actionPerformed(event);

As a result, the message is printed.
You can test this program out by opening a console window, starting the Button­

Viewer1 program from that console window, clicking the button, and watching the
messages in the console window (see Figure 3).

section_2_1/ButtonFrame1.java

1 import java.awt.event.ActionListener;
2 import javax.swing.JButton;
3 import javax.swing.JFrame;
4 import javax.swing.JPanel;
5
6 /**
7 This frame demonstrates how to install an action listener.
8 */
9 public class ButtonFrame1 extends JFrame

10 {
11 private static final int FRAME_WIDTH = 100;
12 private static final int FRAME_HEIGHT = 60;
13

Attach an
ActionListener to
each button so that
your program can
react to button clicks.

Figure 3  Implementing an Action Listener

10.2 E vents and Event Handling   473

14 public ButtonFrame1()
15 {
16 createComponents();
17 setSize(FRAME_WIDTH, FRAME_HEIGHT);
18 }
19
20 private void createComponents()
21 {
22 JButton button = new JButton("Click me!");
23 JPanel panel = new JPanel();
24 panel.add(button);
25 add(panel);
26
27 ActionListener listener = new ClickListener();
28 button.addActionListener(listener);
29 }
30 }

section_2_1/ButtonViewer1.java

1 import javax.swing.JFrame;
2
3 /**
4 This program demonstrates how to install an action listener.
5 */
6 public class ButtonViewer1
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new ButtonFrame1();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setVisible(true);
13 }
14 }

10.2.2  Using Inner Classes for Listeners

In the preceding section, you saw how to specify button actions. The code for the
button action is placed into a listener class. It is common to implement listener classes
as inner classes like this:

public class ButtonFrame2 extends JFrame
{
 . . .
 // This inner class is declared inside the frame class
 class ClickListener implements ActionListener
 {
 . . .
 }

 private void createComponents()
 {
 button = new JButton("Click me!");
 ActionListener listener = new ClickListener();
 button.addActionListener(listener);
 . . .
 }
}

An inner class is a
class that is declared
inside another class.

474  Chapter 10  Graphical User Interfaces

An inner class is simply a class that is declared inside another class.
There are two advantages to making a listener class into an inner class. First, lis-

tener classes tend to be very short. You can put the inner class close to where it is
needed, without cluttering up the remainder of the project. Moreover, inner classes
have a very attractive feature: Their methods can access instance variables and meth-
ods of the surrounding class.

This feature is particularly useful when implementing event handlers. It allows
the inner class to access variables without having to receive them as constructor or
method arguments.

Let’s look at an example. Instead of printing the message “I was clicked”, we want
to show it in a label. If we make the action listener into an inner class of the frame
class, its actionPerformed method can access the label instance variable and call the set­
Text method, which changes the label text.

public class ButtonFrame2 extends JFrame
{
 private JButton button;
 private JLabel label;
 . . .
 class ClickListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 // Accesses label variable from surrounding class
 label.setText("I was clicked");
 }
 }
 . . .
}

Having the listener as a regular class is unattractive––the listener would need to be
constructed with a reference to the label field (see Exercise P10.5).

section_2_2/ButtonFrame2.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7
8 public class ButtonFrame2 extends JFrame
9 {

10 private JButton button;
11 private JLabel label;
12
13 private static final int FRAME_WIDTH = 300;
14 private static final int FRAME_HEIGHT = 100;
15
16 public ButtonFrame2()
17 {
18 createComponents();
19 setSize(FRAME_WIDTH, FRAME_HEIGHT);
20 }
21

Methods of an inner
class can access
variables from the
surrounding class.

10.2 E vents and Event Handling   475

22 /**
23 An action listener that changes the label text.
24 */
25 class ClickListener implements ActionListener
26 {
27 public void actionPerformed(ActionEvent event)
28 {
29 label.setText("I was clicked.");
30 }
31 }
32
33 private void createComponents()
34 {
35 button = new JButton("Click me!");
36 ActionListener listener = new ClickListener();
37 button.addActionListener(listener);
38
39 label = new JLabel("Hello, World!");
40
41 JPanel panel = new JPanel();
42 panel.add(button);
43 panel.add(label);
44 add(panel);
45 }
46 }

10.2.3  Application: Showing Growth of an Investment

In this section, we will build a practical application with a graphical user interface. A
frame displays the amount of money in a bank account. Whenever the user clicks a
button, 5 percent interest is added, and the new balance is displayed (see Figure 4).

We need a button and a label for the user interface. We also need to store the cur-
rent balance:

public class InvestmentFrame extends JFrame
{
 private JButton button;
 private JLabel resultLabel;
 private double balance;

 private static final double INTEREST_RATE = 5;
 private static final double INITIAL_BALANCE = 1000;
 . . .
}

We initialize the balance when the frame is constructed. Then we add the button and
label to a panel, and the panel to the frame:

public InvestmentFrame()
{

Figure 4 
Clicking the Button
Grows the Investment

476  Chapter 10  Graphical User Interfaces

 balance = INITIAL_BALANCE;

 createComponents();
 setSize(FRAME_WIDTH, FRAME_HEIGHT);
}

Now we are ready for the hard part—the event listener that handles button clicks. As
in the preceding section, it is necessary to declare a class that implements the Action­
Listener interface, and to place the button action into the actionPerformed method. Our
listener class adds interest and displays the new balance:

class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * INTEREST_RATE / 100;
 balance = balance + interest;
 resultLabel.setText("Balance: " + balance);
 }
}

We make this class an inner class so that it can access the balance and resultLabel
instance variables.

Finally, we need to add an instance of the listener class to the button:
private void createComponents()
{
 button = new JButton("Add Interest");
 ActionListener listener = new AddInterestListener();
 button.addActionListener(listener);
 . . .
}

Here is the complete program. It demonstrates how to add multiple components to a
frame, by using a panel, and how to implement listeners as inner classes.

section_2_3/InvestmentFrame.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7
8 public class InvestmentFrame extends JFrame
9 {

10 private JButton button;
11 private JLabel resultLabel;
12 private double balance;
13
14 private static final int FRAME_WIDTH = 300;
15 private static final int FRAME_HEIGHT = 100;
16
17 private static final double INTEREST_RATE = 5;
18 private static final double INITIAL_BALANCE = 1000;
19
20 public InvestmentFrame()
21 {
22 balance = INITIAL_BALANCE;

10.2 E vents and Event Handling   477

23
24 createComponents();
25 setSize(FRAME_WIDTH, FRAME_HEIGHT);
26 }
27
28 /**
29 Adds interest to the balance and updates the display.
30 */
31 class AddInterestListener implements ActionListener
32 {
33 public void actionPerformed(ActionEvent event)
34 {
35 double interest = balance * INTEREST_RATE / 100;
36 balance = balance + interest;
37 resultLabel.setText("Balance: " + balance);
38 }
39 }
40
41 private void createComponents()
42 {
43 button = new JButton("Add Interest");
44 ActionListener listener = new AddInterestListener();
45 button.addActionListener(listener);
46
47 resultLabel = new JLabel("Balance: " + balance);
48
49 JPanel panel = new JPanel();
50 panel.add(button);
51 panel.add(resultLabel);
52 add(panel);
53 }
54 }

section_2_3/InvestmentViewer.java

1 import javax.swing.JFrame;
2
3 /**
4 This program shows the growth of an investment.
5 */
6 public class InvestmentViewer
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new InvestmentFrame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setVisible(true);
13 }
14 }

7.	 Which objects are the event source and the event listener in the ButtonViewer
program?

8.	 Why is it legal to assign a ClickListener object to a variable of type ActionListener?
9.	 When do you call the actionPerformed method?

10.	 Why would an inner class method want to access a variable from a surrounding
scope?

S e l f Ch e c k

478  Chapter 10  Graphical User Interfaces

11.	 How do you place the "Balance: . . ." message to the left of the "Add
Interest" button?

Practice It	 Now you can try these exercises at the end of the chapter: R10.7, P10.2, P10.5.

Modifying Parameter Types in the Implementing Method

When you implement an interface, you must declare each method exactly as it is specified in
the interface. Accidentally making small changes to the parameter variable types is a common
error. Here is the classic example,

class MyListener implements ActionListener
{
 public void actionPerformed()
 // Oops . . . forgot ActionEvent parameter variable
 {
 . . .
 }
}

As far as the compiler is concerned, this class fails to provide the method

public void actionPerformed(ActionEvent event)

You have to read the error message carefully and pay attention to the parameter variable and
return types to find your error.

Forgetting to Attach a Listener

If you run your program and find that your buttons seem to be dead, double-check that you
attached the button listener. The same holds for other user-interface components. It is a sur-
prisingly common error to program the listener class and the event handler action without
actually attaching the listener to the event source.

Don’t Use a Frame as a Listener

In this book, we use inner classes for event listeners. That approach works for many different
event types. Once you master the technique, you don’t have to think about it anymore. Many
development environments automatically generate code with inner classes, so it is a good idea
to be familiar with them.

However, some programmers bypass the event listener classes and turn a frame into a lis-
tener, like this:

public class InvestmentFrame extends JFrame
 implements ActionListener // This approach is not recommended
{
 . . .
 public InvestmentFrame()
 {
 button = new JButton("Add Interest");
 button.addActionListener(this);
 . . .

Common Error 10.1

Common Error 10.2

Programming Tip 10.1

10.2 E vents and Event Handling   479

 }

 public void actionPerformed(ActionEvent event)
 {
 }
 . . .
}

Now the actionPerformed method is a part of the InvestmentFrame class rather than part of a
separate listener class. The listener is installed as this.

We don’t recommend this technique. If the viewer class contains two buttons that each gen-
erate action events, then the actionPerformed method must investigate the event source, which
leads to code that is tedious and error-prone.

Local Inner Classes

An inner class can be declared completely inside a method. For example,

public static void main(String[] args)
{
 . . .
 class ClickListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 . . .
 }
 }

 JButton button = new JButton("Click me");
 button.addActionListener(new ClickListener());
 . . .
}

This places the inner class exactly where you need it, next to the button.
The methods of a class that is defined inside a method can access the variables of the enclos-

ing method, provided they are declared as final. For example,

public static void main(String[] args)
{
 final JLabel label = new JLabel("Hello, World!");
 . . .
 class ClickListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 label.setText("I was clicked");
 // Accesses label variable from enclosing method
 }
 }
 . . .
 button.addActionListener(new ClickListener());
}

That sounds quite restrictive, but it is usually not an issue if the variable is an object refer-
ence. Keep in mind that an object variable is final when the variable always refers to the same
object. The state of the object can change, but the variable can’t refer to a different object. For
example, in our program, we never intended to have the label variable refer to multiple labels,
so there was no harm in declaring it as final.

Special Topic 10.2

480  Chapter 10  Graphical User Interfaces

However, you can’t change a numeric or Boolean local variable from an inner class. For
example, the following would not work:

public static void main(String[] args)
{
 final double balance = INITIAL_BALANCE;
 . . .
 class AddInterestListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * (1 + INTEREST_RATE);
 balance = balance + interest;
 // Error: Can’t modify a final numeric variable
 }
 }
 . . .
}

The remedy is to use an object instead:

public static void main(String[] args)
{
 final BankAccount account = new BankAccount();
 account.deposit(INITIAL_BALANCE);
 . . .
 class AddInterestListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * (1 + INTEREST_RATE);
 account.deposit(interest);
 // Ok––we don’t change the reference, just the object’s state
 }
 }
 . . .
}

Anonymous Inner Classes

An entity is anonymous if it does not have a name. In a program, something that is only used
once doesn’t usually need a name. For example, you can replace

String buttonLabel = "Add Interest";
JButton button = new JButton(buttonLabel);

with

JButton button = new JButton("Add Interest");

The string "Add Interest" is an anonymous object. Programmers like anonymous objects,
because they don’t have to go through the trouble of coming up with a name. If you have
struggled with the decision whether to call a label l, label, or buttonLabel, you’ll understand
this sentiment.

Event listeners often give rise to a similar situation. You construct a single object of an
event listener class. Afterward, the class is never used again. In Java, it is possible to declare an
anonymous class if all you ever need is a single object of the class.

Special Topic 10.3

10.3 P rocessing Text Input   481

Here is an example:

button = new JButton("Add Interest");
button.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * (1 + INTEREST_RATE);
 account.deposit(interest);
 }
 });

This means: Define a class that implements the ActionListener interface with the given action­
Performed method. Construct an object of that class and pass it to the addActionListener method.

Many programmers like this style because it is so compact. Moreover, GUI builders in inte-
grated development environments often generate code of this form.

10.3  Processing Text Input
We continue our discussion with graphical user interfaces that accept text input. Of
course, a graphical application can receive text input by calling the showInputDialog
method of the JOptionPane class, but popping up a separate dialog box for each input
is not a natural user interface. Most graphical programs collect text input through
text components (see Figures 5 and 7). In the following two sections, you will learn
how to add text components to a graphical application, and how to read what the user
types into them.

10.3.1  Text Fields

The JTextField class provides a text field for reading a single line of text. When you
construct a text field, you need to supply the width—the approximate number of
characters that you expect the user to type.

final int FIELD_WIDTH = 10;
rateField = new JTextField(FIELD_WIDTH);

Users can type additional characters, but then a part of the contents of the field
becomes invisible.

You will want to label each text field so that the user knows what to type into it.
Construct a JLabel object for each label:

JLabel rateLabel = new JLabel("Interest Rate: ");

You want to give the user an opportunity to enter all information into the text fields
before processing it. Therefore, you should supply a button that the user can press to
indicate that the input is ready for processing.

Use a JTextField
component for
reading a single line
of input. Place a
JLabel next to each
text field.

Figure 5 
An Application
with a Text Field

482  Chapter 10  Graphical User Interfaces

When that button is clicked, its actionPerformed method should read the user input
from each text field, using the getText method of the JTextField class. The getText
method returns a String object. In our sample program, we turn the string into a num-
ber, using the Double.parseDouble method. After updating the account, we show the
balance in another label.

class AddInterestListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 double rate = Double.parseDouble(rateField.getText());
 double interest = balance * rate / 100;
 balance = balance + interest;
 resultLabel.setText("Balance: " + balance);
 }
}

The following application is a useful prototype for a graphical user-interface front
end for arbitrary calculations. You can easily modify it for your own needs. Place
input components into the frame. In the actionPerformed method, carry out the needed
calculations. Display the result in a label.

section_3_1/InvestmentFrame2.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JTextField;
8
9 /**

10 A frame that shows the growth of an investment with variable interest.
11 */
12 public class InvestmentFrame2 extends JFrame
13 {
14 private static final int FRAME_WIDTH = 450;
15 private static final int FRAME_HEIGHT = 100;
16
17 private static final double DEFAULT_RATE = 5;
18 private static final double INITIAL_BALANCE = 1000;
19
20 private JLabel rateLabel;
21 private JTextField rateField;
22 private JButton button;
23 private JLabel resultLabel;
24 private double balance;
25
26 public InvestmentFrame2()
27 {
28 balance = INITIAL_BALANCE;
29
30 resultLabel = new JLabel("Balance: " + balance);
31
32 createTextField();
33 createButton();
34 createPanel();
35

10.3 P rocessing Text Input   483

36 setSize(FRAME_WIDTH, FRAME_HEIGHT);
37 }
38
39 private void createTextField()
40 {
41 rateLabel = new JLabel("Interest Rate: ");
42
43 final int FIELD_WIDTH = 10;
44 rateField = new JTextField(FIELD_WIDTH);
45 rateField.setText("" + DEFAULT_RATE);
46 }
47
48 /**
49 Adds interest to the balance and updates the display.
50 */
51 class AddInterestListener implements ActionListener
52 {
53 public void actionPerformed(ActionEvent event)
54 {
55 double rate = Double.parseDouble(rateField.getText());
56 double interest = balance * rate / 100;
57 balance = balance + interest;
58 resultLabel.setText("Balance: " + balance);
59 }
60 }
61
62 private void createButton()
63 {
64 button = new JButton("Add Interest");
65
66 ActionListener listener = new AddInterestListener();
67 button.addActionListener(listener);
68 }
69
70 private void createPanel()
71 {
72 panel = new JPanel();
73 panel.add(rateLabel);
74 panel.add(rateField);
75 panel.add(button);
76 panel.add(resultLabel);
77 add(panel);
78 }
79 }

10.3.2  Text Areas

In the preceding section, you saw how to construct
text fields. A text field holds a single line of text. To
display multiple lines of text, use the JTextArea class.

You can use a text area for reading
or displaying multi-line text.

Use a JTextArea to
show multiple lines
of text.

484  Chapter 10  Graphical User Interfaces

When constructing a text area, you can specify the number of rows and columns:
final int ROWS = 10; // Lines of text
final int COLUMNS = 30; // Characters in each row
JTextArea textArea = new JTextArea(ROWS, COLUMNS);

Use the setText method to set the text of a text field or text area. The append method
adds text to the end of a text area. Use newline characters to separate lines, like this:

textArea.append(balance + "\n");

If you want to use a text field or text area for display purposes only, call the set­
Editable method like this

textArea.setEditable(false);

Now the user can no longer edit the contents of the field, but your program can still
call setText and append to change it.

As shown in Figure 6, the JTextField and JTextArea classes are subclasses of the
class JTextComponent. The methods setText and setEditable are declared in the JText­
Component class and inherited by JTextField and JTextArea. However, the append method
is declared in the JTextArea class.

To add scroll bars to a text area, use a JScrollPane, like this:
JTextArea textArea = new JTextArea(ROWS, COLUMNS);
JScrollPane scrollPane = new JScrollPane(textArea);

Then add the scroll pane to the panel. Figure 7 shows the result.

You can add scroll
bars to any
component with a
JScrollPane.

Figure 6  A Part of the Hierarchy of Swing User-Interface Components

JComponent

JPanel

JTextField JTextArea

JCheckBox JRadioButton

JToggleButton JButton

JTextComponent JLabel AbstractButton

10.3 P rocessing Text Input   485

Figure 7  The Investment Application with a Text Area Inside Scroll Bars

The following sample program puts these concepts together. A user can enter
numbers into the interest rate text field and then click on the “Add Interest” button.
The interest rate is applied, and the updated balance is appended to the text area. The
text area has scroll bars and is not editable.

This program is similar to the previous investment viewer program, but it keeps
track of all the bank balances, not just the last one.

section_3_2/InvestmentFrame3.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JScrollPane;
8 import javax.swing.JTextArea;
9 import javax.swing.JTextField;

10
11 /**
12 A frame that shows the growth of an investment with variable interest,
13 using a text area.
14 */
15 public class InvestmentFrame3 extends JFrame
16 {
17 private static final int FRAME_WIDTH = 400;
18 private static final int FRAME_HEIGHT = 250;
19
20 private static final int AREA_ROWS = 10;
21 private static final int AREA_COLUMNS = 30;
22
23 private static final double DEFAULT_RATE = 5;
24 private static final double INITIAL_BALANCE = 1000;
25
26 private JLabel rateLabel;
27 private JTextField rateField;
28 private JButton button;
29 private JTextArea resultArea;
30 private double balance;
31
32 public InvestmentFrame3()
33 {
34 balance = INITIAL_BALANCE;
35 resultArea = new JTextArea(AREA_ROWS, AREA_COLUMNS);

486  Chapter 10  Graphical User Interfaces

36 resultArea.setText(balance + "\n");
37 resultArea.setEditable(false);
38
39 createTextField();
40 createButton();
41 createPanel();
42
43 setSize(FRAME_WIDTH, FRAME_HEIGHT);
44 }
45
46 private void createTextField()
47 {
48 rateLabel = new JLabel("Interest Rate: ");
49
50 final int FIELD_WIDTH = 10;
51 rateField = new JTextField(FIELD_WIDTH);
52 rateField.setText("" + DEFAULT_RATE);
53 }
54
55 class AddInterestListener implements ActionListener
56 {
57 public void actionPerformed(ActionEvent event)
58 {
59 double rate = Double.parseDouble(rateField.getText());
60 double interest = balance * rate / 100;
61 balance = balance + interest;
62 resultArea.append(balance + "\n");
63 }
64 }
65
66 private void createButton()
67 {
68 button = new JButton("Add Interest");
69
70 ActionListener listener = new AddInterestListener();
71 button.addActionListener(listener);
72 }
73
74 private void createPanel()
75 {
76 JPanel = new JPanel();
77 panel.add(rateLabel);
78 panel.add(rateField);
79 panel.add(button);
80 JScrollPane scrollPane = new JScrollPane(resultArea);
81 panel.add(scrollPane);
82 add(panel);
83 }
84 }

12.	 What happens if you omit the first JLabel object in the program of
Section 10.3.1?

13.	 If a text field holds an integer, what expression do you use to read its contents?
14.	 What is the difference between a text field and a text area?
15.	 Why did the InvestmentFrame3 program call resultArea.setEditable(false)?

S e l f Ch e c kS e l f Ch e c k

10.4  Creating Drawings   487

16.	 How would you modify the InvestmentFrame3 program if you didn’t want to use
scroll bars?

Practice It	 Now you can try these exercises at the end of the chapter: R10.13, P10.9, P10.10.

10.4  Creating Drawings
You often want to include simple drawings such as graphs or
charts in your programs. The Java library does not have any
standard components for this purpose, but it is fairly easy to
make your own drawings. The following sections show how.

10.4.1  Drawing on a Component

We start out with a simple bar chart (see Figure 8) that is com-
posed of three rectangles.

You cannot draw directly onto a frame. Instead, you add a
component to the frame and draw on the component. To do
so, extend the JComponent class and override its paintComponent
method.

public class ChartComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Drawing instructions
 }
}

When the component is shown for the first time, its paintComponent method is called
automatically. The method is also called when the window is resized, or when it is
shown again after it was hidden.

The paintComponent method receives an object of type Graphics. The Graphics object
stores the graphics state—the current color, font, and so on, that are used for drawing
operations. The Graphics class has methods for drawing geometric shapes. The call

g.fillRect(x, y, width, height)

draws a solid rectangle with upper-left corner (x, y) and the given width and height.

You can make simple
drawings out of lines,
rectangles, and circles.

In order to display a
drawing, provide a
class that extends
the JComponent class.

Place drawing
instructions inside
the paintComponent
method. That
method is called
whenever the
component needs to
be repainted.

Figure 8  Drawing a Bar Chart

488  Chapter 10  Graphical User Interfaces

Here we draw three rectangles. They line up on the left because they all have x = 0.
They also all have the same height.

public class ChartComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 g.fillRect(0, 10, 200, 10);
 g.fillRect(0, 30, 300, 10);
 g.fillRect(0, 50, 100, 10);
 }
}

Note that the coordinate system is different from the one used in mathematics. The
origin (0, 0) is at the upper-left corner of the component, and the y-coordinate grows
downward.

(0, 0)

(20, 10)

(10, 20)

 x

y

Here is the source code for the ChartComponent class. As you can see from the import
statements, the Graphics class is part of the java.awt package.

section_4_1/ChartComponent.java

1 import java.awt.Graphics;
2 import javax.swing.JComponent;
3
4 /**
5 A component that draws a bar chart.
6 */
7 public class ChartComponent extends JComponent
8 {
9 public void paintComponent(Graphics g)

10 {
11 g.fillRect(0, 10, 200, 10);
12 g.fillRect(0, 30, 300, 10);
13 g.fillRect(0, 50, 100, 10);
14 }
15 }

Now we need to add the component to a frame, and show the frame. Because the
frame is so simple, we don’t make a frame subclass. Here is the viewer class:

section_4_1/ChartViewer.java

1 import javax.swing.JComponent;
2 import javax.swing.JFrame;

The Graphics class
has methods to draw
rectangles and other
shapes.

10.4  Creating Drawings   489

3
4 public class ChartViewer
5 {
6 public static void main(String[] args)
7 {
8 JFrame frame = new JFrame();
9

10 frame.setSize(400, 200);
11 frame.setTitle("A bar chart");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 JComponent component = new ChartComponent();
15 frame.add(component);
16
17 frame.setVisible(true);
18 }
19 }

10.4.2  Ovals, Lines, Text, and Color

In the preceding section, you learned how to write a program that draws rectangles.
Now we turn to additional graphical elements that allow you to draw quite a few
interesting pictures.

To draw an oval, you specify its bounding box (see Figure 9) in the same way that
you would specify a rectangle, namely by the x- and y-coordinates of the top-left
corner and the width and height of the box. Then the call

g.drawOval(x, y, width, height);

draws the outline of an oval. To draw a circle, simply set the width and height to the
same values:

g.drawOval(x, y, diameter, diameter);

Notice that (x, y) is the top-left corner of the bounding box, not the center of the
circle.

If you want to fill the inside of an oval, use the fillOval method instead. Con-
versely, if you want only the outline of a rectangle, with no filling, use the drawRect
method.

Use drawRect,
drawOval, and
drawLine to draw
geometric shapes.

Figure 9  An Oval and Its Bounding Box

(x, y)

H
ei

gh
t

Width

490  Chapter 10  Graphical User Interfaces

Figure 10 
Basepoint and Baseline

Baseline

Basepoint

To draw a line, call the drawLine method with the x- and y-coordinates of both end
points:

g.drawLine(x1, y1, x2, y2);

You often want to put text inside a drawing, for example, to label some of the parts.
Use the drawString method of the Graphics class to draw a string anywhere in a win-
dow. You must specify the string and the x- and y-coordinates of the basepoint of the
first character in the string (see Figure 10). For example,

g.drawString("Message", 50, 100);

When you first start drawing, all shapes and strings are drawn with a black pen. To
change the color, you need to supply an object of type Color. Java uses the RGB color
model. That is, you specify a color by the amounts of the primary colors—red, green,
and blue—that make up the color. The amounts are given as integers between 0 (pri-
mary color not present) and 255 (maximum amount present). For example,

Color magenta = new Color(255, 0, 255);

constructs a Color object with maximum red, no green, and maximum blue, yielding a
bright purple color called magenta.

Table 1 Predefined Colors

Color RGB Values

Color.BLACK 0, 0, 0

Color.BLUE 0, 0, 255

Color.CYAN 0, 255, 255

Color.GRAY 128, 128, 128

Color.DARKGRAY 64, 64, 64

Color.LIGHTGRAY 192, 192, 192

Color.GREEN 0, 255, 0

Color.MAGENTA 255, 0, 255

Color.ORANGE 255, 200, 0

Color.PINK 255, 175, 175

Color.RED 255, 0, 0

Color.WHITE 255, 255, 255

Color.YELLOW 255, 255, 0

The drawString
method draws a
string, starting at
its basepoint.

10.4  Creating Drawings   491

For your convenience, a variety of colors have been predefined in the Color class.
Table 1 shows those predefined colors and their RGB values. For example, Color.PINK
has been predefined to be the same color as new Color(255, 175, 175).

To draw a shape in a different color, first set the color of the Graphics object, then
call the drawing method:

g.setColor(Color.YELLOW);
g.fillOval(350, 25, 35, 20); // Fills the oval in yellow

The following program puts all these shapes to work, creating a simple chart (see
Figure 11.

section_4_2/ChartComponent2.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import javax.swing.JComponent;
4
5 /**
6 A component that draws a demo chart.
7 */
8 public class ChartComponent2 extends JComponent
9 {

10 public void paintComponent(Graphics g)
11 {
12 // Draw the bars
13 g.fillRect(0, 10, 200, 10);
14 g.fillRect(0, 30, 300, 10);
15 g.fillRect(0, 50, 100, 10);
16
17 // Draw the arrow
18 g.drawLine(350, 35, 305, 35);
19 g.drawLine(305, 35, 310, 30);
20 g.drawLine(305, 35, 310, 40);
21
22 // Draw the highlight and the text
23 g.setColor(Color.YELLOW);
24 g.fillOval(350, 25, 35, 20);
25 g.setColor(Color.BLACK);
26 g.drawString("Best", 355, 40);
27 }
28 }

When you set a new
color in the graphics
context, it is used for
subsequent drawing
operations.

Figure 11  A Bar Chart with a Label

492  Chapter 10  Graphical User Interfaces

section_4_2/ChartViewer2.java

1 import javax.swing.JComponent;
2 import javax.swing.JFrame;
3
4 public class ChartViewer2
5 {
6 public static void main(String[] args)
7 {
8 JFrame frame = new JFrame();
9

10 frame.setSize(400, 200);
11 frame.setTitle("A bar chart");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 JComponent component = new ChartComponent2();
15 frame.add(component);
16
17 frame.setVisible(true);
18 }
19 }

10.4.3  Application: Visualizing the Growth of
an Investment

In this section, we will add a bar chart to the investment program of Section 10.3.
Whenever the user clicks on the "Add Interest" button, another bar is added to the bar
chart (see Figure 12).

The chart class of the preceding section produced a fixed bar chart. We will develop
an improved version that can draw a chart with any values. The chart keeps an array
list of the values:

public class ChartComponent extends JComponent
{
 private ArrayList<Double> values;
 private double maxValue;
 . . .
}

When drawing the bars, we need to scale the values to fit into the chart. For example,
if the investment program adds a value such as 10050 to the chart, we don’t want to
draw a bar that is 10,050 pixels long. In order to scale the values, we need to know
the largest value that should still fit inside the chart. We will ask the user of the chart
component to provide that maximum in the constructor:

public ChartComponent(double max)
{
 values = new ArrayList<Double>();
 maxValue = max;
}

We compute the width of a bar as
int barWidth = (int) (getWidth() * value / maxValue);

The getWidth method returns the width of the component in pixels. If the value to be
drawn equals maxValue, the bar stretches across the entire component width.

10.4  Creating Drawings   493

Figure 12  Clicking on the “Add Interest” Button
Adds a Bar to the Chart

Here is the complete paintComponent method. We stack the bars horizontally and
leave small gaps between them:

public void paintComponent(Graphics g)
{
 final int GAP = 5;
 final int BAR_HEIGHT = 10;

 int y = GAP;
 for (double value : values)
 {
 int barWidth = (int) (getWidth() * value / maxValue);
 g.fillRect(0, y, barWidth, BAR_HEIGHT);
 y = y + BAR_HEIGHT + GAP;
 }
}

Whenever the user clicks the “Add Interest” button, a value is added to the array list.
Afterward, it is essential to call the repaint method:

public void append(double value)
{
 values.add(value);
 repaint();
}

The call to repaint forces a call to the paintComponent method. The paintComponent
method redraws the component. Then the graph is drawn again, now showing the
appended value.

Why not call paintComponent directly? The simple answer is that you can’t—you
don’t have a Graphics object that you can pass as an argument. Instead, you need to ask
the Swing library to make the call to paintComponent at its earliest convenience. That is
what the repaint method does.

Call the repaint
method whenever
the state of a painted
component changes.

494  Chapter 10  Graphical User Interfaces

We need to address another issue with painted components. If you place a painted
component into a panel, you need to specify its preferred size. Otherwise, the panel
will assume that the preferred size is 0 by 0 pixels, and you won’t be able to see the
component. Specifying the preferred size of a painted component is conceptually
similar to specifying the number of rows and columns in a text area.

Call the setPreferredSize method with a Dimension object as argument. A Dimension
argument wraps a width and a height into a single object. The call has the form

chart.setPreferredSize(new Dimension(CHART_WIDTH, CHART_HEIGHT));

That’s all that is required to add a diagram to an application. Here is the code for the
chart and frame classes; the viewer class is with the book’s companion code.

section_4_3/ChartComponent.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import java.util.ArrayList;
4 import javax.swing.JComponent;
5
6 /**
7 A component that draws a chart.
8 */
9 public class ChartComponent extends JComponent

10 {
11 private ArrayList<Double> values;
12 private double maxValue;
13
14 public ChartComponent(double max)
15 {
16 values = new ArrayList<Double>();
17 maxValue = max;
18 }
19
20 public void append(double value)
21 {
22 values.add(value);
23 repaint();
24 }
25
26 public void paintComponent(Graphics g)
27 {
28 final int GAP = 5;
29 final int BAR_HEIGHT = 10;
30
31 int y = GAP;
32 for (double value : values)
33 {
34 int barWidth = (int) (getWidth() * value / maxValue);
35 g.fillRect(0, y, barWidth, BAR_HEIGHT);
36 y = y + BAR_HEIGHT + GAP;
37 }
38 }
39 }

section_4_3/InvestmentFrame4.java

1 import java.awt.Dimension;
2 import java.awt.event.ActionEvent;

When placing a
painted component
into a panel, you
need to specify its
preferred size.

10.4  Creating Drawings   495

3 import java.awt.event.ActionListener;
4 import javax.swing.JButton;
5 import javax.swing.JFrame;
6 import javax.swing.JLabel;
7 import javax.swing.JPanel;
8 import javax.swing.JTextField;
9

10 /**
11 A frame that shows the growth of an investment with variable interest,
12 using a bar chart.
13 */
14 public class InvestmentFrame4 extends JFrame
15 {
16 private static final int FRAME_WIDTH = 400;
17 private static final int FRAME_HEIGHT = 400;
18
19 private static final int CHART_WIDTH = 300;
20 private static final int CHART_HEIGHT = 300;
21
22 private static final double DEFAULT_RATE = 5;
23 private static final double INITIAL_BALANCE = 1000;
24
25 private JLabel rateLabel;
26 private JTextField rateField;
27 private JButton button;
28 private ChartComponent chart;
29 private double balance;
30
31 public InvestmentFrame4()
32 {
33 balance = INITIAL_BALANCE;
34 chart = new ChartComponent(3 * INITIAL_BALANCE);
35 chart.setPreferredSize(new Dimension(CHART_WIDTH, CHART_HEIGHT));
36 chart.append(INITIAL_BALANCE);
37
38 createTextField();
39 createButton();
40 createPanel();
41
42 setSize(FRAME_WIDTH, FRAME_HEIGHT);
43 }
44
45 private void createTextField()
46 {
47 rateLabel = new JLabel("Interest Rate: ");
48
49 final int FIELD_WIDTH = 10;
50 rateField = new JTextField(FIELD_WIDTH);
51 rateField.setText("" + DEFAULT_RATE);
52 }
53
54 class AddInterestListener implements ActionListener
55 {
56 public void actionPerformed(ActionEvent event)
57 {
58 double rate = Double.parseDouble(rateField.getText());
59 double interest = balance * rate / 100;
60 balance = balance + interest;
61 chart.append(balance);
62 }

496  Chapter 10  Graphical User Interfaces

63 }
64
65 private void createButton()
66 {
67 button = new JButton("Add Interest");
68
69 ActionListener listener = new AddInterestListener();
70 button.addActionListener(listener);
71 }
72
73 private void createPanel()
74 {
75 JPanel panel = new JPanel();
76 panel.add(rateLabel);
77 panel.add(rateField);
78 panel.add(button);
79 panel.add(chart);
80 add(panel);
81 }
82 }

17.	 How do you modify the program in Section 10.4.1 to draw two squares?
18.	 What happens if you call fillOval instead fillRect in the program of

Section 10.4.1?
19.	 Give instructions to draw a circle with center (100, 100) and radius 25.
20.	 Give instructions to draw a letter “V” by drawing two line segments.
21.	 Give instructions to draw a string consisting of the letter “V”.
22.	 What are the RGB color values of Color.BLUE?
23.	 How do you draw a yellow square on a red background?
24.	 What would happen in the investment viewer program if we simply painted each

bar as
g.fillRect(0, y, value, BAR_HEIGHT);

in the paintComponent method of the ChartComponent class?
25.	 What would happen if you omitted the call to repaint in the append method of the

ChartComponent class?
26.	 What would happen if you omitted the call to chart.setPreferredSize in the

InvestmentFrame4 constructor?

Practice It	 Now you can do: R10.18, P10.17, P10.18.

Forgetting to Repaint

When you change the data in a painted component, the component is not automatically
painted with the new data. You must call the repaint method of the component. Your com-
ponent’s paintComponent method will then be invoked. Note that you should not call the paint­
Component method directly.

S e l f Ch e c k

Common Error 10.3

10.4  Creating Drawings   497

The best place to call repaint is in the method of your component that modifies the data
values:

void changeData(. . .)
{
 Update data values
 repaint();
}

This is a concern only for your own painted components. When you make a change to a stan-
dard Swing component such as a JLabel, the component is automatically repainted.

By Default, Components Have Zero Width and Height

You must be careful when you add a painted component, such as a component displaying a
chart, to a panel. The default size for a JComponent is 0 by 0 pixels, and the component will not
be visible. The remedy is to call the setPreferredSize method:

chart.setPreferredSize(new Dimension(CHART_WIDTH, CHART_HEIGHT));

This is an issue only for painted components. Buttons, labels, and so on, know how to com-
pute their preferred size.

Step 1	 Determine the shapes that you need for the drawing.

You can use the following shapes:
•	 Squares and rectangles
•	 Circles and ellipses
•	 Lines
The outlines of these shapes can be drawn in any color, and you can fill the insides of these
shapes with any color. You can also use text to label parts of your drawing.

Some national flag designs consist of three equally wide sections of different colors, side by
side, as in the Italian flag shown below.

Common Error 10.4

How To 10.1	 Drawing Graphical Shapes

Suppose you want to write a program that displays graphical shapes such as cars, aliens, charts,
or any other images that can be obtained from rectangles, lines, and ellipses. These instructions
give you a step-by-step procedure for decomposing a drawing into parts and implementing a
program that produces the drawing.

In this How To we will create a program to draw a national flag.

498  Chapter 10  Graphical User Interfaces

You could draw such a flag using three rectangles. But if the middle rectangle is white, as it
is, for example, in the flag of Italy (green, white, red), it is easier and looks better to draw a line
on the top and bottom of the middle portion:

Two rectangles

Two lines

Step 2	 Find the coordinates for the shapes.

You now need to find the exact positions for the geometric shapes.
•	 For rectangles, you need the x- and y-position of the top-left corner, the width, and the

height.
•	 For ellipses, you need the top-left corner, width, and height of the bounding rectangle.
•	 For lines, you need the x- and y-positions of the starting point and the end point.
•	 For text, you need the x- and y-position of the basepoint.
A commonly-used size for a window is 300 by 300 pixels. You may not want the flag crammed
all the way to the top, so perhaps the upper-left corner of the flag should be at point (100, 100).

Many flags, such as the flag of Italy, have a width : height ratio of 3 : 2. (You can often find
exact proportions for a particular flag by doing a bit of Internet research on one of several
Flags of the World sites.) For example, if you make the flag 90 pixels wide, then it should be 60
pixels tall. (Why not make it 100 pixels wide? Then the height would be 100 · 2 / 3 ≈ 67, which
seems more awkward.)

Now you can compute the coordinates of all the important points of the shape:

(100, 100) (130, 100) (160, 100) (190, 100)

(100, 160) (130, 160) (160, 160) (190, 160)

Step 3	 Write Java statements to draw the shapes.

In our example, there are two rectangles and two lines:

g.setColor(Color.GREEN);
g.fillRect(100, 100, 30, 60);

g.setColor(Color.RED);
g.fillRect(160, 100, 30, 60);

10.4  Creating Drawings   499

g.setColor(Color.BLACK);
g.drawLine(130, 100, 160, 100);
g.drawLine(130, 160, 160, 160);

If you are more ambitious, then you can express the coordinates in terms of a few variables.
In the case of the flag, we have arbitrarily chosen the top-left corner and the width. All other
coordinates follow from those choices. If you decide to follow the ambitious approach, then
the rectangles and lines are determined as follows:

g.fillRect(xLeft, yTop, width / 3, width * 2 / 3);
. . .
g.fillRect(xLeft + 2 * width / 3, yTop, width / 3, width * 2 / 3);
. . .
g.drawLine(xLeft + width / 3, yTop, xLeft + width * 2 / 3, yTop);
g.drawLine(xLeft + width / 3, yTop + width * 2 / 3,
 xLeft + width * 2 / 3, yTop + width * 2 / 3);

Step 4	 Consider using methods or classes for repetitive steps.

Do you need to draw more than one flag? Perhaps with different sizes? Then it is a good idea
to design a method or class, so you won’t have to repeat the same drawing instructions.

For example, you can write a method

void drawItalianFlag(Graphics g, int xLeft, int yTop, int width)
{
 Draw a flag at the given location and size
}

Place the instructions from the preceding step into this method. Then you can call

drawItalianFlag(g, 10, 10, 100);
drawItalianFlag(g, 10, 125, 150);

in the paintComponent method to draw two flags.

Step 5	 Place the drawing instructions in the paintComponent method.

public class ItalianFlagComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Drawing instructions
 }
}

If your drawing is simple, simply place all drawing statements here. Otherwise, call the meth-
ods you created in Step 4.

Step 6	 Write the viewer class.

Provide a viewer class, with a main method in which you construct a frame, add your compo-
nent, and make your frame visible. The viewer class is completely routine; you only need to
change a single line to show a different component.

public class ItalianFlagViewer
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();

 frame.setSize(300, 400);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JComponent component = new ItalianFlagComponent();
 frame.add(component);

500  Chapter 10  Graphical User Interfaces

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

 frame.setVisible(true);
 }
}

Display frames and add components inside frames.

•	 To show a frame, construct a JFrame object, set its size, and make
it visible.

•	 Use a JPanel to group multiple user-interface components together.
•	 Declare a JFrame subclass for a complex frame.

Explain the event concept and handle button events.

•	 User-interface events include key presses, mouse moves, button clicks, menu
selections, and so on.

•	 An event listener belongs to a class created by the application programmer. Its
methods describe the actions to be taken when an event occurs.

•	 Event sources report on events. When an event occurs, the event source notifies
all event listeners.

•	 Attach an ActionListener to each button so that your program
can react to button clicks.

•	 Methods of an inner class can access variables from the
surrounding class.

Use text components for reading text input.

•	 Use a JTextField component for reading a single line of input. Place a JLabel next to
each text field.

•	 Use a JTextArea to show multiple lines of text.
•	 You can add scroll bars to any component with a JScrollPane.

O n l i n e E x a m p l e

The complete flag
drawing program.

Worked Example 10.1	 Coding a Bar Chart Creator

In this Worked Example, we will develop a simple program for creating bar charts. The user
enters labels and values for the bars, and the program displays the chart.

Video Example 10.1	 Solving Crossword Puzzles

In this Video Example, we develop a program that finds words for
solving a crossword puzzle.

C h a p t e r Summ a r y

Review Exercises  501

Create simple drawings with rectangles, ovals, lines, and text.

•	 In order to display a drawing, provide a class that extends the JComponent class.
•	 Place drawing instructions inside the paintComponent method. That method is called

whenever the component needs to be repainted.
•	 The Graphics class has methods to draw rectangles and other shapes.
•	 Use drawRect, drawOval, and drawLine to draw geometric shapes.
•	 The drawString method draws a string, starting at its basepoint.
•	 When you set a new color in the graphics context, it is used for subsequent

drawing operations.
•	 Call the repaint method whenever the state of a painted component changes.
•	 When placing a painted component into a panel, you need to specify its

preferred size.

• R10.1	 What is the difference between a frame and a panel?

• R10.2	 From a programmer’s perspective, what is the most important difference between
the user interface of a console application and a graphical application?

• R10.3	 Why are separate viewer and frame classes used for graphical programs?

• R10.4	 What happens if you add a button and a label directly to a JFrame without using a
JPanel? What happens if you add the label first? Try it out, by modifying the pro-
gram in Section 10.1.2, and report your observations.

• R10.5	 What is an event object? An event source? An event listener?

• R10.6	 Who calls the actionPerformed method of an event listener? When does the call to the
actionPerformed method occur?

java.awt.Color
java.awt.Component
 addMouseListener
 getHeight
 getWidth
 repaint
 setPreferredSize
 setSize
 setVisible
java.awt.Container
 add
java.awt.Dimension
java.awt.Frame
 setTitle

java.awt.Graphics
 setColor
 drawLine
 drawOval
 drawRect
 drawString
 fillOval
 fillRect
java.awt.event.ActionEvent
java.awt.event.ActionListener
 actionPerformed
javax.swing.AbstractButton
 addActionListener
javax.swing.JComponent
 paintComponent

javax.swing.JFrame
 setDefaultCloseOperation
javax.swing.JButton
javax.swing.JLabel
javax.swing.JPanel
javax.swing.JScrollPane
javax.swing.JTextArea
 append
javax.swing.JTextField
javax.swing.text.JTextComponent
 getText
 isEditable
 setEditable
 setText

S ta n d a r d L i b r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e v i e w E x e r c i s e s

502  Chapter 10  Graphical User Interfaces

•• R10.7	 You can exit a graphical program by calling System.exit(0). Describe how to provide
an Exit button that functions in the same way as closing the window. Should you
still call setDefaultCloseOperation on the frame?

• R10.8	 How would you add a counter to the program in Section 10.2.1 that prints how
often the button has been clicked? Where is the counter updated?

•• R10.9	 How would you add a counter to the program in Section 10.2.2 that shows how
often the button has been clicked? Where is the counter updated? Where is it
displayed?

••• R10.10	 How would you reorganize the InvestmentViewer program in Section 10.2.3 if you
needed to make AddInterestListener into a top-level class (that is, not an inner class)?

••• R10.11	 Why are we using inner classes for event listeners? If Java did not have inner classes,
could we still implement event listeners? How?

••• R10.12	 Is it a requirement to use inheritance for frames, as described in Section 10.1.3?
(Hint: Consider Special Topic 10.1.)

• R10.13	 What is the difference between a label, a text field, and a text area?

•• R10.14	 Name a method that is declared in JTextArea, a method that JTextArea inherits from
JTextComponent, and a method that JTextArea inherits from JComponent.

•• R10.15	 Why did the program in Section 10.3.2 use a text area and not a label to show how
the interest accumulates? How could you have achieved a similar effect with an array
of labels?

•• R10.16	 Who calls the paintComponent method of a component? When does the call to the
paintComponent method occur?

• R10.17	 In the program of Section 10.4.2, why was the oval drawn before the string?

•• R10.18	 How would you modify the chart component in Section 10.4.3 to draw a vertical bar
chart? (Careful: The y-values grow downward.)

•• R10.19	 How do you specify a text color?

•• R10.20	 What is the difference between the paintComponent and repaint methods?

•• R10.21	 Explain why the call to the getWidth method in the ChartComponent class has no explicit
parameter.

• R10.22	 How would you modify the drawItalianFlag method in How To 10.1 to draw any
flag with a white vertical stripe in the middle and two arbitrary colors to the left and
right?

• P10.1	 Write a program that shows a square frame filled with 100 buttons labeled 1 to 100.
Nothing needs to happen when you press any of the buttons.

• P10.2	 Enhance the ButtonViewer1 program in Section 10.2.1 so that it prints a message
“I was clicked n times!” whenever the button is clicked. The value n should be incre-
mented with each click.

P r o g r a mm i n g E x e r c i s e s

Programming Exercises  503

•• P10.3	 Enhance the ButtonViewer1 program in Section 10.2.1 so that it has two buttons, each
of which prints a message “I was clicked n times!” whenever the button is clicked.
Each button should have a separate click count.

•• P10.4	 Enhance the ButtonViewer1 program in Section 10.2.1 so that it has two buttons
labeled A and B, each of which prints a message “Button x was clicked!”, where x is
A or B.

•• P10.5	 Implement a ButtonViewer1 program as in Exercise P10.3 using only a single listener
class. Hint: Pass the button label to the constructor of the listener.

• P10.6	 Enhance the ButtonViewer1 program so that it prints the date and time at which the
button was clicked. Hint: System.out.println(new java.util.Date()) prints the current
date and time.

••• P10.7	 Implement the ClickListener in the ButtonViewer2 program of Section 10.2.2 as a
regular class (that is, not an inner class). Hint: Store a reference to the label. Add a
constructor to the listener class that sets the reference.

•• P10.8	 Add error handling to the program in Section 10.3.2. If the interest rate is not a
floating-point number, or if it less than 0, display an error message, using a JOption­
Pane (see Special Topic 2.5).

• P10.9	 Write a graphical application simulating a bank account. Supply text fields and but-
tons for depositing and withdrawing money, and for displaying the current balance
in a label.

• P10.10	 Write a graphical application describing an earthquake, as in Section 3.3. Supply a
text field and button for entering the strength of the earthquake. Display the earth-
quake description in a label.

• P10.11	 Write a graphical application for computing statistics of a data set. Supply a text
field and button for adding floating-point values, and display the current minimum,
maximum, and average in a label.

• P10.12	 Write an application with three labeled text fields, one each for the initial amount of
a savings account, the annual interest rate, and the number of years. Add a button
“Calculate” and a read-only text area to display the balance of the savings account
after the end of each year.

•• P10.13	 In the application from Exercise P10.12, replace the text area with a bar chart that
shows the balance after the end of each year.

• P10.14	 Write a graphics program that draws your name in red, contained inside a blue rect
angle. Provide a class NameViewer and a class NameComponent.

•• P10.15	 Write a graphics program that draws 12 strings, one each for the 12 standard colors,
besides Color.WHITE, each in its own color. Provide a class ColorNameViewer and a class
ColorNameComponent.

•• P10.16	 Write a program that draws two solid squares: one in pink and one in purple. Use
a standard color for one of them and a custom color for the other. Provide a class
TwoSquareViewer and a class TwoSquareComponent.

504  Chapter 10  Graphical User Interfaces

•• P10.17	 Write a program to plot the following face. Provide a class FaceViewer and a class Face­
Component.

•• P10.18	 Draw a “bull’s eye”—a set of concentric rings in alternating black and white colors.
Hint: Fill a black circle, then fill a smaller white circle on top, and so on. Your pro-
gram should be composed of classes BullsEyeComponent and BullsEyeViewer.

•• P10.19	 Write a program that draws a picture of a house. It could be as simple as the accom
panying figure, or if you like, make it more elaborate (3-D, skyscraper, marble col
umns in the entryway, whatever).

•• P10.20	 Extend Exercise P10.19 by supplying a drawHouse method in which you can specify
the position and size. Then populate your frame with a few houses of different sizes.

•• P10.21	 Extend Exercise P10.20 so that you can make the houses appear in different colors.
The color should be passed as an argument to the drawHouse method. Populate your
frame with houses of different colors.

•• P10.22	 Improve the output quality of the investment application in Section 10.3.2. Format
the numbers with two decimal digits, using the String.format method. Set the font of
the text area to a fixed width font, using the call

textArea.setFont(new Font(Font.MONOSPACED, Font.PLAIN, 12));

•• P10.23	 Write a program that draws a 3D view of a cylinder.

•• P10.24	 Write a program to plot the string “HELLO”, using only lines and circles. Do
not call drawString, and do not use System.out. Make classes LetterH, LetterE, LetterL,
and LetterO.

•• P10.25	 Modify the drawItalianFlag method in How To 10.1 to draw any flag with three hori-
zontal colored stripes. Write a program that displays the German and Hungarian
flags.

Programming Exercises  505

•• P10.26	 Write a program that displays the Olympic rings. Color the rings in the Olympic
colors. Provide a method drawRing that draws a ring of a given position and color.

••• P10.27	 Write a program that prompts the user to enter an integer in a text field. When a
Draw button is clicked, draw as many rectangles at random positions in a compo-
nent as the user requested.

•• P10.28	 Write a program that asks the user to enter an integer n into a text field. When a
Draw button is clicked, draw an n-by-n grid in a component.

•• P10.29	 Write a program that has a Draw button and a component in which a random mix-
ture of rectangles, ellipses, and lines, with random positions, is displayed each time
the Draw button is clicked.

•• P10.30	 Make a bar chart to plot the following data set. Label each bar. Provide a class
BarChartViewer and a class BarChartComponent.

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

Mackinac 3,800

••• P10.31	 Write a program that draws a clock face with a time that the user enters in two text
fields (one for the hours, one for the minutes).
Hint: You need to determine the angles of the hour hand and the minute hand. The
angle of the minute hand is easy; the minute hand travels 360 degrees in 60 minutes.
The angle of the hour hand is harder; it travels 360 degrees in 12 × 60 minutes.

••• P10.32	 Write a program that fills the window with a large ellipse, with a black outline and
filled with your favorite color. The ellipse should touch the window boundaries,
even if the window is resized.

•• Business P10.33	 Implement a graphical application that simulates a cash register. Provide a text field
for the item price and two buttons for adding the item to the sale, one for taxable
items and one for nontaxable items. In a text area, display the register tape that lists
all items (labeling the taxable items with a *), followed by the amount due. Provide
another button for starting a new sale.

•• Business P10.34	 Write a graphical application to implement a currency converter between euros and
U.S. dollars, and vice versa. Provide two text fields for the euro and dollar amounts.
Between them, place two buttons labeled > and < for updating the field on the right
or left. For this exercise, use a conversion rate of 1 euro = 1.42 U.S. dollars.

506  Chapter 10  Graphical User Interfaces

1.	 Modify the EmptyFrameViewer program as
follows:
final int FRAME_WIDTH = 300;
final int FRAME_HEIGHT = 300;
. . .
frame.setTitle("Hello, World!");

2.	 Construct two JFrame objects, set each of their
sizes, and call setVisible(true) on each of them.

3.	 Add the following panel to the frame:
JButton button1 = new JButton("Yes");
JButton button2 = new JButton("No");
JPanel panel = new JPanel();
panel.add(button1);
panel.add(button2);

4.	 There was no need to invoke any methods that
are specific to FilledFrame. It is always a good
idea to use the most general type when declar-
ing a variable.

5.	 Two: FilledFrameViewer2, FilledFrame.
6.	 It’s an instance method of FilledFrame, so the

frame is the implicit parameter.
7.	 The button object is the event source. The

listener object is the event listener.
8.	 The ClickListener class implements the Action­

Listener interface.
9.	 You don’t. The Swing library calls the method

when the button is clicked.
10.	 Direct access is simpler than the alternative—

passing the variable as an argument to a con-
structor or method.

11.	 First add label to the panel, then add button.
12.	 Then the text field is not labeled, and the user

will not know its purpose.

13.	 Integer.parseInt(textField.getText())
14.	 A text field holds a single line of text; a text

area holds multiple lines.
15.	 The text area is intended to display the pro-

gram output. It does not collect user input.
16.	 Don’t construct a JScrollPane but add the

resultArea object directly to the panel.
17.	 Here is one possible solution:

g.fillRect(0, 0, 50, 50);
g.fillRect(0, 100, 50, 50);

18.	 The program shows three very elongated
ellipses instead of the rectangles.

19.	 g.drawOval(75, 75, 50, 50);
20.	 g.drawline(0, 0, 10, 30);

g.drawline(10, 30, 20, 0);

21.	 g.drawString("V", 0, 30);
22.	 0, 0, 255
23.	 First fill a big red square, then fill a small

yellow square inside:
g.setColor(Color.RED);
g.fillRect(0, 0, 200, 200);
g.setColor(Color.YELLOW);
g.fillRect(50, 50, 100, 100);

24.	 All the bars would stretch all the way to the
right of the component since they would be
much longer than the component’s width.

25.	 The chart would not be repainted when the
user hits the “Add Interest” button.

26.	 The chart would be shown at size 0 by 0; that
is, it would be invisible.

•• Business P10.35	 Write a graphical application that produces a restaurant bill.
Provide buttons for ten popular dishes or drink items. (You
decide on the items and their prices.) Provide text fields for
entering less popular items and prices. In a text area, show the
bill, including tax and a suggested tip.

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

11C h a p t e r

507

Advanced
User
Interfaces

To use layout managers to arrange
user‑interface components in a container

To become familiar with common user-interface components, such as
radio buttons, check boxes, and menus

To build programs that handle events generated by user‑interface components

To browse the Java documentation effectively

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

11.1  Layout Management  508

11.2  Choices  510

How To 11.1:  Laying Out a User Interface  518
Programming Tip 11.1:  Use a GUI Builder  520
Worked Example 11.1: Programming a

Working Calculator 

11.3  Menus  521

11.4  Exploring the Swing
Documentation  528

11.5  Using Timer Events for
Animations  533

11.6  Mouse Events  536

Special Topic 11.1: Keyboard Events  539
Special Topic 11.2: Event Adapters  540
Worked Example 11.2: Adding Mouse and

Keyboard Support to the Bar Chart Creator 
Video Example 11.1: Designing a Baby

Naming Program 

508

The graphical applications with which you are familiar
have many visual gadgets for information entry: buttons,
scroll bars, menus, and so on. In this chapter, you will learn
how to use the most common user-interface components
in the Java Swing toolkit, and how to search the Java
documentation for information about other components.
You will also learn more about event handling, so you can
use timer events in animations and process mouse events
in interactive graphical programs.

11.1  Layout Management
Up to now, you have had limited control over
the layout of user-interface components. You
learned how to add components to a panel, and
the panel arranged the components from left to
right. However, in many applications, you need
more sophisticated arrangements.

In Java, you build up user interfaces by add-
ing components into containers such as panels.
Each container has its own layout manager,
which determines how components are laid out.

By default, a JPanel uses a flow layout.
A flow layout simply arranges its components from left to right and starts a new row
when there is no more room in the current row.

Another commonly used layout manager is the border layout. The border layout
groups components into five areas: center, north, south, west, and east (see Figure 1).
Each area can hold a single component, or it can be empty.

The border layout is the default layout manager for a frame (or, more technically,
the frame’s content pane). But you can also use the border layout in a panel:

panel.setLayout(new BorderLayout());

Now the panel is controlled by a border layout, not the flow layout. When adding a
component, you specify the position, like this:

panel.add(component, BorderLayout.NORTH);

A layout manager arranges user-
interface components.

User-interface
components are
arranged by
placing them
inside containers.
Containers can be
placed inside larger
containers.

Each container has a
layout manager that
directs the
arrangement of its
components.

Three useful layout
managers are the
border layout,
flow layout, and
grid layout.

When adding a
component to a
container with the
border layout,
specify the NORTH,
SOUTH, WEST, EAST, or
CENTER position.

Figure 1 
Components Expand to Fill
Space in the Border Layout

North

West Center East

South

11.1 L ayout Management   509

Figure 2  The Grid Layout

The grid layout manager arranges components in a grid with a fixed number of rows
and columns. All components are resized so that they all have the same width and
height. Like the border layout, it also expands each component to fill the entire allot-
ted area. (If that is not desirable, you need to place each component inside a panel.)
Figure 2 shows a number pad panel that uses a grid layout. To create a grid layout,
you supply the number of rows and columns in the constructor, then add the compo-
nents, row by row, left to right:

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
buttonPanel.add(button9);
buttonPanel.add(button4);
. . .

Sometimes you want to have a tabular arrangement of the components where col-
umns have different sizes or one component spans multiple columns. A more com-
plex layout manager called the grid bag layout can handle these situations. The grid
bag layout is quite complex to use, however, and we do not cover it in this book;
see, for example, Cay S. Horstmann and Gary Cornell, Core Java 2 Volume 1: Fun­
damentals, 8th edition (Prentice Hall, 2008), for more information. Java 6 introduced
a group layout that is designed for use by interactive tools—see Programming Tip
11.1 on page 520.

Fortunately, you can create acceptable-looking layouts in nearly all situations by
nesting panels. You give each panel an appropriate layout manager. Panels don’t have
visible borders, so you can use as many panels as you need to organize your compo-
nents. Figure 3 shows an example. The keypad buttons are contained in a panel with
grid layout. That panel is itself contained in a larger panel with border layout. The
text field is in the northern position of the larger panel.

The content pane of a
frame has a border
layout by default. A
panel has a flow
layout by default.

Figure 3  Nesting Panels

JTextField
in NORTH position

JPanel
with GridLayout
in CENTER position

510  Chapter 11  Advanced User Interfaces

The following code produces the arrangement in Figure 3:
JPanel keypadPanel = new JPanel();
keypadPanel.setLayout(new BorderLayout());
buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 3));
buttonPanel.add(button7);
buttonPanel.add(button8);
// . . .
keypadPanel.add(buttonPanel, BorderLayout.CENTER);
JTextField display = new JTextField();
keypadPanel.add(display, BorderLayout.NORTH);

1.	 What happens if you place two buttons in the northern position of a border
layout? Try it out with a small program.

2.	 How do you add two buttons to the northern position of a frame so that they
are shown next to each other?

3.	 How can you stack three buttons one above the other?
4.	 What happens when you place one button in the northern position of a border

layout and another in the center position? Try it out with a small program if you
aren’t sure.

5.	 Some calculators have a double-wide 0 button, as shown below. How can you
achieve that?

Practice It	 Now you can try these exercises at the end of the chapter: R11.1, R11.3, P11.1.

11.2  Choices
In the following sections, you will see how to present a finite set of choices to the
user. Which Swing component you use depends on whether the choices are mutually
exclusive or not, and on the amount of space you have for displaying the choices.

11.2.1  Radio Buttons

If the choices are mutually exclusive, use a set of
radio buttons. In a radio button set, only one
button can be selected at a time. When the user
selects another button in the same set, the pre-
viously selected button is automatically turned
off. (These buttons are called radio buttons
because they work like the station selector but-
tons on a car radio: If you select a new station,

ON L INE E x a m p l e

The code for a
calculator’s user
interface.

S e l f C h e c k

In an old fashioned radio, pushing down
one station button released the others.

For a small set of
mutually exclusive
choices, use a group
of radio buttons or a
combo box.

11.2  Choices   511

the old station is automatically deselected.) For example, in Figure 4, the font sizes are
mutually exclusive. You can select small, medium, or large, but not a combination of
them.

To create a set of radio buttons, first create each button individually, and then add
all buttons in the set to a ButtonGroup object:

JRadioButton smallButton = new JRadioButton("Small");
JRadioButton mediumButton = new JRadioButton("Medium");
JRadioButton largeButton = new JRadioButton("Large");

ButtonGroup group = new ButtonGroup();
group.add(smallButton);
group.add(mediumButton);
group.add(largeButton);

Note that the button group does not place the buttons close to each other in the con-
tainer. The purpose of the button group is simply to find out which buttons to turn
off when one of them is turned on. It is still your job to arrange the buttons on the
screen.

The isSelected method is called to find out whether a button is currently selected
or not. For example,

if (largeButton.isSelected()) { size = LARGE_SIZE; }

Unfortunately, there is no convenient way of finding out which button in a group
is currently selected. You have to call isSelected on each button. Because users will
expect one radio button in a radio button group to be selected, call setSelected(true)
on the default radio button before making the enclosing frame visible.

If you have multiple button groups, it is a good idea to group them together visu-
ally. It is a good idea to use a panel for each set of radio buttons, but the panels them-
selves are invisible. You can add a border to a panel to make it visible. In Figure 4, for
example, the panels containing the Size radio buttons and Style check boxes have
borders.

Add radio buttons to
a ButtonGroup so that
only one button in
the group is selected
at any time.

You can place a
border around a
panel to group its
contents visually.

Figure 4  A Combo Box, Check
Boxes, and Radio Buttons

512  Chapter 11  Advanced User Interfaces

There are a large number of border types. We will show only a couple of variations
and leave it to the border enthusiasts to look up the others in the Swing documenta-
tion. The EtchedBorder class yields a border with a three-dimensional, etched effect.
You can add a border to any component, but most commonly you apply it to a panel:

JPanel panel = new JPanel();
panel.setBorder(new EtchedBorder());

If you want to add a title to the border (as in Figure 4), you need to construct a Titled-
Border. You make a titled border by supplying a basic border and then the title you
want. Here is a typical example:

panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));

11.2.2  Check Boxes

A check box is a user-interface component with two states: checked and unchecked.
You use a group of check boxes when one selection does not exclude another. For
example, the choices for “Bold” and “Italic” in Figure 4 are not exclusive. You can
choose either, both, or neither. Therefore, they are implemented as a set of separate
check boxes. Radio buttons and check boxes have different visual appearances. Radio
buttons are round and have a black dot when selected. Check boxes are square and
have a check mark when selected.

You construct a check box by providing the name in the constructor:

JCheckBox italicCheckBox = new JCheckBox("Italic");

Because check box settings do not exclude each other, you do not place a set of check
boxes inside a button group.

As with radio buttons, you use the isSelected method to find out whether a check
box is currently checked or not.

11.2.3  Combo Boxes

If you have a large number of choices, you don’t want to make a set of radio buttons,
because that would take up a lot of space. Instead, you can use a combo box. This
component is called a combo box because it is a combination of a list and a text field.
The text field displays the name of the current selection. When you click on the arrow
to the right of the text field of a combo box, a list of selections drops down, and you
can choose one of the items in the list (see Figure 5).

For a binary choice,
use a check box.

For a large set of
choices, use a
combo box.

Figure 5  An Open Combo Box

11.2  Choices   513

Figure 6  The Components of the FontFrame

JLabel
in CENTER position

JPanel
with GridLayout
in SOUTH position

If the combo box is editable, you can also type in your own selection. To make a
combo box editable, call the setEditable method.

You add strings to a combo box with the addItem method.
JComboBox facenameCombo = new JComboBox();
facenameCombo.addItem("Serif");
facenameCombo.addItem("SansSerif");
. . .

You get the item that the user has selected by calling the getSelectedItem method.
However, because combo boxes can store other objects in addition to strings, the get-
SelectedItem method has return type Object. Hence, in our example, you must cast the
returned value back to String:

String selectedString = (String) facenameCombo.getSelectedItem();

You can select an item for the user with the setSelectedItem method.
Radio buttons, check boxes, and combo boxes generate an ActionEvent whenever

the user selects an item. In the following program, we don’t care which component
was clicked—all components notify the same listener object. Whenever the user
clicks on any one of them, we simply ask each component for its current content,
using the isSelected and getSelectedItem methods. We then redraw the label with the
new font.

Figure 6 shows how the components are arranged in the frame.

section_2/FontViewer.java

1 import javax.swing.JFrame;
2
3 /**
4 This program allows the user to view font effects.
5 */
6 public class FontViewer
7 {

Radio buttons, check
boxes, and combo
boxes generate
action events, just
as buttons do.

514  Chapter 11  Advanced User Interfaces

8 public static void main(String[] args)
9 {

10 JFrame frame = new FontFrame();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setTitle("FontViewer");
13 frame.setVisible(true);
14 }
15 }

section_2/FontFrame.java

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.GridLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import javax.swing.ButtonGroup;
7 import javax.swing.JButton;
8 import javax.swing.JCheckBox;
9 import javax.swing.JComboBox;

10 import javax.swing.JFrame;
11 import javax.swing.JLabel;
12 import javax.swing.JPanel;
13 import javax.swing.JRadioButton;
14 import javax.swing.border.EtchedBorder;
15 import javax.swing.border.TitledBorder;
16
17 /**
18 This frame contains a text sample and a control panel
19 to change the font of the text.
20 */
21 public class FontFrame extends JFrame
22 {
23 private static final int FRAME_WIDTH = 300;
24 private static final int FRAME_HEIGHT = 400;
25
26 private JLabel label;
27 private JCheckBox italicCheckBox;
28 private JCheckBox boldCheckBox;
29 private JRadioButton smallButton;
30 private JRadioButton mediumButton;
31 private JRadioButton largeButton;
32 private JComboBox facenameCombo;
33 private ActionListener listener;
34
35 /**
36 Constructs the frame.
37 */
38 public FontFrame()
39 {
40 // Construct text sample
41 label = new JLabel("Big Java");
42 add(label, BorderLayout.CENTER);
43
44 // This listener is shared among all components
45 listener = new ChoiceListener();
46
47 createControlPanel();
48 setLabelFont();

11.2  Choices   515

49 setSize(FRAME_WIDTH, FRAME_HEIGHT);
50 }
51
52 class ChoiceListener implements ActionListener
53 {
54 public void actionPerformed(ActionEvent event)
55 {
56 setLabelFont();
57 }
58 }
59
60 /**
61 Creates the control panel to change the font.
62 */
63 public void createControlPanel()
64 {
65 JPanel facenamePanel = createComboBox();
66 JPanel sizeGroupPanel = createCheckBoxes();
67 JPanel styleGroupPanel = createRadioButtons();
68
69 // Line up component panels
70
71 JPanel controlPanel = new JPanel();
72 controlPanel.setLayout(new GridLayout(3, 1));
73 controlPanel.add(facenamePanel);
74 controlPanel.add(sizeGroupPanel);
75 controlPanel.add(styleGroupPanel);
76
77 // Add panels to content pane
78
79 add(controlPanel, BorderLayout.SOUTH);
80 }
81
82 /**
83 Creates the combo box with the font style choices.
84 @return the panel containing the combo box
85 */
86 public JPanel createComboBox()
87 {
88 facenameCombo = new JComboBox();
89 facenameCombo.addItem("Serif");
90 facenameCombo.addItem("SansSerif");
91 facenameCombo.addItem("Monospaced");
92 facenameCombo.setEditable(true);
93 facenameCombo.addActionListener(listener);
94
95 JPanel panel = new JPanel();
96 panel.add(facenameCombo);
97 return panel;
98 }
99

100 /**
101 Creates the check boxes for selecting bold and italic styles.
102 @return the panel containing the check boxes
103 */
104 public JPanel createCheckBoxes()
105 {
106 italicCheckBox = new JCheckBox("Italic");
107 italicCheckBox.addActionListener(listener);
108

516  Chapter 11  Advanced User Interfaces

109 boldCheckBox = new JCheckBox("Bold");
110 boldCheckBox.addActionListener(listener);
111
112 JPanel panel = new JPanel();
113 panel.add(italicCheckBox);
114 panel.add(boldCheckBox);
115 panel.setBorder(new TitledBorder(new EtchedBorder(), "Style"));
116
117 return panel;
118 }
119
120 /**
121 Creates the radio buttons to select the font size.
122 @return the panel containing the radio buttons
123 */
124 public JPanel createRadioButtons()
125 {
126 smallButton = new JRadioButton("Small");
127 smallButton.addActionListener(listener);
128
129 mediumButton = new JRadioButton("Medium");
130 mediumButton.addActionListener(listener);
131
132 largeButton = new JRadioButton("Large");
133 largeButton.addActionListener(listener);
134 largeButton.setSelected(true);
135
136 // Add radio buttons to button group
137
138 ButtonGroup group = new ButtonGroup();
139 group.add(smallButton);
140 group.add(mediumButton);
141 group.add(largeButton);
142
143 JPanel panel = new JPanel();
144 panel.add(smallButton);
145 panel.add(mediumButton);
146 panel.add(largeButton);
147 panel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
148
149 return panel;
150 }
151
152 /**
153 Gets user choice for font name, style, and size
154 and sets the font of the text sample.
155 */
156 public void setLabelFont()
157 {
158 // Get font name
159 String facename = (String) facenameCombo.getSelectedItem();
160
161 // Get font style
162
163 int style = 0;
164 if (italicCheckBox.isSelected())
165 {
166 style = style + Font.ITALIC;
167 }

11.2  Choices   517

168 if (boldCheckBox.isSelected())
169 {
170 style = style + Font.BOLD;
171 }
172
173 // Get font size
174
175 int size = 0;
176
177 final int SMALL_SIZE = 24;
178 final int MEDIUM_SIZE = 36;
179 final int LARGE_SIZE = 48;
180
181 if (smallButton.isSelected()) { size = SMALL_SIZE; }
182 else if (mediumButton.isSelected()) { size = MEDIUM_SIZE; }
183 else if (largeButton.isSelected()) { size = LARGE_SIZE; }
184
185 // Set font of text field
186
187 label.setFont(new Font(facename, style, size));
188 label.repaint();
189 }
190 }

6.	 What is the advantage of a JComboBox over a set of radio buttons? What is the
disadvantage?

7.	 What happens when you put two check boxes into a button group? Try it out if
you are not sure.

8.	 How can you nest two etched borders, like this?

9.	 Why do all user-interface components in the FontFrame class share the same
listener?

10.	 Why was the combo box placed inside a panel? What would have happened if it
had been added directly to the control panel?

11.	 How could the following user interface be improved?

Practice It	 Now you can try these exercises at the end of the chapter: R11.11, P11.3, P11.4.

S e l f C h e c k

518  Chapter 11  Advanced User Interfaces

Step 1	 Make a sketch of your desired component layout.

Draw all the buttons, labels, text fields, and borders on a sheet of paper. Graph paper works
best.

Here is an example—a user interface for ordering
pizza. The user interface contains

•	 Three radio buttons
•	 Two check boxes
•	 A label: “Your Price:”
•	 A text field
•	 A border

Step 2	 Find groupings of adjacent components with the same layout.

Usually, the component arrangement is complex enough that you need to use several panels,
each with its own layout manager. Start by looking at adjacent components that are arranged
top to bottom or left to right. If several components are surrounded by a border, they should
be grouped together.

Here are the groupings from the pizza user interface:

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

�

�

Step 3	 Identify layouts for each group.

When components are arranged horizontally, choose a flow layout. When components are
arranged vertically, use a grid layout with one column.

In the pizza user interface example, you would choose
•	 A (3, 1) grid layout for the radio buttons
•	 A (2, 1) grid layout for the check boxes
•	 A flow layout for the label and text field

Step 4	 Group the groups together.

Look at each group as one blob, and group the blobs together into larger groups, just as you
grouped the components in the preceding step. If you note one large blob surrounded by
smaller blobs, you can group them together in a border layout.

How To 11.1	 Laying Out a User Interface

A graphical user interface is made up of components such as buttons and text fields. The Swing
library uses containers and layout managers to arrange these components. This How To
explains how to group components into containers and how to pick the right layout managers.

Size

Pepperoni

Anchovies

Your Price:

Small

Medium

Large

�

�

11.2  Choices   519

You may have to repeat the grouping again if you have a very complex user interface. You
are done if you have arranged all groups in a single container.

For example, the three component groups of the pizza user interface can be arranged as:
•	 A group containing the first two component groups, placed in the center of a container

with a border layout.
•	 The third component group, in the southern area of that container.

in CENTER position

in SOUTH position

In this step, you may run into a couple of complications. The group “blobs” tend to vary in
size more than the individual components. If you place them inside a grid layout, the grid lay-
out forces them all to be the same size. Also, you occasionally would like a component from
one group to line up with a component from another group, but there is no way for you to
communicate that intent to the layout managers.

These problems can be overcome by using more sophisticated layout managers or imple-
menting a custom layout manager. However, those techniques are beyond the scope of this
book. Sometimes, you may want to start over with Step 1, using a component layout that is
easier to manage. Or you can decide to live with minor imperfections of the layout. Don’t
worry about achieving the perfect layout—after all, you are learning programming, not user-
interface design.

Step 5	 Write the code to generate the layout.

This step is straightforward but potentially tedious, especially if you have a large number of
components.

Start by constructing the components. Then construct a panel for each component group
and set its layout manager if it is not a flow layout (the default for panels). Add a border to the
panel if required. Finally, add the components to their panels. Continue in this fashion until
you reach the outermost containers, which you add to the frame.

Here is an outline of the code required for the pizza user interface:

JPanel radioButtonPanel = new JPanel();
radioButtonPanel.setLayout(new GridLayout(3, 1));
radioButtonPanel.setBorder(new TitledBorder(new EtchedBorder(), "Size"));
radioButtonPanel.add(smallButton);
radioButtonPanel.add(mediumButton);
radioButtonPanel.add(largeButton);

JPanel checkBoxPanel = new JPanel();
checkBoxPanel.setLayout(new GridLayout(2, 1));
checkBoxPanel.add(pepperoniButton());
checkBoxPanel.add(anchoviesButton());

JPanel pricePanel = new JPanel(); // Uses FlowLayout by default
pricePanel.add(new JLabel("Your Price: "));
pricePanel.add(priceTextField);

520  Chapter 11  Advanced User Interfaces

JPanel centerPanel = new JPanel(); // Uses FlowLayout
centerPanel.add(radioButtonPanel);
centerPanel.add(checkBoxPanel);

// Frame uses BorderLayout by default
add(centerPanel, BorderLayout.CENTER);
add(pricePanel, BorderLayout.SOUTH);

Use a GUI Builder

As you have seen, implementing even a simple graphical user interface in Java is quite tedious.
You have to write a lot of code for constructing components, using layout managers, and pro-
viding event handlers. Most of the code is repetitive.

A GUI builder takes away much of the tedium. Most GUI builders help you in three ways:
•	 You drag and drop components onto a panel. The GUI builder writes the layout manage-

ment code for you.
•	 You customize components with a dialog box, setting properties such as fonts, colors, text,

and so on. The GUI builder writes the customization code for you.
•	 You provide event handlers by picking the event to process and providing just the code

snippet for the listener method. The GUI builder writes the boilerplate code for attaching
a listener object.

Java 6 introduced GroupLayout, a powerful layout manager that was specifically designed to be
used by GUI builders. The free NetBeans development environment, available from http://
netbeans.org, makes use of this layout manager—see Figure 7.

Programming Tip 11.1

Figure 7  A GUI Builder

The GroupLayout
manages the components

on this form

Use this dialog box
to edit component

properties

Click here to
view generated

source code

Drag components
from this palette

onto the form

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

11.3  Menus   521

If you need to build a complex user interface, you will find that learning to use a GUI
builder is a very worthwhile investment. You will spend less time writing boring code, and
you will have more fun designing your user interface and focusing on the functionality of your
program.

11.3  Menus
Anyone who has ever used a graphical user interface is familiar with pull-down
menus (see Figure 8). At the top of the frame is a menu bar that contains the top-level
menus. Each menu is a collection of menu items and submenus.

The sample program for this section builds up a small but typical menu and traps
the action events from the menu items. The program allows the user to specify the
font for a label by selecting a face name, font size, and font style. In Java it is easy to
create these menus.

You add the menu bar to the frame:
public class MyFrame extends JFrame
{
 public MyFrame()
 {
 JMenuBar menuBar = new JMenuBar();
 setJMenuBar(menuBar);
 . . .
 }
 . . .
}

Worked Example 11.1	 Programming a Working Calculator

In this Worked Example, we implement arithmetic and scientific operations for a calculator.
The sample program in Section 11.1 showed how to lay out the buttons for a simple calculator,
and we use that program as a starting point.

A frame contains a
menu bar. The menu
bar contains menus.
A menu contains
submenus and
menu items.

Figure 8 
Pull-Down Menus

Menu bar

Submenu

Menu item

Menu

522  Chapter 11  Advanced User Interfaces

A menu provides a list of available choices.

Menus are then added to the menu bar:
JMenu fileMenu = new JMenu("File");
JMenu fontMenu = new JMenu("Font");
menuBar.add(fileMenu);
menuBar.add(fontMenu);

You add menu items and submenus with the add method:
JMenuItem exitItem = new JMenuItem("Exit");
fileMenu.add(exitItem);

JMenu styleMenu = new JMenu("Style");
fontMenu.add(styleMenu); // A submenu

A menu item has no further submenus. When the user selects a menu item, the menu
item sends an action event. Therefore, you want to add a listener to each menu item:

ActionListener listener = new ExitItemListener();
exitItem.addActionListener(listener);

You add action listeners only to menu items, not to menus or the menu bar. When the
user clicks on a menu name and a submenu opens, no action event is sent.

To keep the program readable, it is a good idea to use a separate method for each
menu or set of related menus. For example,

public JMenu createFaceMenu()
{
 JMenu menu = new JMenu("Face");
 menu.add(createFaceItem("Serif"));
 menu.add(createFaceItem("SansSerif"));
 menu.add(createFaceItem("Monospaced"));
 return menu;
}

Now consider the createFaceItem method. It has a string parameter variable for the
name of the font face. When the item is selected, its action listener needs to

1.	Set the current face name to the menu item text.
2.	Make a new font from the current face, size, and style, and apply it to the label.

We have three menu items, one for each supported face name. Each of them needs to
set a different name in the first step. Of course, we can make three listener classes Ser-
ifListener, SansSerifListener, and MonospacedListener, but that is not very elegant. After
all, the actions only vary by a single string. We can store that string inside the listener
class and then make three objects of the same listener class:

class FaceItemListener implements ActionListener
{
 private String name;

 public FaceItemListener(String newName) { name = newName; }

Menu items generate
action events.

11.3  Menus   523

 public void actionPerformed(ActionEvent event)
 {
 faceName = name; // Sets an instance variable of the frame class
 setLabelFont();
 }
}

Now we can install a listener object with the appropriate name:
public JMenuItem createFaceItem(String name)
{
 JMenuItem item = new JMenuItem(name);
 ActionListener listener = new FaceItemListener(name);
 item.addActionListener(listener);
 return item;
}

This approach is still a bit tedious. We can do better by using a local inner class (see
Special Topic 10.2). When we move the declaration of the inner class inside the cre-
ateFaceItem method, the actionPerformed method can access the name parameter variable
directly. However, we need to observe a technical rule. Because name is a local variable,
it must be declared as final to be accessible from an inner class method.

public JMenuItem createFaceItem(final String name)
// Final variables can be accessed from an inner class method
{
 class FaceItemListener implements ActionListener // A local inner class
 {
 public void actionPerformed(ActionEvent event)
 {
 facename = name; // Accesses the local variable name
 setLabelFont();
 }
 }

 JMenuItem item = new JMenuItem(name);
 ActionListener listener = new FaceItemListener();
 item.addActionListener(listener);
 return item;
}

The same strategy is used for the createSizeItem and createStyleItem methods.

section_3/FontViewer2.java

1 import javax.swing.JFrame;
2
3 /**
4 This program uses a menu to display font effects.
5 */
6 public class FontViewer2
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new FontFrame2();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setTitle("FontViewer");
13 frame.setVisible(true);
14 }
15 }

524  Chapter 11  Advanced User Interfaces

section_3/FontFrame2.java

1 import java.awt.BorderLayout;
2 import java.awt.Font;
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5 import javax.swing.JFrame;
6 import javax.swing.JLabel;
7 import javax.swing.JMenu;
8 import javax.swing.JMenuBar;
9 import javax.swing.JMenuItem;

10
11 /**
12 This frame has a menu with commands to change the font
13 of a text sample.
14 */
15 public class FontFrame2 extends JFrame
16 {
17 private static final int FRAME_WIDTH = 300;
18 private static final int FRAME_HEIGHT = 400;
19
20 private JLabel label;
21 private String facename;
22 private int fontstyle;
23 private int fontsize;
24
25 /**
26 Constructs the frame.
27 */
28 public FontFrame2()
29 {
30 // Construct text sample
31 label = new JLabel("Big Java");
32 add(label, BorderLayout.CENTER);
33
34 // Construct menu
35 JMenuBar menuBar = new JMenuBar();
36 setJMenuBar(menuBar);
37 menuBar.add(createFileMenu());
38 menuBar.add(createFontMenu());
39
40 facename = "Serif";
41 fontsize = 24;
42 fontstyle = Font.PLAIN;
43
44 setLabelFont();
45 setSize(FRAME_WIDTH, FRAME_HEIGHT);
46 }
47
48 class ExitItemListener implements ActionListener
49 {
50 public void actionPerformed(ActionEvent event)
51 {
52 System.exit(0);
53 }
54 }
55
56 /**
57 Creates the File menu.

11.3  Menus   525

58 @return the menu
59 */
60 public JMenu createFileMenu()
61 {
62 JMenu menu = new JMenu("File");
63 JMenuItem exitItem = new JMenuItem("Exit");
64 ActionListener listener = new ExitItemListener();
65 exitItem.addActionListener(listener);
66 menu.add(exitItem);
67 return menu;
68 }
69
70 /**
71 Creates the Font submenu.
72 @return the menu
73 */
74 public JMenu createFontMenu()
75 {
76 JMenu menu = new JMenu("Font");
77 menu.add(createFaceMenu());
78 menu.add(createSizeMenu());
79 menu.add(createStyleMenu());
80 return menu;
81 }
82
83 /**
84 Creates the Face submenu.
85 @return the menu
86 */
87 public JMenu createFaceMenu()
88 {
89 JMenu menu = new JMenu("Face");
90 menu.add(createFaceItem("Serif"));
91 menu.add(createFaceItem("SansSerif"));
92 menu.add(createFaceItem("Monospaced"));
93 return menu;
94 }
95
96 /**
97 Creates the Size submenu.
98 @return the menu
99 */

100 public JMenu createSizeMenu()
101 {
102 JMenu menu = new JMenu("Size");
103 menu.add(createSizeItem("Smaller", -1));
104 menu.add(createSizeItem("Larger", 1));
105 return menu;
106 }
107
108 /**
109 Creates the Style submenu.
110 @return the menu
111 */
112 public JMenu createStyleMenu()
113 {
114 JMenu menu = new JMenu("Style");
115 menu.add(createStyleItem("Plain", Font.PLAIN));
116 menu.add(createStyleItem("Bold", Font.BOLD));

526  Chapter 11  Advanced User Interfaces

117 menu.add(createStyleItem("Italic", Font.ITALIC));
118 menu.add(createStyleItem("Bold Italic", Font.BOLD
119 + Font.ITALIC));
120 return menu;
121 }
122
123 /**
124 Creates a menu item to change the font face and set its action listener.
125 @param name the name of the font face
126 @return the menu item
127 */
128 public JMenuItem createFaceItem(final String name)
129 {
130 class FaceItemListener implements ActionListener
131 {
132 public void actionPerformed(ActionEvent event)
133 {
134 facename = name;
135 setLabelFont();
136 }
137 }
138
139 JMenuItem item = new JMenuItem(name);
140 ActionListener listener = new FaceItemListener();
141 item.addActionListener(listener);
142 return item;
143 }
144
145 /**
146 Creates a menu item to change the font size
147 and set its action listener.
148 @param name the name of the menu item
149 @param increment the amount by which to change the size
150 @return the menu item
151 */
152 public JMenuItem createSizeItem(String name, final int increment)
153 {
154 class SizeItemListener implements ActionListener
155 {
156 public void actionPerformed(ActionEvent event)
157 {
158 fontsize = fontsize + increment;
159 setLabelFont();
160 }
161 }
162
163 JMenuItem item = new JMenuItem(name);
164 ActionListener listener = new SizeItemListener();
165 item.addActionListener(listener);
166 return item;
167 }
168
169 /**
170 Creates a menu item to change the font style
171 and set its action listener.
172 @param name the name of the menu item
173 @param style the new font style
174 @return the menu item
175 */

11.3  Menus   527

176 public JMenuItem createStyleItem(String name, final int style)
177 {
178 class StyleItemListener implements ActionListener
179 {
180 public void actionPerformed(ActionEvent event)
181 {
182 fontstyle = style;
183 setLabelFont();
184 }
185 }
186
187 JMenuItem item = new JMenuItem(name);
188 ActionListener listener = new StyleItemListener();
189 item.addActionListener(listener);
190 return item;
191 }
192
193 /**
194 Sets the font of the text sample.
195 */
196 public void setLabelFont()
197 {
198 Font f = new Font(facename, fontstyle, fontsize);
199 label.setFont(f);
200 }
201 }

12.	 Why do JMenu objects not generate action events?
13.	 Can you add a menu item directly to the menu bar? Try it out. What happens?
14.	 Why is the increment parameter variable in the createSizeItem method declared

as final?
15.	 Why can’t the createFaceItem method simply set the faceName instance variable,

like this:
class FaceItemListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 setLabelFont();
 }
}

public JMenuItem createFaceItem(String name)
{
 JMenuItem item = new JMenuItem(name);
 faceName = name;
 ActionListener listener = new FaceItemListener();
 item.addActionListener(listener);
 return item;
}

16.	 In this program, the font specification (name, size, and style) is stored in instance
variables. Why was this not necessary in the program of the previous section?

Practice It	 Now you can try these exercises at the end of the chapter: R11.12, P11.6, P11.7.

S e l f C h e c k

528  Chapter 11  Advanced User Interfaces

11.4  Exploring the Swing Documentation
In the preceding sections, you saw the
basic properties of the most common user-
interface components. We purposefully
omitted many options and variations to
simplify the discussion. You can go a long
way by using only the simplest properties
of these components. If you want to imple-
ment a more sophisticated effect, you can
look inside the Swing documentation. You
may find the documentation intimidating
at first glance, though. The purpose of this
section is to show you how you can use the
documentation to your advantage without
being overwhelmed.

As an example, consider a program for mixing colors by specifying the red, green,
and blue values. How can you specify the colors? Of course, you could supply three
text fields, but sliders would be more convenient for users of your program (see
Figure 9).

The Swing user-interface toolkit has a large set of user-interface components. How
do you know if there is a slider? You can buy a book that illustrates all Swing compo-
nents. Or you can run the sample application included in the Java Development Kit
that shows off all Swing components (see Figure 10). Or you can look at the names
of all of the classes that start with J and decide that JSlider may be a good candidate.

Next, you need to ask yourself a few questions:

•	 How do I construct a JSlider?
•	 How can I get notified when the user has moved it?
•	 How can I tell to which value the user has set it?

In order to use the Swing library effectively,
you need to study the API documentation.

You should learn to
navigate the API
documentation to
find out more about
user-interface
components.

Figure 9  A Color Viewer with Sliders

11.4 E xploring the Swing Documentation   529

Figure 10 
The SwingSet Demo

When you look at the documentation of the JSlider class, you will probably not be
happy. There are over 50 methods in the JSlider class and over 250 inherited methods,
and some of the method descriptions look downright scary, such as the one in
Figure 11. Apparently some folks out there are concerned about the valueIsAdjusting
property, whatever that may be, and the designers of this class felt it necessary to

Figure 11  A Mysterious Method Description from the API Documentation

530  Chapter 11  Advanced User Interfaces

supply a method to tweak that property. Until you too feel that need, your best bet is
to ignore this method. As the author of an introductory book, it pains me to tell you
to ignore certain facts. But the truth of the matter is that the Java library is so large
and complex that nobody understands it in its entirety, not even the designers of Java
themselves. You need to develop the ability to separate fundamental concepts from
ephemeral minutiae. For example, it is important that you understand the concept of
event handling. Once you understand the concept, you can ask the question, “What
event does the slider send when the user moves it?” But it is not important that you
memorize how to set tick marks or that you know how to implement a slider with a
custom look and feel.

Let’s go back to our fundamental questions. In Java 6, there are six constructors for
the JSlider class. You want to learn about one or two of them. You must strike a bal-
ance somewhere between the trivial and the bizarre. Consider

public JSlider()
 Creates a horizontal slider with the range 0 to 100 and an initial value of 50.

Maybe that is good enough for now, but what if you want another range or initial
value? It seems too limited.

On the other side of the spectrum, there is
public JSlider(BoundedRangeModel brm)
 Creates a horizontal slider using the specified BoundedRangeModel.

Whoa! What is that? You can click on the BoundedRangeModel link to get a long explana-
tion of this class. This appears to be some internal mechanism for the Swing imple-
mentors. Let’s try to avoid this constructor if we can. Looking further, we find

public JSlider(int min, int max, int value)
 Creates a horizontal slider using the specified min, max, and value.

This sounds general enough to be useful and simple enough to be usable. You might
want to stash away the fact that you can have vertical sliders as well.

Next, you want to know what events a slider generates. There is no addAction
Listener method. That makes sense. Adjusting a slider seems different from clicking a
button, and Swing uses a different event type for these events. There is a method

public void addChangeListener(ChangeListener l)

Click on the ChangeListener link to find out more about this interface. It has a single
method

void stateChanged(ChangeEvent e)

Apparently, that method is called whenever the user moves the slider. What is a Change
Event? Once again, click on the link, to find out that this event class has no methods of
its own, but it inherits the getSource method from its superclass EventObject. The get-
Source method tells us which component generated this event, but we don’t need that
information—we know that the event came from the slider.

Now let’s make a plan: Add a change event listener to each slider. When the slider
is changed, the stateChanged method is called. Find out the new value of the slider.
Recompute the color value and repaint the color panel. That way, the color panel is
continually repainted as the user moves one of the sliders.

To compute the color value, you will still need to get the current value of the slider.
Look at all the methods that start with get. Sure enough, you find

public int getValue()
 Returns the slider’s value.

11.4 E xploring the Swing Documentation   531

Figure 12  The Components of the Color Viewer Frame

JPanel
in CENTER position

JPanel
with GridLayout
in SOUTH position

Now you know everything you need to write the program. The program uses one
new Swing component and one event listener of a new type. After having mastered
the basics, you may want to explore the capabilities of the component further, for
example by adding tick marks—see Exercise P11.9.

Figure 12 shows how the components are arranged in the frame.

section_4/ColorViewer.java

1 import javax.swing.JFrame;
2
3 public class ColorViewer
4 {
5 public static void main(String[] args)
6 {
7 JFrame frame = new ColorFrame();
8 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9 frame.setVisible(true);

10 }
11 }

section_4/ColorFrame.java

1 import java.awt.BorderLayout;
2 import java.awt.Color;
3 import java.awt.GridLayout;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6 import javax.swing.JPanel;
7 import javax.swing.JSlider;
8 import javax.swing.event.ChangeListener;
9 import javax.swing.event.ChangeEvent;

10
11 public class ColorFrame extends JFrame
12 {
13 private static final int FRAME_WIDTH = 300;
14 private static final int FRAME_HEIGHT = 400;

532  Chapter 11  Advanced User Interfaces

15
16 private JPanel colorPanel;
17 private JSlider redSlider;
18 private JSlider greenSlider;
19 private JSlider blueSlider;
20
21 public ColorFrame()
22 {
23 colorPanel = new JPanel();
24
25 add(colorPanel, BorderLayout.CENTER);
26 createControlPanel();
27 setSampleColor();
28 setSize(FRAME_WIDTH, FRAME_HEIGHT);
29 }
30
31 class ColorListener implements ChangeListener
32 {
33 public void stateChanged(ChangeEvent event)
34 {
35 setSampleColor();
36 }
37 }
38
39 public void createControlPanel()
40 {
41 ChangeListener listener = new ColorListener();
42
43 redSlider = new JSlider(0, 255, 255);
44 redSlider.addChangeListener(listener);
45
46 greenSlider = new JSlider(0, 255, 175);
47 greenSlider.addChangeListener(listener);
48
49 blueSlider = new JSlider(0, 255, 175);
50 blueSlider.addChangeListener(listener);
51
52 JPanel controlPanel = new JPanel();
53 controlPanel.setLayout(new GridLayout(3, 2));
54
55 controlPanel.add(new JLabel("Red"));
56 controlPanel.add(redSlider);
57
58 controlPanel.add(new JLabel("Green"));
59 controlPanel.add(greenSlider);
60
61 controlPanel.add(new JLabel("Blue"));
62 controlPanel.add(blueSlider);
63
64 add(controlPanel, BorderLayout.SOUTH);
65 }
66
67 /**
68 Reads the slider values and sets the panel to
69 the selected color.
70 */
71 public void setSampleColor()
72 {
73 // Read slider values
74

11.5  Using Timer Events for Animations   533

75 int red = redSlider.getValue();
76 int green = greenSlider.getValue();
77 int blue = blueSlider.getValue();
78
79 // Set panel background to selected color
80
81 colorPanel.setBackground(new Color(red, green, blue));
82 colorPanel.repaint();
83 }
84 }

17.	 Suppose you want to allow users to pick a color from a color dialog box. Which
class would you use? Look in the API documentation.

18.	 Why does a slider emit change events and not action events?

Practice It	 Now you can try these exercises at the end of the chapter: R11.14, P11.2, P11.9.

11.5  Using Timer Events for Animations
In this section we introduce timer events and show how you can use them to imple-
ment simple animations.

The Timer class in the javax.swing package generates a sequence of action events,
spaced at even time intervals. (You can think of a timer as an invisible button that is
automatically clicked.) This is useful whenever you want to send continuous updates
to a component. For example, in an animation, you may want to update a scene ten
times per second and redisplay the image to give the illusion of movement.

When you use a timer, you specify the frequency of the events and an object of a
class that implements the ActionListener interface. Place whatever action you want to
occur inside the actionPerformed method. Finally, start the timer.

class MyListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 Action that is executed at each timer event
 }
}

MyListener listener = new MyListener();
Timer t = new Timer(interval, listener);
t.start();

Then the timer calls the actionPerformed method of the
listener object every interval milliseconds.

A Swing timer notifies a listener with each “tick”.

S e l f C h e c k

A timer generates
action events at
fixed intervals.

534  Chapter 11  Advanced User Interfaces

Our sample program will display a moving rectangle. We first supply a Rectangle­
Component class with a moveRectangleBy method that moves the rectangle by a given
amount.

section_5/RectangleComponent.java

1 import java.awt.Graphics;
2 import javax.swing.JComponent;
3
4 /**
5 This component displays a rectangle that can be moved.
6 */
7 public class RectangleComponent extends JComponent
8 {
9 private static final int RECTANGLE_WIDTH = 20;

10 private static final int RECTANGLE_HEIGHT = 30;
11
12 private int xLeft;
13 private int yTop;
14
15 public RectangleComponent()
16 {
17 xLeft = 0;
18 yTop = 0;
19 }
20
21 public void paintComponent(Graphics g)
22 {
23 g.fillRect(xLeft, yTop, RECTANGLE_WIDTH, RECTANGLE_HEIGHT);
24 }
25
26 /**
27 Moves the rectangle by a given amount.
28 @param dx the amount to move in the x-direction
29 @param dy the amount to move in the y-direction
30 */
31 public void moveRectangleBy(int dx, int dy)
32 {
33 xLeft = xLeft + dx;
34 yTop = yTop + dy;
35 repaint();
36 }
37 }

Note the call to repaint in the moveRectangleBy method. This call is necessary to ensure
that the component is repainted after the position of the rectangle has been changed.
The call to repaint forces a call to the paintComponent method. The paintComponent
method redraws the component, causing the rectangle to appear at the updated
location.

The actionPerformed method of the timer listener moves the rectangle one pixel
down and to the right:

scene.moveRectangleBy(1, 1);

Because the actionPerformed method is called many times per second, the rectangle
appears to move smoothly across the frame.

To make an
animation, the timer
listener should
update and repaint a
component several
times per second.

11.5  Using Timer Events for Animations   535

section_5/RectangleFrame.java

1 import java.awt.event.ActionEvent;
2 import java.awt.event.ActionListener;
3 import javax.swing.JFrame;
4 import javax.swing.Timer;
5
6 /**
7 This frame contains a moving rectangle.
8 */
9 public class RectangleFrame extends JFrame

10 {
11 private static final int FRAME_WIDTH = 300;
12 private static final int FRAME_HEIGHT = 400;
13
14 private RectangleComponent scene;
15
16 class TimerListener implements ActionListener
17 {
18 public void actionPerformed(ActionEvent event)
19 {
20 scene.moveRectangleBy(1, 1);
21 }
22 }
23
24 public RectangleFrame()
25 {
26 scene = new RectangleComponent();
27 add(scene);
28
29 setSize(FRAME_WIDTH, FRAME_HEIGHT);
30
31 ActionListener listener = new TimerListener();
32
33 final int DELAY = 100; // Milliseconds between timer ticks
34 Timer t = new Timer(DELAY, listener);
35 t.start();
36 }
37 }

19.	 Why does a timer require a listener object?
20.	 How can you make the rectangle move backwards?
21.	 Describe two ways of modifying the program so that the rectangle moves twice

as fast.
22.	 How can you make a car move instead of a rectangle?
23.	 How can you make two rectangles move in parallel in the scene?
24.	 What would happen if you omitted the call to repaint in the moveRectangleBy

method?

Practice It	 Now you can try these exercises at the end of the chapter: P11.12, P11.13, P11.14.

S e l f C h e c k

536  Chapter 11  Advanced User Interfaces

11.6  Mouse Events
If you write programs that show drawings, and
you want users to manipulate the drawings
with a mouse, then you need to listen to mouse
events. Mouse listeners are more complex than
action listeners, the listeners that process button
clicks and timer ticks.

A mouse listener must implement the Mouse
Listener interface, which contains the following
five methods:

public interface MouseListener
{
 void mousePressed(MouseEvent event);
 // Called when a mouse button has been pressed on a component
 void mouseReleased(MouseEvent event);
 // Called when a mouse button has been released on a component
 void mouseClicked(MouseEvent event);
 // Called when the mouse has been clicked on a component
 void mouseEntered(MouseEvent event);
 // Called when the mouse enters a component
 void mouseExited(MouseEvent event);
 // Called when the mouse exits a component
}

The mousePressed and mouseReleased methods are called whenever a mouse button is
pressed or released. If a button is pressed and released in quick succession, and the
mouse has not moved, then the mouseClicked method is called as well. The mouseEntered
and mouseExited methods can be used to highlight a user-interface component when-
ever the mouse is pointing inside it.

The most commonly used method is mousePressed. Users generally expect that their
actions are processed as soon as the mouse button is pressed.

You add a mouse listener to a component by calling the addMouseListener method:
public class MyMouseListener implements MouseListener
{
 public void mousePressed(MouseEvent event)
 {
 int x = event.getX();
 int y = event.getY();
 Process mouse event at (x, y)
 }

 // Do-nothing methods
 public void mouseReleased(MouseEvent event) {}
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
}

MouseListener listener = new MyMouseListener();
component.addMouseListener(listener);

In our sample program, a user clicks on a component containing a rectangle. When-
ever the mouse button is pressed, the rectangle is moved to the mouse location. We

In Swing, a mouse event isn’t a gather-
ing of rodents; it’s notification of a
mouse click by the program user.

You use a mouse
listener to capture
mouse events.

11.6  Mouse Events   537

first enhance the RectangleComponent class and add a moveRectangleTo method to move
the rectangle to a new position.

section_6/RectangleComponent2.java

1 import java.awt.Graphics;
2 import java.awt.Rectangle;
3 import javax.swing.JComponent;
4
5 /**
6 This component displays a rectangle that can be moved.
7 */
8 public class RectangleComponent2 extends JComponent
9 {

10 private static final int RECTANGLE_WIDTH = 20;
11 private static final int RECTANGLE_HEIGHT = 30;
12
13 private int xLeft;
14 private int yTop;
15
16 public RectangleComponent2()
17 {
18 xLeft = 0;
19 yTop = 0;
20 }
21
22 public void paintComponent(Graphics g)
23 {
24 g.fillRect(xLeft, yTop, RECTANGLE_WIDTH, RECTANGLE_HEIGHT);
25 }
26
27 /**
28 Moves the rectangle to the given location.
29 @param x the x-position of the new location
30 @param y the y-position of the new location
31 */
32 public void moveRectangleTo(int x, int y)
33 {
34 xLeft = x;
35 yTop = y;
36 repaint();
37 }
38 }

Note the call to repaint in the moveRectangleTo method. As you saw before, this call
causes the component to repaint itself and show the rectangle in the new position.

Now, add a mouse listener to the component. Whenever the mouse is pressed, the
listener moves the rectangle to the mouse location.

class MousePressListener implements MouseListener
{
 public void mousePressed(MouseEvent event)
 {
 int x = event.getX();
 int y = event.getY();
 scene.moveRectangleTo(x, y);
 }
 . . .
}

538  Chapter 11  Advanced User Interfaces

Figure 13  Clicking the Mouse Moves the Rectangle

It often happens that a particular listener specifies actions only for one or two of the
listener methods. Nevertheless, all five methods of the interface must be imple-
mented. The unused methods are simply implemented as do-nothing methods.

Go ahead and run the RectangleViewer2 program. Whenever you click the mouse
inside the frame, the top-left corner of the rectangle moves to the mouse pointer (see
Figure 13).

section_6/RectangleViewer2.java

1 import javax.swing.JFrame;
2
3 /**
4 This program displays a rectangle that can be moved with the mouse.
5 */
6 public class RectangleViewer2
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new RectangleFrame2();
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 frame.setVisible(true);
13 }
14 }

section_6/RectangleFrame2.java

1 import java.awt.event.MouseListener;
2 import java.awt.event.MouseEvent;
3 import javax.swing.JFrame;
4
5 /**
6 This frame contains a moving rectangle.
7 */
8 public class RectangleFrame2 extends JFrame
9 {

11.6  Mouse Events   539

10 private static final int FRAME_WIDTH = 300;
11 private static final int FRAME_HEIGHT = 400;
12
13 private RectangleComponent2 scene;
14
15 class MousePressListener implements MouseListener
16 {
17 public void mousePressed(MouseEvent event)
18 {
19 int x = event.getX();
20 int y = event.getY();
21 scene.moveRectangleTo(x, y);
22 }
23
24 // Do-nothing methods
25 public void mouseReleased(MouseEvent event) {}
26 public void mouseClicked(MouseEvent event) {}
27 public void mouseEntered(MouseEvent event) {}
28 public void mouseExited(MouseEvent event) {}
29 }
30
31 public RectangleFrame2()
32 {
33 scene = new RectangleComponent2();
34 add(scene);
35
36 MouseListener listener = new MousePressListener();
37 scene.addMouseListener(listener);
38
39 setSize(FRAME_WIDTH, FRAME_HEIGHT);
40 }
41 }

25.	 Why was the moveRectangleBy method in RectangleComponent2 replaced with a
moveRectangleTo method?

26.	 Why must the MousePressListener class supply five methods?
27.	 How could you change the behavior of the program so that a new rectangle is

added whenever the mouse is clicked?

Practice It	 Now you can try these exercises at the end of the chapter: R11.21, P11.22, P11.23.

Keyboard Events

If you program a game, you may want to process keystrokes, such as the arrow keys. Add a
key listener to the component on which you draw the game scene. The KeyListener interface
has three methods. As with a mouse listener, you are most interested in key press events, and
you can leave the other two methods empty. Your key listener class should look like this:

class MyKeyListener implements KeyListener
{
 public void keyPressed(KeyEvent event)
 {
 String key = KeyStroke.getKeyStrokeForEvent(event).toString();
 key = key.replace("pressed ", "");
 Process key.

S e l f C h e c k

Special Topic 11.1

540  Chapter 11  Advanced User Interfaces

 }

 // Do-nothing methods
 public void keyReleased(KeyEvent event) {}
 public void keyTyped(KeyEvent event) {}
}

The call KeyStroke.getKeyStrokeForEvent(event).toString()
turns the event object into a text description of the key,
such as "pressed LEFT". In the next line, we eliminate the
"pressed " prefix. The remainder is a string such as "LEFT"
or "A" that describes the key that was pressed. You can
find a list of all key names in the API documentation of the KeyStroke class.

As always, remember to attach the listener to the event source:

KeyListener listener = new MyKeyListener();
scene.addKeyListener(listener);

In order to receive key events, your component must call

scene.setFocusable(true);

Event Adapters

In the preceding section you saw how to install a mouse listener in a mouse event source and
how the listener methods are called when an event occurs. Usually, a program is not interested
in all listener notifications. For example, a program may only be interested in mouse clicks and
may not care that these mouse clicks are composed of “mouse pressed” and “mouse released”
events. Of course, the program could supply a listener that declares all those methods in which
it has no interest as “do-nothing” methods, for example:

class MouseClickListener implements MouseListener
{
 public void mouseClicked(MouseEvent event)
 {
 Mouse click action
 }

 // Four do-nothing methods
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mousePressed(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
}

To avoid this labor, some friendly soul has created a MouseAdapter class that implements the
MouseListener interface such that all methods do nothing. You can extend that class, inheriting
the do-nothing methods and overriding the methods that you care about, like this:

class MouseClickListener extends MouseAdapter
{
 public void mouseClicked(MouseEvent event)
 {
 Mouse click action
 }
}

There is also a KeyAdapter that implements the KeyListener interface (see Special Topic 11.1),
providing three do-nothing methods.

Whenever the program user presses
a key, a key event is generated.

O n l i n e E x a m p l e

A complete program
that uses the arrow
keys to move a
rectangle.

Special Topic 11.2

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter Summary  541

Learn how to arrange multiple components in a container.

•	 User-interface components are arranged by placing them inside containers.
Containers can be placed inside larger containers.

•	 Each container has a layout manager that directs the arrangement of its
components.

•	 Three useful layout managers are the border layout, flow layout, and grid layout.
•	 When adding a component to a container with the border layout, specify the

NORTH, SOUTH, WEST, EAST, or CENTER position.
•	 The content pane of a frame has a border layout by default. A panel has a flow

layout by default.

Select among the Swing components for presenting choices to the user.

•	 For a small set of mutually exclusive choices, use a group of radio buttons or a
combo box.

•	 Add radio buttons to a ButtonGroup so that only one button in the group is selected
at any time.

•	 You can place a border around a panel to group its contents visually.
•	 For a binary choice, use a check box.
•	 For a large set of choices, use a combo box.
•	 Radio buttons, check boxes, and combo boxes generate action events, just as

buttons do.

Implement menus in a Swing program.

•	 A frame contains a menu bar. The menu bar contains menus.
A menu contains submenus and menu items.

•	 Menu items generate action events.

Worked Example 11.2	 Adding Mouse and Keyboard Support to the
Bar Chart Creator

In this Worked Example, we will enhance the bar chart creator of Worked Example 10.1 and
add support for mouse and keyboard operations.

Video Example 11.1	 Designing a Baby Naming Program

In this Video Example, you will see how to design a user interface for
a program that suggests baby names.

C h a p t e r Summ a r y

542  Chapter 11  Advanced User Interfaces

Use the Swing documentation.

•	 You should learn to navigate the API documentation to find out more about
user-interface components.

Use timer events to implement animations.

•	 A timer generates action events at fixed intervals.
•	 To make an animation, the timer listener should update and

repaint a component several times per second.

Write programs that process mouse events.

•	 You use a mouse listener to capture mouse events.

S ta n d a r d Lib r a r y i t e m s i n t r o d uc e d i n t h i s c h a p t e r

java.awt.BorderLayout
 CENTER
 EAST
 NORTH
 SOUTH
 WEST
java.awt.Component
 addKeyListener
 addMouseListener
 setFocusable
java.awt.Container
 setLayout
java.awt.FlowLayout
java.awt.Font
 BOLD
 ITALIC
java.awt.GridLayout
java.awt.event.KeyEvent
java.awt.event.KeyListener
 keyPressed
 keyReleased
 keyTyped
java.awt.event.MouseEvent
 getX
 getY
java.awt.event.MouseListener
 mouseClicked
 mouseEntered
 mouseExited
 mousePressed
 mouseReleased
javax.swing.AbstractButton
 isSelected
 setSelected

javax.swing.ButtonGroup
 add
javax.swing.JCheckBox
javax.swing.JComboBox
 addItem
 getSelectedItem
 isEditable
 setEditable
 setSelectedItem
javax.swing.JComponent
 setBorder
 setFocusable
 setFont
javax.swing.JFrame
 setJMenuBar
javax.swing.JMenu
 add
javax.swing.JMenuBar
 add
javax.swing.JMenuItem
javax.swing.JRadioButton
javax.swing.JSlider
 addChangeListener
 getValue
javax.swing.KeyStroke
 getKeyStrokeForEvent
javax.swing.Timer
 start
 stop
javax.swing.border.EtchedBorder
javax.swing.border.TitledBorder
javax.swing.event.ChangeEvent
javax.swing.event.ChangeListener
 stateChanged

Review Exercises  543

• R11.1	 Can you use a flow layout for the components in a frame? If yes, how?

• R11.2	 What is the advantage of a layout manager over telling the container “place this com­
ponent at position (x, y)”?

•• R11.3	 What happens when you place a single button into the CENTER area of a container that
uses a border layout? Try it out by writing a small sample program if you aren’t sure
of the answer.

•• R11.4	 What happens if you place multiple buttons directly into the SOUTH area, without
using a panel? Try it out by writing a small sample program if you aren’t sure of the
answer.

•• R11.5	 What happens when you add a button to a container that uses a border layout and
omit the position? Try it out and explain.

•• R11.6	 What happens when you try to add a button to another button? Try it out and
explain.

•• R11.7	 The control panel in Section 11.4 uses a grid layout manager. Explain a drawback of
the grid that is apparent in Figure 12. What could you do to overcome this drawback?

••• R11.8	 What is the difference between the grid layout and the grid bag layout?

••• R11.9	 Can you add icons to check boxes, radio buttons, and combo boxes? Browse the
Java documentation to find out. Then write a small test program to verify your
findings.

• R11.10	 What is the difference between radio buttons and check boxes?

• R11.11	 Why do you need a button group for radio buttons but not for check boxes?

• R11.12	 What is the difference between a menu bar, a menu, and a menu item?

• R11.13	 When browsing through the Java documentation for more information about slid­
ers, we ignored the JSlider constructor with no arguments. Why? Would it have
worked in our sample program?

• R11.14	 How do you construct a vertical slider? Consult the Swing documentation for an
answer.

•• R11.15	 Why doesn’t a JComboBox send out change events?

••• R11.16	 What component would you use to show a set of choices, as in a combo box, but so
that several items are visible at the same time? Run the Swing demo application or
look at a book with Swing example programs to find the answer.

•• R11.17	 How many Swing user-interface components are there? Look at the Java documen­
tation to get an approximate answer.

•• R11.18	 How many methods does the JProgressBar component have? Be sure to count inher­
ited methods. Look at the Java documentation.

• R11.19	 What is the difference between an ActionEvent and a MouseEvent?

•• R11.20	 What information does an action event object carry? What additional information
does a mouse event object carry? Hint: Check the API documentation.

R e v i e w E x er c i s e s

544  Chapter 11  Advanced User Interfaces

•• R11.21	 Why does the ActionListener interface have only one method, whereas the Mouse­­
Listener has five methods?

• P11.1	 Write an application with three buttons labeled “Red”, “Green”, and “Blue” that
changes the background color of a panel in the center of the frame to red, green,
or blue.

•• P11.2	 Add icons to the buttons of Exercise P11.1. Use a JButton constructor with an Icon
argument and supply an ImageIcon.

• P11.3	 Write an application with three radio buttons labeled “Red”, “Green”, and “Blue”
that changes the background color of a panel in the center of the frame to red, green,
or blue.

• P11.4	 Write an application with three check boxes labeled “Red”, “Green”, and “Blue”
that adds a red, green, or blue component to the background color of a panel in the
center of the frame. This application can display a total of eight color combinations.

• P11.5	 Write an application with a combo box containing three items labeled “Red”,
“Green”, and “Blue” that change the background color of a panel in the center of the
frame to red, green, or blue.

• P11.6	 Write an application with a Color menu and menu items labeled “Red”, “Green”,
and “Blue” that change the background color of a panel in the center of the frame to
red, green, or blue.

• P11.7	 Write a program that displays a number of rectangles at random positions. Supply
menu items “Fewer” and “More” that generate fewer or more random rectangles.
Each time the user selects “Fewer”, the count should be halved. Each time the user
clicks on “More”, the count should be doubled.

•• P11.8	 Modify the program of Exercise P11.7 to replace the buttons with a slider to gener­
ate more or fewer random rectangles.

•• P11.9	 Modify the slider program in Section 11.4 to add a set of tick marks to each slider
that show the exact slider position.

••• P11.10	 Enhance the font viewer program to allow the user to select different font faces.
Research the API documentation to find out how to find the available fonts on the
user’s system.

••• P11.11	 Write a program that lets users design charts such as the following:

Golden Gate

Brooklyn

Delaware Memorial

Mackinac

Use appropriate components to ask for the length, label, and color, then apply them
when the user clicks an “Add Item” button.

P r o g ra m m i n g E x er c i s e s

Programming Exercises  545

• P11.12	 Write a program that uses a timer to print the current time once a second. Hint: The
following code prints the current time:

Date now = new Date();
System.out.println(now);

The Date class is in the java.util package.

••• P11.13	 Change the RectangleComponent for the animation in Section 11.5 so that the rectangle
bounces off the edges of the component rather than simply moving outside.

•• P11.14	 Change the rectangle animation in Section 11.5 so that it shows two rectangles
moving in opposite directions.

•• P11.15	 Write a program that animates a car so that it moves across a frame.

••• P11.16	 Write a program that animates two cars moving across a frame in opposite directions
(but at different heights so that they don’t collide.)

••• P11.17	 Write a program that displays a scrolling message in a panel. Use a timer for the
scrolling effect. In the timer’s action listener, move the starting position of the mes­
sage and repaint. When the message has left the window, reset the starting position
to the other corner. Provide a user interface to customize the message text, font,
foreground and background colors, and the scrolling speed and direction.

• P11.18	 Change the RectangleComponent for the mouse listener program in Section 11.6 so that
a new rectangle is added to the component whenever the mouse is clicked. Hint:
Store all points on which the user clicked, and draw all rectangles in the paint­
Component method.

• P11.19	 Write a program that prompts the user to enter the x- and y‑positions of a center
point and a radius, using text fields.When the user clicks a “Draw” button, draw a
circle with that center and radius in a component.

•• P11.20	 Write a program that allows the user to specify a circle by typing the radius in a text
field and then clicking on the center. Note that you don’t need a “Draw” button.

• P11.21	 Write a program that allows the user to specify a circle with two mouse presses,
the first one on the center and the second on a point on the periphery. Hint: In the
mouse press handler, you must keep track of whether you already received the
center point in a previous mouse press.

••• P11.22	 Write a program that allows the user to specify a triangle with three mouse presses.
After the first mouse press, draw a small dot. After the second mouse press, draw a
line joining the first two points. After the third mouse press, draw the entire triangle.
The fourth mouse press erases the old triangle and starts a new one.

••• P11.23	 Implement a program that allows two players to play
tic-tac-toe. Draw the game grid and an indication of
whose turn it is (X or O). Upon the next click, check
that the mouse click falls into an empty location, fill
the location with the mark of the current player, and
give the other player a turn. If the game is won, indi­
cate the winner. Also supply a button for starting over.

546  Chapter 11  Advanced User Interfaces

••• P11.24	 Write a program that lets users design bar charts with a mouse. When the user clicks
inside a bar, the next mouse click extends the length of the bar to the x-coordinate of
the mouse click. (If it is at or near 0, the bar is removed.) When the user clicks below
the last bar, a new bar is added whose length is the x-coordinate of the mouse click.

•• Business P11.25	 Write a program with a graphical interface that allows the user to convert an amount
of money between U.S. dollars (USD), euros (EUR), and British pounds (GBP). The
user interface should have the following elements: a text box to enter the amount to
be converted, two combo boxes to allow the user to select the currencies, a button
to make the conversion, and a label to show the result. Display a warning if the user
does not choose different currencies. Use the following conversion rates:

1 EUR is equal to 1.42 USD.
1 GBP is equal to 1.64 USD.
1 GBP is equal to 1.13 EUR.

•• Business P11.26	 Write a program with a graphical interface that implements a login window with text
fields for the user name and password. When the login is successful, hide the login
window and open a new window with a welcome message. Follow these rules for
validating the password:

1.	The user name is not case sensitive.
2.	The password is case sensitive.
3.	The user has three opportunities to enter valid credentials.

Otherwise, display an error message and terminate the program. When the program
starts, read the file users.txt. Each line in that file contains a username and password,
separated by a space. You should make a users.txt file for testing your program.

•• Business P11.27	 In Exercise P11.26, the password is shown as it is typed. Browse the Swing docu-
mentation to find an appropriate component for entering a password. Improve the
solution of Exercise P11.26 by using this component instead of a text field. Each
time the user types a letter, show a ■ character.

A n s w e r s t o S e l f - C h e ck Q u e s t i o n s

1.	 Only the second one is displayed.
2.	 First add them to a panel, then add the panel to

the north end of a frame.
3.	 Place them inside a panel with a GridLayout that

has three rows and one column.
4.	 The button in the north stretches horizontally

to fill the width of the frame. The height of the
northern area is the normal height.

5.	 To get the double-wide button, put it in the
south of a panel with border layout whose
center has a 3 × 2 grid layout with the keys 7, 8,
4, 5, 1, 2. Put that panel in the west of another
border layout panel whose eastern area has a
4 × 1 grid layout with the remaining keys.

6.	 If you have many options, a set of radio but-
tons takes up a large area. A combo box can
show many options without using up much
space. But the user cannot see the options as
easily.

7.	 If one of them is checked, the other one is
unchecked. You should use radio buttons if
that is the behavior you want.

8.	 You can’t nest borders, but you can nest panels
with borders:
JPanel p1 = new JPanel();
p1.setBorder(new EtchedBorder());
JPanel p2 = new JPanel();
p2.setBorder(new EtchedBorder());
p1.add(p2);

Answers to Self-Check Questions  547

9.	 When any of the component settings is
changed, the program simply queries all of
them and updates the label.

10.	 To keep it from growing too large. It would
have grown to the same width and height as
the two panels below it.

11.	 Instead of using radio buttons with two
choices, use a checkbox.

12.	 When you open a menu, you have not yet
made a selection. Only JMenuItem objects cor-
respond to selections.

13.	 Yes, you can—JMenuItem is a subclass of JMenu.
The item shows up on the menu bar.When you
click on it, its listener is called. But the behav-
ior feels unnatural for a menu bar and is likely
to confuse users.

14.	 The parameter variable is accessed in a method
of an inner class.

15.	 Then the faceName variable is set when the menu
item is added to the menu, not when the user
selects the menu.

16.	 In the previous program, the user-interface
components effectively served as storage for
the font specification. Their current settings
were used to construct the font. But a menu
doesn’t save settings; it just generates an action.

17.	 JColorChooser.
18.	 Action events describe one-time changes, such

as button clicks. Change events describe con-
tinuous changes.

19.	 The timer needs to call some method whenever
the time interval expires. It calls the action
Performed method of the listener object.

20.	 Call scene.moveRectangleBy(-1, -1) in the action-
Performed method.

21.	 You can cut the timer delay in half (to 50 mil-
liseconds between ticks), or you can double
the distance by which the rectangle moves, by
calling scene.moveRectangleBy(2, 2).

22.	 The component class would need to draw a car
at positon (x, y) instead of a rectangle.

23.	 There are two entirely different ways:
a.	Add a second RectangleComponent to the

frame, using a grid layout. Change the
actionPerformed method of the TimerListener
to call moveRectangleBy on both components.

b.	Draw a second rectangle in the paint
Component method of RectangleComponent.

24.	 The moved rectangles won’t be painted, and
the rectangle will appear to be stationary until
the frame is repainted for an external reason.

25.	 Because you know the current mouse posi-
tion, not the amount by which the mouse has
moved.

26.	 It implements the MouseListener interface,
which has five methods.

27.	 The RectangleComponent2 class needs to keep
track of the locations of multiple rectangles. It
can do that with an array list of Point or Rect-
angle objects. The paintComponent method needs
to draw them all. Replace the moveRectangleTo
method with an addRectangleAt method that
adds a rectangle at a given (x, y) position.

12C h a p t e r

549

Object-
Oriented
Design

To learn how to discover new classes
and methods

To use CRC cards for class discovery

To understand the concepts of cohesion and coupling

To identify inheritance, aggregation, and
dependency relationships between classes

To describe class relationships using UML class diagrams

To apply object-oriented design techniques to building
complex programs

To use packages to organize programs

C h a p t e r Go a l s

C h a p t e r C o n t e n t s

12.1  Classes and Their
Responsibilities  550

12.2  Relationships Between
Classes  554

How To 12.1: Using CRC Cards and UML Diagrams
in Program Design  558

Special Topic 12.1: Attributes and Methods in
UML Diagrams  559

Special Topic 12.2: Multiplicities  560
Special Topic 12.3: Aggregation, Association,

and Composition  560

Programming Tip 12.1: Make Parallel Arrays
into Arrays of Objects  561

Programming Tip 12.2: Consistency  562

12.3  Application: Printing
an Invoice  562

Worked Example 12.1: Simulating an Automatic
Teller Machine 

12.4  Packages  574

550

Successfully implementing a software system—as simple as
your next homework project or as complex as the next air
traffic monitoring system—requires a great deal of planning
and design. In fact, for larger projects, the amount of time
spent on planning and design is much greater than the
amount of time spent on programming and testing.

Do you find that most of your homework time is spent in
front of the computer, keying in code and fixing bugs? If
so, you can probably save time by focusing on a better
design before you start coding. This chapter tells you how
to approach the design of an object-oriented program in a
systematic manner.

12.1  Classes and Their Responsibilities
When you design a program, you work from a requirements specification, a descrip-
tion of what your program should do. The designer’s task is to discover structures
that make it possible to implement the requirements in a computer program. In the
following sections, we will examine the steps of the design process.

12.1.1  Discovering Classes

When you solve a problem using objects and classes, you need to determine the
classes required for the implementation. You may be able to reuse existing classes, or
you may need to implement new ones.

One simple approach for discovering classes and methods is to look for the nouns
and verbs in the requirements specification. Often, nouns correspond to classes, and
verbs correspond to methods.

For example, suppose your job is to print an invoice such as the one in Figure 1.
Obvious classes that come to mind are Invoice, LineItem, and Customer. It is a good idea
to keep a list of candidate classes on a whiteboard or a sheet of paper. As you brain-
storm, simply put all ideas for classes onto the list. You can always cross out the ones
that weren’t useful after all.

In general, concepts from the problem domain, be it science, business, or a game,
often make good classes. Examples are

•	 Cannonball
•	 CashRegister
•	 Monster

The name for such a class should be a noun that describes the concept.
Not all classes can be discovered from the program requirements. Most complex

programs need classes for tactical purposes, such as file or database access, user inter-
faces, control mechanisms, and so on.

Some of the classes that you need may already exist, either in the standard library
or in a program that you developed previously. You also may be able to use inheri-
tance to extend existing classes into classes that match your needs.

To discover classes,
look for nouns in the
problem description.

Concepts from the
problem domain
are good candidates
for classes.

12.1  Classes and Their Responsibilities   551

Figure 1  An Invoice

I N V O I C E

Sam’s Small Appliances
100 Main Street
Anytown, CA 98765

Item Qty Price Total

Toaster 3 $29.95 $89.85

Hair Dryer 1 $24.95 $24.95

Car Vacuum 2 $19.99 $39.98

AMOUNT DUE: $154.78

What might not be a good class? If you can’t tell from the class name what an
object of the class is supposed to do, then you are probably not on the right track. For
example, your homework assignment might be to write a program that prints pay-
checks. Suppose you start by trying to design a class Pay­checkProgram. What would an
object of this class do? An object of this class would have to do everything that the
homework needs to do. That doesn’t simplify anything. A better class would be Pay-
check. Then your program can manipulate one or more Paycheck objects.

Another common mistake, often made by students who are used to writing pro-
grams that consist of static methods, is to turn an action into a class. For example, if
your homework assignment is to compute a paycheck, you may consider writing a
class ComputePaycheck. But can you visualize a “ComputePaycheck” object? The fact
that “ComputePaycheck” isn’t a noun tips you off that you are on the wrong track.
On the other hand, a Paycheck class makes intuitive sense. The word “paycheck” is a
noun. You can visualize a paycheck object. You can then think about useful methods
of the Paycheck class, such as computeTaxes, that help you solve the assignment.

In a class scheduling system, potential
classes from the problem domain include
Class, LectureHall, Instructor, and Student.

552  Chapter 12  Object-Oriented Design

Finally, a common error is to overdo the class discovery process. For example,
should an address be an object of an Address class, or should it simply be a string?
There is no perfect answer—it depends on the task that you want to solve. If your
software needs to analyze addresses (for example, to determine shipping costs), then
an Address class is an appropriate design. However, if your software will never need
such a capability, you should not waste time on an overly complex design. It is your
job to find a balanced design; one that is neither too limiting nor excessively general.

12.1.2  The CRC Card Method

Once you have identified a set of classes, you define the behavior for each class. Find
out what methods you need to provide for each class in order to solve the program-
ming problem. A simple rule for finding these methods is to look for verbs in the
task description, then match the verbs to the appropriate objects. For example, in
the invoice program, a class needs to compute the amount due. Now you need to fig-
ure out which class is responsible for this method. Do customers compute what they
owe? Do invoices total up the amount due? Do the items total themselves up? The
best choice is to make “compute amount due” the responsibility of the Invoice class.

An excellent way to carry out this task is the “CRC card method.” CRC stands
for “classes”, “responsibilities”, “collaborators”, and in its simplest form, the method
works as follows: Use an index card for each class (see Figure 2). As you think about
verbs in the task description that indicate methods, you pick the card of the class that
you think should be responsible, and write that responsibility on the card.

For each responsibility, you record which other classes are needed to fulfill it.
Those classes are the collaborators.

For example, suppose you decide that an invoice should compute the amount due.
Then you write “compute amount due” on the left-hand side of an index card with
the title Invoice.

If a class can carry out that responsibility by itself, do nothing further. But if the
class needs the help of other classes, write the names of these collaborators on the
right-hand side of the card.

To compute the total, the invoice needs to ask each line item about its total price.
Therefore, the LineItem class is a collaborator.

A CRC card
describes a class,
its responsibilities,
and its collaborating
classes.

Figure 2  A CRC Card

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

12.1  Classes and Their Responsibilities   553

This is a good time to look up the index card for the LineItem class. Does it have a
“get total price” method? If not, add one.

How do you know that you are on the right track? For each responsibility, ask
yourself how it can actually be done, using the responsibilities written on the various
cards. Many people find it helpful to group the cards on a table so that the collabora-
tors are close to each other, and to simulate tasks by moving a token (such as a coin)
from one card to the next to indicate which object is currently active.

Keep in mind that the responsibilities that you list on the CRC card are on a high
level. Sometimes a single responsibility may need two or more Java methods for car-
rying it out. Some researchers say that a CRC card should have no more than three
distinct responsibilities.

The CRC card method is informal on purpose, so that you can be creative and
discover classes and their properties. Once you find that you have settled on a good
set of classes, you will want to know how they are related to each other. Can you find
classes with common properties, so that some responsibilities can be taken care of by
a common superclass? Can you organize classes into clusters that are independent of
each other? Finding class relationships and documenting them with diagrams is the
topic of Section 12.2.

12.1.3  Cohesion

A class should represent a single concept. The public methods and constants that the
public interface exposes should be cohesive. That is, all interface features should be
closely related to the single concept that the class represents.

If you find that the public interface of a class refers to multiple concepts, then that
is a good sign that it may be time to use separate classes instead. Consider, for exam-
ple, the public interface of a CashRegister class:

public class CashRegister
{
 public static final double NICKEL_VALUE = 0.05;
 public static final double DIME_VALUE = 0.1;
 public static final double QUARTER_VALUE = 0.25;
 . . .
 public void enterPayment(int dollars, int quarters,
 int dimes, int nickels, int pennies) { . . . }
 . . .
}

There are really two concepts here: a cash register that holds coins and computes
their total, and the values of individual coins. (For simplicity, we assume that the cash
register only holds coins, not bills. Exercise P12.2 discusses a more general solution.)

It makes sense to have a separate Coin class and have coins responsible for knowing
their values.

public class Coin
{
 . . .
 public Coin(double aValue, String aName) { . . . }
 public double getValue() { . . . }
 . . .
}

The public interface
of a class is cohesive
if all of its features
are related to the
concept that the
class represents.

554  Chapter 12  Object-Oriented Design

Then the CashRegister class can be simplified:
public class CashRegister
{
 . . .
 public void enterPayment(int coinCount, Coin coinType) { . . . }
 . . .
}

Now the CashRegister class no longer needs to know anything about coin values. The
same class can equally well handle euros or zorkmids!

This is clearly a better solution, because it separates the responsibilities of the cash
register and the coins.

1.	 What is the rule of thumb for finding classes?
2.	 Your job is to write a program that plays chess. Might ChessBoard be an appropri-

ate class? How about MovePiece?
3.	 Suppose the invoice is to be saved to a file. Name a likely collaborator.
4.	 Looking at the invoice in Figure 1, what is a likely responsibility of the Customer

class?
5.	 What do you do if a CRC card has ten responsibilities?

Practice It	 Now you can try these exercises at the end of the chapter: R12.4, R12.5, R12.12.

12.2  Relationships Between Classes
When designing a program, it is useful to document the relationships between classes.
This helps you in a number of ways. For example, if you find classes with common
behavior, you can save effort by placing the common behavior into a superclass. If
you know that some classes are not related to each other, you can assign different
programmers to implement each of them, without worrying that one of them has to
wait for the other.

In the following sections, we will describe the most common types of relationships.

12.2.1  Dependency

Many classes need other classes in order to do their jobs. For example, in Section
12.1.3, we described a design of a CashRegister class that depends on the Coin class to
determine the value of the payment.

The dependency relationship is sometimes nicknamed the “knows about” rela-
tionship. The cash register in Section 12.1.3 knows that there are coin objects. In con-
trast, the Coin class does not depend on the CashRegister class. Coins have no idea that
they are being collected in cash registers, and they can carry out their work without
ever calling any method in the CashRegister class.

To visualize relationships, such as dependency between classes, programmers
draw class diagrams. In this book, we use the UML (“Unified Modeling Language”)
notation for objects and classes. UML is a notation for object-oriented analysis and

O n l i n e E x a m p l e

A sample program
using the Coin and
CashRegister classes.

S e l f C h e c k

A class depends on
another class if it
uses objects of
that class.

12.2  Relationships Between Classes   555

design invented by Grady Booch, Ivar Jacobson, and James Rumbaugh, three

Figure 3 
Dependency Relationship
Between the CashRegister
and Coin Classes

CashRegister

Coin

leading
researchers in object-oriented software development. The UML notation dis
tinguishes between object diagrams and class diagrams. An object diagram shows
individual objects, their attributes, and the relationships between them. Chapter 8
has several object diagrams. A class diagram shows classes and the relationships
between them. In Chapter 9, you saw class diagrams that show inheritance relation-
ships. In the UML notation, we underline the names of classes in object diagrams but
not in class diagrams.

In a class diagram, you denote dependency by a dashed line with a -shaped open
arrow tip. The arrow tip points to the class on which the other class depends. Figure 3
shows a class diagram indicating that the CashRegister class depends on the Coin class.

If many classes of a program depend on each other, then we say that the coupling
between classes is high. Conversely, if there are few dependencies between classes,
then we say that the coupling is low (see Figure 4).

Why does coupling matter? If the Coin class changes in the next release of the pro-
gram, all the classes that depend on it may be affected. If the change is drastic, the
coupled classes must all be updated. Furthermore, if we would like to use a class in
another program, we have to take with it all the classes on which it depends. Thus, we
want to remove unnecessary coupling between classes.

It is a good practice
to minimize the
coupling (i.e.,
dependency)
between classes.

Figure 4  High and Low Coupling Between Classes

Low couplingHigh coupling

556  Chapter 12  Object-Oriented Design

12.2.2  Aggregation

Another fundamental relationship between classes is the “aggregation” relationship
(which is informally known as the “has-a” relationship).

The aggregation relationship states that objects of one class contain objects of
another class. Consider a quiz that is made up of questions. Because each quiz has one
or more questions, we say that the class Quiz aggregates the class Question. In the UML
notation, aggregation is denoted by a line with a diamond-shaped symbol attached to
the aggregating class (see Figure 5).

Finding out about aggregation is very helpful for deciding how to implement classes.
For example, when you implement the Quiz class, you will want to store the questions
of a quiz as an instance variable.

Because a quiz can have any number of questions, an array or array list is a good
choice for collecting them:

public class Quiz
{
 private ArrayList<Question> questions;
 . . .
}

Aggregation is a stronger form of dependency. If a class has objects of another class, it
certainly knows about the other class. However, the converse is not true. For exam-
ple, a class may use the Scanner class without ever declaring an instance variable of class
Scanner. The class may simply construct a local variable of type Scanner, or its meth-
ods may receive Scanner objects as arguments. This use is not aggregation because the
objects of the class don’t contain Scanner objects—they just create or receive them for
the duration of a single method.

Generally, you need aggregation when an object needs to remember another object
between method calls.

A class aggregates
another if its objects
contain objects of the
other class.

Figure 5 
Class Diagram
Showing Aggregation

Quiz Question

ONLINE E x a m p l e

The complete Quiz
and Question classes.

A car has a motor and tires.
In object-oriented design,
this “has-a” relationship
is called aggregation.

12.2  Relationships Between Classes   557

12.2.3  Inheritance

Inheritance is a relationship between a more general class (the superclass) and a more
specialized class (the subclass). This relationship is often described as the “is-a” rela-
tionship. Every truck is a vehicle. Every savings account is a bank account.

Inheritance is sometimes abused. For example, consider a Tire class that describes
a car tire. Should the class Tire be a subclass of a class Circle? It sounds convenient.
There are quite a few useful methods in the Circle class—for example, the Tire class
may inherit methods that compute the radius, perimeter, and center point, which
should come in handy when drawing tire shapes. Though it may be convenient for
the programmer, this arrangement makes no sense conceptually. It isn’t true that
every tire is a circle. Tires are car parts, whereas circles are geometric objects. There
is a relationship between tires and circles, though. A tire has a circle as its boundary.
Use aggregation:

public class Tire
{
 private String rating;
 private Circle boundary;
 . . .
}

Here is another example: Every car is a vehicle. Every car has a tire (in fact, it typi-
cally has four or, if you count the spare, five). Thus, you would use inheritance from
Vehicle and use aggregation of Tire objects:

public class Car extends Vehicle
{
 private Tire[] tires;
 . . .
}

See Figure 6 for the UML diagram.

Inheritance (the
is-a relationship) is
sometimes inappro-
priately used when
the has-a relation-
ship would be more
appropriate.

Aggregation (the
has-a relationship)
denotes that objects
of one class contain
references to objects
of another class.

Figure 6 
UML Notation for
Inheritance and Aggregation

Vehicle

Car

Tire

558  Chapter 12  Object-Oriented Design

The arrows in the UML notation can get confusing. Table 1 shows a summary of
the four UML relationship symbols that we use in this book.

Table 1 UML Relationship Symbols

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

6.	 Consider the CashRegisterTester class of Chapter 8. On which classes does it
depend?

7.	 Consider the Question and ChoiceQuestion objects of Chapter 9. How are
they related?

8.	 Consider the Quiz class described in Section 12.2.2. Suppose a quiz contains a
mixture of Question and ChoiceQuestion objects. Which classes does the Quiz class
depend on?

9.	 Why should coupling be minimized between classes?
10.	 In an e-mail system, messages are stored in a mailbox. Draw a UML diagram

that shows the appropriate aggregation relationship.
11.	 You are implementing a system to manage a library, keeping track of which

books are checked out by whom. Should the Book class aggregate Patron or the
other way around?

12.	 In a library management system, what would be the relationship between classes
Patron and Author?

Practice It	 Now you can try these exercises at the end of the chapter: R12.8, R12.9, R12.13.

Step 1	 Discover classes.

Highlight the nouns in the problem description. Make a list of the nouns. Cross out those that
don’t seem to be reasonable candidates for classes.

You need to be able
to distinguish the
UML notation for
inheritance, interface
implementation,
aggregation, and
dependency.

S e l f C h e c k

How To 12.1	 Using CRC Cards and UML Diagrams in Program Design

Before writing code for a complex problem, you need to design a solution. The methodology
introduced in this chapter suggests that you follow a design process that is composed of the
following tasks:
•	 Discover classes.
•	 Determine the responsibilities of each class.
•	 Describe the relationships between the classes.
CRC cards and UML diagrams help you discover and record this information.

12.2  Relationships Between Classes   559

Step 2	 Discover responsibilities.

Make a list of the major tasks that your system needs to fulfill. From those tasks, pick one
that is not trivial and that is intuitive to you. Find a class that is responsible for carrying out
that task. Make an index card and write the name and the task on it. Now ask yourself how
an object of the class can carry out the task. It probably needs help from other objects. Then
make CRC cards for the classes to which those objects belong and write the responsibilities
on them.

Don’t be afraid to cross out, move, split, or merge responsibilities. Rip up cards if they
become too messy. This is an informal process.

You are done when you have walked through all major tasks and are satisfied that they can
all be solved with the classes and responsibilities that you discovered.

Step 3	 Describe relationships.

Make a class diagram that shows the relationships between all the classes that you discovered.
Start with inheritance—the is-a relationship between classes. Is any class a specialization of

another? If so, draw inheritance arrows. Keep in mind that many designs, especially for simple
programs, don’t use inheritance extensively.

The “collaborators” column of the CRC card tells you which classes are used by that class.
Draw dependency arrows for the collaborators on the CRC cards.

Some dependency relationships give rise to aggregations. For each of the dependency rela-
tionships, ask yourself: How does the object locate its collaborator? Does it navigate to it
directly because it stores a reference? In that case, draw an aggregation arrow. Or is the collab-
orator a method parameter variable or return value? Then simply draw a dependency arrow.

Attributes and Methods in UML Diagrams

Sometimes it is useful to indicate class attributes and methods in a class diagram. An attribute
is an externally observable property that objects of a class have. For example, name and price
would be attributes of the Product class. Usually, attributes correspond to instance variables.
But they don’t have to—a class may have a different way of organizing its data. For example,
a GregorianCalendar object from the Java library has attributes day, month, and year, and it would
be appropriate to draw a UML diagram that shows these attributes. However, the class doesn’t
actually have instance variables that store these quantities. Instead, it internally represents all
dates by counting the milliseconds from January 1, 1970—an implementation detail that a
class user certainly doesn’t need to know about.

You can indicate attributes and methods in a class diagram by dividing a class rectangle into
three compartments, with the class name in the top, attributes in the middle, and methods in
the bottom (see the figure below). You need not list all attributes and methods in a particular
diagram. Just list the ones that are helpful for understanding whatever point you are making
with a particular diagram.

Also, don’t list as an attribute what you also draw as an aggregation. If you denote by
aggregation the fact that a Car has Tire objects, don’t add an attribute tires.

Attributes and Methods
in a Class Diagram

Attributes

balance

deposit()
withdraw()

BankAccount

Methods

Special Topic 12.1

560  Chapter 12  Object-Oriented Design

Multiplicities

Some designers like to write multiplicities at the end(s) of an aggregation relationship to denote
how many objects are aggregated. The notations for the most common multiplicities are:

•	 any number (zero or more): *
•	 one or more: 1..*
•	 zero or one: 0..1
•	 exactly one: 1

The figure below shows that a customer has one or more bank accounts.

An Aggregation Relationship with Multiplicities

Customer BankAccount
1..*

Aggregation, Association, and Composition

Some designers find the aggregation or has-a terminology unsatisfactory. For example, con-
sider customers of a bank. Does the bank “have” customers? Do the customers “have” bank
accounts, or does the bank “have” them? Which of these “has” relationships should be mod-
eled by aggregation? This line of thinking can lead us to premature implementation decisions.

Early in the design phase, it makes sense to use a more general relationship between classes
called association. A class is associated with another if you can navigate from objects of one
class to objects of the other class. For example, given a Bank object, you can navigate to Customer
objects, perhaps by accessing an instance variable, or by making a database lookup.

The UML notation for an association relationship is a solid line, with optional arrows that
show in which directions you can navigate the relationship. You can also add words to the line
ends to further explain the nature of the relationship. The figure below shows that you can
navigate from Bank objects to Customer objects, but you cannot navigate the other way around.
That is, in this particular design, the Customer class has no mechanism to determine in which
banks it keeps its money.

An Association Relationship

Bank Customer
serves

The UML standard also recognizes a stronger form of the aggregation relationship called com-
position, where the aggregated objects do not have an existence independent of the containing
object. For example, composition models the relationship between a bank and its accounts.
If a bank closes, the account objects cease to exist as well. In the UML notation, composition
looks like aggregation with a filled-in diamond.

Special Topic 12.2

Special Topic 12.3

12.2  Relationships Between Classes   561

A Composition Relationship

Bank BankAccount

Frankly, the differences between aggregation, association, and composition can be confusing,
even to experienced designers. If you find the distinction helpful, by all means use the rela-
tionship that you find most appropriate. But don’t spend time pondering subtle differences
between these concepts. From the practical point of view of a Java programmer, it is useful to
know when objects of one class have references to objects of another class. The aggregation or
has-a relationship accurately describes this phenomenon.

Make Parallel Arrays into Arrays of Objects

Sometimes, you find yourself using arrays or array lists of the same length, each of which
stores a part of what conceptually should be an object. In that situation, it is a good idea to
reorganize your program and use a single array or array list whose elements are objects.

For example, suppose an invoice contains a series of item descriptions and prices. One
solution is to keep two arrays:

String[] descriptions;
double[] prices;

Each of the arrays will have the same length, and the ith slice, consisting of descriptions[i]
and prices[i], contains data that need to be processed together. These arrays are called parallel
arrays (see Figure 7).

Parallel arrays become a headache in larger programs. The programmer must ensure that
the arrays always have the same length and that each slice is filled with values that actually
belong together. Moreover, any method that operates on a slice must get all values of the slice
as arguments, which is tedious to program.

The remedy is simple. Look at the slice and find the concept that
it represents. Then make the concept into a class. In this example,
each slice contains the description and price of an item; turn this into
a class:

public class Item
{
 private String description;
 private double price;
 . . .
}

Programming Tip 12.1

Avoid parallel arrays
by changing them
into arrays of objects.

Figure 7 
Parallel Arrays

[i]

descriptions =

[i]

prices =

A slice

562  Chapter 12  Object-Oriented Design

You can now eliminate the parallel arrays and replace them with a single array:

Item[] items;

Each slot in the resulting array corresponds to a slice in the set of parallel arrays (see Figure 8).

Consistency

In this chapter you learned of two criteria for improving the quality of the public interface of
a class. You should maximize cohesion and remove unnecessary coupling. There is another
criterion that we would like you to pay attention to—consistency. When you have a set of
methods, follow a consistent scheme for their names and parameter variables. This is simply a
sign of good craftsmanship.

Sadly, you can find any number of inconsistencies in the standard Java library. Here is an
example. To show an input dialog box, you call

JOptionPane.showInputDialog(promptString)

To show a message dialog box, you call

JOptionPane.showMessageDialog(null, messageString)

What’s the null argument? It turns out that the showMessageDialog method needs an argument
to specify the parent window, or null if no parent window is required. But the showInputDialog
method requires no parent window. Why the inconsistency? There is no reason. It would have
been an easy matter to supply a showMessageDialog method that exactly mirrors the showInput-
Dialog method.

Inconsistencies such as these are not fatal flaws, but they are an annoyance, particularly
because they can be so easily avoided.

12.3  Application: Printing an Invoice
In this book, we discuss a five-part program development process that is particularly
well suited for beginning programmers:

1.	Gather requirements.
2.	Use CRC cards to find classes, responsibilities, and collaborators.
3.	Use UML diagrams to record class relationships.
4.	Use javadoc to document method behavior.
5.	Implement your program.

Figure 8 
Eliminating
Parallel Arrays Parallel arrays An array of objects

Programming Tip 12.2

12.3 A pplication: Printing an Invoice   563

There isn’t a lot of notation to learn. The class diagrams are simple to draw. The deliv-
erables of the design phase are obviously useful for the implementation phase—you
simply take the source files and start adding the method code. Of course, as your
projects get more complex, you will want to learn more about formal design meth-
ods. There are many techniques to describe object scenarios, call sequencing, the
large-scale structure of programs, and so on, that are very beneficial even for rel-
atively simple projects. The Unified Modeling Language User Guide gives a good
overview of these techniques.

In this section, we will walk through the object-oriented design technique with
a very simple example. In this case, the methodology may feel overblown, but it is a
good introduction to the mechanics of each step. You will then be better prepared for
the more complex programs that you will encounter in the future.

12.3.1  Requirements

Before you begin designing a solution, you should gather all
requirements for your program in plain English. Write down
what your program should do. It is helpful to include typical
scenarios in addition to a general description.

The task of our sample program is to print out an invoice.
An invoice describes the charges for a set of products in cer-
tain quantities. (We omit complexities such as dates, taxes, and
invoice and customer numbers.) The program simply prints
the billing address, all line items, and the amount due. Each
line item contains the description and unit price of a product,
the quantity ordered, and the total price.

 I N V O I C E

Sam's Small Appliances
100 Main Street
Anytown, CA 98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Also, in the interest of simplicity, we do not provide a user interface. We just supply a
test program that adds line items to the invoice and then prints it.

12.3.2  CRC Cards

When designing an object-oriented program, you need to discover classes. Classes
correspond to nouns in the requirements specification. In this problem, it is pretty
obvious what the nouns are:

Invoice Address LineItem
Product Description Price
Quantity Total Amount due

An invoice lists the
charges for each item
and the amount due.

Start the develop-
ment process by
gathering and
documenting
program
requirements.

Use CRC cards to
find classes,
responsibilities,
and collaborators.

564  Chapter 12  Object-Oriented Design

(Of course, Toaster doesn’t count—it is the description of a LineItem object and there-
fore a data value, not the name of a class.)

Description and price are attributes of the Product class. What about the quantity?
The quantity is not an attribute of a Product. Just as in the printed invoice, let’s have a
class LineItem that records the product and the quantity (such as “3 toasters”).

The total and amount due are computed—not stored anywhere. Thus, they don’t
lead to classes.

After this process of elimination, we are left with four candidates for classes:
Invoice
Address
LineItem
Product

Each of them represents a useful concept, so let’s make them all into classes.
The purpose of the program is to print an invoice. However, the Invoice class won’t

necessarily know whether to display the output in System.out, in a text area, or in a file.
Therefore, let’s relax the task slightly and make the invoice responsible for formatting
the invoice. The result is a string (containing multiple lines) that can be printed out or
displayed. Record that responsibility on a CRC card:

format the invoice

Invoice

How does an invoice format itself? It must format the billing address, format all
line items, and then add the amount due. How can the invoice format an address? It
can’t—that really is the responsibility of the Address class. This leads to a second CRC
card:

format the address

Address

Similarly, formatting of a line item is the responsibility of the LineItem class.

12.3 A pplication: Printing an Invoice   565

The format method of the Invoice class calls the format methods of the Address and
LineItem classes. Whenever a method uses another class, you list that other class as a
collaborator. In other words, Address and LineItem are collaborators of Invoice:

format the invoice Address

LineItem

Invoice

When formatting the invoice, the invoice also needs to compute the total amount due.
To obtain that amount, it must ask each line item about the total price of the item.

How does a line item obtain that total? It must ask the product for the unit price,
and then multiply it by the quantity. That is, the Product class must reveal the unit
price, and it is a collaborator of the LineItem class.

get description
get unit price

Product

format the item Product

get total price

LineItem

Finally, the invoice must be populated with products and quantities, so that it makes
sense to format the result. That too is a responsibility of the Invoice class.

566  Chapter 12  Object-Oriented Design

format the invoice Address

LineItemadd a product and quantity
Product

Invoice

We now have a set of CRC cards that completes the CRC card process.

12.3.3  UML Diagrams

After you have discovered classes and their relationships with CRC cards, you should
record your findings in a UML diagram. The dependency relationships come from
the collaboration column on the CRC cards. Each class depends on the classes with
which it collaborates. In our example, the Invoice class collaborates with the Address,
LineItem, and Product classes. The LineItem class collaborates with the Product class.

Now ask yourself which of these dependencies are actually aggregations. How
does an invoice know about the address, line item, and product objects with which it
collaborates? An invoice object must hold references to the address and the line items
when it formats the invoice. But an invoice object need not hold a reference to a prod-
uct object when adding a product. The product is turned into a line item, and then it is
the item’s responsibility to hold a reference to it.

Therefore, the Invoice class aggregates the Address and LineItem classes. The LineItem
class aggregates the Product class. However, there is no has-a relationship between an
invoice and a product. An invoice doesn’t store products directly—they are stored in
the LineItem objects.

There is no inheritance in this example.
Figure 9 shows the class relationships that we discovered.

Use UML diagrams to
record class
relationships.

Figure 9  The Relationships Between the Invoice Classes

Invoice Address

Product LineItem

12.3 A pplication: Printing an Invoice   567

12.3.4  Method Documentation

The final step of the design phase is to write the documentation of the discovered
classes and methods. Simply write a Java source file for each class, write the method
comments for those methods that you have discovered, and leave the bodies of the
methods blank.

/**
 Describes an invoice for a set of purchased products.
*/
public class Invoice
{
 /**
 Adds a charge for a product to this invoice.
 @param aProduct the product that the customer ordered
 @param quantity the quantity of the product
 */
 public void add(Product aProduct, int quantity)
 {
 }

 /**
 Formats the invoice.
 @return the formatted invoice
 */
 public String format()
 {
 }
}

/**
 Describes a quantity of an article to purchase.
*/
public class LineItem
{
 /**
 Computes the total cost of this line item.
 @return the total price
 */
 public double getTotalPrice()
 {
 }

 /**
 Formats this item.
 @return a formatted string of this item
 */
 public String format()
 {
 }
}

/**
 Describes a product with a description and a price.
*/
public class Product
{

Use javadoc
comments (with the
method bodies left
blank) to record the
behavior of classes.

568  Chapter 12  Object-Oriented Design

 /**
 Gets the product description.
 @return the description
 */
 public String getDescription()
 {
 }

 /**
 Gets the product price.
 @return the unit price
 */
 public double getPrice()
 {
 }
}

/**
 Describes a mailing address.
*/
public class Address
{
 /**
 Formats the address.
 @return the address as a string with three lines
 */
 public String format()
 {
 }
}

Figure 10 
Class Documentation
in HTML Format

12.3 A pplication: Printing an Invoice   569

Then run the javadoc program to obtain a neatly formatted version of your documen-
tation in HTML format (see Figure 10).

This approach for documenting your classes has a number of advantages. You can
share the HTML documentation with others if you work in a team. You use a format
that is immediately useful—Java source files that you can carry into the implementa-
tion phase. And, most importantly, you supply the comments for the key methods—
a task that less prepared programmers leave for later, and often neglect for lack of time.

12.3.5  Implementation

After you have completed the object-oriented design, you are ready to implement the
classes.

You already have the method parameter variables and comments from the previ-
ous step. Now look at the UML diagram to add instance variables. Aggregated classes
yield instance variables. Start with the Invoice class. An invoice aggregates Address and
Line­Item. Every invoice has one billing address, but it can have many line items. To
store multiple LineItem objects, you can use an array list. Now you have the instance
variables of the Invoice class:

public class Invoice
{
 private Address billingAddress;
 private ArrayList<LineItem> items;
 . . .
}

A line item needs to store a Product object and the product quantity. That leads to the
following instance variables:

public class LineItem
{
 private int quantity;
 private Product theProduct;
 . . .
}

The methods themselves are now easy to implement. Here is a typical example. You
already know what the getTotalPrice method of the LineItem class needs to do—get the
unit price of the product and multiply it with the quantity.

/**
 Computes the total cost of this line item.
 @return the total price
*/
public double getTotalPrice()
{
 return theProduct.getPrice() * quantity;
}

We will not discuss the other methods in detail—they are equally straightforward.
Finally, you need to supply constructors, another routine task.
The entire program is shown below. It is a good practice to go through it in detail

and match up the classes and methods against the CRC cards and UML diagram.
In this chapter, you learned a systematic approach for building a relatively com-

plex program. However, object-oriented design is definitely not a spectator sport.
To really learn how to design and implement programs, you have to gain experience
by repeating this process with your own projects. It is quite possible that you don’t

After completing the
design, implement
your classes.

570  Chapter 12  Object-Oriented Design

immediately home in on a good solution and that you need to go back and reorganize
your classes and responsibilities. That is normal and only to be expected. The purpose
of the object-oriented design process is to spot these problems in the design phase,
when they are still easy to rectify, instead of in the implementation phase, when mas-
sive reorganization is more difficult and time consuming.

section_3/InvoicePrinter.java

1 /**
2 This program demonstrates the invoice classes by
3 printing a sample invoice.
4 */
5 public class InvoicePrinter
6 {
7 public static void main(String[] args)
8 {
9 Address samsAddress

10 = new Address("Sam’s Small Appliances",
11 "100 Main Street", "Anytown", "CA", "98765");
12
13 Invoice samsInvoice = new Invoice(samsAddress);
14 samsInvoice.add(new Product("Toaster", 29.95), 3);
15 samsInvoice.add(new Product("Hair dryer", 24.95), 1);
16 samsInvoice.add(new Product("Car vacuum", 19.99), 2);
17
18 System.out.println(samsInvoice.format());
19 }
20 }

section_3/Invoice.java

1 import java.util.ArrayList;
2
3 /**
4 Describes an invoice for a set of purchased products.
5 */
6 public class Invoice
7 {
8 private Address billingAddress;
9 private ArrayList<LineItem> items;

10
11 /**
12 Constructs an invoice.
13 @param anAddress the billing address
14 */
15 public Invoice(Address anAddress)
16 {
17 items = new ArrayList<LineItem>();
18 billingAddress = anAddress;
19 }
20
21 /**
22 Adds a charge for a product to this invoice.
23 @param aProduct the product that the customer ordered
24 @param quantity the quantity of the product
25 */
26 public void add(Product aProduct, int quantity)
27 {
28 LineItem anItem = new LineItem(aProduct, quantity);

12.3 A pplication: Printing an Invoice   571

29 items.add(anItem);
30 }
31
32 /**
33 Formats the invoice.
34 @return the formatted invoice
35 */
36 public String format()
37 {
38 String r = " I N V O I C E\n\n"
39 + billingAddress.format()
40 + String.format("\n\n%-30s%8s%5s%8s\n",
41 "Description", "Price", "Qty", "Total");
42
43 for (LineItem item : items)
44 {
45 r = r + item.format() + "\n";
46 }
47
48 r = r + String.format("\nAMOUNT DUE: $%8.2f", getAmountDue());
49
50 return r;
51 }
52
53 /**
54 Computes the total amount due.
55 @return the amount due
56 */
57 private double getAmountDue()
58 {
59 double amountDue = 0;
60 for (LineItem item : items)
61 {
62 amountDue = amountDue + item.getTotalPrice();
63 }
64 return amountDue;
65 }
66 }

section_3/LineItem.java

1 /**
2 Describes a quantity of an article to purchase.
3 */
4 public class LineItem
5 {
6 private int quantity;
7 private Product theProduct;
8
9 /**

10 Constructs an item from the product and quantity.
11 @param aProduct the product
12 @param aQuantity the item quantity
13 */
14 public LineItem(Product aProduct, int aQuantity)
15 {
16 theProduct = aProduct;
17 quantity = aQuantity;
18 }
19

572  Chapter 12  Object-Oriented Design

20 /**
21 Computes the total cost of this line item.
22 @return the total price
23 */
24 public double getTotalPrice()
25 {
26 return theProduct.getPrice() * quantity;
27 }
28
29 /**
30 Formats this item.
31 @return a formatted string of this line item
32 */
33 public String format()
34 {
35 return String.format("%-30s%8.2f%5d%8.2f",
36 theProduct.getDescription(), theProduct.getPrice(),
37 quantity, getTotalPrice());
38 }
39 }

section_3/Product.java

1 /**
2 Describes a product with a description and a price.
3 */
4 public class Product
5 {
6 private String description;
7 private double price;
8
9 /**

10 Constructs a product from a description and a price.
11 @param aDescription the product description
12 @param aPrice the product price
13 */
14 public Product(String aDescription, double aPrice)
15 {
16 description = aDescription;
17 price = aPrice;
18 }
19
20 /**
21 Gets the product description.
22 @return the description
23 */
24 public String getDescription()
25 {
26 return description;
27 }
28
29 /**
30 Gets the product price.
31 @return the unit price
32 */
33 public double getPrice()
34 {
35 return price;
36 }
37 }

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

12.3 A pplication: Printing an Invoice   573

section_3/Address.java

1 /**
2 Describes a mailing address.
3 */
4 public class Address
5 {
6 private String name;
7 private String street;
8 private String city;
9 private String state;

10 private String zip;
11
12 /**
13 Constructs a mailing address.
14 @param aName the recipient name
15 @param aStreet the street
16 @param aCity the city
17 @param aState the two-letter state code
18 @param aZip the ZIP postal code
19 */
20 public Address(String aName, String aStreet,
21 String aCity, String aState, String aZip)
22 {
23 name = aName;
24 street = aStreet;
25 city = aCity;
26 state = aState;
27 zip = aZip;
28 }
29
30 /**
31 Formats the address.
32 @return the address as a string with three lines
33 */
34 public String format()
35 {
36 return name + "\n" + street + "\n"
37 + city + ", " + state + " " + zip;
38 }
39 }

13.	 Which class is responsible for computing the amount due? What are its collabo-
rators for this task?

14.	 Why do the format methods return String objects instead of directly printing to
System.out?

Practice It	 Now you can try these exercises at the end of the chapter: R12.18, P12.6, P12.7.

S e l f C h e c k

Worked Example 12.1	 Simulating an Automatic Teller Machine

This Worked Example applies the object-oriented design method-
ology to the simulation of an automatic teller machine that works
with both a console-based and graphical user interface.

574  Chapter 12  Object-Oriented Design

12.4  Packages
A Java program consists of a collection of classes. So far, most of your programs have
consisted of a small number of classes. As programs get larger, however, simply dis-
tributing the classes over multiple files isn’t enough. An additional structuring mech-
anism is needed.

In Java, packages provide this structuring mechanism. A Java package is a set of
related classes. For example, the Java library consists of dozens of packages, some
of which are listed in Table 2. The following sections show how you can make use of
packages in your programs.

Table 2 Important Packages in the Java Library

Package Purpose Sample Class

java.lang Language support Math

java.util Utilities Scanner

java.io Input and output PrintStream

java.awt Abstract Windowing Toolkit Color

java.net Networking Socket

java.sql Database access through Structured Query Language ResultSet

javax.swing Swing user interface JButton

org.w3c.dom Document Object Model for XML documents Document

12.4.1  Organizing Related Classes into Packages

To put a class in a package, you must place
package packageName;

as the first statement in its source file. A package name consists of one or more identi-
fiers separated by periods. (See Section 12.4.3 for tips on constructing package names.)

For example, let’s put a BankAccount class into a package named com.horst­mann. The
BankAccount.java file must start as follows:

package com.horstmann;

public class BankAccount
{
 . . .
}

In addition to the named packages (such as java.util or com.horstmann), there is a spe-
cial package, called the default package, which has no name. If you did not include
any package statement at the top of your source file, the class is placed in the default
package.

A package is a set of
related classes.

12.4 P ackages   575

12.4.2 

In Java, related classes
are grouped into packages.

Importing Packages

If you want to use a class from a package, you can refer to it by its full name (package
name plus class name). For example, java.util.Scanner refers to the Scanner class in the
java.util package:

java.util.Scanner in = new java.util.Scanner(System.in);

Naturally, that is somewhat inconvenient. You can instead import a name with an
import statement:

import java.util.Scanner;

Then you can refer to the class as Scanner without the package prefix.
You can import all classes of a package with an import statement that ends in .*. For

example, you can use the statement
import java.util.*;

to import all classes from the java.util package. That statement lets you refer to
classes like Scanner or ArrayList without a java.util prefix.

However, you never need to import the classes in the java.lang package explicitly.
That is the package containing the most basic Java classes, such as Math and Object.
These classes are always available to you. In effect, an automatic import java.lang.*;
statement has been placed into every source file.

Finally, you don’t need to import other classes in the same package. For example,
in the source code of the class problem1.Tester, you don’t need to import the class
problem1.BankAccount. The compiler will find the BankAccount class without an import
statement because it is located in the same package, problem1.

12.4.3  Package Names

Placing related classes into a package is clearly a convenient way to organize classes.
However, there is a more important reason for packages: to avoid name clashes. In
a large project, it is inevitable that two people will come up with the same name for
the same concept. This even happens in the standard Java class library (which has
now grown to thousands of classes). There is a class Timer in the java.util package and
another class called Timer in the javax.swing package. You can still tell the Java com
piler exactly which Timer class you need by referring to them as java.util.Timer and
javax.swing.Timer.

The import directive
lets you refer to a
class from a package
by its class name,
without the
package prefix.

576  Chapter 12  Object-Oriented Design

Of course, for the package-naming convention to work, there must be some way
to ensure that package names are unique. It wouldn’t be good if the car maker BMW
placed all its Java code into the package bmw, and some other programmer (perhaps
Britney M. Walters) had the same bright idea. To avoid this problem, the inventors of
Java recommend that you use a package-naming scheme that takes advantage of the
uniqueness of Internet domain names.

For example, I have a domain name horstmann.com, and there is nobody else on the
planet with the same domain name. (I was lucky that the domain name horstmann.com
had not been taken by anyone else when I applied. If your name is Walters, you will
sadly find that someone else beat you to walters.com.) To get a package name, turn the
domain name around to produce a package name prefix, such as com.horstmann.

If you don’t have your own domain name, you can still create a package name that
has a high probability of being unique by writing your e-mail address backwards. For
example, if Britney Walters has an e-mail address walters@cs.sjsu.edu, then she can use
a package name edu.sjsu.cs.walters for her own classes.

Some instructors will want you to place each of your assignments into a separate
package, such as problem1, problem2, and so on. The reason is again to avoid name col-
lision. You can have two classes, problem1.BankAccount and problem2.BankAccount, with
slightly different properties.

12.4.4  How Classes Are Located

A package is located in a subdirectory that matches the package name. For example, a
package homework1 is located in a directory homework1. If the package name has multiple
parts, such as com.horstmann.javabook, then you use a subdirectory for each part: com/
horstmann/javabook.

For example, if you do your homework assignment in a base directory /home/brit-
ney/assignments, then you can place the class files for the problem1 package into the
directory /home/britney/assignments/problem1, as shown in Figure 11. (Here, we are
using UNIX-style file names. Under Windows, you would use a directory such as c:\
Users\Britney\assignments\problem1.)

15.	 Which of the following are packages?
a.	 java
b.	java.lang
c.	 java.util
d.	java.lang.Math

16.	 Is a Java program without import statements limited to using the default and
java.lang packages?

Use a domain name
in reverse to
construct an
unambiguous
package name.

The path of a class
file must match its
package name.

O n l i n e E x a m p l e

The complete
BankAccount and
BankAccountTester
classes, with the
proper directory
structure.

Figure 11 
Base Directories
and Subdirectories
for Packages

Directory matches
package name

Base directory

Source file starts with
package problem1;

S e l f C h e c k

Chapter Summary  577

17.	 Suppose your homework assignments are located in the directory /home/me/
cs101 (c:\Users\me\cs101 on Windows). Your instructor tells you to place your
homework into packages. In which directory do you place the class hw1.problem1.
TicTacToeTester?

Practice It	 Now you can try these exercises at the end of the chapter: R12.19, P12.15, P12.16.

Recognize how to discover classes and their responsibilities.

•	 To discover classes, look for nouns in the problem description.
•	 Concepts from the problem domain are good candidates for classes.
•	 A CRC card describes a class, its responsibilities, and its collaborating classes.
•	 The public interface of a class is cohesive if all of its features are related to the

concept that the class represents.

Categorize class relationships and produce UML diagrams that describe them.

•	 A class depends on another class if it uses objects of that class.
•	 It is a good practice to minimize the coupling (i.e., dependency) between classes.
•	 A class aggregates another if its objects contain objects of the other class.
•	 Inheritance (the is-a relationship) is sometimes inappropriately used when the

has-a relationship would be more appropriate.
•	 Aggregation (the has-a relationship) denotes that objects of one class contain

references to objects of another class.
•	 You need to be able to distinguish the UML notation for inheritance, interface

implementation, aggregation, and dependency.
•	 Avoid parallel arrays by changing them into arrays of objects.

Apply an object-oriented development process to designing a program.

•	 Start the development process by gathering and documenting program
requirements.

•	 Use CRC cards to find classes, responsibilities, and collaborators.
•	 Use UML diagrams to record class relationships.
•	 Use javadoc comments (with the method bodies left blank) to record the

behavior of classes.
•	 After completing the design, implement your classes.

Use packages to structure the classes in your program.

•	 A package is a set of related classes.
•	 The import directive lets you refer to a class from a package by its class name,

without the package prefix.
•	 Use a domain name in reverse to construct an unambiguous package name.
•	 The path of a class file must match its package name.

C h a p t e r Summ a r y

578  Chapter 12  Object-Oriented Design

•• R12.1	 List the steps in the process of object-oriented design that this chapter recommends
for student use.

• R12.2	 Give a rule of thumb for how to find classes when designing a program.

• R12.3	 Give a rule of thumb for how to find methods when designing a program.

•• R12.4	 After discovering a method, why is it important to identify the object that is respon
sible for carrying out the action?

•• R12.5	 Look at the public interface of the java.lang.System class and discuss whether or not it
is cohesive.

•• R12.6	 On which classes does the class Integer in the Java standard library depend?

•• R12.7	 On which classes does the class java.awt.Rectangle in the standard library depend?

• R12.8	 What relationship is appropriate between the following classes: aggregation, inher
itance, or neither?

a.	University—Student
b.	Student—TeachingAssistant
c.	Student—Freshman
d.	Student—Professor
e.	Car—Door
f.	 Truck—Vehicle
g.	Traffic—TrafficSign
h.	TrafficSign—Color

•• R12.9	 Every BMW is a vehicle. Should a class BMW inherit from the class Vehicle? BMW is a
vehicle manufacturer. Does that mean that the class BMW should inherit from the class
VehicleManufacturer?

•• R12.10	 Some books on object-oriented programming recommend using inheritance so that
the class Circle extends the class java.awt.Point. Then the Circle class inherits the
setLocation method from the Point superclass. Explain why the setLocation method
need not be overridden in the subclass. Why is it nevertheless not a good idea to have
Circle inherit from Point? Conversely, would inheriting Point from Circle fulfill the
is-a rule? Would it be a good idea?

• R12.11	 Write CRC cards for the Coin and CashRegister classes described in Section 12.1.3.

• R12.12	 Write CRC cards for the Quiz and Question classes in Section 12.2.2.

•• R12.13	 Draw a UML diagram for the Quiz, Question, and ChoiceQuestion classes. The Quiz class
is described in Section 12.2.2.

••• R12.14	 A file contains a set of records describing countries. Each record consists of the name
of the country, its population, and its area. Suppose your task is to write a program
that reads in such a file and prints

•	 The country with the largest area
•	 The country with the largest population
•	 The country with the largest population density (people per square kilometer)

R e v i e w E x e r c i s e s

Programming Exercises  579

Think through the problems that you need to solve. What classes and methods
will you need? Produce a set of CRC cards, a UML diagram, and a set of javadoc
comments.

••• R12.15	 Discover classes and methods for generating a student report card that lists all
classes, grades, and the grade point average for a semester. Produce a set of CRC
cards, a UML diagram, and a set of javadoc comments.

•• R12.16	 Consider the following problem description:

Users place coins in a vending machine and select a product by pushing a button. If the inserted coins
are sufficient to cover the purchase price of the product, the product is dispensed and change is given.
Otherwise, the inserted coins are returned to the user.

What classes should you use to implement a solution?

•• R12.17	 Consider the following problem description:

Employees receive their biweekly paychecks. They are paid their hourly rates for each hour worked;
however, if they worked more than 40 hours per week, they are paid overtime at 150 percent of
their regular wage.

What classes should you use to implement a solution?

•• R12.18	 Consider the following problem description:

Customers order products from a store. Invoices are generated to list the items and quantities ordered,
payments received, and amounts still due. Products are shipped to the shipping address of the cus-
tomer, and invoices are sent to the billing address.

Draw a UML diagram showing the aggregation relationships between the classes
Invoice, Address, Customer, and Product.

•• R12.19	 Every Java program can be rewritten to avoid import statements. Explain how, and
rewrite BabyNames.java from Worked Example 7.1 to avoid import statements.

• R12.20	 What is the default package? Have you used it before this chapter in your
programming?

•• P12.1	 Modify the giveChange method of the CashRegister class in the sample code for Section
12.1 so that it returns the number of coins of a particular type to return:

int giveChange(Coin coinType)

The caller needs to invoke this method for each coin type, in decreasing value.

• P12.2	 Real cash registers can handle both bills and coins. Design a single class that
expresses the commonality of these concepts. Redesign the CashRegister class and
provide a method for entering payments that are described by your class. Your
primary challenge is to come up with a good name for this class.

• P12.3	 Enhance the invoice-printing program by providing for two kinds of line items: One
kind describes products that are purchased in certain numerical quantities (such as
“3 toasters”), another describes a fixed charge (such as “shipping: $5.00”). Hint: Use
inheritance. Produce a UML diagram of your modified implementation.

P r o g r a mm i n g E x e r c i s e s

580  Chapter 12  Object-Oriented Design

•• P12.4	 The invoice-printing program is somewhat unrealistic because the formatting of the
LineItem objects won’t lead to good visual results when the prices and quantities have
varying numbers of digits. Enhance the format method in two ways: Accept an int[]
array of column widths as an argument. Use the NumberFormat class to format the cur-
rency values.

•• P12.5	 The invoice-printing program has an unfortunate flaw—it mixes “application logic”
(the computation of total charges) and “presentation” (the visual appearance of the
invoice). To appreciate this flaw, imagine the changes that would be necessary to
draw the invoice in HTML for presentation on the Web. Reimplement the program,
using a separate InvoiceFormatter class to format the invoice. That is, the Invoice and
LineItem methods are no longer responsible for formatting. However, they will
acquire other responsibilities, because the InvoiceFormatter class needs to query them
for the values that it requires.

••• P12.6	 Write a program that teaches arithmetic to a young child. The program tests addition
and subtraction. In level 1, it tests only addition of numbers less than 10 whose sum
is less than 10. In level 2, it tests addition of arbitrary one-digit numbers. In level 3, it
tests subtraction of one-digit numbers with a nonnegative difference.
Generate random problems and get the player’s input. The player gets up to two
tries per problem. Advance from one level to the next when the player has achieved a
score of five points.

••• P12.7	 Implement a simple e-mail messaging system. A message has a recipient, a sender,
and a message text. A mailbox can store messages. Supply a number of mailboxes for
different users and a user interface for users to log in, send messages to other users,
read their own messages, and log out. Follow the design process that was described
in this chapter.

•• P12.8	 Write a program that simulates a vending machine. Products can be purchased by
inserting coins with a value at least equal to the cost of the product. A user selects a
product from a list of available products, adds coins, and either gets the product or
gets the coins returned. The coins are returned if insufficient money was supplied
or if the product is sold out. The machine does not give change if too much money
was added. Products can be restocked and money removed by an operator. Follow
the design process that was described in this chapter. Your solution should include a
class VendingMachine that is not coupled with the Scanner or PrintStream classes.

••• P12.9	 Write a program to design an appointment calendar. An appointment includes the
date, starting time, ending time, and a description; for example,

Dentist 2012/10/1 17:30 18:30
CS1 class 2012/10/2 08:30 10:00

Supply a user interface to add appointments, remove canceled appointments, and
print out a list of appointments for a particular day. Follow the design process that
was described in this chapter. Your solution should include a class Appointment
Calendar that is not coupled with the Scanner or PrintStream classes.

•• P12.10	 Modify the implementation of the classes in the ATM simulation in Worked Exam-
ple 12.1 so that the bank manages a collection of bank accounts and a separate collec-
tion of customers. Allow joint accounts in which some accounts can have more than
one customer.

Programming Exercises  581

••• P12.11	 Write a program that administers and grades quizzes. A quiz consists of questions.
There are four types of questions: text questions, number questions, choice ques
tions with a single answer, and choice questions with multiple answers. When grad
ing a text question, ignore leading or trailing spaces and letter case. When grading a
numeric question, accept a response that is approximately the same as the answer.
A quiz is specified in a text file. Each question starts with a letter indicating the
question type (T, N, S, M), followed by a line containing the question text. The next
line of a non-choice question contains the answer. Choice questions have a list of
choices that is terminated by a blank line. Each choice starts with + (correct) or
- (incorrect). Here is a sample file:

T
Which Java reserved word is used to declare a subclass?
extends
S
What is the original name of the Java language?
- *7
- C--
+ Oak
- Gosling

M
Which of the following types are supertypes of Rectangle?
- PrintStream
+ Shape
+ RectangularShape
+ Object
- String

N
What is the square root of 2?
1.41421356

Your program should read in a quiz file, prompt the user for responses to all ques-
tions, and grade the responses. Follow the design process that was described in this
chapter.

•• P12.12	 Produce a requirements document for a program that allows a company to send out
personalized mailings, either by e-mail or through the postal service. Template files
contain the message text, together with variable fields (such as Dear [Title] [Last
Name] . . .). A database (stored as a text file) contains the field values for each recip
ient. Use HTML as the output file format. Then design and implement the program.

••• P12.13	 Write a tic-tac-toe game that allows a human player to play against the computer.
Your program will play many turns against a human opponent, and it will learn.
When it is the computer’s turn, the computer randomly selects an empty field,
except that it won’t ever choose a losing combination. For that purpose, your pro
gram must keep an array of losing combinations. Whenever the human wins, the
immediately preceding combination is stored as losing. For example, suppose that
X = computer and O = human. Suppose the current combination is

X

O

XO

582  Chapter 12  Object-Oriented Design

Now it is the human’s turn, who will of course choose

X

O

XO

O

The computer should then remember the preceding combination

X

O

XO

as a losing combination. As a result, the computer will never again choose that
combination from

X

O

O

or

O

XO

Discover classes and supply a UML diagram before you begin to program.

• P12.14	 Place the CashRegister and Coin classes of the sample program in Section 12.1 into the
package com.horstmann. Keep the CashRegister­­Tester class in the default package.

• P12.15	 Place all classes of the sample program in Section 12.3 into the package com.horstmann.
How do you start the program in your programming environment?

• P12.16	 Place the classes from Worked Example 12.1 in a package whose name is derived
from your e-mail address, as described in Section 12.4.3.

••• Business P12.17	 Implement a program that prints paychecks for a group of student assistants. Deduct
federal income and Social Security taxes. (You may want to use the tax computation
used in Chapter 3. Find out about Social Security taxes on the Internet.) Your pro-
gram should prompt for the name, hourly wage, and hours worked for each student.

••• Business P12.18	 Airline seating. Write a program that assigns seats on an airplane. Assume the
airplane has 20 seats in first class (5 rows of 4 seats each, separated by an aisle) and
90 seats in economy class (15 rows of 6 seats each, separated by an aisle). Your pro
gram should take three commands: add passengers, show seating, and quit. When
passengers are added, ask for the class (first or economy), the number of passengers
traveling together (1 or 2 in first class; 1 to 3 in economy), and the seating prefer
ence (aisle or window in first class; aisle, center, or window in economy). Then try
to find a match and assign the seats. If no match exists, print a message. Your solu
tion should include a class Airplane that is not coupled with the Scanner or PrintStream
classes. Follow the design process that was described in this chapter.

Answers to Self-Check Questions  583

••• Business P12.19	 In an airplane, each passenger has a touch screen for ordering a drink and a snack.
Some items are free and some are not. The system prepares two reports for speeding
up service:

1.	A list of all seats, ordered by row, showing the charges that must be collected.
2.	A list of how many drinks and snacks of each type must be prepared for the

front and the rear of the plane.
Follow the design process that was described in this chapter to identify classes, and
implement a program that simulates the system.

••• Graphics P12.20	 Implement a program to teach a young child to read the clock. In the game, present
an analog clock, such as the one shown at left. Generate random times and display
the clock. Accept guesses from the player. Reward the player for correct guesses.
After two incorrect guesses, display the correct answer and make a new random
time. Implement several levels of play. In level 1, only show full hours. In level 2,
show quarter hours. In level 3, show five-minute multiples, and in level 4, show any
number of minutes. After a player has achieved five correct guesses at one level,
advance to the next level.

••• Graphics P12.21	 Write a program that can be used to design a suburban scene, with houses, streets,
and cars. Users can add houses and cars of various colors to a street. Write more spe-
cific requirements that include a detailed description of the user interface. Then, dis-
cover classes and methods, provide UML diagrams, and implement your program.

••• Graphics P12.22	 Write a simple graphics editor that allows users to add a mixture of shapes (ellipses,
rectangles, and lines in different colors) to a panel. Supply commands to load and
save the picture. Discover classes, supply a UML diagram, and implement your
program.

An Analog Clock

A n s w e r s t o S e lf - C h e c k Q u e s t i o n s

1.	 Look for nouns in the problem description.
2.	 Yes (ChessBoard) and no (MovePiece).
3.	 PrintStream

4.	 To produce the shipping address of the
customer.

5.	 Reword the responsibilities so that they are at
a higher level, or come up with more classes to
handle the responsibilities.

6.	 The CashRegisterTester class depends on the
CashRegister and System classes.

7.	 The ChoiceQuestion class inherits from the
Question class.

8.	 The Quiz class depends on the Question class
but probably not ChoiceQuestion, if we assume
that the methods of the Quiz class manipu-
late generic Question objects, as they did in
Chapter 9.

9.	 If a class doesn’t depend on another, it is not
affected by interface changes in the other class.

10.	

11.	 Typically, a library system wants to track
which books a patron has checked out, so it
makes more sense to have Patron aggregate Book.
However, there is not always one true answer
in design. If you feel strongly that it is impor-
tant to identify the patron who checked out a
particular book (perhaps to notify the patron
to return it because it was requested by some-
one else), then you can argue that the aggrega-
tion should go the other way around.

12.	 There would be no relationship.

Mailbox Message

584  Chapter 12  Object-Oriented Design

13.	 The Invoice class is responsible for comput-
ing the amount due. It collaborates with the
LineItem class.

14.	 This design decision reduces coupling. It
enables us to reuse the classes when we want
to show the invoice in a dialog box or on a
web page.

15.	 (a) No; (b) Yes; (c) Yes; (d) No
16.	 No—you simply use fully qualified names for

all other classes, such as java.util.Random and
java.awt.Rectangle.

17.	 /home/me/cs101/hw1/problem1 or, on Windows,
c:\Users\me\cs101\hw1\problem1.

13C h a p t e r

585

Recursion

To learn to “think recursively”

To be able to use recursive
helper methods

To understand the relationship between recursion and iteration

To understand when the use of recursion affects the efficiency of an algorithm

To analyze problems that are much easier to solve by recursion than by iteration

To process data with recursive structures using mutual recursion

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

13.1  Triangle Numbers Revisited  586

Common Error 13.1:  Infinite Recursion  590

13.2  Problem Solving:
Thinking Recursively  590

Worked Example 13.1: Finding Files 

13.3  Recursive Helper Methods  594

13.4  The Efficiency of Recursion  596

13.5  Permutations  601

Random Fact 13.1: The Limits of Computation  604

13.6  Mutual Recursion  606

13.7  Backtracking  612

Worked Example 13.2: Towers of Hanoi 

586

The method of recursion is a powerful technique for
breaking up complex computational problems into simpler,
often smaller, ones. The term “recursion” refers to the fact
that the same computation recurs, or occurs repeatedly,
as the problem is solved. Recursion is often the most
natural way of thinking about a problem, and there are
some computations that are very difficult to perform
without recursion. This chapter shows you both simple and
complex examples of recursion and teaches you how to
“think recursively”.

13.1  Triangle Numbers Revisited
Chapter 5 contains a simple introduction to
writing recursive methods—methods that call
themselves with simpler inputs. In that chapter,
you saw how to print triangle patterns such as
this one:

[]
[][]
[][][]
[][][][]

The key observation is that you can print a trian-
gle pattern of a given side length, provided you
know how to print the smaller triangle pattern
that is shown in blue.

In this section, we will modify the example slightly and use recursion to compute
the area of a triangle shape of side length n, assuming that each [] square has area 1.
This value is sometimes called the nth triangle number. For example, as you can tell
from looking at the above triangle, the third triangle number is 6 and the fourth tri-
angle number is 10.

We will develop an object-oriented solution that gives another perspective on
recursive problem solving. Instead of calling a method with simpler values, we will
construct a simpler object.

Here is the outline of the class that we will develop:
public class Triangle
{
 private int width;

 public Triangle(int aWidth)
 {
 width = aWidth;
 }

 public int getArea()
 {
 . . .
 }
}

Using the same method as the one
described in this section, you can com-
pute the volume of a Mayan pyramid.

13.1 T riangle Numbers Revisited   587

If the width of the triangle is 1, then the triangle consists of a single square, and its area
is 1. Let’s take care of this case first:

public int getArea()
{
 if (width == 1) { return 1; }
 . . .
}

To deal with the general case, consider this picture:
[]
[][]
[][][]
[][][][]

Suppose we knew the area of the smaller, colored triangle. Then we could easily com-
pute the area of the larger triangle as

smallerArea + width

How can we get the smaller area? Let’s make a smaller triangle and ask it!
Triangle smallerTriangle = new Triangle(width - 1);
int smallerArea = smallerTriangle.getArea();

Now we can complete the getArea method:
public int getArea()
{
 if (width == 1) { return 1; }
 else
 {
 Triangle smallerTriangle = new Triangle(width - 1);
 int smallerArea = smallerTriangle.getArea();
 return smallerArea + width;
 }
}

Here is an illustration of what happens when we compute the area of a triangle of
width 4.

•	 The getArea method makes a smaller triangle of width 3.
•	 It calls getArea on that triangle.

•	 That method makes a smaller triangle of width 2.
•	 It calls getArea on that triangle.

•	 That method makes a smaller triangle of width 1.
•	 It calls getArea on that triangle.

•	 That method returns 1.
•	 The method returns smallerArea + width = 1 + 2 = 3.

•	 The method returns smallerArea + width = 3 + 3 = 6.
•	 The method returns smallerArea + width = 6 + 4 = 10.

This solution has one remarkable aspect. To solve the area problem for a triangle of
a given width, we use the fact that we can solve the same problem for a lesser width.
This is called a recursive solution.

The call pattern of a recursive method looks complicated, and the key to the
successful design of a recursive method is not to think about it. Instead, look at the

A recursive
computation solves
a problem by using
the solution to the
same problem with
simpler inputs.

588  Chapter 13  Recursion

getArea method one more time and notice how utterly reasonable it is. If the width is
1, then, of course, the area is 1. The next part is just as reasonable. Compute the area
of the smaller triangle and don’t think about why that works. Then the area of the
larger triangle is clearly the sum of the smaller area and the width.

There are two key requirements to make sure that the recursion is successful:

•	 Every recursive call must simplify the computation in some way.
•	 There must be special cases to handle the simplest computations directly.

The getArea method calls itself again with smaller and smaller width values. Eventu-
ally the width must reach 1, and there is a special case for computing the area of a
triangle with width 1. Thus, the getArea method always succeeds.

Actually, you have to be careful. What happens when you call the area of a triangle
with width –1? It computes the area of a triangle with width –2, which computes the
area of a triangle with width –3, and so on. To avoid this, the getArea method should
return 0 if the width is ≤ 0.

Recursion is not really necessary to compute the triangle numbers. The area of a
triangle equals the sum

1 + 2 + 3 + . . . + width

Of course, we can program a simple loop:
double area = 0;
for (int i = 1; i <= width; i++)
{
 area = area + i;
}

Many simple recursions can be computed as loops. However, loop equivalents for
more complex recursions—such as the one in our next example—can be complex.

Actually, in this case, you don’t even need a loop to compute the answer. The sum
of the first n integers can be computed as

1 2 1 2+ + + = × +� n n n()
Thus, the area equals

width * (width + 1) / 2

Therefore, neither recursion nor a loop is required to solve this problem. The recur-
sive solution is intended as a “warm-up” to introduce you to the concept of recursion.

section_1/Triangle.java

1 /**
2 A triangular shape composed of stacked unit squares like this:
3 []
4 [][]
5 [][][]
6 . . .
7 */
8 public class Triangle
9 {

10 private int width;
11
12 /**
13 Constructs a triangular shape.
14 @param aWidth the width (and height) of the triangle
15 */

For a recursion to
terminate, there must
be special cases for
the simplest values.

A N I M AT I O N
Tracing a Recursion

13.1 T riangle Numbers Revisited   589

16 public Triangle(int aWidth)
17 {
18 width = aWidth;
19 }
20
21 /**
22 Computes the area of the triangle.
23 @return the area
24 */
25 public int getArea()
26 {
27 if (width <= 0) { return 0; }
28 else if (width == 1) { return 1; }
29 else
30 {
31 Triangle smallerTriangle = new Triangle(width - 1);
32 int smallerArea = smallerTriangle.getArea();
33 return smallerArea + width;
34 }
35 }
36 }

section_1/TriangleTester.java

1 public class TriangleTester
2 {
3 public static void main(String[] args)
4 {
5 Triangle t = new Triangle(10);
6 int area = t.getArea();
7 System.out.println("Area: " + area);
8 System.out.println("Expected: 55");
9 }

10 }

Program Run

Area: 55
Expected: 55

1.	 Why is the statement else if (width == 1) { return 1; } in the final version of the
getArea method unnecessary?

2.	 How would you modify the program to recursively compute the area of a
square?

3.	 In some cultures, numbers containing the digit 8 are lucky numbers. What is
wrong with the following method that tries to test whether a number is lucky?
public static boolean isLucky(int number)
{
 int lastDigit = number % 10;
 if (lastDigit == 8) { return true; }
 else
 {
 return isLucky(number / 10); // Test the number without the last digit
 }
}

S e l f C h e c k

590  Chapter 13  Recursion

4.	 In order to compute a power of two, you can take the next-lower power and
double it. For example, if you want to compute 211 and you know that 210 =
1024, then 211 = 2 × 1024 = 2048. Write a recursive method public static int
pow2(int n) that is based on this observation.

5.	 Consider the following recursive method:
public static int mystery(int n)
{
 if (n <= 0) { return 0; }
 else
 {
 int smaller = n - 1;
 return mystery(smaller) + n * n;
 }
}

What is mystery(4)?

Practice It	 Now you can try these exercises at the end of the chapter: P13.1, P13.2, P13.10.

Infinite Recursion

A common programming error is an infinite recursion: a method calling itself over and over
with no end in sight. The computer needs some amount of memory for bookkeeping for each
call. After some number of calls, all memory that is available for this purpose is exhausted.
Your program shuts down and reports a “stack overflow”.

Infinite recursion happens either because the arguments don’t get simpler or because a
special terminating case is missing. For example, suppose the getArea method was allowed to
compute the area of a triangle with width 0. If it weren’t for the special test, the method would
construct triangles with width –1, –2, –3, and so on.

13.2  Problem Solving: Thinking Recursively
How To 5.2 in Chapter 5 tells you how to solve a
problem recursively by pretending that “someone
else” will solve the problem for simpler inputs and by
focusing on how to turn the simpler solutions into a
solution for the whole problem.

In this section, we walk through these steps with
a more complex problem: testing whether a sentence
is a palindrome—a string that is equal to itself when
you reverse all characters. Typical examples are

•	 A man, a plan, a canal—Panama!
•	 Go hang a salami, I’m a lasagna hog
and, of course, the oldest palindrome of all:
•	 Madam, I’m Adam

When testing for a palindrome, we match upper- and lowercase letters, and ignore all
spaces and punctuation marks.

Common Error 13.1

Thinking recursively is easy if
you can recognize a subtask that
is similar to the original task.

13.2 P roblem Solving: Thinking Recursively   591

We want to implement the following isPalindrome method:
/**
 Tests whether a text is a palindrome.
 @param text a string that is being checked
 @return true if text is a palindrome, false otherwise
*/
public static boolean isPalindrome(String Text)
{
 . . .
}

Step 1  Consider various ways to simplify inputs.

In your mind, focus on a particular input or set of inputs for the problem that you
want to solve. Think how you can simplify the inputs in such a way that the same
problem can be applied to the simpler input.

When you consider simpler inputs, you may want to remove just a little bit from
the original input—maybe remove one or two characters from a string, or remove a
small portion of a geometric shape. But sometimes it is more useful to cut the input in
half and then see what it means to solve the problem for both halves.

In the palindrome test problem, the input is the string that we need to test. How
can you simplify the input? Here are several possibilities:

•	 Remove the first character.
•	 Remove the last character.
•	 Remove both the first and last characters.
•	 Remove a character from the middle.
•	 Cut the string into two halves.

These simpler inputs are all potential inputs for the palindrome test.

Step 2	 Combine solutions with simpler inputs into a solution of the original problem.

In your mind, consider the solutions for the simpler inputs that you discovered in
Step 1. Don’t worry how those solutions are obtained. Simply have faith that the
solutions are readily available. Just say to yourself: These are simpler inputs, so some-
one else will solve the problem for me.

Now think how you can turn the solution for the simpler inputs into a solution
for the input that you are currently thinking about. Maybe you need to add a small
quantity, perhaps related to the quantity that you lopped off to arrive at the simpler
input. Maybe you cut the original input in half and have solutions for each half. Then
you may need to add both solutions to arrive at a solution for the whole.

Consider the methods for simplifying the inputs for the palindrome test. Cutting
the string in half doesn’t seem like a good idea. If you cut

"Madam, I'm Adam"

in half, you get two strings:
"Madam, I"

and
"'m Adam"

The first string isn’t a palindrome. Cutting the input in half and testing whether the
halves are palindromes seems a dead end.

592  Chapter 13  Recursion

The most promising simplification is to remove the first and last characters.
Removing the M at the front and the m at the back yields

"adam, I'm Ada"

Suppose you can verify that the shorter string is a palindrome. Then of course the
original string is a palindrome—we put the same letter in the front and the back.
That’s extremely promising. A word is a palindrome if

•	 The first and last letters match (ignoring letter case).
and
•	 The word obtained by removing the first and last letters is a palindrome.

Again, don’t worry how the test works for the shorter string. It just works.
There is one other case to consider. What if the first or last letter of the word is not

a letter? For example, the string
"A man, a plan, a canal, Panama!"

ends in a ! character, which does not match the A in the front. But we should ignore
non-letters when testing for palindromes. Thus, when the last character is not a letter
but the first character is a letter, it doesn’t make sense to remove both the first and the
last characters. That’s not a problem. Remove only the last character. If the shorter
string is a palindrome, then it stays a palindrome when you attach a nonletter.

The same argument applies if the first character is not a letter. Now we have a com-
plete set of cases.

•	 If the first and last characters are both letters, then check whether they match. If
so, remove both and test the shorter string.

•	 Otherwise, if the last character isn’t a letter, remove it and test the shorter string.
•	 Otherwise, the first character isn’t a letter. Remove it and test the shorter string.

In all three cases, you can use the solution to the simpler problem to arrive at a solu-
tion to your problem.

Step 3	 Find solutions to the simplest inputs.

A recursive computation keeps simplifying its inputs. Eventually it arrives at very
simple inputs. To make sure that the recursion comes to a stop, you must deal with
the simplest inputs separately. Come up with special solutions for them, which is
usually very easy.

However, sometimes you get into philosophical questions dealing with degener-
ate inputs: empty strings, shapes with no area, and so on. Then you may want to
investigate a slightly larger input that gets reduced to such a trivial input and see what
value you should attach to the degenerate inputs so that the simpler value, when used
according to the rules you discovered in Step 2, yields the correct answer.

Let’s look at the simplest strings for the palindrome test:

•	 Strings with two characters
•	 Strings with a single character
•	 The empty string

We don’t have to come up with a special solution for strings with two characters. Step
2 still applies to those strings—either or both of the characters are removed. But we

13.2 P roblem Solving: Thinking Recursively   593

do need to worry about strings of length 0 and 1. In those cases, Step 2 can’t apply.
There aren’t two characters to remove.

The empty string is a palindrome—it’s the same string when you read it back-
wards. If you find that too artificial, consider a string "mm". According to the rule
discovered in Step 2, this string is a palindrome if the first and last characters of that
string match and the remainder—that is, the empty string—is also a palindrome.
Therefore, it makes sense to consider the empty string a palindrome.

A string with a single letter, such as "I", is a palindrome. How about the case in
which the character is not a letter, such as "!"? Removing the ! yields the empty
string, which is a palindrome. Thus, we conclude that all strings of length 0 or 1 are
palindromes.

Step 4	 Implement the solution by combining the simple cases and the reduction step.

Now you are ready to implement the solution. Make separate cases for the simple
inputs that you considered in Step 3. If the input isn’t one of the simplest cases, then
implement the logic you discovered in Step 2.

Here is the isPalindrome method:
public static boolean isPalindrome(String text)
{
 int length = text.length();

 // Separate case for shortest strings.
 if (length <= 1) { return true; }
 else
 {
 // Get first and last characters, converted to lowercase.
 char first = Character.toLowerCase(text.charAt(0));
 char last = Character.toLowerCase(text.charAt(length - 1));

 if (Character.isLetter(first) && Character.isLetter(last))
 {
 // Both are letters.
 if (first == last)
 {
 // Remove both first and last character.
 String shorter = text.substring(1, length - 1);
 return isPalindrome(shorter);
 }
 else
 {
 return false;
 }
 }
 else if (!Character.isLetter(last))
 {
 // Remove last character.
 String shorter = text.substring(0, length - 1);
 return isPalindrome(shorter);
 }
 else
 {
 // Remove first character.
 String shorter = text.substring(1);
 return isPalindrome(shorter);
 }
 }
}

ONLINE E x a m p l e

The Palindromes
class.

594  Chapter 13  Recursion

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

6.	 Consider the task of removing all punctuation marks from a string. How can we
break the string into smaller strings that can be processed recursively?

7.	 In a recursive method that removes all punctuation marks from a string, we
decide to remove the last character, then recursively process the remainder. How
do you combine the results?

8.	 How do you find solutions for the simplest inputs when removing punctuation
marks from a string?

9.	 Provide pseudocode for a recursive method that removes punctuation marks
from a string, using the answers to Self Checks 6–8.

Practice It	 Now you can try these exercises at the end of the chapter: R13.3, P13.3, P13.6.

13.3  Recursive Helper Methods
Sometimes it is easier to find a recursive
solution if you change the original problem
slightly. Then the original problem can be
solved by calling a recursive helper method.

Here is a typical example: Consider the
palindrome test of Section 13.2. It is a bit
inefficient to construct new string objects
in every step. Now consider the following
change in the problem. Rather than test-
ing whether the entire sentence is a palin-
drome, let’s check whether a substring is a
palindrome:

/**
 Tests whether a substring is a palindrome.
 @param text a string that is being checked
 @param start the index of the first character of the substring
 @param end the index of the last character of the substring
 @return true if the substring is a palindrome
*/
public static boolean isPalindrome(String text, int start, int end)

This method turns out to be even easier to implement than the original test. In the
recursive calls, simply adjust the start and end parameter variables to skip over match-
ing letter pairs and characters that are not letters. There is no need to construct new
String objects to represent the shorter strings.

public static boolean isPalindrome(String text, int start, int end)
{

S e l f C h e c k

Worked Example 13.1	 Finding Files

In this Worked Example, we find all files with a given extension
in a directory tree.

Sometimes, a task can be solved by handing
it off to a recursive helper method.

Sometimes it is easier
to find a recursive
solution if you make
a slight change to the
original problem.

13.3 R ecursive Helper Methods   595

 // Separate case for substrings of length 0 and 1.
 if (start >= end) { return true; }
 else
 {
 // Get first and last characters, converted to lowercase.
 char first = Character.toLowerCase(text.charAt(start));
 char last = Character.toLowerCase(text.charAt(end));

 if (Character.isLetter(first) && Character.isLetter(last))
 {
 if (first == last)
 {
 // Test substring that doesn’t contain the matching letters.
 return isPalindrome(text, start + 1, end - 1);
 }
 else
 {
 return false;
 }
 }
 else if (!Character.isLetter(last))
 {
 // Test substring that doesn’t contain the last character.
 return isPalindrome(text, start, end - 1);
 }
 else
 {
 // Test substring that doesn’t contain the first character.
 return isPalindrome(text, start + 1, end);
 }
 }
}

You should still supply a method to solve the whole problem—the user of your
method shouldn’t have to know about the trick with the substring positions. Simply
call the helper method with positions that test the entire string:

public static boolean isPalindrome(String text)
{
 return isPalindrome(text, 0, text.length() - 1);
}

Note that this call is not a recursive method call. The isPalindrome(String) method
calls the helper method isPalindrome(String, int, int). In this example, we use over-
loading to declare two methods with the same name. The isPalindrome method with
just a String parameter variable is the method that we expect the public to use. The
second method, with one String and two int parameter variables, is the recursive
helper method. If you prefer, you can avoid overloaded methods by choosing a dif-
ferent name for the helper method, such as substringIsPalindrome.

Use the technique of recursive helper methods whenever it is easier to solve a
recursive problem that is equivalent to the original problem—but more amenable to
a recursive solution.

10.	 Do we have to give the same name to both isPalindrome methods?
11.	 When does the recursive isPalindrome method stop calling itself?
12.	 To compute the sum of the values in an array, add the first value to the sum of the

remaining values, computing recursively. Of course, it would be inefficient to set

ONLINE E x a m p l e

The Palindromes
class with a helper
method.

S e l f C h e c k

596  Chapter 13  Recursion

up an actual array of the remaining values. Which recursive helper method can
solve the problem?

13.	 How can you write a recursive method public static void sum(int[] a) without
needing a helper function?

Practice It	 Now you can try these exercises at the end of the chapter: P13.4, P13.7, 13.11.

13.4  The Efficiency of Recursion
As you have seen in this chapter, recursion can be a
powerful tool to implement complex algorithms. On
the other hand, recursion can lead to algorithms that
perform poorly. In this section, we will analyze the
question of when recursion is beneficial and when it is
inefficient.

Consider the Fibonacci sequence: a sequence of
numbers defined by the equation

f

f

f f fn n n

1

2

1 2

1

1

=

=

= +− −

That is, each value of the sequence is the sum of the two preceding values. The first
ten terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

It is easy to extend this sequence indefinitely. Just keep appending the sum of the last
two values of the sequence. For example, the next entry is 34 + 55 = 89.

We would like to write a method that computes fn for any value of n. Here we
translate the definition directly into a recursive method:

section_4/RecursiveFib.java

1 import java.util.Scanner;
2
3 /**
4 This program computes Fibonacci numbers using a recursive method.
5 */
6 public class RecursiveFib
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Enter n: ");
12 int n = in.nextInt();
13
14 for (int i = 1; i <= n; i++)
15 {
16 long f = fib(i);
17 System.out.println("fib(" + i + ") = " + f);
18 }

In most cases, iterative and
recursive approaches have
comparable efficiency.

13.4 T he Efficiency of Recursion   597

19 }
20
21 /**
22 Computes a Fibonacci number.
23 @param n an integer
24 @return the nth Fibonacci number
25 */
26 public static long fib(int n)
27 {
28 if (n <= 2) { return 1; }
29 else { return fib(n - 1) + fib(n - 2); }
30 }
31 }

Program Run

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

That is certainly simple, and the method will work correctly. But watch the output
closely as you run the test program. The first few calls to the fib method are fast. For
larger values, though, the program pauses an amazingly long time between outputs.

That makes no sense. Armed with pencil, paper, and a pocket calculator you could
calculate these numbers pretty quickly, so it shouldn’t take the computer anywhere
near that long.

To find out the problem, let us insert trace messages into the method:

section_4/RecursiveFibTracer.java

1 import java.util.Scanner;
2
3 /**
4 This program prints trace messages that show how often the
5 recursive method for computing Fibonacci numbers calls itself.
6 */
7 public class RecursiveFibTracer
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Enter n: ");
13 int n = in.nextInt();
14
15 long f = fib(n);
16
17 System.out.println("fib(" + n + ") = " + f);
18 }
19
20 /**

598  Chapter 13  Recursion

21 Computes a Fibonacci number.
22 @param n an integer
23 @return the nth Fibonacci number
24 */
25 public static long fib(int n)
26 {
27 System.out.println("Entering fib: n = " + n);
28 long f;
29 if (n <= 2) { f = 1; }
30 else { f = fib(n - 1) + fib(n - 2); }
31 System.out.println("Exiting fib: n = " + n
32 + " return value = " + f);
33 return f;
34 }
35 }

Program Run

Enter n: 6
Entering fib: n = 6
Entering fib: n = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Exiting fib: n = 5 return value = 5
Entering fib: n = 4
Entering fib: n = 3
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Entering fib: n = 1
Exiting fib: n = 1 return value = 1
Exiting fib: n = 3 return value = 2
Entering fib: n = 2
Exiting fib: n = 2 return value = 1
Exiting fib: n = 4 return value = 3
Exiting fib: n = 6 return value = 8
fib(6) = 8

Figure 1 shows the pattern of recursive calls for computing fib(6). Now it is becom-
ing apparent why the method takes so long. It is computing the same values over and
over. For example, the computation of fib(6) calls fib(4) twice and fib(3) three times.
That is very different from the computation we would do with pencil and paper.
There we would just write down the values as they were computed and add up the
last two to get the next one until we reached the desired entry; no sequence value
would ever be computed twice.

13.4 T he Efficiency of Recursion   599

Figure 1  Call Pattern of the Recursive fib Method

fib(6)

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2) fib(2) fib(1) fib(2) fib(1)

fib(2) fib(1)

If we imitate the pencil-and-paper process, then we get the following program:

section_4/LoopFib.java

1 import java.util.Scanner;
2
3 /**
4 This program computes Fibonacci numbers using an iterative method.
5 */
6 public class LoopFib
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Enter n: ");
12 int n = in.nextInt();
13
14 for (int i = 1; i <= n; i++)
15 {
16 long f = fib(i);
17 System.out.println("fib(" + i + ") = " + f);
18 }
19 }
20
21 /**
22 Computes a Fibonacci number.
23 @param n an integer
24 @return the nth Fibonacci number
25 */
26 public static long fib(int n)
27 {
28 if (n <= 2) { return 1; }
29 else
30 {
31 long olderValue = 1;
32 long oldValue = 1;
33 long newValue = 1;
34 for (int i = 3; i <= n; i++)
35 {
36 newValue = oldValue + olderValue;
37 olderValue = oldValue;
38 oldValue = newValue;

600  Chapter 13  Recursion

39 }
40 return newValue;
41 }
42 }
43 }

Program Run

Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(6) = 8
fib(7) = 13
. . .
fib(50) = 12586269025

This method runs much faster than the recursive version.
In this example of the fib method, the recursive solution was easy to program

because it exactly followed the mathematical definition, but it ran far more slowly
than the iterative solution, because it computed many intermediate results multiple
times.

Can you always speed up a recursive solution by changing it into a loop? Fre-
quently, the iterative and recursive solution have essentially the same performance.
For example, here is an iterative solution for the palindrome test:

public static boolean isPalindrome(String text)
{
 int start = 0;
 int end = text.length() - 1;
 while (start < end)
 {
 char first = Character.toLowerCase(text.charAt(start));
 char last = Character.toLowerCase(text.charAt(end));

 if (Character.isLetter(first) && Character.isLetter(last))
 {
 // Both are letters.
 if (first == last)
 {
 start++;
 end--;
 }
 else
 {
 return false;
 }
 }
 if (!Character.isLetter(last)) { end--; }
 if (!Character.isLetter(first)) { start++; }
 }
 return true;
}

This solution keeps two index variables: start and end. The first index starts at the
beginning of the string and is advanced whenever a letter has been matched or a

Occasionally, a
recursive solution
runs much slower
than its iterative
counterpart. However,
in most cases, the
recursive solution is
only slightly slower.

O n l i n e E x a m p l e

The LoopPalindromes
class.

13.5 P ermutations   601

nonletter has been ignored. The second index starts at the end of the string and moves
toward the beginning. When the two index variables meet, the iteration stops.

Both the iteration and the recursion run at about the same speed. If a palindrome
has n characters, the iteration executes the loop between n/2 and n times, depending
on how many of the characters are letters, because one or both index variables are
moved in each step. Similarly, the recursive solution calls itself between n/2 and n
times, because one or two characters are removed in each step.

In such a situation, the iterative solution tends to be a bit faster, because each recur-
sive method call takes a certain amount of processor time. In principle, it is possible
for a smart compiler to avoid recursive method calls if they follow simple patterns,
but most Java compilers don’t do that. From that point of view, an iterative solution
is preferable.

However, many problems have recursive solutions that are easier to understand
and implement correctly than their iterative counterparts. Sometimes there is no
obvious iterative solution at all—see the example in the next section. There is a cer-
tain elegance and economy of thought to recursive solutions that makes them more
appealing. As the computer scientist (and creator of the GhostScript interpreter for
the PostScript graphics description language) L. Peter Deutsch put it: “To iterate is
human, to recurse divine.”

14.	 Is it faster to compute the triangle numbers recursively, as shown in Section 13.1,
or is it faster to use a loop that computes 1 + 2 + 3 + . . . + width?

15.	 You can compute the factorial function either with a loop, using the defini-
tion that n! = 1 × 2 × . . . × n, or recursively, using the definition that 0! = 1 and
n! = (n – 1)! × n. Is the recursive approach inefficient in this case?

16.	 To compute the sum of the values in an array, you can split the array in the
middle, recursively compute the sums of the halves, and add the results. Com-
pare the performance of this algorithm with that of a loop that adds the values.

Practice It	 Now you can try these exercises at the end of the chapter: R13.7, R13.9. P13.5,
P13.25.

13.5  Permutations
In this section, we will study a more complex example of recur-
sion that would be difficult to program with a simple loop. (As
Exercise P13.11 shows, it is possible to avoid the recursion, but
the resulting solution is quite complex, and no faster).

We will design a method that lists all permutations of a string.
A permutation is simply a rearrangement of the letters in the
string. For example, the string "eat" has six permutations (includ-
ing the original string itself):

"eat"
"eta"
"aet"
"ate"
"tea"
"tae"

In many cases, a
recursive solution is
easier to understand
and implement
correctly than an
iterative solution.

S e l f C h e c k

Using recursion,
you can find all
arrangements of
a set of objects.

The permutations
of a string can be
obtained more
naturally through
recursion than
with a loop.

602  Chapter 13  Recursion

Now we need a way to generate the permutations recursively. Consider the string
"eat". Let’s simplify the problem. First, we’ll generate all permutations that start
with the letter 'e', then those that start with 'a', and finally those that start with
't'. How do we generate the permutations that start with 'e'? We need to know
the permutations of the substring "at". But that’s the same problem—to generate all
permutations—with a simpler input, namely the shorter string "at". Thus, we can use
recursion. Generate the permutations of the substring "at". They are

"at"
"ta"

For each permutation of that substring, prepend the letter 'e' to get the permutations
of "eat" that start with 'e', namely

"eat"
"eta"

Now let’s turn our attention to the permutations of "eat" that start with 'a'. We need
to produce the permutations of the remaining letters, "et". They are:

"et"
"te"

We add the letter 'a' to the front of the strings and obtain
"aet"
"ate"

We generate the permutations that start with 't' in the same way.
That’s the idea. The implementation is fairly straightforward. In the permutations

method, we loop through all positions in the word to be permuted. For each of them,
we compute the shorter word that is obtained by removing the ith letter:

String shorter = word.substring(0, i) + word.substring(i + 1);

We compute the permutations of the shorter word:
ArrayList<String> shorterPermutations = permutations(shorter);

Finally, we add the removed letter to the front of all permutations of the shorter word.
for (String s : shorterPermutations)
{
 result.add(word.charAt(i) + s);
}

As always, we have to provide a special case for the simplest strings. The simplest
possible string is the empty string, which has a single permutation—itself.

Here is the complete Permutations class:

section_5/Permutations.java

1 import java.util.ArrayList;
2
3 /**
4 This class computes permutations of a string.
5 */
6 public class Permutations
7 {
8 public static void main(String[] args)
9 {

10 for (String s : permutations(“eat”))
11 {

13.5 P ermutations   603

12 System.out.println(s);
13 }
14 }
15
16 /**
17 Gets all permutations of a given word.
18 @param word the string to permute
19 @return a list of all permutations
20 */
21 public static ArrayList<String> permutations(String word)
22 {
23 ArrayList<String> result = new ArrayList<String>();
24
25 // The empty string has a single permutation: itself
26 if (word.length() == 0)
27 {
28 result.add(word);
29 return result;
30 }
31 else
32 {
33 // Loop through all character positions
34 for (int i = 0; i < word.length(); i++)
35 {
36 // Form a shorter word by removing the ith character
37 String shorter = word.substring(0, i) + word.substring(i + 1);
38
39 // Generate all permutations of the simpler word
40 ArrayList<String> shorterPermutations = permutations(shorter)
41
42 // Add the removed character to the front of
43 // each permutation of the simpler word
44 for (String s : shorterPermutations)
45 {
46 result.add(word.charAt(i) + s);
47 }
48 }
49 // Return all permutations
50 return result;
51 }
52 }
53 }

Program Run

eat
eta
aet
ate
tea
tae

Compare the Permutations and Triangle classes. Both of them work on the same princi-
ple. When they work on a more complex input, they first solve the problem for a sim-
pler input. Then they combine the result for the simpler input with additional work
to deliver the results for the more complex input. There really is no particular com-
plexity behind that process as long as you think about the solution on that level only.

604  Chapter 13  Recursion

However, behind the scenes, the simpler input creates even simpler input, which cre-
ates yet another simplification, and so on, until one input is so simple that the result
can be obtained without further help. It is interesting to think about this process, but
it can also be confusing. What’s important is that you can focus on the one level that
matters—putting a solution together from the slightly simpler problem, ignoring the
fact that the simpler problem also uses recursion to get its results.

Have you ever won-
dered how your
instructor or grader

makes sure your programming home-
work is correct? In all likelihood, they
look at your solution and perhaps run it
with some test inputs. But usually they
have a correct solution available. That
suggests that there might be an easier
way. Perhaps they could feed your pro-
gram and their correct program into
a “program comparator”, a computer
program that analyzes both programs
and determines whether they both
compute the same results. Of course,
your solution and the program that is
known to be correct need not be identi-
cal—what matters is that they produce
the same output when given the same
input.

How could such a program com-
parator work? Well, the Java compiler
knows how to read a program and
make sense of the classes, methods,
and statements. So it seems plausible
that someone could, with some effort,
write a program that reads two Java
programs, analyzes what they do, and
determines whether they solve the
same task. Of course, such a program
would be very attractive to instructors,
because it could automate the grad-
ing process. Thus, even though no
such program exists today, it might be
tempting to try to develop one and sell
it to universities around the world.

However, before you start raising
venture capital for such an effort, you
should know that theoretical computer
scientists have proven that it is impos-
sible to develop such a program, no
matter how hard you try.

There are quite a few of these
unsolvable problems. The first one,

called the halting problem, was dis-
covered by the British researcher Alan
Turing in 1936. Because his research
occurred before the first actual com-
puter was constructed, Turing had to
devise a theoretical device, the Tur-
ing machine, to explain how comput-
ers could work. The Turing machine
consists of a long magnetic tape, a
read/write head, and a program that
has numbered instructions of the form:
“If the current symbol under the head
is x, then replace it with y, move the
head one unit left or right, and con-
tinue with instruction n” (see figure
below). Interestingly enough, with
only these instructions, you can pro-
gram just as much as with Java, even
though it is incredibly tedious to do so.
Theoretical computer scientists like
Turing machines because they can be
described using nothing more than the
laws of mathematics.

Expressed in terms of Java, the halt-
ing problem states: “It is impossible
to write a program with two inputs,
namely the source code of an arbi-
trary Java program P and a string I,
that decides whether the program P,
when executed with the input I, will
halt—that is, the program will not get
into an infinite loop with the given
input”. Of course, for some kinds of
programs and inputs, it is possible to
decide whether the program halts with
the given input. The halting problem
asserts that it is impossible to come
up with a single decision-making algo-
rithm that works with all programs and
inputs. Note that you can’t simply run
the program P on the input I to settle
this question. If the program runs for
1,000 days, you don’t know that the
program is in an infinite loop. Maybe

you just have to wait another day for
it to stop.

Such a “halt checker”, if it could be
written, might also be useful for grad-
ing homework. An instructor could use
it to screen student submissions to see
if they get into an infinite loop with a
particular input, and then stop check-
ing them. However, as Turing dem-
onstrated, such a program cannot be
written. His argument is ingenious and
quite simple.

Suppose a “halt checker” program
existed. Let’s call it H. From H, we will
develop another program, the “killer”
program K. K does the following com-
putation. Its input is a string contain-
ing the source code for a program R.
It then applies the halt checker on the
input program R and the input string R.
That is, it checks whether the program
R halts if its input is its own source
code. It sounds bizarre to feed a pro-
gram to itself, but it isn’t impossible.

Alan Turing

Random Fact 13.1  The Limits of Computation

13.5 P ermutations   605

17.	 What are all permutations of the four-letter word beat?
18.	 Our recursion for the permutation generator stops at the empty string. What

simple modification would make the recursion stop at strings of length 0 or 1?
19.	 Why isn’t it easy to develop an iterative solution for the permutation generator?

Practice It	 Now you can try these exercises at the end of the chapter: P13.11, P13.12, P13.13.

S e l f C h e c k

For example, the Java compiler is writ-
ten in Java, and you can use it to com-
pile itself. Or, as a simpler example, a
word counting program can count the
words in its own source code.

When K gets the answer from H
that R halts when applied to itself, it is
programmed to enter an infinite loop.
Otherwise K exits. In Java, the program
might look like this:

public class Killer
{
 public static void main(
 String[] args)
 {
 String r = read program input;
 HaltChecker checker =
 new HaltChecker();
 if (checker.check(r, r))
 {
 while (true)
 { // Infinite loop
 }
 }
 else
 {
 return;
 }
 }
}

Now ask yourself: What does the halt
checker answer when asked whether
K halts when given K as the input?
Maybe it finds out that K gets into an
infinite loop with such an input. But
wait, that can’t be right. That would
mean that checker.check(r, r) returns
false when r is the program code of K.
As you can plainly see, in that case, the
killer method returns, so K didn’t get
into an infinite loop. That shows that
K must halt when analyzing itself, so

checker.check(r, r) should return true.
But then the killer method doesn’t ter-
minate—it goes into an infinite loop.
That shows that it is logically impos-
sible to implement a program that can
check whether every program halts on
a particular input.

It is sobering to know that there are
limits to computing. There are prob-
lems that no computer program, no
matter how ingenious, can answer.

Theoretical computer scientists are
working on other research involving
the nature of computation. One impor
tant question that remains unsettled

to this day deals with problems that
in practice are very time-consuming to
solve. It may be that these problems
are intrinsically hard, in which case it
would be pointless to try to look for
better algorithms. Such theoretical
research can have important practical
applications. For example, right now,
nobody knows whether the most com-
mon encryption schemes used today
could be broken by discovering a new
algorithm. Knowing that no fast algo-
rithms exist for breaking a particular
code could make us feel more comfort-
able about the security of encryption.

Instruction
number

If tape
symbol is

Replace
with

Then move
head

Then go to
instruction

1

2

3

4

0
1
0
1
2
0
1
2
1
2

2
1
0
1
0
0
1
2
1
0

right
left

right
right
left
left
left

right
right
left

2
4
2
2
3
3
3
1
5
4

Program

Control unit

Read/write head

Tape

The Turing Machine

606  Chapter 13  Recursion

13.6  Mutual Recursion
In the preceding examples, a method called itself to solve a simpler problem. Some-
times, a set of cooperating methods calls each other in a recursive fashion. In this sec-
tion, we will explore such a mutual recursion. This technique is significantly more
advanced than the simple recursion that we discussed in the preceding sections.

We will develop a program that can compute the values of arithmetic expressions
such as

3+4*5
(3+4)*5
1-(2-(3-(4-5)))

Computing such an expression is complicated by the fact that * and / bind more
strongly than + and -, and that parentheses can be used to group subexpressions.

Figure 2 shows a set of syntax diagrams that describes the syntax of these expres-
sions. To see how the syntax diagrams work, consider the expression 3+4*5:

•	 Enter the expression syntax diagram. The arrow points directly to term, giving
you no alternative.

•	 Enter the term syntax diagram. The arrow points to factor, again giving you no
choice.

•	 Enter the factor diagram. You have two choices: to follow the top branch or the
bottom branch. Because the first input token is the number 3 and not a (, follow
the bottom branch.

•	 Accept the input token because it matches the number. The unprocessed input is
now +4*5.

•	 Follow the arrow out of number to the end of factor. As in a method call, you
now back up, returning to the end of the factor element of the term diagram.

In a mutual recursion,
a set of cooperating
methods calls each
other repeatedly.

Figure 2  Syntax Diagrams for Evaluating an Expression

termexpression

+

–

factorterm

*

/

expression

number

factor

()

13.6  Mutual Recursion   607

•	 Now you have another choice—to loop back in the term diagram, or to exit. The
next input token is a +, and it matches neither the * or the / that would be required
to loop back. So you exit, returning to expression.

•	 Again, you have a choice, to loop back or to exit. Now the + matches one of the
choices in the loop. Accept the + in the input and move back to the term element.
The remaining input is 4*5.

In this fashion, an expression is broken down into a sequence of terms, separated by +
or -, each term is broken down into a sequence of factors, each separated by * or /, and
each factor is either a parenthesized expression or a number. You can draw this break-
down as a tree. Figure 3 shows how the expressions 3+4*5 and (3+4)*5 are derived from
the syntax diagram.

Why do the syntax diagrams help us compute the value of the tree? If you look at
the syntax trees, you will see that they accurately represent which operations should
be carried out first. In the first tree, 4 and 5 should be multiplied, and then the result
should be added to 3. In the second tree, 3 and 4 should be added, and the result
should be multiplied by 5.

At the end of this section, you will find the implementation of the Evaluator
class, which evaluates these expressions. The Evaluator makes use of an Expression-
Tokenizer class, which breaks up an input string into tokens—numbers, operators,
and parentheses. (For simplicity, we only accept positive integers as numbers, and we
don’t allow spaces in the input.)

When you call nextToken, the next input token is returned as a string. We also sup-
ply another method, peekToken, which allows you to see the next token without con-
suming it. To see why the peekToken method is necessary, consider the syntax diagram
of the term type. If the next token is a "*" or "/", you want to continue adding and
subtracting terms. But if the next token is another character, such as a "+" or "-", you
want to stop without actually consuming it, so that the token can be considered later.

To compute the value of an expression, we implement three methods:
getExpressionValue, getTermValue, and getFactorValue. The getExpressionValue method
first calls getTermValue to get the value of the first term of the expression. Then it

Figure 3  Syntax Trees for Two Expressions

Expression

Term Term

Factor

Number

3 + * *

Factor

Number

4

Factor

Number

5 5

Expression

Factor

Term

Factor

Number

3(+

Expression

Term

Term

Factor

Number

4)

Factor

Number

608  Chapter 13  Recursion

checks whether the next input token is one of + or -. If so, it calls getTermValue again
and adds or subtracts it.

public int getExpressionValue()
{
 int value = getTermValue();
 boolean done = false;
 while (!done)
 {
 String next = tokenizer.peekToken();
 if ("+".equals(next) || "-".equals(next))
 {
 tokenizer.nextToken(); // Discard "+" or "-"
 int value2 = getTermValue();
 if ("+".equals(next)) { value = value + value2; }
 else { value = value - value2; }
 }
 else
 {
 done = true;
 }
 }
 return value;
}

The getTermValue method calls getFactorValue in the same way, multiplying or dividing
the factor values.

Finally, the getFactorValue method checks whether the next input is a number, or
whether it begins with a (token. In the first case, the value is simply the value of the
number. However, in the second case, the getFactorValue method makes a recursive
call to getExpressionValue. Thus, the three methods are mutually recursive.

public int getFactorValue()
{
 int value;
 String next = tokenizer.peekToken();
 if ("(".equals(next))
 {
 tokenizer.nextToken(); // Discard "("
 value = getExpressionValue();
 tokenizer.nextToken(); // Discard ")"
 }
 else
 {
 value = Integer.parseInt(tokenizer.nextToken());
 }
 return value;
}

To see the mutual recursion clearly, trace through the expression (3+4)*5:

•	 getExpressionValue calls getTermValue
•	 getTermValue calls getFactorValue

•	 getFactorValue consumes the (input
•	 getFactorValue calls getExpressionValue

•	 getExpressionValue returns eventually with the value of 7,
having consumed 3 + 4. This is the recursive call.

•	 getFactorValue consumes the) input

13.6  Mutual Recursion   609

•	 getFactorValue returns 7
•	 getTermValue consumes the inputs * and 5 and returns 35

•	 getExpressionValue returns 35

As always with a recursive solution, you need to ensure that the recursion termi-
nates. In this situation, that is easy to see when you consider the situation in which
getExpressionValue calls itself. The second call works on a shorter subexpression than
the original expression. At each recursive call, at least some of the tokens of the input
string are consumed, so eventually the recursion must come to an end.

section_6/Evaluator.java

1 /**
2 A class that can compute the value of an arithmetic expression.
3 */
4 public class Evaluator
5 {
6 private ExpressionTokenizer tokenizer;
7
8 /**
9 Constructs an evaluator.

10 @param anExpression a string containing the expression
11 to be evaluated
12 */
13 public Evaluator(String anExpression)
14 {
15 tokenizer = new ExpressionTokenizer(anExpression);
16 }
17
18 /**
19 Evaluates the expression.
20 @return the value of the expression
21 */
22 public int getExpressionValue()
23 {
24 int value = getTermValue();
25 boolean done = false;
26 while (!done)
27 {
28 String next = tokenizer.peekToken();
29 if ("+".equals(next) || "-".equals(next))
30 {
31 tokenizer.nextToken(); // Discard "+" or "-"
32 int value2 = getTermValue();
33 if ("+".equals(next)) { value = value + value2; }
34 else { value = value - value2; }
35 }
36 else
37 {
38 done = true;
39 }
40 }
41 return value;
42 }
43
44 /**
45 Evaluates the next term found in the expression.
46 @return the value of the term
47 */

610  Chapter 13  Recursion

48 public int getTermValue()
49 {
50 int value = getFactorValue();
51 boolean done = false;
52 while (!done)
53 {
54 String next = tokenizer.peekToken();
55 if ("*".equals(next) || "/".equals(next))
56 {
57 tokenizer.nextToken();
58 int value2 = getFactorValue();
59 if ("*".equals(next)) { value = value * value2; }
60 else { value = value / value2; }
61 }
62 else
63 {
64 done = true;
65 }
66 }
67 return value;
68 }
69
70 /**
71 Evaluates the next factor found in the expression.
72 @return the value of the factor
73 */
74 public int getFactorValue()
75 {
76 int value;
77 String next = tokenizer.peekToken();
78 if ("(".equals(next))
79 {
80 tokenizer.nextToken(); // Discard "("
81 value = getExpressionValue();
82 tokenizer.nextToken(); // Discard ")"
83 }
84 else
85 {
86 value = Integer.parseInt(tokenizer.nextToken());
87 }
88 return value;
89 }
90 }

section_6/ExpressionTokenizer.java

1 /**
2 This class breaks up a string describing an expression
3 into tokens: numbers, parentheses, and operators.
4 */
5 public class ExpressionTokenizer
6 {
7 private String input;
8 private int start; // The start of the current token
9 private int end; // The position after the end of the current token

10
11 /**
12 Constructs a tokenizer.
13 @param anInput the string to tokenize
14 */

13.6  Mutual Recursion   611

15 public ExpressionTokenizer(String anInput)
16 {
17 input = anInput;
18 start = 0;
19 end = 0;
20 nextToken(); // Find the first token
21 }
22
23 /**
24 Peeks at the next token without consuming it.
25 @return the next token or null if there are no more tokens
26 */
27 public String peekToken()
28 {
29 if (start >= input.length()) { return null; }
30 else { return input.substring(start, end); }
31 }
32
33 /**
34 Gets the next token and moves the tokenizer to the following token.
35 @return the next token or null if there are no more tokens
36 */
37 public String nextToken()
38 {
39 String r = peekToken();
40 start = end;
41 if (start >= input.length()) { return r; }
42 if (Character.isDigit(input.charAt(start)))
43 {
44 end = start + 1;
45 while (end < input.length()
46 && Character.isDigit(input.charAt(end)))
47 {
48 end++;
49 }
50 }
51 else
52 {
53 end = start + 1;
54 }
55 return r;
56 }
57 }

section_6/ExpressionCalculator.java

1 import java.util.Scanner;
2
3 /**
4 This program calculates the value of an expression
5 consisting of numbers, arithmetic operators, and parentheses.
6 */
7 public class ExpressionCalculator
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Enter an expression: ");
13 String input = in.nextLine();
14 Evaluator e = new Evaluator(input);

612  Chapter 13  Recursion

15 int value = e.getExpressionValue();
16 System.out.println(input + "=" + value);
17 }
18 }

Program Run

Enter an expression: 3+4*5
3+4*5=23

20.	 What is the difference between a term and a factor? Why do we need both
concepts?

21.	 Why does the expression evaluator use mutual recursion?
22.	 What happens if you try to evaluate the illegal expression 3+4*)5? Specifically,

which method throws an exception?

Practice It	 Now you can try these exercises at the end of the chapter: R13.11, P13.16.

13.7  Backtracking
Backtracking is a problem solving technique that builds up partial solutions that get
increasingly closer to the goal. If a partial solution cannot be completed, one aban-
dons it and returns to examining the other candidates.

Backtracking can be used to solve crossword puzzles, escape from mazes, or find
solutions to systems that are constrained by rules. In order to employ backtracking
for a particular problem, we need two characteristic properties:

1.	A procedure to examine a partial solution and determine whether to
•	 Accept it as an actual solution.
•	 Abandon it (either because it violates some rules or because it is clear that it

can never lead to a valid solution).
•	 Continue extending it.

2.	A procedure to extend a partial solution, generating one or more solutions that
come closer to the goal.

S e l f C h e c k

Backtracking
examines partial
solutions,
abandoning
unsuitable ones and
returning to consider
other candidates.

In a backtracking algorithm, one
explores all paths towards a solution.
When one path is a dead end, one needs
to backtrack and try another choice.

13.7  Backtracking   613

Figure 4 
A Solution to the
Eight Queens Problem

a b c d e f g h

a b c d e f g h

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

Backtracking can then be expressed with the following recursive algorithm:

Solve(partialSolution)
	 Examine(partialSolution).
	 If accepted
		 Add partialSolution to the list of solutions.
	 Else if not abandoned
		 For each p in extend(partialSolution)
			 Solve(p).

Of course, the processes of examining and extending a partial solution depend on the
nature of the problem.

As an example, we will develop a program that finds all solutions to the eight
queens problem: the task of positioning eight queens on a chess board so that none of
them attacks another according to the rules of chess. In other words, there are no two
queens on the same row, column, or diagonal. Figure 4 shows a solution.

In this problem, it is easy to examine a partial solution. If two queens attack
another, reject it. Otherwise, if it has eight queens, accept it. Otherwise, continue.

It is also easy to extend a partial solution. Simply add another queen on an empty
square.

However, in the interest of efficiency, we will be a bit more systematic about the
extension process. We will place the first queen in row 1, the next queen in row 2, and
so on.

We provide a class PartialSolution that collects the queens in a partial solution, and
that has methods to examine and extend the solution:

public class PartialSolution
{
 private Queen[] queens;

 public int examine() { . . . }
 public PartialSolution[] extend() { . . . }
}

The examine method simply checks whether two queens attack each other:
public int examine()
{

614  Chapter 13  Recursion

 for (int i = 0; i < queens.length; i++)
 {
 for (int j = i + 1; j < queens.length; j++)
 {
 if (queens[i].attacks(queens[j])) { return ABANDON; }
 }
 }
 if (queens.length == NQUEENS) { return ACCEPT; }
 else { return CONTINUE; }
}

The extend method takes a given solution and makes eight copies of it. Each copy gets
a new queen in a different column.

public PartialSolution[] extend()
{
 // Generate a new solution for each column
 PartialSolution[] result = new PartialSolution[NQUEENS];
 for (int i = 0; i < result.length; i++)
 {
 int size = queens.length;

 // The new solution has one more row than this one
 result[i] = new PartialSolution(size + 1);

 // Copy this solution into the new one
 for (int j = 0; j < size; j++)
 {
 result[i].queens[j] = queens[j];
 }

 // Append the new queen into the ith column
 result[i].queens[size] = new Queen(size, i);
 }
 return result;
}

You will find the Queen class at the end of the section. The only challenge is to deter-
mine when two queens attack each other diagonally. Here is an easy way of checking
that. Compute the slope and check whether it is ±1. This condition can be simplified
as follows:

row row column column 1

row row column column

row row column column

2 1 2 1

2 1 2 1

2 1 2 1

))
)

((
(

− − = ±

− = ± −

− = −

Have a close look at the solve method in the EightQueens class on page 617. The method
is a straightforward translation of the pseudocode for backtracking. Note how there
is nothing specific about the eight queens problem in this method—it works for any
partial solution with an examine and extend method (see Exercise P13.19).

Figure 5 shows the solve method in action for a four queens problem. Starting
from a blank board, there are four partial solutions with a queen in row 1 1 . When
the queen is in column 1, there are four partial solutions with a queen in row 2 2 .
Two of them are immediately abandoned immediately. The other two lead to partial
solutions with three queens 3 and 4 , all but one of which are abandoned. One par-
tial solution is extended to four queens, but all of those are abandoned as well 5 .

13.7  Backtracking   615

Figure 5  Backtracking in the Four Queens Problem

1

2

3 4

5

Then the algorithm backtracks, giving up on a queen in position a1, instead extending
the solution with the queen in position b1 (not shown).

When you run the program, it lists 92 solutions, including the one in Figure 4.
Exercise P13.21 asks you to remove those that are rotations or reflections of another.

section_7/PartialSolution.java

1 /**
2 A partial solution to the eight queens puzzle.
3 */
4 public class PartialSolution
5 {
6 private Queen[] queens;
7 private static final int NQUEENS = 8;
8
9 public static final int ACCEPT = 1;

10 public static final int ABANDON = 2;
11 public static final int CONTINUE = 3;
12
13 /**
14 Constructs a partial solution of a given size.
15 @param size the size
16 */
17 public PartialSolution(int size)
18 {
19 queens = new Queen[size];
20 }
21
22 /**
23 Examines a partial solution.
24 @return one of ACCEPT, ABANDON, CONTINUE
25 */
26 public int examine()
27 {

616  Chapter 13  Recursion

28 for (int i = 0; i < queens.length; i++)
29 {
30 for (int j = i + 1; j < queens.length; j++)
31 {
32 if (queens[i].attacks(queens[j])) { return ABANDON; }
33 }
34 }
35 if (queens.length == NQUEENS) { return ACCEPT; }
36 else { return CONTINUE; }
37 }
38
39 /**
40 Yields all extensions of this partial solution.
41 @return an array of partial solutions that extend this solution.
42 */
43 public PartialSolution[] extend()
44 {
45 // Generate a new solution for each column
46 PartialSolution[] result = new PartialSolution[NQUEENS];
47 for (int i = 0; i < result.length; i++)
48 {
49 int size = queens.length;
50
51 // The new solution has one more row than this one
52 result[i] = new PartialSolution(size + 1);
53
54 // Copy this solution into the new one
55 for (int j = 0; j < size; j++)
56 {
57 result[i].queens[j] = queens[j];
58 }
59
60 // Append the new queen into the ith column
61 result[i].queens[size] = new Queen(size, i);
62 }
63 return result;
64 }
65
66 public String toString() { return Arrays.toString(queens); }
67 }

section_7/Queen.java

1 /**
2 A queen in the eight queens problem.
3 */
4 public class Queen
5 {
6 private int row;
7 private int column;
8
9 /**

10 Constructs a queen at a given position.
11 @param r the row
12 @param c the column
13 */
14 public Queen(int r, int c)
15 {

13.7  Backtracking   617

16 row = r;
17 column = c;
18 }
19
20 /**
21 Checks whether this queen attacks another.
22 @param other the other queen
23 @return true if this and the other queen are in the same
24 row, column, or diagonal
25 */
26 public boolean attacks(Queen other)
27 {
28 return row == other.row
29 || column == other.column
30 || Math.abs(row - other.row) == Math.abs(column - other.column);
31 }
32
33 public String toString()
34 {
35 return "" + "abcdefgh".charAt(column) + (row + 1) ;
36 }
37 }

section_7/EightQueens.java

1 import java.util.Arrays;
2
3 /**
4 This class solves the eight queens problem using backtracking.
5 */
6 public class EightQueens
7 {
8 public static void main(String[] args)
9 {

10 solve(new PartialSolution(0));
11 }
12
13 /**
14 Prints all solutions to the problem that can be extended from
15 a given partial solution.
16 @param sol the partial solution
17 */
18 public static void solve(PartialSolution sol)
19 {
20 int exam = sol.examine();
21 if (exam == PartialSolution.ACCEPT)
22 {
23 System.out.println(sol);
24 }
25 else if (exam != PartialSolution.ABANDON)
26 {
27 for (PartialSolution p : sol.extend())
28 {
29 solve(p);
30 }
31 }
32 }
33 }

618  Chapter 13  Recursion

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Program Run

[a1, e2, h3, f4, c5, g6, b7, d8]
[a1, f2, h3, c4, g5, d6, b7, e8]
[a1, g2, d3, f4, h5, b6, e7, c8]
 . . .
[f1, a2, e3, b4, h5, c6, g7, d8]
 . . .
[h1, c2, a3, f4, b5, e6, g7, d8]
[h1, d2, a3, c4, f5, b6, g7, e8]

(92 solutions)

23.	 Why does j begin at i + 1 in the examine method?
24.	 Continue tracing the four queens problem as shown in Figure 5. How many

solutions are there with the first queen in position a2?
25.	 How many solutions are there altogether for the four queens problem?

Practice It	 Now you can try these exercises at the end of the chapter: P13.19, P13.23, P13.24.

Understand the control flow in a recursive computation.

•	 A recursive computation solves a problem by using the solution to the same
problem with simpler inputs.

•	 For a recursion to terminate, there must be special cases for the simplest values.

Design a recursive solution to a problem.

Identify recursive helper methods for solving a problem.

•	 Sometimes it is easier to find a recursive solution if you
make a slight change to the original problem.

S e l f C h e c k

Worked Example 13.2	 Towers of Hanoi

No discussion of recursion would be
complete without the “Towers of Hanoi”.
In this Worked Example, we solve the classic
puzzle with an elegant recursive solution.

C h a p t e r S u mm a r y

Review Exercises  619

Contrast the efficiency of recursive and non-recursive algorithms.

•	 Occasionally, a recursive solution runs much slower than its iterative counterpart.
However, in most cases, the recursive solution is only slightly slower.

•	 In many cases, a recursive solution is easier to understand and implement cor-
rectly than an iterative solution.

Review a complex recursion example that cannot be solved with a simple loop.

•	 The permutations of a string can be obtained more naturally through
recursion than with a loop.

Recognize the phenomenon of mutual recursion in an expression evaluator.

•	 In a mutual recursion, a set of cooperating methods calls each other repeatedly.

Use backtracking to solve problems that require trying out multiple paths.

•	 Backtracking examines partial solutions, abandoning unsuitable ones and return-
ing to consider other candidates.

• R13.1	 Define the terms
a.	Recursion
b.	Iteration
c.	Infinite recursion
d.	Recursive helper method

•• R13.2	 Outline, but do not implement, a recursive solution for finding the smallest value in
an array.

•• R13.3	 Outline, but do not implement, a recursive solution for sorting an array of numbers.
Hint: First find the smallest value in the array.

•• R13.4	 Outline, but do not implement, a recursive solution for generating all subsets of the
set {1, 2, . . . , n}.

••• R13.5	 Exercise P13.15 shows an iterative way of generating all permutations of the
sequence (0, 1, . . . , n – 1). Explain why the algorithm produces the correct result.

• R13.6	 Write a recursive definition of xn, where n ≥ 0, similar to the recursive definition of
the Fibonacci numbers. Hint: How do you compute xn from xn – 1? How does the
recursion terminate?

•• R13.7	 Improve upon Exercise R13.6 by computing xn as (xn/2)2 if n is even. Why is this
approach significantly faster? Hint: Compute x1023 and x1024 both ways.

R e v i e w E x e r c i s e s

620  Chapter 13  Recursion

• R13.8	 Write a recursive definition of n! = 1 × 2 × . . . × n, similar to the recursive definition
of the Fibonacci numbers.

•• R13.9	 Find out how often the recursive version of fib calls itself. Keep a static variable
fibCount and increment it once in every call to fib. What is the relationship between
fib(n) and fibCount?

••• R13.10	 Let moves(n) be the number of moves required to solve the Towers of Hanoi prob-
lem (see Worked Example 13.2). Find a formula that expresses moves(n) in terms of
moves(n – 1). Then show that moves(n) = 2n – 1.

•• R13.11	 Trace the expression evaluator program from Section 13.6 with inputs 3 – 4 + 5,
3 – (4 + 5), (3 – 4) * 5, and 3 * 4 + 5 * 6.

• P13.1	 Given a class Rectangle with instance variables width and height, provide a recursive
getArea method. Construct a rectangle whose width is one less than the original and
call its getArea method.

•• P13.2	 Given a class Square with instance variable width, provide a recursive getArea method.
Construct a square whose width is one less than the original and call its getArea
method.

• P13.3	 Write a recursive method String reverse(String text) that reverses a string. For
example, reverse("Hello!") returns the string "!olleH". Implement a recursive solution
by removing the first character, reversing the remaining text, and combining the two.

•• P13.4	 Redo Exercise P13.3 with a recursive helper method that reverses a substring of the
message text.

• P13.5	 Implement the reverse method of Exercise P13.3 as an iteration.

•• P13.6	 Use recursion to implement a method
public static boolean find(String text, String str)

that tests whether a given text contains a string. For example, find("Mississippi",
"sip") returns true.
Hint: If the text starts with the string you want to match, then you are done. If not,
consider the text that you obtain by removing the first character.

•• P13.7	 Use recursion to implement a method
public static int indexOf(String text, String str)

that returns the starting position of the first substring of the text that matches str.
Return –1 if str is not a substring of the text.
For example, s.indexOf("Mississippi", "sip") returns 6.
Hint: This is a bit trickier than Exercise P13.6, because you must keep track of how
far the match is from the beginning of the text. Make that value a parameter variable
of a helper method.

• P13.8	 Using recursion, find the largest element in an array.
Hint: Find the largest element in the subset containing all but the last element. Then
compare that maximum to the value of the last element.

P r o g r a mm i n g E x e r c i s e s

Programming Exercises  621

• P13.9	 Using recursion, compute the sum of all values in an array.

•• P13.10	 Using recursion, compute the area of a polygon. Cut off a
triangle and use the fact that a triangle with corners (x1, y1),
(x2, y2), (x3, y3) has area

x y x y x y y x y x y x1 2 2 3 3 1 1 2 2 3 3 1

2

+ + − − −

•• P13.11	 The following method was known to the ancient Greeks for computing square
roots. Given a value x > 0 and a guess g for the square root, a better guess is
(x + g/x) / 2. Write a recursive helper method public static squareRootGuess(double x,
double g). If g2 is approximately equal to x, return g, otherwise, return squareRootGuess
with the better guess. Then write a method public static squareRoot(double x) that
uses the helper method.

••• P13.12	 Implement a SubstringGenerator that generates all substrings of a string. For example,
the substrings of the string "rum" are the seven strings

"r", "ru", "rum", "u", "um", "m", ""

Hint: First enumerate all substrings that start with the first character. There are n of
them if the string has length n. Then enumerate the substrings of the string that you
obtain by removing the first character.

••• P13.13	 Implement a SubsetGenerator that generates all subsets of the characters of a string.
For example, the subsets of the characters of the string "rum" are the eight strings

"rum", "ru", "rm", "r", "um", "u", "m", ""

Note that the subsets don’t have to be substrings—for example, "rm" isn’t a substring
of "rum".

••• P13.14	 In this exercise, you will change the permutations method of Section 13.4 (which
computed all permutations at once) to a PermutationIterator (which computes them
one at a time).

public class PermutationIterator
{
 public PermutationIterator(String s) { . . . }
 public String nextPermutation() { . . . }
 public boolean hasMorePermutations() { . . . }
}

Here is how you would print out all permutations of the string "eat":
PermutationIterator iter = new PermutationIterator("eat");
while (iter.hasMorePermutations())
{
 System.out.println(iter.nextPermutation());
}

Now we need a way to iterate through the permutations recursively. Consider the
string "eat". As before, we’ll generate all permutations that start with the letter 'e',
then those that start with 'a', and finally those that start with 't'. How do we gener-
ate the permutations that start with 'e'? Make another PermutationIterator object
(called tailIterator) that iterates through the permutations of the substring "at". In
the nextPermutation method, simply ask tailIterator what its next permutation is,
and then add the 'e' at the front. However, there is one special case. When the tail

622  Chapter 13  Recursion

generator runs out of permutations, all permutations that start with the current letter
have been enumerated. Then

•	 Increment the current position.
•	 Compute the tail string that contains all letters except for the current one.
•	 Make a new permutation iterator for the tail string.

You are done when the current position has reached the end of the string.

••• P13.15	 The following class generates all permutations of the numbers 0, 1, 2, . . ., n – 1,
without using recursion.

public class NumberPermutationIterator
{
 private int[] a;

 public NumberPermutationIterator(int n)
 {
 a = new int[n];
 done = false;
 for (int i = 0; i < n; i++) { a[i] = i; }
 }

 public int[] nextPermutation()
 {
 if (a.length <= 1) { return a; }

 for (int i = a.length - 1; i > 0; i--)
 {
 if (a[i - 1] < a[i])
 {
 int j = a.length - 1;
 while (a[i - 1] > a[j]) { j--; }
 swap(i - 1, j);
 reverse(i, a.length - 1);
 return a;
 }
 }
 return a;
 }

 public boolean hasMorePermutations()
 {
 if (a.length <= 1) { return false; }
 for (int i = a.length - 1; i > 0; i--)
 {
 if (a[i - 1] < a[i]) { return true; }
 }
 return false;
 }

 public void swap(int i, int j)
 {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }

 public void reverse(int i, int j)
 {
 while (i < j) { swap(i, j); i++; j--; }

Programming Exercises  623

 }
}

The algorithm uses the fact that the set to be permuted consists of distinct numbers.
Thus, you cannot use the same algorithm to compute the permutations of the char-
acters in a string. You can, however, use this class to get all permutations of the char-
acter positions and then compute a string whose ith character is word.charAt(a[i]).
Use this approach to reimplement the PermutationIterator of Exercise P13.14 without
recursion.

•• P13.16	 Extend the expression evaluator in Section 13.6 so that it can handle the % operator
as well as a “raise to a power” operator ̂ . For example, 2 ̂ 3 should evaluate to 8. As
in mathematics, raising to a power should bind more strongly than multiplication:
5 * 2 ̂ 3 is 40.

••• P13.17	 Implement an iterator that produces the moves for the Towers of Hanoi puzzle
described in Worked Example 13.2. Provide methods hasMoreMoves and nextMove. The
nextMove method should yield a string describing the next move. For example, the
following code prints all moves needed to move five disks from peg 1 to peg 3:

DiskMover mover = new DiskMover(5, 1, 3);
while (mover.hasMoreMoves())
{
 System.out.println(mover.nextMove());
}

Hint: A disk mover that moves a single disk from one peg to another simply has a
nextMove method that returns a string

Move disk from peg source to target

A disk mover with more than one disk to move must work harder. It needs another
DiskMover to help it move the first d – 1 disks. The nextMove asks that disk mover for its
next move until it is done. Then the nextMove method issues a command to move the
dth disk. Finally, it constructs another disk mover that generates the remaining
moves.
It helps to keep track of the state of the disk mover:

•	 BEFORE_LARGEST: A helper mover moves the smaller pile to the other peg.
•	 LARGEST: Move the largest disk from the source to the destination.
•	 AFTER_LARGEST: The helper mover moves the smaller pile from the other peg to

the target.
•	 DONE: All moves are done.

••• P13.18	 Escaping a Maze. You are currently located inside a maze. The walls of the maze are
indicated by asterisks (*).

* *******
* * *
* ***** *
* * * *
* * *** *
* * *
*** * * *
* * *
******* *

Use the following recursive approach to check whether you can escape from the
maze: If you are at an exit, return true. Recursively check whether you can escape

624  Chapter 13  Recursion

from one of the empty neighboring locations without visiting the current location.
This method merely tests whether there is a path out of the maze. Extra credit if you
can print out a path that leads to an exit.

•• P13.19	 The backtracking algorithm will work for any problem whose partial solutions can
be examined and extended. Provide a PartialSolution interface type with methods
examine and extend, a solve method that works with this interface type, and a class
EightQueensPartialSolution that implements the interface.

•• P13.20	 Using the PartialSolution interface and solve method from Exercise P13.19, provide a
class MazePartialSolution for solving the maze escape problem of Exercise P13.18.

••• P13.21	 Refine the program for solving the eight queens problem so that rotations and reflec-
tions of previously displayed solutions are not shown. Your program should display
twelve unique solutions.

••• P13.22	 Refine the program for solving the eight queens problem so that the solutions are
written to an HTML file, using tables with black and white background for the
board and the Unicode character ♕ '\u2655' for the white queen.

•• P13.23	 Generalize the program for solving the eight queens problem to the n queens prob-
lem. Your program should prompt for the value of n and display the solutions.

•• P13.24	 Using backtracking, write a program that solves summation puzzles in which each
letter should be replaced by a digit, such as

send + more = money

Other examples are base + ball = games and kyoto + osaka = tokyo.

•• P13.25	 The recursive computation of Fibonacci numbers can be speeded up significantly
by keeping track of the values that have already been computed. Provide an imple
mentation of the fib method that uses this strategy. Whenever you return a new
value, also store it in an auxiliary array. However, before embarking on a computa
tion, consult the array to find whether the result has already been computed. Com
pare the running time of your improved implementation with that of the original
recursive implementation and the loop implementation.

••• Graphics P13.26	 The Koch Snowflake. A snowflake-like shape is recursively defined as follows. Start
with an equilateral triangle:

Next, increase the size by a factor of three and replace each straight line with four
line segments:

Repeat the process:

Answers to Self-Check Questions  625

1.	 Suppose we omit the statement. When com-
puting the area of a triangle with width 1, we
compute the area of the triangle with width
0 as 0, and then add 1, to arrive at the correct
area.

2.	 You would compute the smaller area recur-
sively, then return
smallerArea + width + width - 1.

[][][][]
[][][][]
[][][][]
[][][][]

Of course, it would be simpler to compute the
area simply as width * width. The results are
identical because

n n
n n n n

n

1 0 2 1 3 2 1
(1)

2
(1)

2
2

�+ + + + + + + + − =
+

+
−

=

3.	 There is no provision for stopping the
recursion. When a number < 10 isn’t 8, then
the method should return false and stop.

4.	 public static int pow2(int n)
{
 if (n <= 0) { return 1; } // 20 is 1
 else { return 2 * pow2(n - 1); }
}

5.	 mystery(4) calls mystery(3)
 mystery(3) calls mystery(2)
 mystery(2) calls mystery(1)
 mystery(1) calls mystery(0)
 mystery(0) returns 0.
 mystery(1) returns 0 + 1 * 1 = 1
 mystery(2) returns 1 + 2 * 2 = 5
 mystery(3) returns 5 + 3 * 3 = 14
mystery(4) returns 14 + 4 * 4 = 30

6.	 In this problem, any decomposition will work
fine. We can remove the first or last character
and then remove punctuation marks from the
remainder. Or we can break the string in two

substrings, and remove punctuation marks
from each.

7.	 If the last character is a punctuation mark,
then you simply return the shorter string with
punctuation marks removed. Otherwise, you
reattach the last character to that result and
return it.

8.	 The simplest input is the empty string. It
contains no punctuation marks, so you simply
return it.

9.	 If str is empty, return str.
last = last letter in str
simplerResult = removePunctuation(
		 str with last letter removed)
If (last is a punctuation mark)
	 Return simplerResult.
Else
	 Return simplerResult + last.

10.	 No—the second one could be given a differ-
ent name such as substringIsPalindrome.

11.	 When start >= end, that is, when the investi-
gated string is either empty or has length 1.

12.	 A sumHelper(int[] a, int start, int size). The
method calls sumHelper(a, start + 1, size).

13.	 Call sum(a, size - 1) and add the last element,
a[size - 1].

14.	 The loop is slightly faster. It is even faster to
simply compute width * (width + 1) / 2.

15.	 No, the recursive solution is about as efficient
as the iterative approach. Both require n – 1
multiplications to compute n!.

16.	 The recursive algorithm performs about as
well as the loop. Unlike the recursive Fibo-
nacci algorithm, this algorithm doesn’t call
itself again on the same input. For example,
the sum of the array 1 4 9 16 25 36 49 64 is
computed as the sum of 1 4 9 16 and 25 36 49
64, then as the sums of 1 4, 9 16, 25 36, and 49
64, which can be computed directly.

17.	 They are b followed by the six permutations
of eat, e followed by the six permutations of

Write a program that draws the iterations of the snowflake shape. Supply a button
that, when clicked, produces the next iteration.

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

626  Chapter 13  Recursion

bat, a followed by the six permutations of bet,
and t followed by the six permutations of bea.

18.	 Simply change if (word.length() == 0) to
if (word.length() <= 1), because a word with a
single letter is also its sole permutation.

19.	 An iterative solution would have a loop whose
body computes the next permutation from the
previous ones. But there is no obvious mecha-
nism for getting the next permutation. For
example, if you already found permutations
eat, eta, and aet, it is not clear how you use
that information to get the next permutation.
Actually, there is an ingenious mechanism for
doing just that, but it is far from obvious—see
Exercise P13.15.

20.	 Factors are combined by multiplicative opera-
tors (* and /); terms are combined by additive
operators (+, -). We need both so that multipli-
cation can bind more strongly than addition.

21.	 To handle parenthesized expressions, such as
2+3*(4+5). The subexpression 4+5 is handled by
a recursive call to getExpressionValue.

22.	 The Integer.parseInt call in getFactorValue
throws an exception when it is given the
string ")".

23.	 We want to check whether any queen[i]
attacks any queen[j], but attacking is sym-
metric. That is, we can choose to compare
only those for which i < j (or, alternatively,
those for which i > j). We don’t want to call
the attacks method when i equals j; it would
return true.

24.	 One solution:

25.	 Two solutions: The one from Self Check 24,
and its mirror image.

14C h a p t e r

627

Sorting and
Searching

To study several sorting and
searching algorithms

To appreciate that algorithms for the same
task can differ widely in performance

To understand the big-Oh notation

To estimate and compare the performance of algorithms

To write code to measure the running time of a program

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

14.1  Selection Sort  628

14.2  Profiling the Selection Sort
Algorithm  631

14.3  Analyzing the Performance  
of the Selection Sort Algorithm  634

Special Topic 14.1: Oh, Omega, and Theta  636
Special Topic 14.2:  Insertion Sort  637

14.4  Merge Sort  639

14.5  Analyzing the Merge Sort
Algorithm  642

Special Topic 14.3: The Quicksort Algorithm  644

14.6  Searching  646

Random Fact 14.1: The First Programmer  650

14.7  Problem Solving:
Estimating the Running Time
of an Algorithm  651

14.8  Sorting and Searching in
the Java Library  656

Common Error 14.1: The compareTo Method Can
Return Any Integer, Not Just –1, 0, and 1  658

Special Topic 14.4: The Parameterized
Comparable Interface  658

Special Topic 14.5: The Comparator Interface  659
Worked Example 14.1: Enhancing the Insertion

Sort Algorithm 

628

One of the most common tasks in data processing is sorting.
For example, an array of employees often needs to be
displayed in alphabetical order or sorted by salary. In this
chapter, you will learn several sorting methods as well as
techniques for comparing their performance. These tech
niques are useful not just for sorting algorithms, but also
for analyzing other algorithms.

Once an array of elements is sorted, one can rapidly locate
individual elements. You will study the binary search
algorithm that carries out this fast lookup.

14.1  Selection Sort
In this section, we show you the first of several sorting algorithms. A sorting algo-
rithm rearranges the elements of a collection so that they are stored in sorted order.
To keep the examples simple, we will discuss how to sort an array of integers before
going on to sorting strings or more complex data. Consider the following array a:

11 9 17 5 12

[0] [1] [2] [3] [4]

An obvious first step is to find the smallest element. In this case the smallest element
is 5, stored in a[3]. We should move the 5 to the beginning of the array. Of course,
there is already an element stored in a[0], namely 11. Therefore we cannot simply
move a[3] into a[0] without moving the 11 somewhere else. We don’t yet know where
the 11 should end up, but we know for certain that it should not be in a[0]. We simply
get it out of the way by swapping it with a[3]:

5 9 17 11 12

[0] [1] [2] [3] [4]

Now the first element is in the correct place. The darker color in the figure indicates
the portion of the array that is already sorted.

The selection sort
algorithm sorts an
array by repeatedly
finding the smallest
element of the
unsorted tail region
and moving it to
the front.

In selection sort, pick
the smallest element
and swap it with the
first one. Pick the
smallest element of
the remaining ones
and swap it with the
next one, and so on.

14.1  Selection Sort   629

Next we take the minimum of the remaining entries a[1] . . . a[4]. That minimum
value, 9, is already in the correct place. We don’t need to do anything in this case and
can simply extend the sorted area by one to the right:

5 9 17 11 12

[0] [1] [2] [3] [4]

Repeat the process. The minimum value of the unsorted region is 11, which needs to
be swapped with the first value of the unsorted region, 17:

5 9 11 17 12

[0] [1] [2] [3] [4]

Now the unsorted region is only two elements long, but we keep to the same success-
ful strategy. The minimum value is 12, and we swap it with the first value, 17:

5 9 11 12 17

[0] [1] [2] [3] [4]

That leaves us with an unprocessed region of length 1, but of course a region of length
1 is always sorted. We are done.

Let’s program this algorithm. For this program, as well as the other programs in
this chapter, we will use a utility method to generate an array with random entries.
We place it into a class ArrayUtil so that we don’t have to repeat the code in every
example. To show the array, we call the static toString method of the Arrays class in the
Java library and print the resulting string (see Section 6.3.4). We also add a method for
swapping elements to the ArrayUtil class. (See Section 6.3.8 for details about swapping
array elements.)

This algorithm will sort any array of integers. If speed were not an issue, or if there
simply were no better sorting method available, we could stop the discussion of sort-
ing right here. As the next section shows, however, this algorithm, while entirely cor-
rect, shows disappointing performance when run on a large data set.

Special Topic 14.2 discusses insertion sort, another simple sorting algorithm.

section_1/SelectionSorter.java

1 /**
2 The sort method of this class sorts an array, using the selection
3 sort algorithm.
4 */
5 public class SelectionSorter
6 {
7 /**
8 Sorts an array, using selection sort.
9 @param a the array to sort

10 */
11 public static void sort(int[] a)
12 {
13 for (int i = 0; i < a.length - 1; i++)
14 {
15 int minPos = minimumPosition(a, i);
16 ArrayUtil.swap(a, minPos, i);
17 }
18 }

630  Chapter 14  Sorting and Searching

19
20 /**
21 Finds the smallest element in a tail range of the array.
22 @param a the array to sort
23 @param from the first position in a to compare
24 @return the position of the smallest element in the
25 range a[from] . . . a[a.length - 1]
26 */
27 private static int minimumPosition(int[] a, int from)
28 {
29 int minPos = from;
30 for (int i = from + 1; i < a.length; i++)
31 {
32 if (a[i] < a[minPos]) { minPos = i; }
33 }
34 return minPos;
35 }
36 }

section_1/SelectionSortDemo.java

1 import java.util.Arrays;
2
3 /**
4 This program demonstrates the selection sort algorithm by
5 sorting an array that is filled with random numbers.
6 */
7 public class SelectionSortDemo
8 {
9 public static void main(String[] args)

10 {
11 int[] a = ArrayUtil.randomIntArray(20, 100);
12 System.out.println(Arrays.toString(a));
13
14 SelectionSorter.sort(a);
15
16 System.out.println(Arrays.toString(a));
17 }
18 }

section_1/ArrayUtil.java

1 import java.util.Random;
2
3 /**
4 This class contains utility methods for array manipulation.
5 */
6 public class ArrayUtil
7 {
8 private static Random generator = new Random();
9

10 /**
11 Creates an array filled with random values.
12 @param length the length of the array
13 @param n the number of possible random values
14 @return an array filled with length numbers between
15 0 and n - 1
16 */
17 public static int[] randomIntArray(int length, int n)
18 {

14.2 P rofiling the Selection Sort Algorithm   631

19 int[] a = new int[length];
20 for (int i = 0; i < a.length; i++)
21 {
22 a[i] = generator.nextInt(n);
23 }
24
25 return a;
26 }
27
28 /**
29 Swaps two entries of an array.
30 @param a the array
31 @param i the first position to swap
32 @param j the second position to swap
33 */
34 public static void swap(int[] a, int i, int j)
35 {
36 int temp = a[i];
37 a[i] = a[j];
38 a[j] = temp;
39 }
40 }

Program Run

[65, 46, 14, 52, 38, 2, 96, 39, 14, 33, 13, 4, 24, 99, 89, 77, 73, 87, 36, 81]
[2, 4, 13, 14, 14, 24, 33, 36, 38, 39, 46, 52, 65, 73, 77, 81, 87, 89, 96, 99]

1.	 Why do we need the temp variable in the swap method? What would happen if
you simply assigned a[i] to a[j] and a[j] to a[i]?

2.	 What steps does the selection sort algorithm go through to sort the sequence
6 5 4 3 2 1?

3.	 How can you change the selection sort algorithm so that it sorts the elements in
descending order (that is, with the largest element at the beginning of the array)?

4.	 Suppose we modified the selection sort algorithm to start at the end of the array,
working toward the beginning. In each step, the current position is swapped
with the minimum. What is the result of this modification?

Practice It	 Now you can try these exercises at the end of the chapter: R14.2, R14.10, P14.1, P14.2.

14.2  Profiling the Selection Sort Algorithm
To measure the performance of a program, you could simply run it and use a stop-
watch to measure how long it takes. However, most of our programs run very
quickly, and it is not easy to time them accurately in this way. Furthermore, when a
program takes a noticeable time to run, a certain amount of that time may simply be
used for loading the program from disk into memory and displaying the result (for
which we should not penalize it).

In order to measure the running time of an algorithm more accurately, we will
create a StopWatch class. This class works like a real stopwatch. You can start it, stop

S e l f C h e c k

632  Chapter 14  Sorting and Searching

it, and read out the elapsed time. The class uses the System.currentTimeMillis method,
which returns the milliseconds that have elapsed since midnight at the start of Janu-
ary 1, 1970. Of course, you don’t care about the absolute number of seconds since
this historical moment, but the difference of two such counts gives us the number of
milliseconds in a given time interval.

Here is the code for the StopWatch class:

section_2/StopWatch.java

1 /**
2 A stopwatch accumulates time when it is running. You can
3 repeatedly start and stop the stopwatch. You can use a
4 stopwatch to measure the running time of a program.
5 */
6 public class StopWatch
7 {
8 private long elapsedTime;
9 private long startTime;

10 private boolean isRunning;
11
12 /**
13 Constructs a stopwatch that is in the stopped state
14 and has no time accumulated.
15 */
16 public StopWatch()
17 {
18 reset();
19 }
20
21 /**
22 Starts the stopwatch. Time starts accumulating now.
23 */
24 public void start()
25 {
26 if (isRunning) { return; }
27 isRunning = true;
28 startTime = System.currentTimeMillis();
29 }
30
31 /**
32 Stops the stopwatch. Time stops accumulating and is
33 is added to the elapsed time.
34 */
35 public void stop()
36 {
37 if (!isRunning) { return; }
38 isRunning = false;
39 long endTime = System.currentTimeMillis();
40 elapsedTime = elapsedTime + endTime - startTime;
41 }
42
43 /**
44 Returns the total elapsed time.
45 @return the total elapsed time
46 */
47 public long getElapsedTime()
48 {
49 if (isRunning)
50 {

14.2 P rofiling the Selection Sort Algorithm   633

51 long endTime = System.currentTimeMillis();
52 return elapsedTime + endTime - startTime;
53 }
54 else
55 {
56 return elapsedTime;
57 }
58 }
59
60 /**
61 Stops the watch and resets the elapsed time to 0.
62 */
63 public void reset()
64 {
65 elapsedTime = 0;
66 isRunning = false;
67 }
68 }

Here is how to use the stopwatch to measure the sorting algorithm’s performance:

section_2/SelectionSortTimer.java

1 import java.util.Scanner;
2
3 /**
4 This program measures how long it takes to sort an
5 array of a user-specified size with the selection
6 sort algorithm.
7 */
8 public class SelectionSortTimer
9 {

10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13 System.out.print("Enter array size: ");
14 int n = in.nextInt();
15
16 // Construct random array
17
18 int[] a = ArrayUtil.randomIntArray(n, 100);
19
20 // Use stopwatch to time selection sort
21
22 StopWatch timer = new StopWatch();
23
24 timer.start();
25 SelectionSorter.sort(a);
26 timer.stop();
27
28 System.out.println("Elapsed time: "
29 + timer.getElapsedTime() + " milliseconds");
30 }
31 }

Program Run

Enter array size: 50000
Elapsed time: 13321 milliseconds

634  Chapter 14  Sorting and Searching

Figure 1  Time Taken by Selection Sort

5

10

15

20

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

n Milliseconds

10,000 786

20,000 2,148

30,000 4,796

40,000 9,192

50,000 13,321

60,000 19,299

By starting to measure the time just before sorting, and stopping the stopwatch just
after, you get the time required for the sorting process, without counting the time for
input and output.

The table in Figure 1 shows the results of some sample runs. These measurements
were obtained with an Intel processor with a clock speed of 2 GHz, running Java 6 on
the Linux operating system. On another computer the actual numbers will look dif-
ferent, but the relationship between the numbers will be the same.

The graph in Figure 1 shows a plot of the measurements. As you can see, when you
double the size of the data set, it takes about four times as long to sort it.

5.	 Approximately how many seconds would it take to sort a data set of 80,000
values?

6.	 Look at the graph in Figure 1. What mathematical shape does it resemble?

Practice It	 Now you can try these exercises at the end of the chapter: P14.3, P14.6.

14.3  Analyzing the Performance
of the Selection Sort Algorithm

Let us count the number of operations that the program must carry out to sort an
array with the selection sort algorithm. We don’t actually know how many machine
operations are generated for each Java instruction, or which of those instructions are
more time-consuming than others, but we can make a simplification. We will sim-
ply count how often an array element is visited. Each visit requires about the same
amount of work by other operations, such as incrementing subscripts and comparing
values.

Let n be the size of the array. First, we must find the smallest of n numbers. To
achieve that, we must visit n array elements. Then we swap the elements, which takes

To measure the
running time of a
method, get the
current time
immediately before
and after the
method call.

S e l f C h e c k

14.3 A nalyzing the Performance of the Selection Sort Algorithm   635

two visits. (You may argue that there is a certain probability that we don’t need to
swap the values. That is true, and one can refine the computation to reflect that obser-
vation. As we will soon see, doing so would not affect the overall conclusion.) In the
next step, we need to visit only n - 1 elements to find the minimum. In the following
step, n - 2 elements are visited to find the minimum. The last step visits two elements
to find the minimum. Each step requires two visits to swap the elements. Therefore,
the total number of visits is

n n n n n+ + − + + + + = + − + + + − ⋅
= +

2 1 2 2 2 1 2 1 2

2

() () ()� �
� ++ − + + − ⋅

= + − + − ⋅

() ()

()
()

n n n
n n

n

1 1 2

1
2

1 1 2

because

1 2 1
1

2
+ + + − + = +

� ()
()

n n
n n

After multiplying out and collecting terms of n, we find that the number of visits is

1
2

2 5
2

3n n+ −

We obtain a quadratic equation in n. That explains why the graph of Figure 1 looks
approximately like a parabola.

Now simplify the analysis further. When you plug in a large value for n (for exam-
ple, 1,000 or 2,000), then 1

2
2n is 500,000 or 2,000,000. The lower term, 5

2
3n − , doesn’t

contribute much at all; it is only 2,497 or 4,997, a drop in the bucket compared to
the hundreds of thousands or even millions of comparisons specified by the 1

2
2n

term. We will just ignore these lower-level terms. Next, we will ignore the constant
factor 1

2 . We are not interested in the actual count of visits for a single n. We want to
compare the ratios of counts for different values of n. For example, we can say that
sorting an array of 2,000 numbers requires four times as many visits as sorting an
array of 1,000 numbers:

1
2

2

1
2

2

2000

1000
4

⋅()
⋅() =

The factor 1
2 cancels out in comparisons of this kind. We will simply say, “The num

ber of visits is of order n2”. That way, we can easily see that the number of compari-
sons increases fourfold when the size of the array doubles: (2n)2 = 4n2.

To indicate that the number of visits is of order n2, computer scientists often use
big-Oh notation: The number of visits is O(n2). This is a convenient shorthand. (See
Special Topic 14.1 for a formal definition.)

To turn a polynomial expression such as

1
2

2 5
2

3n n+ −

into big-Oh notation, simply locate the fastest-growing term, n2, and ignore its con-
stant coefficient, no matter how large or small it may be.

We observed before that the actual number of machine operations, and the actual
amount of time that the computer spends on them, is approximately proportional
to the number of element visits. Maybe there are about 10 machine operations

Computer scientists
use the big-Oh
notation to
describe the growth
rate of a function.

636  Chapter 14  Sorting and Searching

(increments, comparisons, memory loads, and stores) for every element visit. The
number of machine operations is then approximately 10 1

2
2× n . As before, we aren’t

interested in the coefficient, so we can say that the number of machine operations,
and hence the time spent on the sorting, is of the order n2 or O(n2).

The sad fact remains that doubling the size of the array causes a fourfold increase
in the time required for sorting it with selection sort. When the size of the array
increases by a factor of 100, the sorting time increases by a factor of 10,000. To sort an
array of a million entries (for example, to create a telephone directory), takes 10,000
times as long as sorting 10,000 entries. If 10,000 entries can be sorted in about 3/4 of
a second (as in our example), then sorting one million entries requires well over two
hours. We will see in the next section how one can dramatically improve the perfor-
mance of the sorting process by choosing a more sophisticated algorithm.

7.	 If you increase the size of a data set tenfold, how much longer does it take to sort
it with the selection sort algorithm?

8.	 How large does n need to be so that 1
2

2n is bigger than 5
2

3n − ?
9.	 Section 6.3.6 has two algorithms for removing an element from an array of

length n. How many array visits does each algorithm require on average?
10.	 Describe the number of array visits in Self Check 9 using the big-Oh notation.
11.	 What is the big-Oh running time of checking whether an array is already sorted?
12.	 Consider this algorithm for sorting an array. Set k to the length of the array. Find

the maximum of the first k elements. Remove it, using the second algorithm of
Section 6.3.6. Decrement k and place the removed element into the kth position.
Stop if k is 1. What is the algorithm’s running time in big-Oh notation?

Practice It	 Now you can try these exercises at the end of the chapter: R14.4, R14.6, R14.8.

Oh, Omega, and Theta

We have used the big-Oh notation somewhat casually in this chapter to describe the growth
behavior of a function. Here is the formal definition of the big-Oh notation: Suppose we have
a function T(n). Usually, it represents the processing time of an algorithm for a given input
of size n. But it could be any function. Also, suppose that we have another function f(n). It is
usually chosen to be a simple function, such as f(n) = nk or f(n) = log(n), but it too can be any
function. We write

T(n) = O(f(n))

if T(n) grows at a rate that is bounded by f(n). More formally, we require that for all n larger
than some threshold, the ratio () ()T n f n C≤ for some constant value C.

If T(n) is a polynomial of degree k in n, then one can show that T(n) = O(nk). Later in this
chapter, we will encounter functions that are O(log(n)) or O(n log(n)). Some algorithms take
much more time. For example, one way of sorting a sequence is to compute all of its permuta-
tions, until you find one that is in increasing order. Such an algorithm takes O(n!) time, which
is very bad indeed.

Table 1 shows common big-Oh expressions, sorted by increasing growth.
Strictly speaking, T(n) = O(f(n)) means that T grows no faster than f. But it is permissible

for T to grow much more slowly. Thus, it is technically correct to state that T(n) = n2 + 5n - 3
is O(n3) or even O(n10).

Selection sort is an
O(n2) algorithm.
Doubling the
data set means a
fourfold increase in
processing time.

S e l f C h e c k

Special Topic 14.1

14.3 A nalyzing the Performance of the Selection Sort Algorithm   637

Table 1 Common Big-Oh Growth Rates

Big-Oh Expression Name

O(1) Constant

O(log(n)) Logarithmic

O(n) Linear

O(n log(n)) Log-linear

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial

Computer scientists have invented additional notation to describe the growth behavior of
functions more accurately. The expression

T(n) = W(f(n))
means that T grows at least as fast as f, or, formally, that for all n larger than some threshold,
the ratio () ()T n f n C≥ for some constant value C. (The W symbol is the capital Greek letter
omega.) For example, T(n) = n2 + 5n - 3 is W(n2) or even W(n).

The expression
T(n) = Q(f(n))

means that T and f grow at the same rate—that is, both T(n) = O(f(n)) and T(n) = W(f(n)) hold.
(The Q symbol is the capital Greek letter theta.)

The Q notation gives the most precise description of growth behavior. For example, T(n) =
n2 + 5n - 3 is Q(n2) but not Q(n) or Q(n3).

The notations are very important for the precise analysis of algorithms. However, in casual
conversation it is common to stick with big-Oh, while still giving an estimate as good as one
can make.

Insertion Sort

Insertion sort is another simple sorting algorithm. In this algorithm, we assume that the initial
sequence

a[0] a[1] . . . a[k]

of an array is already sorted. (When the algorithm starts, we set k to 0.) We enlarge the initial
sequence by inserting the next array element, a[k + 1], at the proper location. When we reach
the end of the array, the sorting process is complete.

For example, suppose we start with the array

11 9 16 5 7

Of course, the initial sequence of length 1 is already sorted. We now add a[1], which has the
value 9. The element needs to be inserted before the element 11. The result is

9 11 16 5 7

Special Topic 14.2

638  Chapter 14  Sorting and Searching

Next, we add a[2], which has the value 16. This element does not have to be moved.

9 11 16 5 7

We repeat the process, inserting a[3] or 5 at the very beginning of the initial sequence.

5 9 11 16 7

Finally, a[4] or 7 is inserted in its correct position, and the sorting is completed.
The following class implements the insertion sort algorithm:

public class InsertionSorter
{
 /**
 Sorts an array, using insertion sort.
 @param a the array to sort
 */
 public static void sort(int[] a)
 {
 for (int i = 1; i < a.length; i++)
 {
 int next = a[i];
 // Move all larger elements up
 int j = i;
 while (j > 0 && a[j - 1] > next)
 {
 a[j] = a[j - 1];
 j--;
 }
 // Insert the element
 a[j] = next;
 }
 }
}

How efficient is this algorithm? Let n denote the size of the array. We carry out n - 1 iterations.
In the kth iteration, we have a sequence of k elements that is already sorted, and we need to
insert a new element into the sequence. For each insertion, we need to visit the elements of the
initial sequence until we have found the location in which the new element can be inserted.
Then we need to move up the remaining elements of the sequence. Thus, k + 1 array elements
are visited. Therefore, the total number of visits is

2 3 1
2

1+ + + = + −� n n n()

We conclude that insertion sort is an O(n2) algorithm, on the same
order of efficiency as selection sort.

Insertion sort has a desirable property: Its performance is O(n)
if the array is already sorted—see Exercise R14.17. This is a useful
property in practical applications, in which data sets are often partially sorted.

Insertion sort is the method that many people
use to sort playing cards. Pick up one card at
a time and insert it so that the cards stay sorted.

Insertion sort is an
O(n2) algorithm.

O n l i n e E x a m p l e

A program to
illustrate sorting with
insertion sort.

14.4  Merge Sort   639

14.4  Merge Sort
In this section, you will learn about the merge sort algorithm, a much more efficient
algorithm than selection sort. The basic idea behind merge sort is very simple.

Suppose we have an array of 10 integers. Let us engage in a bit of wishful thinking
and hope that the first half of the array is already perfectly sorted, and the second half
is too, like this:

5 9 10 12 17 1 8 11 20 32

Now it is simple to merge the two sorted arrays into one sorted array, by taking a new
element from either the first or the second subarray, and choosing the smaller of the
elements each time:

5 9 10 12 17 1 8 11 20 32 1

5 9 10 12 17 1 8 11 20 32 1 5

5 9 10 12 17 1 8 11 20 32 1 5 8

5 9 10 12 17 1 8 11 20 32 1 5 8 9

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20

5 9 10 12 17 1 8 11 20 32 1 5 8 9 10 11 12 17 20 32

In fact, you may have performed this merging before if you and a friend had to sort a
pile of papers. You and the friend split the pile in half, each of you sorted your half,
and then you merged the results together.

That is all well and good, but it doesn’t seem to solve the
problem for the computer. It still must sort the first and sec-
ond halves of the array, because it can’t very well ask a few
buddies to pitch in. As it turns out, though, if the computer
keeps dividing the array into smaller and smaller subarrays,
sorting each half and merging them back together, it carries
out dramatically fewer steps than the selection sort requires.

Let’s write a MergeSorter class that implements this idea.
When the MergeSorter sorts an array, it makes two arrays, each
half the size of the original, and sorts them recursively. Then
it merges the two sorted arrays together:

public static void sort(int[] a)
{
 if (a.length <= 1) { return; }
 int[] first = new int[a.length / 2];
 int[] second = new int[a.length - first.length];
 // Copy the first half of a into first, the second half into second
 . . .
 sort(first);
 sort(second);
 merge(first, second, a);
}

In merge sort, one sorts
each half, then merges
the sorted halves.

The merge sort
algorithm sorts an
array by cutting the
array in half,
recursively sorting
each half, and
then merging the
sorted halves.

640  Chapter 14  Sorting and Searching

The merge method is tedious but quite straightforward. You will find it in the code
that follows.

section_4/MergeSorter.java

1 /**
2 The sort method of this class sorts an array, using the merge
3 sort algorithm.
4 */
5 public class MergeSorter
6 {
7 /**
8 Sorts an array, using merge sort.
9 @param a the array to sort

10 */
11 public static void sort(int[] a)
12 {
13 if (a.length <= 1) { return; }
14 int[] first = new int[a.length / 2];
15 int[] second = new int[a.length - first.length];
16 // Copy the first half of a into first, the second half into second
17 for (int i = 0; i < first.length; i++)
18 {
19 first[i] = a[i];
20 }
21 for (int i = 0; i < second.length; i++)
22 {
23 second[i] = a[first.length + i];
24 }
25 sort(first);
26 sort(second);
27 merge(first, second, a);
28 }
29
30 /**
31 Merges two sorted arrays into an array.
32 @param first the first sorted array
33 @param second the second sorted array
34 @param a the array into which to merge first and second
35 */
36 private static void merge(int[] first, int[] second, int[] a)
37 {
38 int iFirst = 0; // Next element to consider in the first array
39 int iSecond = 0; // Next element to consider in the second array
40 int j = 0; // Next open position in a
41
42 // As long as neither iFirst nor iSecond past the end, move
43 // the smaller element into a
44 while (iFirst < first.length && iSecond < second.length)
45 {
46 if (first[iFirst] < second[iSecond])
47 {
48 a[j] = first[iFirst];
49 iFirst++;
50 }
51 else
52 {
53 a[j] = second[iSecond];
54 iSecond++;

14.4  Merge Sort   641

55 }
56 j++;
57 }
58
59 // Note that only one of the two loops below copies entries
60 // Copy any remaining entries of the first array
61 while (iFirst < first.length)
62 {
63 a[j] = first[iFirst];
64 iFirst++; j++;
65 }
66 // Copy any remaining entries of the second half
67 while (iSecond < second.length)
68 {
69 a[j] = second[iSecond];
70 iSecond++; j++;
71 }
72 }
73 }

section_4/MergeSortDemo.java

1 import java.util.Arrays;
2
3 /**
4 This program demonstrates the merge sort algorithm by
5 sorting an array that is filled with random numbers.
6 */
7 public class MergeSortDemo
8 {
9 public static void main(String[] args)

10 {
11 int[] a = ArrayUtil.randomIntArray(20, 100);
12 System.out.println(Arrays.toString(a));
13
14 MergeSorter.sort(a);
15
16 System.out.println(Arrays.toString(a));
17 }
18 }

Program Run

[8, 81, 48, 53, 46, 70, 98, 42, 27, 76, 33, 24, 2, 76, 62, 89, 90, 5, 13, 21]
[2, 5, 8, 13, 21, 24, 27, 33, 42, 46, 48, 53, 62, 70, 76, 76, 81, 89, 90, 98]

13.	 Why does only one of the two while loops at the end of the merge method do any
work?

14.	 Manually run the merge sort algorithm on the array 8 7 6 5 4 3 2 1.
15.	 The merge sort algorithm processes an array by recursively processing two

halves. Describe a similar recursive algorithm for computing the sum of all
elements in an array.

Practice It	 Now you can try these exercises at the end of the chapter: R14.11, P14.4, P14.16.

S e l f C h e c k

642  Chapter 14  Sorting and Searching

14.5  Analyzing the Merge Sort Algorithm
The merge sort algorithm looks a lot more complicated than the selection sort algo-
rithm, and it appears that it may well take much longer to carry out these repeated
subdivisions. However, the timing results for merge sort look much better than those
for selection sort.

Figure 2 shows a table and a graph comparing both sets of perfor0mance data. As
you can see, merge sort is a tremendous improvement. To understand why, let us
estimate the number of array element visits that are required to sort an array with the
merge sort algorithm. First, let us tackle the merge process that happens after the first
and second halves have been sorted.

Each step in the merge process adds one more element to a. That element may
come from first or second, and in most cases the elements from the two halves must
be compared to see which one to take. We’ll count that as 3 visits (one for a and one
each for first and second) per element, or 3n visits total, where n denotes the length
of a. Moreover, at the beginning, we had to copy from a to first and second, yielding
another 2n visits, for a total of 5n.

If we let T (n) denote the number of visits required to sort a range of n elements
through the merge sort process, then we obtain

T n T n T n n() =








 +









 +

2 2
5

because sorting each half takes T n()2 visits. Actually, if n is not even, then we have
one subarray of size ()n − 1 2 and one of size ()n + 1 2. Although it turns out that this
detail does not affect the outcome of the computation, we will nevertheless assume
for now that n is a power of 2, say n = 2m. That way, all subarrays can be evenly
divided into two parts.

Unfortunately, the formula

T n T n n() =








 +2

2
5

Figure 2  Time Taken by Selection Sort

n

Merge Sort
(milliseconds)

Selection Sort
(milliseconds)

10,000 40 786

20,000 73 2,148

30,000 134 4,796

40,000 170 9,192

50,000 192 13,321

60,000 205 19,299

5

10

15

20

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60

n (thousands)

Merge sort

Selection sort

14.5 A nalyzing the Merge Sort Algorithm   643

does not clearly tell us the relationship between n and T(n). To understand the rela-
tionship, let us evaluate T n()2 , using the same formula:

T n T n n
2

2
4

5
2









 =









 +

Therefore

T n T n n n() = ×








 + +2 2

4
5 5

Let us do that again:

T n T n n
4

2
8

5
4









 =









 +

hence

T n T n n n n() = × ×








 + + +2 2 2

8
5 5 5

This generalizes from 2, 4, 8, to arbitrary powers of 2:

T n T n nkk
k

() =








 +2

2
5

Recall that we assume that n = 2m; hence, for k = m,

T n T n nm

nT nm
n n n

m
m

()

()

log ()

=








 +

= +
= +

2
2

5

1 5

5 2

Because n = 2m, we have m = log2(n).
To establish the growth order, we drop the lower-order term n and are left with

5n log2(n). We drop the constant factor 5. It is also customary to drop the base of the
logarithm, because all logarithms are related by a constant factor. For example,

log () log () log () log () .2 10 10 102 3 32193x x x= ≈ ×

Hence we say that merge sort is an O(n log(n)) algorithm.
Is the O(n log(n)) merge sort algorithm better than the O(n2) selection sort algo-

rithm? You bet it is. Recall that it took 1002 = 10,000 times as long to sort a mil-
lion records as it took to sort 10,000 records with the O(n2) algorithm. With the
O(n log(n)) algorithm, the ratio is

1 000 000 1 000 000
10 000 10 000

10
, , log , ,

, log ,
()
() = 00 6

4
150









 =

Suppose for the moment that merge sort takes the same time as selection sort to sort
an array of 10,000 integers, that is, 3/4 of a second on the test machine. (Actually, it
is much faster than that.) Then it would take about 0.75 × 150 seconds, or under two
minutes, to sort a million integers. Contrast that with selection sort, which would
take over two hours for the same task. As you can see, even if it takes you several
hours to learn about a better algorithm, that can be time well spent.

Merge sort is an
O(n log(n)) algorithm.
The n log(n) function
grows much more
slowly than n 2.

644  Chapter 14  Sorting and Searching

In this chapter we have barely begun to scratch the surface of this interesting topic.
There are many sorting algorithms, some with even better performance than merge
sort, and the analysis of these algorithms can be quite challenging. These important
issues are often revisited in later computer science courses.

16.	 Given the timing data for the merge sort algorithm in the table at the beginning
of this section, how long would it take to sort an array of 100,000 values?

17.	 If you double the size of an array, how much longer will the merge sort algo-
rithm take to sort the new array?

Practice It	 Now you can try these exercises at the end of the chapter: R14.7, R14.14, R14.16.

The Quicksort Algorithm

Quicksort is a commonly used algorithm that has the advantage over merge sort that no tem-
porary arrays are required to sort and merge the partial results.

The quicksort algorithm, like merge sort, is based on the strategy of divide and conquer. To
sort a range a[from] . . . a[to] of the array a, first rearrange the elements in the range so that no
element in the range a[from] . . . a[p] is larger than any element in the range a[p + 1] . . . a[to].
This step is called partitioning the range.

For example, suppose we start with a range

5 3 2 6 4 1 3 7

Here is a partitioning of the range. Note that the partitions aren’t yet sorted.

3 3 2 1 4 6 5 7

You’ll see later how to obtain such a partition. In the next step, sort each partition, by recur-
sively applying the same algorithm on the two partitions. That sorts the entire range, because
the largest element in the first partition is at most as large as the smallest element in the second
partition.

1 2 3 3 4 5 6 7

Quicksort is implemented recursively as follows:

public static void sort(int[] a, int from, int to)
{
 if (from >= to) { return; }
 int p = partition(a, from, to);
 sort(a, from, p);
 sort(a, p + 1, to);
}

Let us return to the problem of partitioning a range. Pick an element from the range and call
it the pivot. There are several variations of the quicksort algorithm. In the simplest one, we’ll
pick the first element of the range, a[from], as the pivot.

Now form two regions a[from] . . . a[i], consisting of values at most as large as the
pivot and a[j] . . . a[to], consisting of values at least as large as the pivot. The region
a[i + 1] . . . a[j - 1] consists of values that haven’t been analyzed yet. (See the figure below.)
At the beginning, both the left and right areas are empty; that is, i = from - 1 and j = to + 1.

O n l i n e E x a m p l e

A program for
timing the merge
sort algorithm.

S e l f C h e c k

Special Topic 14.3

14.5 A nalyzing the Merge Sort Algorithm   645

Partitioning a Range

 ≤ pivot ≥ pivotNot yet analyzed

[from] [i] [j] [to]

Then keep incrementing i while a[i] < pivot and keep decrementing j while a[j] > pivot. The
figure below shows i and j when that process stops.

Now swap the values in positions i and j, increasing both areas once more. Keep going while
i < j. Here is the code for the partition method:

private static int partition(int[] a, int from, int to)
{
 int pivot = a[from];
 int i = from - 1;
 int j = to + 1;
 while (i < j)
 {
 i++; while (a[i] < pivot) { i++; }
 j--; while (a[j] > pivot) { j--; }
 if (i < j) { ArrayUtil.swap(a, i, j); }
 }
 return j;
}

On average, the quicksort algorithm is an O(n log(n)) algorithm. There is just one unfortunate
aspect to the quicksort algorithm. Its worst-case run-time behavior is O(n2). Moreover, if the
pivot element is chosen as the first element of the region, that worst-case behavior occurs
when the input set is already sorted—a common situation in practice. By selecting the pivot
element more cleverly, we can make it extremely unlikely for the worst-case behavior to occur.
Such “tuned” quicksort algorithms are commonly used, because their performance is gener-
ally excellent. For example, the sort method in the Arrays class uses a quicksort algorithm.

Another improvement that is commonly made in practice is to switch to insertion sort
when the array is short, because the total number of operations using insertion sort is lower
for short arrays. The Java library makes that switch if the array length is less than seven.

In quicksort, one partitions the elements into
two groups, holding the smaller and larger
elements. Then one sorts each group.

Extending the Partitions

 ≤ pivot ≥ pivot

[from] [i] [j] [to]

> pivot< pivot

 ≤ pivot≥ pivot

ONLINE E x a m p l e

A program to
demonstrate the
quicksort algorithm.

646  Chapter 14  Sorting and Searching

14.6  Searching
Searching for an element in an array is an extremely common task. As with sorting,
the right choice of algorithms can make a big difference.

14.6.1  Linear Search

Suppose you need to find your friend’s telephone number. You look up the friend’s
name in the telephone book, and naturally you can find it quickly, because the tele-
phone book is sorted alphabetically. Now suppose you have a telephone number and
you must know to what party it belongs. You could of course call that number, but
suppose nobody picks up on the other end. You could look through the telephone
book, a number at a time, until you find the number. That would obviously be a tre-
mendous amount of work, and you would have to be desperate to attempt it.

This thought experiment shows the difference between a search through an
unsorted data set and a search through a sorted data set. The following two sections
will analyze the difference formally.

If you want to find a number in a sequence of values that occur in arbitrary order,
there is nothing you can do to speed up the search. You must simply look through
all elements until you have found a match or until you reach the end. This is called a
linear or sequential search.

How long does a linear search take? If we assume that the element v is present in
the array a, then the average search visits n/2 elements, where n is the length of the
array. If it is not present, then all n elements must be inspected to verify the absence.
Either way, a linear search is an O(n) algorithm.

Here is a class that performs linear searches through an array a of integers. When
searching for a value, the search method returns the first index of the match, or -1 if
the value does not occur in a.

section_6_1/LinearSearcher.java

1 /**
2 A class for executing linear searches in an array.
3 */
4 public class LinearSearcher
5 {
6 /**
7 Finds a value in an array, using the linear search
8 algorithm.
9 @param a the array to search

10 @param value the value to find
11 @return the index at which the value occurs, or -1
12 if it does not occur in the array
13 */
14 public static int search(int[] a, int value)
15 {
16 for (int i = 0; i < a.length; i++)
17 {
18 if (a[i] == value) { return i; }
19 }
20 return -1;

A linear search
examines all values
in an array until it
finds a match or
reaches the end.

A linear search
locates a value in an
array in O(n) steps.

14.6  Searching   647

21 }
22 }

section_6_1/LinearSearchDemo.java

1 import java.util.Arrays;
2 import java.util.Scanner;
3
4 /**
5 This program demonstrates the linear search algorithm.
6 */
7 public class LinearSearchDemo
8 {
9 public static void main(String[] args)

10 {
11 int[] a = ArrayUtil.randomIntArray(20, 100);
12 System.out.println(Arrays.toString(a));
13 Scanner in = new Scanner(System.in);
14
15 boolean done = false;
16 while (!done)
17 {
18 System.out.print("Enter number to search for, -1 to quit: ");
19 int n = in.nextInt();
20 if (n == -1)
21 {
22 done = true;
23 }
24 else
25 {
26 int pos = LinearSearcher.search(a, n);
27 System.out.println("Found in position " + pos);
28 }
29 }
30 }
31 }

Program Run

[46, 99, 45, 57, 64, 95, 81, 69, 11, 97, 6, 85, 61, 88, 29, 65, 83, 88, 45, 88]
Enter number to search for, -1 to quit: 12
Found in position -1
Enter number to search for, -1 to quit: -1

14.6.2  Binary Search

Now let us search for an item in a data sequence that has been previously sorted. Of
course, we could still do a linear search, but it turns out we can do much better than
that.

Consider the following sorted array a. The data set is:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

We would like to see whether the value 15 is in the data set. Let’s narrow our search
by finding whether the value is in the first or second half of the array. The last value

648  Chapter 14  Sorting and Searching

in the first half of the data set, a[3], is 9, which is smaller than the value we are looking
for. Hence, we should look in the second half of the array for a match, that is, in the
sequence:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

Now the last value of the first half of this sequence is 17; hence, the value must be
located in the sequence:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

The last value of the first half of this very short sequence is 12, which is smaller than
the value that we are searching, so we must look in the second half:

1 5 8 9 12 17 20 32

[0] [1] [2] [3] [4] [5] [6] [7]

It is trivial to see that we don’t have a match, because 15 ≠ 17. If we wanted to insert 15
into the sequence, we would need to insert it just before a[5].

This search process is called a binary search, because we cut the size of the search in
half in each step. That cutting in half works only because we know that the sequence
of values is sorted.

The following class implements binary searches in a sorted array of integers. The
search method returns the position of the match if the search succeeds, or –1 if the
value is not found in a. Here, we show a recursive version of the binary search algo-
rithm. See Special Topic 6.2 for an iterative version.

section_6_2/BinarySearcher.java

1 /**
2 A class for executing binary searches in an array.
3 */
4 public class BinarySearcher
5 {
6 /**
7 Finds a value in a range of a sorted array, using the binary
8 search algorithm.
9 @param a the array in which to search

10 @param low the low index of the range
11 @param high the high index of the range
12 @param value the value to find
13 @return the index at which the value occurs, or -1
14 if it does not occur in the array
15 */
16 public int search(int[] a, int low, int high, int value)
17 {
18 if (low <= high)
19 {
20 int mid = (low + high) / 2;
21
22 if (a[mid] == value)
23 {
24 return mid;
25 }
26 else if (a[mid] < value)
27 {

A binary search
locates a value in a
sorted array by
determining whether
the value occurs in
the first or second
half, then repeating
the search in one of
the halves.

14.6  Searching   649

28 return search(a, mid + 1, high, value);
29 }
30 else
31 {
32 return search(a, low, mid - 1, value);
33 }
34 }
35 else
36 {
37 return -1;
38 }
39 }
40 }

Now let’s determine the number of visits to array elements required to carry out a
binary search. We can use the same technique as in the analysis of merge sort. Because
we look at the middle element, which counts as one visit, and then search either the
left or the right subarray, we have

T n T n() =








 +

2
1

Using the same equation,

T n T n
2 4

1








 =









 +

By plugging this result into the original equation, we get

T n T n() =








 +

4
2

That generalizes to

T n T n k
k

() =








 +

2

As in the analysis of merge sort, we make the simplifying assumption that n is a power
of 2, n = 2m, where m = log2(n). Then we obtain

T n n() log ()= +1 2

Therefore, binary search is an O(log(n)) algorithm.
That result makes intuitive sense. Suppose that n is 100. Then after each search, the

size of the search range is cut in half, to 50, 25, 12, 6, 3, and 1. After seven comparisons
we are done. This agrees with our formula, because log2(100) ≈ 6.64386, and indeed
the next larger power of 2 is 27 = 128.

Because a binary search is so much faster than a linear search, is it worthwhile to
sort an array first and then use a binary search? It depends. If you search the array only
once, then it is more efficient to pay for an O(n) linear search than for an O(n log(n))
sort and an O(log(n)) binary search. But if you will be making many searches in the
same array, then sorting it is definitely worthwhile.

A binary search
locates a value in a
sorted array in
O (log(n)) steps.

650  Chapter 14  Sorting and Searching

18.	 Suppose you need to look through 1,000,000 records to find a telephone num-
ber. How many records do you expect to search before finding the number?

19.	 Why can’t you use a “for each” loop for (int element : a) in the search method?
20.	 Suppose you need to look through a sorted array with 1,000,000 elements to find

a value. Using the binary search algorithm, how many records do you expect to
search before finding the value?

Practice It	 Now you can try these exercises at the end of the chapter: R14.12, P14.15, P14.18.

S e l f C h e c k

Before pocket calcu
lators and personal

computers existed, navigators and
engineers used mechanical adding
machines, slide rules, and tables of log-
arithms and trigonometric functions to
speed up computations. Unfortunately,
the tables—for which values had to be
computed by hand—were notoriously
inaccurate. The mathematician Charles
Babbage (1791–1871) had the insight
that if a machine could be constructed
that produced printed tables automati-
cally, both calculation and typeset-
ting errors could be avoided. Babbage
set out to develop a machine for this
purpose, which he called a Difference

Engine because it used successive
differences to compute polynomials.
For example, consider the function
f (x) = x3. Write down the values for
f (1), f (2), f (3), and so on. Then take the
differences between successive values:

1
 7
8
 19
27
 37
64
 61
125
 91
216

Repeat the process, taking the differ
ence of successive values in the second
column, and then repeat once again:

1
 7
8 12
 19 6
27 18
 37 6
64 24
 61 6
125 30
 91
216

Now the differences are all the same.
You can retrieve the function values by
a pattern of additions—you need to
know the values at the fringe of the
pattern and the constant difference.
You can try it out yourself: Write the
highlighted numbers on a sheet of
paper and fill in the others by adding
the numbers that are in the north and
northwest positions. Replica of Babbage’s Difference Engine

This method was very attractive,
because mechanical addition machines
had been known for some time. They
consisted of cog wheels, with 10 cogs
per wheel, to represent digits, and
mechanisms to handle the carry from
one digit to the next. Mechanical mul
tiplication machines, on the other
hand, were fragile and unreliable.
Babbage built a successful prototype
of the Difference Engine and, with his
own money and government grants,
proceeded to build the table-printing
machine. However, because of funding
problems and the difficulty of building
the machine to the required precision,
it was never completed.

While working on the Difference
Engine, Babbage conceived of a much
grander vision that he called the Ana­
lytical Engine. The Difference Engine
was designed to carry out a limited set
of computations—it was no smarter
than a pocket calculator is today. But
Babbage realized that such a machine
could be made programmable by stor
ing programs as well as data. The inter-
nal storage of the Analytical Engine
was to consist of 1,000 registers of 50
decimal digits each. Programs and con-
stants were to be stored on punched
cards—a technique that was, at that
time, commonly used on looms for
weaving patterned fabrics.

Ada Augusta, Countess of Lovelace
(1815–1852), the only child of Lord
Byron, was a friend and sponsor of
Charles Babbage. Ada Lovelace was
one of the first people to realize the
potential of such a machine, not just
for computing mathematical tables but
for processing data that were not num
bers. She is considered by many to be
the world’s first programmer.

Random Fact 14.1  The First Programmer

14.7 P roblem Solving: Estimating the Running Time of an Algorithm   651

14.7  Problem Solving: Estimating the Running
Time of an Algorithm

In this chapter, you have learned how to estimate the running time of sorting algo-
rithms. As you have seen, being able to differentiate between O(n log(n)) and O(n2)
running times has great practical implications. Being able to estimate the running
times of other algorithms is an important skill. In this section, we will practice esti-
mating the running time of array algorithms.

14.7.1  Linear Time

Let us start with a simple example, an algorithm that counts how many elements have
a particular value:

int count = 0;
for (int i = 0; i < a.length; i++)
{
 if (a[i] == value) { count++; }
}

What is the running time in terms of n, the length of the array?
Start with looking at the pattern of array element visits. Here, we visit each ele-

ment once. It helps to visualize this pattern. Imagine the array as a sequence of light
bulbs. As the ith element gets visited, imagine the ith bulb lighting up.

3

4

5

2

1

Now look at the work per visit. Does each visit involve a fixed number of actions,
independent of n? In this case, it does. There are just a few actions—read the element,
compare it, maybe increment a counter.

Therefore, the running time is n times a constant, or O(n).
What if we don’t always run to the end of the array? For example, suppose we

want to check whether the value occurs in the array, without counting it:
boolean found = false;
for (int i = 0; !found && i < a.length; i++)
{
 if (a[i] == value) { found = true; }
}

A loop with n
iterations has O(n)
running time if
each step consists
of a fixed number
of actions.

652  Chapter 14  Sorting and Searching

Then the loop can stop in the middle:

3

2

1

Found the value

Is this still O(n)? It is, because in some cases the match may be at the very end of the
array. Also, if there is no match, one must traverse the entire array.

14.7.2  Quadratic Time

Now let’s turn to a more interesting case. What if we do a lot of work with each visit?
Here is an example. We want to find the most frequent element in an array.

Suppose the array is

8 7 5 7 7 5 4

It’s obvious by looking at the values that 7 is the most frequent one. But now imagine
an array with a few thousand values.

8 7 5 7 7 5 4 1 2 3 3 4 9 12 3 2 5 11 9 2 3 7 8...

We can count how often the value 8 occurs, then move on to count how often 7
occurs, and so on. For example, in the first array, 8 occurs once, and 7 occurs three
times. Where do we put the counts? Let’s put them into a second array of the same
length.

8 7 5 7 7 5 4

1 3 2 3 3 2 1

a:

counts:

Then we take the maximum of the counts. It is 3. We look up where the 3 occurs in the
counts, and find the corresponding value. Thus, the most common value is 7.

Let us first estimate how long it takes to compute the counts.
for (int i = 0; i < a.length; i++)
{
 counts[i] = Count how often a[i] occurs in a
}

We still visit each array element once, but now the work per visit is much larger. As
you have seen in the previous section, each counting action is O(n). When we do O(n)
work in each step, the total running time is O(n2).

This algorithm has three phases:

1.	Compute all counts.
2.	Compute the maximum.
3.	Find the maximum in the counts.

A loop with n
iterations has O(n2)
running time if each
step takes O(n) time.

14.7 P roblem Solving: Estimating the Running Time of an Algorithm   653

We have just seen that the first phase is O(n2). Computing the maximum is O(n)—
look at the algorithm in Section 6.3.3 and note that each steps involves a fixed amount
of work. Finally, we just saw that finding a value is O(n).

How can we estimate the total running time from the estimates of each phase? Of
course, the total time is the sum of the individual times, but for big-Oh estimates, we
take the maximum of the estimates. To see why, imagine that we had actual equations
for each of the times:

T1(n) = an2 + bn + c

T2(n) = dn + e

T3(n) = fn + g
Then the sum is

T(n) = T1(n) + T2(n) + T3(n) = an2 + (b + d + f)n + c + e + g

But only the largest term matters, so T(n) is O(n2).
Thus, we have found that our algorithm for finding the most frequent element is

O(n2).

14.7.3  The Triangle Pattern

Let us see if we can speed up the algorithm from the preceding section. It seems
wasteful to count elements again if we have already counted them.

Can we save time by eliminating repeated counting of the same element? That is,
before counting a[i], should we first check that it didn’t occur in a[0] ... a[i - 1]?

Let us estimate the cost of these additional checks. In the ith step, the amount of
work is proportional to i. That’s not quite the same as in the preceding section, where
you saw that a loop with n iterations, each of which takes O(n) time, is O(n2). Now
each step just takes O(i) time.

To get an intuitive feel for this situation, look at the light bulbs again. In the second
iteration, we visit a[0] again. In the third iteration, we visit a[0] and a[1] again, and so
on. The light bulb pattern is

3

4

5

2

1

If there are n light bulbs, about half of the square above, or n2/2 of them, light up.
That’s unfortunately still O(n2).

The big-Oh running
time for doing
several steps in a row
is the largest of the
big-Oh times for
each step.

A loop with n
iterations has
O(n2) running time
if the ith step takes
O(i) time.

654  Chapter 14  Sorting and Searching

Here is another idea for time saving. When we count a[i], there is no need to do
the counting in a[0] ... a[i - 1]. If a[i] never occurred before, we get an accurate
count by just looking at a[i] ... a[n - 1]. And if it did, we already have an accurate
count. Does that help us? Not really—it’s the triangle pattern again, but this time in
the other direction.

3

4

5

2

1

That doesn’t mean that these improvements aren’t worthwhile. If an O(n2) algorithm
is the best one can do for a particular problem, you still want to make it as fast as pos-
sible. However, we will not pursue this plan further because it turns out that we can
do much better.

14.7.4  Logarithmic Time

Logarithmic time estimates arise from algorithms that cut work in half in each step.
You have seen this in the algorithms for binary search and merge sort, and you will
see it again in Chapter 17.

In particular, when you use sorting or binary search in a phase of an algorithm, you
will encounter logarithmic time in the big-Oh estimates.

Consider this idea for improving our algorithm for finding the most frequent ele-
ment. Suppose we first sort the array:

8 7 5 7 7 5 4 4 5 5 7 7 7 8

That cost us O(n log(n)) time. If we can complete the algorithm in O(n) time, we will
have found a better algorithm than the O(n2) algorithm of the preceding sections.

To see why this is possible, imagine traversing the sorted array. As long as you find
a value that was equal to its predecessor, you increment a counter. When you find a
different value, save the counter and start counting anew:

4 5 5 7 7 7 8

1 1 2 1 2 3 1

a:

counts:

Or in code,
int count = 0;
for (int i = 0; i < a.length; i++)
{

An algorithm that
cuts the size of work
in half in each step
runs in O(log(n)) time.

14.7 P roblem Solving: Estimating the Running Time of an Algorithm   655

 count++;
 if (i == a.length - 1 || a[i] != a[i + 1])
 {
 counts[i] = count;
 count = 0;
 }
}

That’s a constant amount of work per iteration, even though it visits two elements:

3

4

5

2

1

2n is still O(n). Thus, we can compute the counts in O(n) time from a sorted array.
The entire algorithm is now O(n log(n)).

Note that we don’t actually need to keep all counts, only the highest one that we
encountered so far (see Exercise P14.8). That is a worthwhile improvement, but it
does not change the big-Oh estimate of the running time.

21.	 What is the “light bulb pattern” of visits in the following algorithm to check
whether an array is a palindrome?
for (int i = 0; i < a.length / 2; i++)
{
 if (a[i] != a[a.length - 1 - i]) { return false; }
}
return true;

22.	 What is the big-Oh running time of the following algorithm to check whether
the first element is duplicated in an array?
for (int i = 1; i < a.length; i++)
{
 if (a[0] == a[i]) { return true; }
}
return false;

23.	 What is the big-Oh running time of the following algorithm to check whether an
array has a duplicate value?
for (int i = 0; i < a.length; i++)
{
 for (j = i + 1; j < a.length; j++)
 {
 if (a[i] == a[j]) { return true; }

ONLINE E x a m p l e

A program for
comparing the speed
of algorithms that
find the most
frequent element.

S e l f C h e c k

656  Chapter 14  Sorting and Searching

 }
}
return false;

24.	 Describe an O(n log(n)) algorithm for checking whether an array has duplicates.
25.	 What is the big-Oh running time of the following algorithm to find an element

in an n × n array?
for (int i = 0; i < n; i++)
{
 for (j = 0; j < n; j++)
 {
 if (a[i][j] == value) { return true; }
 }
}
return false;

26.	 If you apply the algorithm of Section 14.7.4 to an n × n array, what is the big-Oh
efficiency of finding the most frequent element in terms of n?

Practice It	 Now you can try these exercises at the end of the chapter: R14.9, R14.13, R14.19,
P14.8.

14.8  Sorting and Searching in the Java Library
When you write Java programs, you don’t have to implement your own sorting algo-
rithms. The Arrays and Collections classes provide sorting and searching methods that
we will introduce in the following sections.

14.8.1  Sorting

The Arrays class contains static sort methods to sort arrays of integers and floating-
point numbers. For example, you can sort an array of integers simply as

int[] a = . . .;
Arrays.sort(a);

That sort method uses the quicksort algorithm—see Special Topic 14.3 for more
information about that algorithm.

If your data are contained in an ArrayList, use the Collections.sort method instead;
it uses the merge sort algorithm:

ArrayList<String> names = . . .;
Collections.sort(names);

14.8.2  Binary Search

The Arrays and Collections classes contain static binarySearch methods that implement
the binary search algorithm, but with a useful enhancement. If a value is not found in
the array, then the returned value is not –1, but –k – 1, where k is the position before
which the element should be inserted. For example,

The Arrays class
implements a sorting
method that you
should use for your
Java programs.

The Collections
class contains a
sort method that can
sort array lists.

14.8  Sorting and Searching in the Java Library   657

int[] a = { 1, 4, 9 };
int v = 7;
int pos = Arrays.binarySearch(a, v);
// Returns –3; v should be inserted before position 2

14.8.3  Comparing Objects

In application programs, you often need to sort or search through collections of
objects. Therefore, the Arrays and Collections classes also supply sort and binarySearch
methods for objects. However, these methods cannot know how to compare arbi-
trary objects. Suppose, for example, that you have an array of Country objects. It is not
obvious how the countries should be sorted. Should they be sorted by their names or
by their areas? The sort and binarySearch methods cannot make that decision for you.
Instead, they require that the objects belong to classes that implement the Comparable
interface type that was introduced in Section 9.6.3. That interface has a single method:

public interface Comparable
{
 int compareTo(Object otherObject);
}

The call
a.compareTo(b)

must return a negative number if a should come before b, 0 if a and b are the same, and
a positive number otherwise.

Several classes in the standard Java library, such as the String and Date classes,
implement the Comparable interface.

You can implement the Comparable interface for your own classes as well. For exam-
ple, to sort a collection of countries, the Country class would need to implement this
interface and provide a compareTo method:

public class Country implements Comparable
{
 public int compareTo(Object otherObject)
 {
 Country other = (Country) otherObject;
 if (area < other.area) { return -1; }
 else if (area == other.area) { return 0; }
 else { return 1; }
 }
}

This method compares countries by their area. Now you can pass an array of coun-
tries to the Arrays.sort method:

Country[] countries = new Country[n];
// Add countries
Arrays.sort(countries); // Sorts by increasing area

Whenever you need to carry out sorting or searching, use the methods in the Arrays
and Collections classes and not those that you write yourself. The library algorithms
have been fully debugged and optimized. Thus, the primary purpose of this chapter
was not to teach you how to implement practical sorting and searching algorithms.
Instead, you have learned something more important, namely that different algo-
rithms can vary widely in performance, and that it is worthwhile to learn more about
the design and analysis of algorithms.

The sort method of
the Arrays class sorts
objects of classes
that implement the
Comparable interface.

ONLINE E x a m p l e

A program to
demonstrate the
Java library methods
for sorting and
searching.

658  Chapter 14  Sorting and Searching

27.	 Why can’t the Arrays.sort method sort an array of Rectangle objects?
28.	 What steps would you need to take to sort an array of BankAccount objects by

increasing balance?
29.	 Why is it useful that the Arrays.binarySearch method indicates the position where

a missing element should be inserted?
30.	 Why does Arrays.binarySearch return -k - 1 and not -k to indicate that a value is

not present and should be inserted before position k?

Practice It	 Now you can try these exercises at the end of the chapter: P14.14, P14.19, P14.20.

The compareTo Method Can Return Any Integer, Not Just –1, 0, and 1

The call a.compareTo(b) is allowed to return any negative integer to denote that a should come
before b, not necessarily the value -1. That is, the test

if (a.compareTo(b) == -1) // ERROR!

is generally wrong. Instead, you should test

if (a.compareTo(b) < 0) // OK

Why would a compareTo method ever want to return a number other than -1, 0, or 1? Some-
times, it is convenient to just return the difference of two integers. For example, the compareTo
method of the String class compares characters in matching positions:

char c1 = charAt(i);
char c2 = other.charAt(i);

If the characters are different, then the method simply returns their difference:

if (c1 != c2) { return c1 - c2; }

This difference is a negative number if c1 is less than c2, but it is not necessarily the number -1.

The Parameterized Comparable Interface

As of Java version 5, the Comparable interface is a parameterized type, similar to the ArrayList
type:

public interface Comparable<T>
{
 int compareTo(T other)
}

The type parameter specifies the type of the objects that this class is willing to accept for com-
parison. Usually, this type is the same as the class type itself. For example, the Country class
would implement Comparable<Country>, like this:

public class Country implements Comparable<Country>
{
 . . .
 public int compareTo(Country other)
 {
 if (area < other.area) { return -1; }
 else if (area == other.area) { return 0; }
 else { return 1; }
 }

S e l f C h e c k

Common Error 14.1

Special Topic 14.4

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

14.8  Sorting and Searching in the Java Library   659

 . . .
}

The type parameter has a significant advantage: You need not use a cast to convert an Object
parameter variable into the desired type.

The Comparator Interface

Sometimes you want to sort an array or array list of objects, but the objects don’t belong to a
class that implements the Comparable interface. Or, perhaps, you want to sort the array in a dif-
ferent order. For example, you may want to sort countries by name rather than by value.

You wouldn’t want to change the implementation of a class simply to call Arrays.sort. For-
tunately, there is an alternative. One version of the Arrays.sort method does not require that
the objects belong to classes that implement the Comparable interface. Instead, you can supply
arbitrary objects. However, you must also provide a comparator object whose job is to com-
pare objects. The comparator object must belong to a class that implements the Comparator
interface. That interface has a single method, compare, which compares two objects.

As of Java version 5, the Comparator interface is a parameterized type. The type parameter
specifies the type of the compare parameter variables. For example, Comparator<Country> looks
like this:

public interface Comparator<Country>
{
 int compare(Country a, Country b);
}

The call

comp.compare(a, b)

must return a negative number if a should come before b, 0 if a and b are the same, and a posi-
tive number otherwise. (Here, comp is an object of a class that implements Comparator<Country>.)

For example, here is a Comparator class for country:

public class CountryComparator implements Comparator<Country>
{
 public int compare(Country a, Country b)
 {
 if (a.area < b.area) { return -1; }
 else if (a.area == b.area) { return 0; }
 else { return 1; }
 }
}

To sort an array of countries by area, call

Arrays.sort(countries, new CountryComparator());

Special Topic 14.5

Worked Example 14.1	 Enhancing the Insertion Sort Algorithm

In this Worked Example, we will implement an improvement of the insertion sort algorithm
shown in Special Topic 14.2, which is called Shell sort after its inventor, Donald Shell.

660  Chapter 14  Sorting and Searching

Describe the selection sort algorithm.

•	 The selection sort algorithm sorts an array by repeatedly finding the smallest
element of the unsorted tail region and moving it to the front.

Measure the running time of a method.

•	 To measure the running time of a method, get the current time immediately before
and after the method call.

Use the big-Oh notation to describe the running time of an algorithm.

•	 Computer scientists use the big-Oh notation to describe the
growth rate of a function.

•	 Selection sort is an O(n2) algorithm. Doubling the data set means a
fourfold increase in processing time.

•	 Insertion sort is an O(n2) algorithm.

Describe the merge sort algorithm.

•	 The merge sort algorithm sorts an array by cutting the array in half, recursively
sorting each half, and then merging the sorted halves.

Contrast the running times of the merge sort and selection sort algorithms.

•	 Merge sort is an O(n log(n)) algorithm. The n log(n) function grows much more
slowly than n2.

Describe the running times of the linear search algorithm and the binary search algorithm.

•	 A linear search examines all values in an array until it finds a match or reaches
the end.

•	 A linear search locates a value in an array in O(n) steps.
•	 A binary search locates a value in a sorted array by determining whether the value

occurs in the first or second half, then repeating the search in one of the halves.
•	 A binary search locates a value in a sorted array in O(log(n)) steps.

Practice developing big-Oh estimates of algorithms.

•	 A loop with n iterations has O(n) running time if each
step consists of a fixed number of actions.

•	 A loop with n iterations has O(n2) running time if each
step takes O(n) time.

•	 The big-Oh running time for doing several steps in a row
is the largest of the big-Oh times for each step.

C h a p t e r S umm a r y

3

2

1

Found the value

Review Exercises  661

•	 A loop with n iterations has O(n2) running time if the ith step takes O(i) time.
•	 An algorithm that cuts the size of work in half in each step runs in O(log(n)) time.

Use the Java library methods for sorting and searching data.

•	 The Arrays class implements a sorting method that you should use for your Java
programs.

•	 The Collections class contains a sort method that can sort array lists.
•	 The sort method of the Arrays class sorts objects of classes that implement the

Comparable interface.

• R14.1	 What is the difference between searching and sorting?

•• R14.2	 Checking against off-by-one errors. When writing the selection sort algorithm of
Section 14.1, a programmer must make the usual choices of < versus <=, a.length ver-
sus a.length - 1, and from versus from + 1. This is fertile ground for off-by-one errors.
Conduct code walkthroughs of the algorithm with arrays of length 0, 1, 2, and 3 and
check carefully that all index values are correct.

•• R14.3	 For the following expressions, what is the order of the growth of each?
a.	n2 + 2n + 1

b.	n10 + 9n9 + 20n8 + 145n7

c.	(n + 1)4

d.	(n2 + n)2

e.	n + 0.001n3

f.	 n3 - 1000n2 + 109

g.	n + log(n)

h.	n2 + n log(n)

i.	 2n + n2

j.	 n n

n

3

2
2

0 75

+
+ .

java.lang.Comparable<T>
 compareTo
java.lang.System
 currentTimeMillis
java.util.Arrays
 binarySearch
 sort

java.util.Collections
 binarySearch
 sort
java.util.Comparator<T>
 compare

S ta n d a r d L i b r a r y I t e ms I n t r o d uc e d i n t h i s C h a p t e r

R e v i e w E x e r c i s e s

662  Chapter 14  Sorting and Searching

• R14.4	 We determined that the actual number of visits in the selection sort algorithm is

T n n n() = + −1
2

2 5
2

3

We characterized this method as having O(n2) growth. Compute the actual ratios

T T

T T

T T

2 000 1 000

4 000 1 000

10 000 1

, ,

, ,

,

() ()
() ()
() ,,000()

and compare them with

f f

f f

f f

2 000 1 000

4 000 1 000

10 000 1

, ,

, ,

,

() ()
() ()
() ,,000()

where f (n) = n2.

• R14.5	 Suppose algorithm A takes five seconds to handle a data set of 1,000 records. If the
algorithm A is an O(n) algorithm, approximately how long will it take to handle a
data set of 2,000 records? Of 10,000 records?

•• R14.6	 Suppose an algorithm takes five seconds to handle a data set of 1,000 records. Fill
in the following table, which shows the approximate growth of the execution times
depending on the complexity of the algorithm.

 O (n) O (n2) O (n3) O (n log(n)) O (2n)

1,000 5 5 5 5 5

2,000

3,000 45

10,000

For example, because 3 000 1 000 92 2, , = , the algorithm would take nine times as
long, or 45 seconds, to handle a data set of 3,000 records.

•• R14.7	 Sort the following growth rates from slowest to fastest growth.

O n O n n

O n O

O n O n

O n O

n

n

() (log())

() ()

() ()

(log())

3 2

(()

(log()) ()log()

n n

O n n O n n2

• R14.8	 What is the growth rate of the standard algorithm to find the minimum value of an
array? Of finding both the minimum and the maximum?

Review Exercises  663

• R14.9	 What is the big-Oh time estimate of the following method in terms of n, the length
of a? Use the “light bulb pattern” method of Section 14.7 to visualize your result.

public static void swap(int[] a)
{
 int i = 0;
 int j = a.length - 1;
 while (i < j)
 {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 i++;
 j--;
 }
}

• R14.10	 Trace a walkthrough of selection sort with these sets:
a.		4	 7	 11	 4	 9	 5	 11	 7	 3	 5
b.		–7	 6	 8	 7	 5	 9	 0	 11	 10	 5	 8

• R14.11	 Trace a walkthrough of merge sort with these sets:
a.		5	 11	 7	 3	 5	 4	 7	 11	 4	 9
b.		9	 0	 11	 10	 5	 8	 –7	 6	 8	 7	 5

• R14.12	 Trace a walkthrough of:
a.	Linear search for 7 in 	 –7	 1	 3	 3	 4	 7	 11	 13
b.	Binary search for 8 in 	 –7	 2	 2	 3	 4	 7	 8	 11	 13
c.	Binary search for 8 in 	 –7	 1	 2	 3	 5	 7	 10	 13

•• R14.13	 Your task is to remove all duplicates from an array. For example, if the array has the
values

4 7 11 4 9 5 11 7 3 5
then the array should be changed to

4 7 11 9 5 3
Here is a simple algorithm. Look at a[i]. Count how many times it occurs in a. If the
count is larger than 1, remove it. What is the growth rate of the time required for this
algorithm?

••• R14.14	 Modify the merge sort algorithm to remove duplicates in the merging step to obtain
an algorithm that removes duplicates from an array. Note that the resulting array
does not have the same ordering as the original one. What is the efficiency of this
algorithm?

•• R14.15	 Consider the following algorithm to remove all duplicates from an array. Sort the
array. For each element in the array, look at its next neighbor to decide whether it
is present more than once. If so, remove it. Is this a faster algorithm than the one in
Exercise R14.13?

••• R14.16	 Develop an O(n log(n)) algorithm for removing duplicates from an array if the
resulting array must have the same ordering as the original array. When a value
occurs multiple times, all but its first occurrence should be removed.

664  Chapter 14  Sorting and Searching

••• R14.17	 Why does insertion sort perform significantly better than selection sort if an array is
already sorted?

••• R14.18	 Consider the following speedup of the insertion sort algorithm of Special Topic 14.2.
For each element, use the enhanced binary search algorithm that yields the insertion
position for missing elements. Does this speedup have a significant impact on the
efficiency of the algorithm?

•• R14.19	 Consider the following algorithm known as bubble sort:
While the array is not sorted
	 For each adjacent pair of elements
		 If the pair is not sorted
			 Swap its elements.

What is the big-Oh efficiency of this algorithm?

•• R14.20	 The radix sort algorithm sorts an array of n integers with d digits, using ten auxiliary
arrays. First place each value v into the auxiliary array whose index corresponds to
the last digit of v. Then move all values back into the original array, preserving their
order. Repeat the process, now using the next-to-last (tens) digit, then the hundreds
digit, and so on. What is the big-Oh time of this algorithm in terms of n and d? When
is this algorithm preferable to merge sort?

•• R14.21	 A stable sort does not change the order of elements with the same value. This is a
desirable feature in many applications. Consider a sequence of e-mail messages. If
you sort by date and then by sender, you’d like the second sort to preserve the rela-
tive order of the first, so that you can see all messages from the same sender in date
order. Is selection sort stable? Insertion sort? Why or why not?

•• R14.22	 Give an O(n) algorithm to sort an array of n bytes (numbers between –128 and 127).
Hint: Use an array of counters.

•• R14.23	 You are given a sequence of arrays of words, representing the pages of a book. Your
task is to build an index (a sorted array of words), each element of which has an array
of sorted numbers representing the pages on which the word appears. Describe an
algorithm for building the index and give its big-Oh running time in terms of the
total number of words.

•• R14.24	 Given two arrays of n integers each, describe an O(n log(n)) algorithm for determin-
ing whether they have an element in common.

••• R14.25	 Given an array of n integers and a value v, describe an O(n log(n)) algorithm to find
whether there are two values x and y in the array with sum v.

•• R14.26	 Given two arrays of n integers each, describe an O(n log(n)) algorithm for finding all
elements that they have in common.

•• R14.27	 Suppose we modify the quicksort algorithm from Special Topic 14.3, selecting the
middle element instead of the first one as pivot. What is the running time on an array
that is already sorted?

•• R14.28	 Suppose we modify the quicksort algorithm from Special Topic 14.3, selecting the
middle element instead of the first one as pivot. Find a sequence of values for which
this algorithm has an O(n2) running time.

Programming Exercises  665

• P14.1	 Modify the selection sort algorithm to sort an array of integers in descending order.

• P14.2	 Modify the selection sort algorithm to sort an array of coins by their value.

•• P14.3	 Write a program that automatically generates the table of sample run times for the
selection sort algorithm. The program should ask for the smallest and largest value
of n and the number of measurements and then make all sample runs.

• P14.4	 Modify the merge sort algorithm to sort an array of strings in lexicographic order.

••• P14.5	 Write a telephone lookup program. Read a data set of 1,000 names and telephone
numbers from a file that contains the numbers in random order. Handle lookups
by name and also reverse lookups by phone number. Use a binary search for both
lookups.

•• P14.6	 Implement a program that measures the performance of the insertion sort algorithm
described in Special Topic 14.2.

• P14.7	 Implement the bubble sort algorithm described in Exercise R14.19.

•• P14.8	 Implement the algorithm described in Section 14.7.4, but only remember the value
with the highest frequency so far:

int mostFrequent = 0;
int highestFrequency = -1;
for (int i = 0; i < a.length; i++)
 Count how often a[i] occurs in a[i + 1]...a[n - 1]
 If it occurs more often than highestFrequency
 highestFrequency = that count
 mostFrequent = a[i]

•• P14.9	 Implement the following modification of the quicksort algorithm, due to Bentley
and McIlroy. Instead of using the first element as the pivot, use an approximation of
the median. (Partitioning at the actual median would yield an O(n log(n)) algorithm,
but we don’t know how to compute it quickly enough.)
If n ≤ 7, use the middle element. If n ≤ 40, use the median of the first, middle,
and last element. Otherwise compute the “pseudomedian” of the nine elements
a[i * (n - 1) / 8], where i ranges from 0 to 8. The pseudomedian of nine values is
med(med(v0, v1, v2), med(v3, v4, v5), med(v6, v7, v8)).
Compare the running time of this modification with that of the original algorithm
on sequences that are nearly sorted or reverse sorted, and on sequences with many
identical elements. What do you observe?

••• P14.10	 Bentley and McIlroy suggest the following modification to the quicksort algorithm
when dealing with data sets that contain many repeated elements.
Instead of partitioning as

 ≤ ≥

(where ≤ denotes the elements that are ≤ the pivot), it is better to partition as

 < = >

P r o g r a mm i n g E x e r c i s e s

666  Chapter 14  Sorting and Searching

However, that is tedious to achieve directly. They recommend to partition as

 = < > =

and then swap the two = regions into the middle. Implement this modification and
check whether it improves performance on data sets with many repeated elements.

• P14.11	 Implement the radix sort algorithm described in Exercise R14.20 to sort arrays of
numbers between 0 and 999.

• P14.12	 Implement the radix sort algorithm described in Exercise R14.20 to sort arrays of
numbers between 0 and 999. However, use a single auxiliary array, not ten.

•• P14.13	 Implement the radix sort algorithm described in Exercise R14.20 to sort arbitrary int
values (positive or negative).

••• P14.14	 Write a program that sorts an ArrayList<Country> in decreasing order so that the most
largest country is at the beginning of the array. Use a Comparator.

•• P14.15	 Consider the binary search algorithm in Section 14.8. If no match is found, the search
method returns -1. Modify the method so that if a is not found, the method returns
-k - 1, where k is the position before which the element should be inserted. (This is
the same behavior as Arrays.binarySearch.)

•• P14.16	 Implement the sort method of the merge sort algorithm without recursion, where
the length of the array is a power of 2. First merge adjacent regions of size 1, then
adjacent regions of size 2, then adjacent regions of size 4, and so on.

••• P14.17	 Implement the sort method of the merge sort algorithm without recursion, where
the length of the array is an arbitrary number. Keep merging adjacent regions whose
size is a power of 2, and pay special attention to the last area whose size is less.

••• P14.18	 Use insertion sort and the binary search from Exercise P14.15 to sort an array
as described in Exercise R14.18. Implement this algorithm and measure its
performance.

• P14.19	 Supply a class Person that implements the Comparable interface. Compare persons by
their names. Ask the user to input ten names and generate ten Person objects. Using
the compareTo method, determine and the first and last person among them and print
them.

•• P14.20	 Sort an array list of strings by increasing length. Hint: Supply a Comparator.

••• P14.21	 Sort an array list of strings by increasing length, and so that strings of the same
length are sorted lexicographically. Hint: Supply a Comparator.

Answers to Self-Check Questions  667

1.	 Dropping the temp variable would not work.
Then a[i] and a[j] would end up being the
same value.

2.	 1 | 5 4 3 2 6
1 2 | 4 3 5 6
1 2 3 4 5 6

3.	 In each step, find the maximum of the remain-
ing elements and swap it with the current ele-
ment (or see Self Check 4).

4.	 The modified algorithm sorts the array in
descending order.

5.	 Four times as long as 40,000 values, or about
37 seconds.

6.	 A parabola.
7.	 It takes about 100 times longer.
8.	 If n is 4, then 1

2
2n is 8 and 5

2
3n − is 7.

9.	 The first algorithm requires one visit, to
store the new element. The second algorithm
requires T(p) = 2 × (n – p – 1) visits, where p is
the location at which the element is removed.
We don’t know where that element is, but if
elements are removed at random locations, on
average, half of the removals will be above the
middle and half below, so we can assume an
average p of n / 2 and T(n) = 2 × (n – n / 2 – 1) =
n – 2.

10.	 The first algorithm is O(1), the second O(n).
11.	 We need to check that a[0] ≤ a[1], a[1] ≤ a[2],

and so on, visiting 2n – 2 elements. Therefore,
the running time is O(n).

12.	 Let n be the length of the array. In the kth
step, we need k visits to find the minimum. To
remove it, we need an average of k – 2 visits
(see Self Check 9). One additional visit is
required to add it to the end. Thus, the kth step
requires 2k – 1 visits. Because k goes from n to
2, the total number of visits is

2n – 1 + 2(n – 1) – 1 + ... + 2 · 3 – 1 + 2 · 2 – 1 =
2(n + (n – 1) + ... + 3 + 2 + 1 – 1) – (n – 1) =

n(n + 1) – 2 – n + 1 = n2 – 3
(because 1 + 2 + 3 + ... + (n – 1) + n = n(n + 1)/2)
Therefore, the total number of visits is O(n2).

13.	 When the preceding while loop ends,
the loop condition must be false, that is,
iFirst >= first.length or iSecond >= second.
length (De Morgan’s Law).

14.	 First sort 8 7 6 5. Recursively, first sort 8 7.
Recursively, first sort 8. It’s sorted. Sort 7. It’s
sorted. Merge them: 7 8. Do the same with 6 5
to get 5 6. Merge them to 5 6 7 8. Do the same
with 4 3 2 1: Sort 4 3 by sorting 4 and 3 and
merging them to 3 4. Sort 2 1 by sorting 2 and
1 and merging them to 1 2. Merge 3 4 and 1 2 to
1 2 3 4. Finally, merge 5 6 7 8 and 1 2 3 4 to 1 2 3
4 5 6 7 8.

15.	 If the array size is 1, return its only element
as the sum. Otherwise, recursively compute
the sum of the first and second subarray and
return the sum of these two values.

16.	 Approximately (100,000 · log(100,000)) /
(50,000 · log(50,000)) = 2 · 5 / 4.7 = 2.13 times
the time required for 50,000 values. That’s
2.13 · 192 milliseconds or approximately
409 milliseconds.

17.	
n n
n n n

2 log(2)
log()

2
(1 log(2))

log()
=

+
.

For n > 2, that is a value < 3.
18.	 On average, you’d make 500,000 comparisons.
19.	 The search method returns the index at which

the match occurs, not the data stored at that
location.

20.	 You would search about 20. (The binary log of
1,024 is 10.)

21.	

22.	 It is an O(n) algorithm.
23.	 It is an O(n2) algorithm—the number of visits

follows a triangle pattern.
24.	 Sort the array, then make a linear scan to check

for adjacent duplicates.
25.	 It is an O(n2) algorithm—the outer and inner

loop each have n iterations.

3

2

1

A n sw e r s t o S e l f - C h e c k Q u e s t i o n s

668  Chapter 14  Sorting and Searching

26.	 Because an n × n array has m = n2 elements,
and the algorithm in Section 14.7.4, when
applied to an array with m elements, is
O(m log(m)), we have an O(n2log(n)) algo-
rithm. Recall that log(n2) = 2 log(n), and the
factor of 2 is irrelevant in the big-Oh notation.

27.	 The Rectangle class does not implement the
Comparable interface.

28.	 The BankAccount class would need to implement
the Comparable interface. Its compareTo method
must compare the bank balances.

29.	 Then you know where to insert it so that the
array stays sorted, and you can keep using
binary search.

30.	 Otherwise, you would not know whether a
value is present when the method returns 0.

15C h a p t e r

669

The Java
Collections
Framework

To learn how to use the collection
classes supplied in the Java library

To use iterators to traverse collections

To choose appropriate collections for solving programming problems

To study applications of stacks and queues

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

15.1  An Overview of the Collections
Framework  670

15.2  Linked Lists  672

Random Fact 15.1: Standardization  678

15.3  Sets  679

Programming Tip 15.1: Use Interface References
to Manipulate Data Structures  683

15.4  Maps  684

How To 15.1: Choosing a Collection  686
Worked Example 15.1: Word Frequency 
Special Topic 15.1: Hash Functions  688

15.5  Stacks, Queues, and
Priority Queues  690

15.6  Stack and Queue
Applications  693

Worked Example 15.2: Simulating a Queue of
Waiting Customers 

Random Fact 15.2: Reverse Polish Notation  701
Video Example 15.1: Building a Table

of Contents 

670

If you want to write a program that collects objects (such
as the stamps to the left), you have a number of choices. Of
course, you can use an array list, but computer scientists
have invented other mechanisms that may be better suited
for the task. In this chapter, we introduce the collection
classes and interfaces that the Java library offers. You will
learn how to use the Java collection classes, and how to
choose the most appropriate collection type for a problem.

15.1  An Overview of the Collections Framework
When you need to organize multiple objects in your program, you can place them
into a collection. The ArrayList class that was introduced in Chapter 6 is one of many
collection classes that the standard Java library supplies. In this chapter, you will
learn about the Java collections framework, a hierarchy of interface types and classes
for collecting objects. Each interface type is implemented by one or more classes (see
Figure 1).

At the root of the hierarchy is the Collection interface. That interface has methods
for adding and removing elements, and so on. Table 1 on page 672 shows all the meth-
ods. Because all collections implement this interface, its methods are available for all
collection classes. For example, the size method reports the number of elements in
any collection.

The List interface describes an important category of collections. In Java, a list is a
collection that remembers the order of its elements (see Figure 2). The ArrayList class
implements the List interface. The Java library supplies another class, LinkedList, that
also implements the List interface. Unlike an array list, a linked list allows speedy
insertion and removal of elements in the middle of the list. We will discuss that class
in the next section.

 You use a list whenever you want to retain the order that you established. For
example, on your bookshelf, you may order books by topic. A list is an appropriate
data structure for such a collection because the ordering matters to you.

A collection groups
together elements
and allows them to
be retrieved later.

A list is a collection
that remembers the
order of its elements.

Figure 1  Interfaces and Classes in the Java Collections Framework

‹‹interface››
Map

HashMap TreeMap

‹‹interface››
Collection

HashSet TreeSetStack LinkedList

‹‹interface››
List

‹‹interface››
Queue

‹‹interface››
Set

ArrayList PriorityQueue

15.1 A n Overview of the Collections Framework   671

However, in many applications, you don’t really care about the order of the ele-
ments in a collection. Consider a mail-order dealer of books. Without customers
browsing the shelves, there is no need to order books by topic. Such a collection
without an intrinsic order is called a set—see Figure 3.

Because a set does not track the order of the elements, it can arrange them in a
way that speeds up the operations of finding, adding, and removing elements. Com-
puter scientists have invented mechanisms for this purpose. The Java library provides
classes that are based on two such mechanisms (called hash tables and binary search
trees). You will learn in this chapter how to choose between them.

Another way of gaining efficiency in a collection is to reduce the number of opera-
tions. A stack remembers the order of its elements, but it does not allow you to insert
elements in every position. You can add and remove elements only at the top—see
Figure 4.

In a queue, you add items to one end (the tail) and remove them from the other end
(the head). For example, you could keep a queue of books, adding required reading at
the tail and taking a book from the head whenever you have time to read another one.
We will discuss stacks and queues in Section 15.5.

Finally, a map manages associations between keys and values. Every key in the
map has an associated value. The map stores the keys, values, and the associations
between them. For an example, consider a library that puts a bar code on each book.

The program used to check books in and out needs to look up the book associated
with each bar code. A map associating bar codes with books can solve this problem—
see Figure 5. We will discuss maps in Section 15.4.

Figure 2  A List of Books Figure 3  A Set of Books Figure 4  A Stack of Books

A set is an unordered
collection of unique
elements.

A map keeps
associations
between key and
value objects.

Figure 5  A Map from Bar Codes to Books

ISBN 978-0-470-10555-9

9 7 8 0 4 7 0 1 0 5 5 5 9

9 0 0 0 0

Values

Keys
ISBN 978-0-470-10554-2

9 7 8 0 4 7 0 1 0 5 5 4 2

9 0 0 0 0
ISBN 978-0-470-50948-1

9 7 8 0 4 7 0 5 0 9 4 8 1

9 0 0 0 0

ISBN 978-0-470-38329-2

9 7 8 0 4 7 0 3 8 3 2 9 2

9 0 0 0 0
ISBN 978-0-471-79191-1

9 7 8 0 4 7 1 7 9 1 9 1 1

9 0 0 0 0

672  Chapter 15  The Java Collections Framework

Table 1 The Methods of the Collection Interface

Collection<String> coll =
 new ArrayList<String>();

The ArrayList class implements the Collection
interface.

coll = new TreeSet<String>(); The TreeSet class (Section 15.3) also
implements the Collection interface.

int n = coll.size(); Gets the size of the collection. n is now 0.

coll.add("Harry");
coll.add("Sally");

Adds elements to the collection.

String s = coll.toString(); Returns a string with all elements in the
collection. s is now "[Harry, Sally]"

System.out.println(coll); Invokes the toString method and prints
[Harry, Sally].

coll.remove("Harry");
boolean b = coll.remove("Tom");

Removes an element from the collection,
returning false if the element is not present.
b is false.

b = coll.contains("Sally"); Checks whether this collection contains a
given element. b is now true.

for (String s : coll)
{
 System.out.println(s);
}

You can use the “for each” loop with any
collection. This loop prints the elements on
separate lines.

Iterator<String> iter = coll.iterator() You use an iterator for visiting the elements in
the collection (see Section 15.2.3).

1.	 A gradebook application stores a collection of quizzes. Should it use a list or
a set?

2.	 A student information system stores a collection of student records for a
university. Should it use a list or a set?

3.	 Why is a queue of books a better choice than a stack for organizing your
required reading?

4.	 As you can see from Figure 1, the Java collections framework does not consider
a map a collection. Give a reason for this decision.

Practice It	 Now you can try these exercises at the end of the chapter: R15.1, R15.2, R15.3.

15.2  Linked Lists
A linked list is a data structure used for collecting a sequence of objects that allows
efficient addition and removal of elements in the middle of the sequence. In the fol-
lowing sections, you will learn how a linked list manages its elements and how you
can use linked lists in your programs.

O n l i n e E x a m p l e

A sample program
that demonstrates
several collection
classes.

S e l f C h e c k

15.2 L inked Lists   673

15.2.1  The Structure of Linked Lists

To understand the inefficiency of arrays
and the need for a more efficient data
structure, imagine a program that main-
tains a sequence of employee names. If an
employee leaves the company, the name
must be removed. In an array, the hole
in the sequence needs to be closed up by
moving all objects that come after it. Con-
versely, suppose an employee is added in
the middle of the sequence. Then all names
following the new hire must be moved
toward the end. Moving a large number of
elements can involve a substantial amount
of processing time. A linked list structure
avoids this movement.

A linked list uses a sequence of nodes. A node is an object that stores an element
and references to the neighboring nodes in the sequence (see Figure 6).

When you insert a new node into a linked list, only the neighboring node references
need to be updated (see Figure 7).

The same is true when you remove a node (see Figure 8). What’s the catch? Linked
lists allow speedy insertion and removal, but element access can be slow.

Each node in a linked list is connected to the
neighboring nodes.

A linked list consists
of a number of
nodes, each of which
has a reference to
the next node.

Figure 6 
A Linked List

Tom Diana Harry

Figure 7 
Inserting a
Node into a
Linked List

Tom Diana Harry

Romeo

Figure 8 
Removing a
Node from a
Linked List

Tom Diana Harry

674  Chapter 15  The Java Collections Framework

For example, suppose you want to locate the fifth element. You must first traverse
the first four. This is a problem if you need to access the elements in arbitrary order.
The term “random access” is used in computer science to describe an access pattern in
which elements are accessed in arbitrary (not necessarily random) order. In contrast,
sequential access visits the elements in sequence.

Of course, if you mostly visit all elements in sequence (for example, to display
or print the elements), the inefficiency of random access is not a problem. You use
linked lists when you are concerned about the efficiency of inserting or removing ele-
ments and you rarely need element access in random order.

15.2.2  The LinkedList Class of the Java Collections
Framework

The Java library provides a LinkedList class in the java.util package. It is a generic
class, just like the ArrayList class. That is, you specify the type of the list elements in
angle brackets, such as LinkedList<String> or LinkedList<Employee>.

Table 2 shows important methods of the LinkedList class. (Remember that the
LinkedList class also inherits the methods of the Collection interface shown in Table 1.)

As you can see from Table 2, there are methods for accessing the beginning and the
end of the list directly. However, to visit the other elements, you need a list iterator.
We discuss iterators next.

Table 2 Working with Linked Lists

LinkedList<String> list = new LinkedList<String>(); An empty list.

list.addLast("Harry"); Adds an element to the end of the list.
Same as add.

list.addFirst("Sally"); Adds an element to the beginning of
the list. list is now [Sally, Harry].

list.getFirst(); Gets the element stored at the
beginning of the list; here "Sally".

list.getLast(); Gets the element stored at the end of
the list; here "Harry".

String removed = list.removeFirst(); Removes the first element of the list
and returns it. removed is "Sally" and
list is [Harry]. Use removeLast to
remove the last element.

ListIterator<String> iter = list.listIterator() Provides an iterator for visiting all list
elements (see Table 3 on page 676).

15.2.3  List Iterators

An iterator encapsulates a position anywhere inside the linked list. Conceptually,
you should think of the iterator as pointing between two elements, just as the cursor

Adding and removing
elements at a given
location in a linked
list is efficient.

Visiting the elements
of a linked list in
sequential order is
efficient, but random
access is not.

15.2 L inked Lists   675

in a word processor points between two characters (see Figure 9). In the conceptual
view, think of each element as being like a letter in a word processor, and think of the
iterator as being like the blinking cursor between letters.

You obtain a list iterator with the listIterator method of the LinkedList class:

LinkedList<String> employeeNames = . . .;
ListIterator<String> iterator = employeeNames.listIterator();

Note that the iterator class is also a generic type. A ListIterator<String> iterates
through a list of strings; a ListIterator<Book> visits the elements in a LinkedList<Book>.

Initially, the iterator points before the first element. You can move the iterator
position with the next method:

iterator.next();

The next method throws a NoSuchElementException if you are already past the end of
the list. You should always call the iterator’s hasNext method before calling next—it
returns true if there is a next element.

if (iterator.hasNext())
{
 iterator.next();
}

The next method returns the element that the iterator is passing. When you use a
ListIterator<String>, the return type of the next method is String. In general, the return
type of the next method matches the list iterator’s type parameter (which reflects the
type of the elements in the list).

You traverse all elements in a linked list of strings with the following loop:

while (iterator.hasNext())
{
 String name = iterator.next();
 Do something with name
}

As a shorthand, if your loop simply visits all elements of the linked list, you can use
the “for each” loop:

for (String name : employeeNames)
{
 Do something with name
}

Then you don’t have to worry about iterators at all. Behind the scenes, the for loop
uses an iterator to visit all list elements.

You use a list iterator
to access elements
inside a linked list.

A N I M AT I O N
List Iterators

Figure 9  A Conceptual View of the List Iterator

D H R T

D H R T

D J R TH R T

Initial ListIterator position

After calling next

After inserting J

next returns D

676  Chapter 15  The Java Collections Framework

The nodes of the LinkedList class store two links: one to the next element and one
to the previous one. Such a list is called a doubly-linked list. You can use the previ-
ous and hasPrevious methods of the ListIterator interface to move the iterator position
backward.

The add method adds an object after the iterator, then moves the iterator position
past the new element.

iterator.add("Juliet");

You can visualize insertion to be like typing text in a word processor. Each character
is inserted after the cursor, then the cursor moves past the inserted character (see Fig-
ure 9). Most people never pay much attention to this—you may want to try it out and
watch carefully how your word processor inserts characters.

The remove method removes the object that was returned by the last call to next or
previous. For example, this loop removes all names that fulfill a certain condition:

while (iterator.hasNext())
{
 String name = iterator.next();
 if (condition is fulfilled for name)
 {
 iterator.remove();
 }
}

You have to be careful when calling remove. It can be called only once after calling
next or previous, and you cannot call it immediately after a call to add. If you call the
method improperly, it throws an IllegalStateException.

Table 3 summarizes the methods of the ListIterator interface. The ListIterator
interface extends a more general Iterator interface that is suitable for arbitrary col-
lections, not just lists. The table indicates which methods are specific to list iterators.

Following is a sample program that inserts strings into a list and then iterates
through the list, adding and removing elements. Finally, the entire list is printed. The
comments indicate the iterator position.

Table 3 Methods of the Iterator and ListIterator Interfaces

String s = iter.next(); Assume that iter points to the beginning of the list [Sally] before
calling next. After the call, s is "Sally" and the iterator points to the end.

iter.previous();
iter.set("Juliet");

The set method updates the last element returned by next or previous.
The list is now [Juliet].

iter.hasNext() Returns false because the iterator is at the end of the collection.

if (iter.hasPrevious())
{
 s = iter.previous();
}

hasPrevious returns true because the iterator is not at the beginning of
the list. previous and hasPrevious are ListIterator methods.

iter.add("Diana"); Adds an element before the iterator position (ListIterator only). The
list is now [Diana, Juliet].

iter.next();
iter.remove();

remove removes the last element returned by next or previous. The list is
now [Diana].

15.2 L inked Lists   677

section_2/ListDemo.java

1 import java.util.LinkedList;
2 import java.util.ListIterator;
3
4 /**
5 This program demonstrates the LinkedList class.
6 */
7 public class ListDemo
8 {
9 public static void main(String[] args)

10 {
11 LinkedList<String> staff = new LinkedList<String>();
12 staff.addLast("Diana");
13 staff.addLast("Harry");
14 staff.addLast("Romeo");
15 staff.addLast("Tom");
16
17 // | in the comments indicates the iterator position
18
19 ListIterator<String> iterator = staff.listIterator(); // |DHRT
20 iterator.next(); // D|HRT
21 iterator.next(); // DH|RT
22
23 // Add more elements after second element
24
25 iterator.add("Juliet"); // DHJ|RT
26 iterator.add("Nina"); // DHJN|RT
27
28 iterator.next(); // DHJNR|T
29
30 // Remove last traversed element
31
32 iterator.remove(); // DHJN|T
33
34 // Print all elements
35
36 System.out.println(staff);
37 System.out.println("Expected: [Diana, Harry, Juliet, Nina, Tom]");
38 }
39 }

Program Run

[Diana, Harry, Juliet, Nina, Tom]
Expected: [Diana, Harry, Juliet, Nina, Tom]

5.	 Do linked lists take more storage space than arrays of the same size?
6.	 Why don’t we need iterators with arrays?
7.	 Suppose the list lst contains elements "A", "B", "C", and "D". Draw the contents of

the list and the iterator position for the following operations:
ListIterator<String> iter = letters.iterator();
iter.next();
iter.next();
iter.remove();
iter.next();
iter.add("E");

S e l f C h e c k

678  Chapter 15  The Java Collections Framework

iter.next();
iter.add("F");

8.	 Write a loop that removes all strings with length less than four from a linked list
of strings called words.

9.	 Write a loop that prints every second element of a linked list of strings called
words.

Practice It	 Now you can try these exercises at the end of the chapter: R15.4, R15.7, P15.1.

You encounter the
benefits of standard­

ization every day. When you buy a
light bulb, you can be assured that it
fits the socket without having to mea­
sure the socket at home and the light
bulb in the store. In fact, you may have
experienced how painful the lack of
standards can be if you have ever pur­
chased a flashlight with nonstandard
bulbs. Replacement bulbs for such a
flashlight can be difficult and expen­
sive to obtain.

Programmers have a similar desire
for standardization. Consider the impor­
tant goal of platform independence
for Java programs. After you compile a
Java program into class files, you can
execute the class files on any computer
that has a Java virtual machine. For this
to work, the behavior of the virtual
machine has to be strictly defined. If all
virtual machines don’t behave exactly
the same way, then the slogan of “write
once, run anywhere” turns into “write
once, debug everywhere”. In order for
multiple implementors to create com­
patible virtual machines, the virtual
machine needed to be standardized.
That is, someone needed to create a
definition of the virtual machine and its
expected behavior.

Who creates standards? Some of the
most successful standards have been
created by volunteer groups such as
the Internet Engineering Task Force
(IETF) and the World Wide Web Con­
sortium (W3C). The IETF standardizes
protocols used in the Internet, such
as the protocol for exchanging e-mail
messages. The W3C standardizes the
Hypertext Markup Language (HTML),
the format for web pages. These stan­
dards have been instrumental in the
creation of the World Wide Web as an
open platform that is not controlled by
any one company.

Many programming languages,
such as C++ and Scheme, have been
standardized by independent stan­
dards organizations, such as the
American National Standards Institute
(ANSI) and the International Organiza­
tion for Standardization—called ISO
for short (not an acronym; see http://
www.iso.org/iso/about/discover-
iso_isos-name.htm). ANSI and ISO are
associations of industry profession­
als who develop standards for every­
thing from car tires to credit card
shapes to programming languages.

When a company invents a new
technology, it has an interest in its
invention becoming a standard, so that
other vendors produce tools that work
with the invention and thus increase
its likelihood of success. On the other
hand, by handing over the invention
to a standards committee, especially
one that insists on a fair process, the
company may lose control over the
standard. For that reason, Sun Micro­
systems, the inventor of Java, never
agreed to have a third-party organiza­
tion standardize the Java language.
They put in place their own standard­

ization process, involving other com­
panies but refusing to relinquish con­
trol. Another unfortunate but common
tactic is to create a weak standard.
For example, Netscape and Microsoft
chose the European Computer Manu­
facturers Association (ECMA) to stan­
dardize the JavaScript language. ECMA
was willing to settle for something less
than truly useful, standardizing the
behavior of the core language and just
a few of its libraries.

Of course, many important pieces
of technology aren’t standardized at
all. Consider the Windows operating
system. Although Windows is often
called a de-facto standard, it really is
no standard at all. Nobody has ever
attempted to define formally what the
Windows operating system should do.
The behavior changes at the whim of
its vendor. That suits Microsoft just
fine, because it makes it impossible for
a third party to create its own version
of Windows.

As a computer professional, there
will be many times in your career when
you need to make a decision whether
to support a particular standard. Con­
sider a simple example. In this chapter,
you learn about the collection classes
from the standard Java library. How­
ever, many computer scientists dislike
these classes because of their numer­
ous design issues. Should you use the
Java collections in your own code, or
should you implement a better set of
collections? If you do the former, you
have to deal with a design that is less
than optimal. If you do the latter, other
programmers may have a hard time
understanding your code because they
aren’t familiar with your classes.

Random Fact 15.1  Standardization

15.3 S ets   679

15.3  Sets
As you learned in Section 15.1, a set organizes its values in an order that is optimized
for efficiency, which may not be the order in which you add elements. Inserting and
removing elements is faster with a set than with a list.

In the following sections, you will learn how to choose a set implementation and
how to work with sets.

15.3.1  Choosing a Set Implementation

The Set interface in the standard Java library has the same methods as the Collection
interface, shown in Table 1. However, there is an essential difference between arbi-
trary collections and sets. A set does not admit duplicates. If you add an element to a
set that is already present, the insertion is ignored.

The HashSet and TreeSet classes implement the Set interface. These two classes pro-
vide set implementations based on two different mechanisms, called hash tables and
binary search trees. Both implementations arrange the set elements so that finding,
adding, and removing elements is fast, but they use different strategies.

The basic idea of a hash table is simple. Set elements are grouped into smaller col-
lections of elements that share the same characteristic. You can imagine a hash set of
books as having a group for each color, so that books of the same color are in the same
group. To find whether a book is already present, you just need to check it against
the books in the same color group. Actually, hash tables don’t use colors, but integer
values (called hash codes) that can be computed from the elements.

In order to use a hash table, the elements must have a method to compute those
integer values. This method is called hashCode. The elements must also belong to a class
with a properly defined equals method (see Special Topic 9.7).

Many classes in the standard library implement these methods, for example String,
Integer, Double, Point, Rectangle, Color, and all the collection classes. Therefore, you can
form a HashSet<String>, HashSet<Rectangle>, or even a HashSet<HashSet<Integer>>.

Suppose you want to form a set of elements belonging to a class that you declared,
such as a HashSet<Book>. Then you need to provide hashCode and equals methods for the
class Book. There is one exception to this rule. If all elements are distinct (for example,
if your program never has two Book objects with the same author and title), then you
can simply inherit the hashCode and equals methods of the Object class.

On this shelf, books of the same color are grouped
together. Similarly, in a hash table, objects with the

same hash code are placed in the same group.

The HashSet and
TreeSet classes both
implement the
Set interface.

Set implementations
arrange the elements
so that they can
locate them quickly.

You can form hash
sets holding objects
of type String,
Integer, Double,
Point, Rectangle,
or Color.

680  Chapter 15  The Java Collections Framework

A tree set keeps its elements in sorted order.

The TreeSet class uses a different strategy for
arranging its elements. Elements are kept in
sorted order. For example, a set of books might
be arranged by height, or alphabetically by
author and title. The elements are not stored in an array—that would make adding
and removing elements too slow. Instead, they are stored in nodes, as in a linked list.
However, the nodes are not arranged in a linear sequence but in a tree shape.

In order to use a TreeSet, it must be possible to compare the elements and determine
which one is “larger”. You can use a TreeSet for classes such as String and Integer that
implement the Comparable interface, which we discussed in Section 9.6.3. (That section
also shows you how you can implement comparison methods for your own classes.)

As a rule of thumb, you should choose a TreeSet if you want to visit the set’s ele-
ments in sorted order. Otherwise choose a HashSet––as long as the hash function is
well chosen, it is a bit more efficient.

When you construct a HashSet or TreeSet, store the reference in a Set<String> vari-
able, either as

Set<String> names = new HashSet<String>();

or
Set<String> names = new TreeSet<String>();

After you construct the collection object, the implementation no longer matters;
only the interface is important.

15.3.2  Working with Sets

Adding and removing set elements are accomplished with the add and remove methods:
names.add("Romeo");
names.remove("Juliet");

As in mathematics, a set collection in Java rejects duplicates. Adding an element has
no effect if the element is already in the set. Similarly, attempting to remove an ele-
ment that isn’t in the set is ignored.

The contains method tests whether an element is contained in the set:
if (names.contains("Juliet")) . . .

Finally, to list all elements in the set, get an iterator. As with list iterators, you use the
next and hasNext methods to step through the set.

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
 String name = iter.next();
 Do something with name
}

You can form tree
sets for any class that
implements the
Comparable interface,
such as String or
Integer.

Sets don’t have
duplicates. Adding a
duplicate of an
element that is
already present
is ignored.

15.3 S ets   681

You can also use the “for each” loop instead of explicitly using an iterator:
for (String name : names)
{
 Do something with name
}

A set iterator visits the elements in the order in which the set implementation keeps
them. This is not necessarily the order in which you inserted them. The order of ele-
ments in a hash set seems quite random because the hash code spreads the elements
into different groups. When you visit elements of a tree set, they always appear in
sorted order, even if you inserted them in a different order.

There is an important difference between the Iterator that you obtain from a set
and the ListIterator that a list yields. The ListIterator has an add method to add an ele-
ment at the list iterator position. The Iterator interface has no such method. It makes
no sense to add an element at a particular position in a set, because the set can order
the elements any way it likes. Thus, you always add elements directly to a set, never
to an iterator of the set.

However, you can remove a set element at an iterator position, just as you do with
list iterators.

Also, the Iterator interface has no previous method to go backward through the
elements. Because the elements are not ordered, it is not meaningful to distinguish
between “going forward” and “going backward”.

Table 4 Working with Sets

Set<String> names; Use the interface type for variable declarations.

names = new HashSet<String>(); Use a TreeSet if you need to visit the elements
in sorted order.

names.add("Romeo"); Now names.size() is 1.

names.add("Fred"); Now names.size() is 2.

names.add("Romeo"); names.size() is still 2. You can’t add duplicates.

if (names.contains("Fred")) The contains method checks whether a value is
contained in the set. In this case, the method
returns true.

System.out.println(names); Prints the set in the format [Fred, Romeo]. The
elements need not be shown in the order in
which they were inserted.

for (String name : names)
{
 . . .
}

Use this loop to visit all elements of a set.

names.remove("Romeo"); Now names.size() is 1.

names.remove("Juliet"); It is not an error to remove an element that is
not present. The method call has no effect.

A set iterator visits
the elements in the
order in which the set
implementation
keeps them.

You cannot add an
element to a set at
an iterator position.

682  Chapter 15  The Java Collections Framework

The following program shows a practical application of sets. It reads in all words
from a dictionary file that contains correctly spelled words and places them in a set.
It then reads all words from a document—here, the book Alice in Wonderland—into
a second set. Finally, it prints all words from that set that are not in the dictionary
set. These are the potential misspellings. (As you can see from the output, we used an
American dictionary, and words with British spelling, such as clamour, are flagged as
potential errors.)

section_3/SpellCheck.java

1 import java.util.HashSet;
2 import java.util.Scanner;
3 import java.util.Set;
4 import java.io.File;
5 import java.io.FileNotFoundException;
6
7 /**
8 This program checks which words in a file are not present in a dictionary.
9 */

10 public class SpellCheck
11 {
12 public static void main(String[] args)
13 throws FileNotFoundException
14 {
15 // Read the dictionary and the document
16
17 Set<String> dictionaryWords = readWords("words");
18 Set<String> documentWords = readWords("alice30.txt");
19
20 // Print all words that are in the document but not the dictionary
21
22 for (String word : documentWords)
23 {
24 if (!dictionaryWords.contains(word))
25 {
26 System.out.println(word);
27 }
28 }
29 }
30
31 /**
32 Reads all words from a file.
33 @param filename the name of the file
34 @return a set with all lowercased words in the file. Here, a
35 word is a sequence of upper- and lowercase letters.
36 */
37 public static Set<String> readWords(String filename)
38 throws FileNotFoundException
39 {
40 Set<String> words = new HashSet<String>();
41 Scanner in = new Scanner(new File(filename));
42 // Use any characters other than a-z or A-Z as delimiters
43 in.useDelimiter("[^a-zA-Z]+");
44 while (in.hasNext())
45 {
46 words.add(in.next().toLowerCase());
47 }

15.3 S ets   683

48 return words;
49 }
50 }

Program Run

neighbouring
croqueted
pennyworth
dutchess
comfits
xii
dinn
clamour
...

10.	 Arrays and lists remember the order in which you added elements; sets do not.
Why would you want to use a set instead of an array or list?

11.	 Why are set iterators different from list iterators?
12.	 What is wrong with the following test to check whether the Set<String> s con-

tains the elements "Tom", "Diana", and "Harry"?
if (s.toString().equals("[Tom, Diana, Harry]")) . . .

13.	 How can you correctly implement the test of Self Check 12?
14.	 Write a loop that prints all elements that are in both Set<String> s and

Set<String> t.
15.	 Suppose you changed line 40 of the SpellCheck program to use a TreeSet instead of

a HashSet. How would the output change?

Practice It	 Now you can try these exercises at the end of the chapter: P15.7, P15.8, P15.13.

Use Interface References to Manipulate Data Structures

It is considered good style to store a reference to a HashSet or TreeSet in a variable of type Set:

Set<String> words = new HashSet<String>();

This way, you have to change only one line if you decide to use a TreeSet instead.
If a method can operate on arbitrary collections, use the Collection interface type for the

parameter variable:

public static void removeLongWords(Collection<String> words)

In theory, we should make the same recommendation for the List interface, namely to save
ArrayList and LinkedList references in variables of type List. However, the List interface has
get and set methods for random access, even though these methods are very inefficient for
linked lists. You can’t write efficient code if you don’t know whether the methods that you are
calling are efficient or not. This is plainly a serious design error in the standard library, and it
makes the List interface somewhat unattractive.

S e l f C h e c k

Programming Tip 15.1

684  Chapter 15  The Java Collections Framework

15.4  Maps
A map allows you to associate elements from a key set with elements from a value
collection. You use a map when you want to look up objects by using a key. For exam-
ple, Figure 10 shows a map from the names of people to their favorite colors.

Just as there are two kinds of set implementations, the Java library has two imple-
mentations for the Map interface: HashMap and TreeMap.

After constructing a HashMap or TreeMap, you can store the reference to the map
object in a Map reference:

Map<String, Color> favoriteColors = new HashMap<String, Color>();

Use the put method to add an association:
favoriteColors.put("Juliet", Color.RED);

You can change the value of an existing association, simply by calling put again:
favoriteColors.put("Juliet", Color.BLUE);

The get method returns the value associated with a key.
Color julietsFavoriteColor = favoriteColors.get("Juliet");

If you ask for a key that isn’t associated with any values, then the get method returns
null.

To remove an association, call the remove method with the key:
favoriteColors.remove("Juliet");

Table 5 Working with Maps

Map<String, Integer> scores; Keys are strings, values are Integer
wrappers. Use the interface type for
variable declarations.

scores = new TreeMap<String, Integer>(); Use a HashMap if you don’t need to visit the
keys in sorted order.

scores.put("Harry", 90);
scores.put("Sally", 95);

Adds keys and values to the map.

scores.put("Sally", 100); Modifies the value of an existing key.

int n = scores.get("Sally");
Integer n2 = scores.get("Diana");

Gets the value associated with a key, or null
if the key is not present. n is 100, n2 is null.

System.out.println(scores); Prints scores.toString(), a string of the
form {Harry=90, Sally=100}

for (String key : scores.keySet())
{
 Integer value = scores.get(key);
 . . .
}

Iterates through all map keys and values.

scores.remove("Sally"); Removes the key and value.

The HashMap and
TreeMap classes
both implement
the Map interface.

A N I M AT I O N
Using a Map

15.4 M aps   685

Figure 10  A Map

Romeo

Adam

Eve

Juliet

ValuesKeys

Sometimes you want to enumerate all keys in a map. The keySet method yields the set
of keys. You can then ask the key set for an iterator and get all keys. From each key,
you can find the associated value with the get method. Thus, the following instruc-
tions print all key/value pairs in a map m:

Set<String> keySet = m.keySet();
for (String key : keySet)
{
 Color value = m.get(key);
 System.out.println(key + "->" + value);
}

This sample program shows a map in action:

section_4/MapDemo.java

1 import java.awt.Color;
2 import java.util.HashMap;
3 import java.util.Map;
4 import java.util.Set;
5
6 /**
7 This program demonstrates a map that maps names to colors.
8 */
9 public class MapDemo

10 {
11 public static void main(String[] args)
12 {
13 Map<String, Color> favoriteColors = new HashMap<String, Color>();
14 favoriteColors.put("Juliet", Color.BLUE);
15 favoriteColors.put("Romeo", Color.GREEN);
16 favoriteColors.put("Adam", Color.RED);
17 favoriteColors.put("Eve", Color.BLUE);
18
19 // Print all keys and values in the map
20
21 Set<String> keySet = favoriteColors.keySet();

To find all keys
and values in a
map, iterate through
the key set and find
the values that
correspond to
the keys.

686  Chapter 15  The Java Collections Framework

22 for (String key : keySet)
23 {
24 Color value = favoriteColors.get(key);
25 System.out.println(key + " : " + value);
26 }
27 }
28 }

Program Run

Juliet : java.awt.Color[r=0,g=0,b=255]
Adam : java.awt.Color[r=255,g=0,b=0]
Eve : java.awt.Color[r=0,g=0,b=255]
Romeo : java.awt.Color[r=0,g=255,b=0]

16.	 What is the difference between a set and a map?
17.	 Why is the collection of the keys of a map a set and not a list?
18.	 Why is the collection of the values of a map not a set?
19.	 Suppose you want to track how many times each word occurs in a document.

Declare a suitable map variable.
20.	 What is a Map<String, HashSet<String>>? Give a possible use for such a structure.

Practice It	 Now you can try these exercises at the end of the chapter: R15.17, P15.9, P15.14.

Step 1	 Determine how you access the values.

You store values in a collection so that you can later retrieve them. How do you want to access
individual values? You have several choices:
•	 Values are accessed by an integer position. Use an ArrayList.
•	 Values are accessed by a key that is not a part of the object. Use a map.
•	 Values are accessed only at one of the ends. Use a queue (for first-in, first-out access) or a

stack (for last-in, first-out access).
•	 You don’t need to access individual values by position. Refine your choice in Steps 3 and 4.

Step 2	 Determine the element types or key/value types.

For a list or set, determine the type of the elements that you want to store. For example, if you
collect a set of books, then the element type is Book.

S e l f C h e c k

How To 15.1	 Choosing a Collection

Suppose you need to store objects in a collection. You have
now seen a number of different data structures. This How
To reviews how to pick an appropriate collection for your
application.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

15.4 M aps   687

Similarly, for a map, determine the types of the keys and the associated values. If you want
to look up books by ID, you can use a Map<Integer, Book> or Map<String, Book>, depending on
your ID type.

Step 3	 Determine whether element or key order matters.

When you visit elements from a collection or keys from a map, do you care about the order in
which they are visited? You have several choices:
•	 Elements or keys must be sorted. Use a TreeSet or TreeMap. Go to Step 6.
•	 Elements must be in the same order in which they were inserted. Your choice is now

narrowed down to a LinkedList or an ArrayList.
•	 It doesn’t matter. As long as you get to visit all elements, you don’t care in which order. If

you chose a map in Step 1, use a HashMap and go to Step 5.

Step 4	 For a collection, determine which operations must be fast.

You have several choices:
•	 Finding elements must be fast. Use a HashSet.
•	 It must be fast to add or remove elements at the beginning, or, provided that you are

already inspecting an element there, another position. Use a LinkedList.
•	 You only insert or remove at the end, or you collect so few elements that you aren’t

concerned about speed. Use an ArrayList.

Step 5	 For hash sets and maps, decide whether you need to implement the hashCode and equals
methods.

•	 If your elements or keys belong to a class that someone else implemented, check whether
the class has its own hashCode and equals methods. If so, you are all set. This is the case for
most classes in the standard Java library, such as String, Integer, Rectangle, and so on.

•	 If not, decide whether you can compare the elements by identity. This is the case if you
never construct two distinct elements with the same contents. In that case, you need not
do anything—the hashCode and equals methods of the Object class are appropriate.

•	 Otherwise, you need to implement your own equals and hashCode methods––see Special
Topics 9.7 and Special Topic 15.1.

Step 6	 If you use a tree, decide whether to supply a comparator.

Look at the class of the set elements or map keys. Does that class implement the Comparable
interface? If so, is the sort order given by the compareTo method the one you want? If yes, then
you don’t need to do anything further. This is the case for many classes in the standard library,
in particular for String and Integer.

If not, then your element class must implement the Comparable interface (Section 9.6.3), or
you must declare a class that implements the Comparator interface (see Special Topic 14.5).

Worked Example 15.1	 Word Frequency

In this Worked Example, we read a text file and print a list of all words in the file in alphabeti-
cal order, together with a count that indicates how often each word occurred in the file.

688  Chapter 15  The Java Collections Framework

Hash Functions

If you use a hash set or hash map with your own
classes, you may need to implement a hash func-
tion. A hash function is a function that computes
an integer value, the hash code, from an object in
such a way that different objects are likely to yield
different hash codes. Because hashing is so impor
tant, the Object class has a hashCode method. The
call

int h = x.hashCode();

computes the hash code of any object x. If you
want to put objects of a given class into a HashSet
or use the objects as keys in a HashMap, the class
should override this method. The method should
be implemented so that different objects are likely
to have different hash codes.

For example, the String class declares a hash function for
strings that does a good job of producing different integer values
for different strings. Table 6 shows some examples of strings and
their hash codes.

It is possible for two or more distinct objects to have the same
hash code; this is called a collision. For example, the strings "Ugh"
and "VII" happen to have the same hash code, but these collisions
are very rare for strings (see Exercise P15.15).

The hashCode method of the String class combines the charac-
ters of a string into a numerical code. The code isn’t simply the sum of the character values—
that would not scramble the character values enough. Strings that are permutations of another
(such as "eat" and "tea") would all have the same hash code.

Here is the method the standard library uses to compute the hash code for a string:

final int HASH_MULTIPLIER = 31;
int h = 0;
for (int i = 0; i < s.length(); i++)
{
 h = HASH_MULTIPLIER * h + s.charAt(i);
}

For example, the hash code of "eat" is

31 * (31 * 'e' + 'a') + 't' = 100184

Table 6 Sample Strings and Their Hash Codes

String Hash Code

"eat" 100184

"tea" 114704

"Juliet" –2065036585

"Ugh" 84982

"VII" 84982

Special Topic 15.1

A good hash function produces different
hash values for each object so that they
are scattered about in a hash table.

A hash function
computes an integer
value from an object.

A good hash function
minimizes collisions—
identical hash codes for
different objects.

15.4 M aps   689

The hash code of "tea" is quite different, namely

31 * (31 * 't' + 'e') + 'a' = 114704

(Use the Unicode table from Appendix A to look up the character values: 'a' is 97, 'e' is 101,
and 't' is 116.)

For your own classes, you should make up a hash code that
combines the hash codes of the instance variables in a similar way.
For example, let us declare a hashCode method for the Country class
from Section 9.6.

There are two instance variables: the country name and the
area. First, compute their hash codes. You know how to compute
the hash code of a string. To compute the hash code of a floating-point number, first wrap the
floating-point number into a Double object, and then compute its hash code.

public class Country
{
 public int hashCode()
 {
 int h1 = name.hashCode();
 int h2 = new Double(area).hashCode();
 . . .
 }
}

Then combine the two hash codes:

final int HASH_MULTIPLIER = 29;
int h = HASH_MULTIPLIER * h1 + h2;
return h;

Use a prime number as the hash multiplier—it scrambles the values well.
If you have more than two instance variables, then combine their hash codes as follows:

int h = HASH_MULTIPLIER * h1 + h2;
h = HASH_MULTIPLIER * h + h3;
h = HASH_MULTIPLIER * h + h4;
. . .
return h;

If one of the instance variables is an integer, just use the value as its hash code.
When you supply your own hashCode method for a class, you must also provide a compati-

ble equals method. The equals method is used to differentiate between two objects that happen
to have the same hash code.

The equals and hashCode methods must be compatible with
each other. Two objects that are equal must yield the same hash
code.

You get into trouble if your class declares an equals method but
not a hashCode method. Suppose the Country class declares an equals
method (checking that the name and area are the same), but no hashCode method. Then the
hashCode method is inherited from the Object superclass. That method computes a hash code
from the memory location of the object. Then it is very likely that two objects with the same
contents will have different hash codes, in which case a hash set will store them as two distinct
objects.

However, if you declare neither equals nor hashCode, then there is no problem. The equals
method of the Object class considers two objects equal only if their memory location is the
same. That is, the Object class has compatible equals and hashCode methods. Of course, then the
notion of equality is very restricted: Only identical objects are considered equal. That can be a
perfectly valid notion of equality, depending on your application.

Override hashCode
methods in your own
classes by combining
the hash codes for the
instance variables.

A class’s hashCode
method must be
compatible with its
equals method.O NLINE E x a m p l e

A program that
demonstrates a hash
set with objects of
the Country class.

690  Chapter 15  The Java Collections Framework

15.5  Stacks, Queues, and Priority Queues
In the following sections, we cover stacks, queues, and priority queues. These data
structures each have a different policy for data removal. Removing an element yields
the most recently added element, the least recently added, or the element with the
highest priority.

15.5.1  Stacks

A stack lets you insert and remove elements only
at one end, traditionally called the top of the stack.
New items can be added to the top of the stack.
Items are removed from the top of the stack as well.
Therefore, they are removed in the order that is
opposite from the order in which they have been
added, called last-in, first-out or LIFO order. For
example, if you add items A, B, and C and then remove
them, you obtain C, B, and A. With stacks, the addi-
tion and removal operations are called push and pop.

Stack<String> s = new Stack<String>();
s.push("A"); s.push("B"); s.push("C");
while (s.size() > 0)
{
 System.out.print(s.pop() + " "); // Prints C B A
}

There are many applications for stacks in computer science. Consider the undo fea-
ture of a word processor. It keeps the issued commands in a stack. When you select
“Undo”, the last command is undone, then the next-to-last, and so on.

Another important example is the run-time stack that a processor or virtual
machine keeps to store the values of variables in nested methods. Whenever a new
method is called, its parameter variables and local variables are pushed onto a stack.
When the method exits, they are popped off again.

You will see other applications in Section 15.6.
The Java library provides a simple Stack class with methods push, pop, and peek—the

latter gets the top element of the stack but does not remove it (see Table 7).

Table 7 Working with Stacks

Stack<Integer> s = new Stack<Integer>(); Constructs an empty stack.

s.push(1);
s.push(2);
s.push(3);

Adds to the top of the stack; s is now [1, 2,
3]. (Following the toString method of the
Stack class, we show the top of the stack at
the end.)

int top = s.pop(); Removes the top of the stack; top is set to 3
and s is now [1, 2].

head = s.peek(); Gets the top of the stack without removing
it; head is set to 2.

The last pancake that has been
added to this stack will be the
first one that is consumed.

A stack is a collection
of elements with
“last-in, first-out”
retrieval.

The Undo key pops
commands off a
stack, so that the last
command is the first
to be undone.

15.5 S tacks, Queues, and Priority Queues   691

15.5.2  Queues

A queue lets you add items to one end of
the queue (the tail) and remove them from
the other end of the queue (the head).
Queues yield items in a first-in, first-out
or FIFO fashion. Items are removed in
the same order in which they were added.

A typical application is a print queue.
A printer may be accessed by several
applications, perhaps running on differ-
ent computers. If each of the applications
tried to access the printer at the same time,
the printout would be garbled. Instead,
each application places its print data into a file and adds that file to the print queue.
When the printer is done printing one file, it retrieves the next one from the queue.
Therefore, print jobs are printed using the “first-in, first-out” rule, which is a fair
arrangement for users of the shared printer.

The Queue interface in the standard Java library has methods add to add an element
to the tail of the queue, remove to remove the head of the queue, and peek to get the
head element of the queue without removing it (see Table 8).

The LinkedList class implements the Queue interface. Whenever you need a queue,
simply initialize a Queue variable with a LinkedList object:

Queue<String> q = new LinkedList<String>();
q.add("A"); q.add("B"); q.add("C");
while (q.size() > 0) { System.out.print(q.remove() + " "); } // Prints A B C

The standard library provides several queue classes that we do not discuss in this
book. Those classes are intended for work sharing when multiple activities (called
threads) run in parallel.

Table 8 Working with Queues

Queue<Integer> q = new LinkedList<Integer>(); The LinkedList class implements the Queue interface.

q.add(1);
q.add(2);
q.add(3);

Adds to the tail of the queue; q is now [1, 2, 3].

int head = q.remove(); Removes the head of the queue; head is set to 1 and q is [2, 3].

head = q.peek(); Gets the head of the queue without removing it; head is set to 2.

15.5.3  Priority Queues

A priority queue collects elements, each of which has a priority. A typical example
of a priority queue is a collection of work requests, some of which may be more
urgent than others. Unlike a regular queue, the priority queue does not maintain a
first-in, first-out discipline. Instead, elements are retrieved according to their prior-
ity. In other words, new items can be inserted in any order. But whenever an item is
removed, it is the item with the most urgent priority.

To visualize a queue, think of people lining up.

A queue is a
collection of
elements with
“first-in, first-out”
retrieval.

When removing an
element from a
priority queue, the
element with the
most urgent priority
is retrieved.

692  Chapter 15  The Java Collections Framework

It is customary to give low values to urgent priorities, with priority 1
denoting the most urgent priority. Thus, each removal operation extracts the
minimum element from the queue.

For example, consider this code in which we add objects of a class Work
Order into a priority queue. Each work order has a priority and a description.

PriorityQueue<WorkOrder> q = new PriorityQueue<WorkOrder>();
q.add(new WorkOrder(3, "Shampoo carpets"));
q.add(new WorkOrder(1, "Fix broken sink"));
q.add(new WorkOrder(2, "Order cleaning supplies"));

When calling q.remove() for the first time, the work order with priority 1 is
removed. The next call to q.remove() removes the work order whose priority
is highest among those remaining in the queue—in our example, the work
order with priority 2. If there happen to be two elements with the same pri-
ority, the priority queue will break ties arbitrarily.

Because the priority queue needs to be able to tell which element is the smallest,
the added elements should belong to a class that implements the Comparable interface.
(See Section 9.6.3 for a description of that interface type.)

Table 9 shows the methods of the PriorityQueue class in the standard Java library.

Table 9 Working with Priority Queues

PriorityQueue<Integer> q =
 new PriorityQueue<Integer>();

This priority queue holds Integer objects. In
practice, you would use objects that describe tasks.

q.add(3); q.add(1); q.add(2); Adds values to the priority queue.

int first = q.remove();
int second = q.remove();

Each call to remove removes the lowest priority item:
first is set to 1, second to 2.

int next = q.peek(); Gets the smallest value in the priority queue without
removing it.

21.	 Why would you want to declare a variable as
Queue<String> q = new LinkedList<String>()

instead of simply declaring it as a linked list?
22.	 Why wouldn’t you want to use an array list for implementing a queue?
23.	 What does this code print?

Queue<String> q = new LinkedList<String>();
q.add("A");
q.add("B");
q.add("C");
while (q.size() > 0) { System.out.print(q.remove() + " "); }

24.	 Why wouldn’t you want to use a stack to manage print jobs?
25.	 In the sample code for a priority queue, we used a WorkOrder class. Could we have

used strings instead?
PriorityQueue<String> q = new PriorityQueue<String>();
q.add("3 - Shampoo carpets");
q.add("1 - Fix broken sink");
q.add("2 - Order cleaning supplies");

When you retrieve an item from
a priority queue, you always
get the most urgent one.

O NLINE E x a m p l e

Programs that
demonstrate stacks,
queues, and priority
queues.

S e l f C h e c k

15.6 S tack and Queue Applications   693

Practice It	 Now you can try these exercises at the end of the chapter: R15.12, P15.3, P15.4.

15.6  Stack and Queue Applications
Stacks and queues are, despite their simplicity, very versatile data structures. In the
following sections, you will see some of their most useful applications.

15.6.1  Balancing Parentheses

In Common Error 2.5, you saw a simple trick for detecting unbalanced parentheses
in an expression such as

-(b * b - (4 * a * c)) / (2 * a)
 1 2 1 0 1 0

Increment a counter when you see a (and decrement it when you see a). The counter
should never be negative, and it should be zero at the end of the expression.

That works for expressions in Java, but in mathematical notation, one can have
more than one kind of parentheses, such as

–{ [b ⋅ b - (4 ⋅ a ⋅ c)] / (2 ⋅ a) }

To see whether such an expression is correctly formed, place the parentheses on a
stack:

When you see an opening parenthesis, push it on the stack.
When you see a closing parenthesis, pop the stack.
If the opening and closing parentheses don’t match
	 The parentheses are unbalanced. Exit.
If at the end the stack is empty
	 The parentheses are balanced.
Else
	 The parentheses are not balanced.

Here is a walkthrough of the sample expression:

Stack Unread expression Comments
Empty -{ [b * b - (4 * a * c)] / (2 * a) }
{ [b * b - (4 * a * c)] / (2 * a) }
{ [b * b - (4 * a * c)] / (2 * a) }
{ [(4 * a * c)] / (2 * a) }
{ [] / (2 * a) } (matches)
{ / (2 * a) } [matches]
{ (2 * a) }
{ } (matches)
Empty No more input { matches }
 The parentheses are balanced

A stack can be used
to check whether
parentheses in an
expression are
balanced.

O NLINE E x a m p l e

A program for
checking balanced
parentheses.

694  Chapter 15  The Java Collections Framework

15.6.2  Evaluating Reverse Polish Expressions

Consider how you write arithmetic expressions, such as (3 + 4) × 5. The parentheses
are needed so that 3 and 4 are added before multiplying the result by 5.

However, you can eliminate the parentheses if you write the operators after the
numbers, like this: 3 4 + 5 × (see Random Fact 15.2 on page 701). To evaluate this expres-
sion, apply + to 3 and 4, yielding 7, and then simplify 7 5 × to 35. It gets trickier for
complex expressions. For example, 3 4 5 + × means to compute 4 5 + (that is, 9), and
then evaluate 3 9 ×. If we evaluate this expression left-to-right, we need to leave the 3
somewhere while we work on 4 5 +. Where? We put it on a stack. The algorithm for
evaluating reverse Polish expressions is simple:

If you read a number
	 Push it on the stack.
Else if you read an operand
	 Pop two values off the stack.
	 Combine the values with the operand.
	 Push the result back onto the stack.
Else if there is no more input
	 Pop and display the result.

Here is a walkthrough of evaluating the expression 3 4 5 + ×:

Stack Unread expression Comments
Empty 3 4 5 + x
3 4 5 + x Numbers are pushed on the stack
3 4 5 + x
3 4 5 + x
3 9 x Pop 4 and 5, push 4 5 +
27 No more input Pop 3 and 9, push 3 9 x
Empty Pop and display the result, 27

The following program simulates a reverse Polish calculator:

section_6_2/Calculator.java

1 import java.util.Scanner;
2 import java.util.Stack;
3
4 /**
5 This calculator uses the reverse Polish notation.
6 */
7 public class Calculator
8 {
9 public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 Stack<Integer> results = new Stack<Integer>();
13 System.out.println("Enter one number or operator per line, Q to quit. ");
14 boolean done = false;

Use a stack to
evaluate expressions
in reverse Polish
notation.

15.6 S tack and Queue Applications   695

15 while (!done)
16 {
17 String input = in.nextLine();
18
19 // If the command is an operator, pop the arguments and push the result
20
21 if (input.equals("+"))
22 {
23 results.push(results.pop() + results.pop());
24 }
25 else if (input.equals("-"))
26 {
27 Integer arg2 = results.pop();
28 results.push(results.pop() - arg2);
29 }
30 else if (input.equals("*") || input.equals("x"))
31 {
32 results.push(results.pop() * results.pop());
33 }
34 else if (input.equals("/"))
35 {
36 Integer arg2 = results.pop();
37 results.push(results.pop() / arg2);
38 }
39 else if (input.equals("Q") || input.equals("q"))
40 {
41 done = true;
42 }
43 else
44 {
45 // Not an operator--push the input value
46
47 results.push(Integer.parseInt(input));
48 }
49 System.out.println(results);
50 }
51 }
52 }

15.6.3  Evaluating Algebraic Expressions

In the preceding section, you saw how to evaluate expressions in reverse Polish nota-
tion, using a single stack. If you haven’t found that notation attractive, you will be
glad to know that one can evaluate an expression in the standard algebraic notation
using two stacks—one for numbers and one for operators.

Use two stacks to evaluate algebraic expressions.

Using two stacks,
you can evaluate
expressions in
standard algebraic
notation.

696  Chapter 15  The Java Collections Framework

First, consider a simple example, the expression 3 + 4. We push the numbers on the
number stack and the operators on the operator stack. Then we pop both numbers
and the operator, combine the numbers with the operator, and push the result.

1 3

3 +2

4
3 +

3

74

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 + 4

+ 4

4

No more input

Comments

Evaluate the top.

The result is 7.

This operation is fundamental to the algorithm. We call it “evaluating the top”.
In algebraic notation, each operator has a precedence. The + and - operators have

the lowest precedence, * and / have a higher (and equal) precedence.
Consider the expression 3 × 4 + 5. Here are the first processing steps:

1 3

3 ×2

4
3 ×

3

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 × 4 + 5

× 4 + 5

4 + 5

+ 5

Comments

Evaluate × before +.

Because × has a higher precedence than +, we are ready to evaluate the top:

4 12

5
12

+

+5

176

Number stack Operator stack

5

No more input

Comments

Evaluate the top.

That is the result.

With the expression, 3 + 4 × 5, we add × to the operator stack because we must first
read the next number; then we can evaluate × and then the +:

1 3

3 +2

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 + 4 × 5

+ 4 × 5

4 + 5

Comments

15.6 S tack and Queue Applications   697

4
3 +

3

4
3 +

×4

Don’t evaluate + yet.× 5

5

In other words, we keep operators on the stack until they are ready to be evaluated.
Here is the remainder of the computation:

4
5

3 +
×

5

Number stack Operator stack

No more input

Comments

Evaluate the top.

Evaluate top again.

That is the result.

3
20

+
6

237

To see how parentheses are handled, consider the expression 3 × (4 + 5). A (is pushed
on the operator stack. The + is pushed as well. When we encounter the), we know
that we are ready to evaluate the top until the matching (reappears:

1 3

3 ×2

3 ×
(3

4
3 ×

(4

4
3 ×

(
+5

4
5

3 ×
(
+6

9
3 ×

(7

9
3 ×

8

279

Number stack
Empty

Operator stack
Empty

Unprocessed input
3 × (4 + 5)

× (4 + 5)

(4 + 5)

4 + 5)

+ 5)

5)

)

No more input

Comments

Don’t evaluate × yet.

Evaluate the top.

Pop (.

Evaluate top again.

That is the result.

698  Chapter 15  The Java Collections Framework

Here is the algorithm:

If you read a number
	 Push it on the number stack.
Else if you read a (
	 Push it on the operator stack.
Else if you read an operator op
	 While the top of the stack has a higher precedence than op
		 Evaluate the top.
	 Push op on the operator stack.
Else if you read a)
	 While the top of the stack is not a (
		 Evaluate the top.
	 Pop the (.
Else if there is no more input
	 While the operator stack is not empty
		 Evaluate the top.

At the end, the remaining value on the number stack is the value of the expression.
The algorithm makes use of this helper method that evaluates the topmost opera-

tor with the topmost numbers:

Evaluate the top:
Pop two numbers off the number stack.
Pop an operator off the operator stack.
Combine the numbers with that operator.
Push the result on the number stack.

15.6.4  Backtracking

Suppose you are inside a maze. You need to find the exit.
What should you do when you come to an intersection?
You can continue exploring one of the paths, but you
will want to remember the other ones. If your chosen
path didn’t work, you can go back to one of the other
choices and try again.

Of course, as you go along one path, you may reach
further intersections, and you need to remember your
choice again. Simply use a stack to remember the paths
that still need to be tried. The process of returning to a
choice point and trying another choice is called backtracking. By using a stack, you
return to your more recent choices before you explore the earlier ones.

Figure 11 shows an example. We start at a point in the maze, at position (3, 4).
There are four possible paths. We push them all on a stack 1 . We pop off the topmost
one, traveling north from (3, 4). Following this path leads to position (1, 4). We now
push two choices on the stack, going west or east 2 . Both of them lead to dead ends
3 4 .

Now we pop off the path from (3,4) going east. That too is a dead end 5 . Next is
the path from (3, 4) going south. At (5, 4), it comes to an intersection. Both choices
are pushed on the stack 6 . They both lead to dead ends 7 8 .

Finally, the path from (3, 4) going west leads to an exit 9 .

O n l i n e E x a m p l e

The complete code
for the expression
calculator.

A stack can be used to track
positions in a maze.

Use a stack to
remember choices
you haven’t yet made
so that you can
backtrack to them.

15.6 S tack and Queue Applications   699

Figure 11  Backtracking Through a Maze

1

2
1 4 →
1 4 ←
3 4 →
3 4 ↓
3 4 ←

3
1 4 ←
3 4 →
3 4 ↓
3 4 ←

4
3 4 →
3 4 ↓
3 4 ←

5
3 4 ↓
3 4 ←

6
5 4 ↓
5 4 ←
3 4 ←

7

8
3 4 ←

9

5 4 ←
3 4 ←

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

3 4 →
3 4 ↑

3 4 ↓
3 4 ←

Using a stack, we have found a path out of the maze. Here is the pseudocode for
our maze-finding algorithm:

Push all paths from the point on which you are standing on a stack.
While the stack is not empty
	 Pop a path from the stack.
	 Follow the path until you reach an exit, intersection, or dead end.
	 If you found an exit
		 Congratulations!
	 Else if you found an intersection
		 Push all paths meeting at the intersection, except the current one, onto the stack.

This algorithm will find an exit from the maze, provided that the maze has no cycles.
If it is possible that you can make a circle and return to a previously visited intersec-
tion along a different sequence of paths, then you need to work harder––see Exercise
P15.25.

700  Chapter 15  The Java Collections Framework

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

How you implement this algorithm depends on the description of the maze. In
the example code, we use a two-dimensional array of characters, with spaces for cor-
ridors and asterisks for walls, like this:

* * * * * * * *
* *
* * * * * * *
 *
* * * * * * *
* * * *
* * * * * * *
* * * * * * * *

In the example code, a Path object is constructed with a starting position and a direc-
tion (North, East, South, or West). The Maze class has a method that extends a path
until it reaches an intersection or exit, or until it is blocked by a wall, and a method
that computes all paths from an intersection point.

Note that you can use a queue instead of a stack in this algorithm. Then you
explore the earlier alternatives before the later ones. This can work just as well for
finding an answer, but it isn’t very intuitive in the context of exploring a maze—you
would have to imagine being teleported back to the initial intersections rather than
just walking back to the last one.

26.	 What is the value of the reverse Polish notation expression 2 3 4 + 5 × ×?
27.	 Why does the branch for the subtraction operator in the Calculator program not

simply execute
results.push(results.pop() - results.pop());

28.	 In the evaluation of the expression 3 – 4 + 5 with the algorithm of Section 15.6.3,
which operator gets evaluated first?

29.	 In the algorithm of Section 15.6.3, are the operators on the operator stack always
in increasing precedence?

30.	 Consider the following simple maze. Assuming that we start at the marked point
and push paths in the order West, South, East, North, in which order are the let-
tered points visited, using the algorithm of Section 15.6.4?

A B C D

E F G

H I
L M

N

KJ

Practice It	 Now you can try these exercises at the end of the chapter: R15.21, P15.21, P15.22,
P15.25, P15.26.

O n l i n e E x a m p l e

A complete program
demonstrating
backtracking.

S e l f C h e c k

Worked Example 15.2	 Simulating a Queue of Waiting Customers

This Worked Example shows how to use a queue to simulate an
actual queue of waiting customers.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter Summary  701

Understand the architecture of the Java collections framework.

•	 A collection groups together elements and allows them to be retrieved later.
•	 A list is a collection that remembers the order of its elements.
•	 A set is an unordered collection of unique elements.
•	 A map keeps associations between key and value objects.

Understand and use linked lists.

•	 A linked list consists of a number of nodes, each of which has a reference to the
next node.

•	 Adding and removing elements at a given position in a linked list is efficient.

In the 1920s, the Pol­
ish mathematician Jan

Łukasiewicz realized that it is possible
to dispense with parentheses in arith­
metic expressions, provided that you
write the operators before their argu­
ments, for example, + 3 4 instead of 3
+ 4. Thirty years later, Australian com­
puter scientist Charles Hamblin noted
that an even better scheme would be

Standard
Notation

Reverse
Polish

Notation

3 + 4 3 4 +

3 + 4 × 5 3 4 5 × +

3 × (4 + 5) 3 4 5 + ×

(3 + 4) × (5 + 6) 3 4 + 5 6 + ×

3 + 4 + 5 3 4 + 5 +

to have the operators follow the oper­
ands. This was termed reverse Polish
notation or RPN.

Reverse Polish notation might look
strange to you, but that is just an acci­
dent of history. Had earlier mathemati­
cians realized its advantages, today’s
schoolchildren might be using it and
not worrying about precedence rules
and parentheses.

In 1972, Hewlett-Packard intro­
duced the HP 35 calculator that used
reverse Polish notation. The calculator
had no keys labeled with parentheses
or an equals symbol. There is just a
key labeled ENTER to push a number
onto a stack. For that reason, Hewlett-
Packard’s marketing department used
to refer to their product as “the calcula­
tors that have no equal”.

Over time, calculator vendors have
adapted to the standard algebraic nota­
tion rather than forcing its users to
learn a new notation. However, those
users who have made the effort to

learn reverse Polish notation tend to
be fanatic proponents, and to this day,
some Hewlett-Packard calculator mod­
els still support it.

The Calculator with No Equal

Random Fact 15.2  Reverse Polish Notation

Video Example 15.1	 Building a Table of Contents

In this Video Example, you will see how to build a table of
contents for a book.

C h a p t e r Su m m a r y

702  Chapter 15  The Java Collections Framework

•	 Visiting the elements of a linked list in sequential order is efficient, but random
access is not.

•	 You use a list iterator to access elements inside a linked list.

Choose a set implementation and use it to manage sets of values.

•	 The HashSet and TreeSet classes both implement the Set interface.
•	 Set implementations arrange the elements so that they can locate them quickly.
•	 You can form hash sets holding objects of type String,

Integer, Double, Point, Rectangle, or Color.
•	 You can form tree sets for any class that implements the

Comparable interface, such as String or Integer.
•	 Sets don’t have duplicates. Adding a duplicate of an element

that is already present is ignored.
•	 A set iterator visits the elements in the order in which the set

implementation keeps them.
•	 You cannot add an element to a set at an iterator position.

Use maps to model associations between keys and values.

•	 The HashMap and TreeMap classes both implement the Map interface.
•	 To find all keys and values in a map, iterate through the key set and find the values

that correspond to the keys.
•	 A hash function computes an integer value from an object.
•	 A good hash function minimizes collisions—identical hash codes

for different objects.
•	 Override hashCode methods in your own classes by combining the

hash codes for the instance variables.
•	 A class’s hashCode method must be compatible with its equals

method.

Use the Java classes for stacks, queues, and priority queues.

•	 A stack is a collection of elements with “last-in, first-out” retrieval.
•	 A queue is a collection of elements with “first-in, first-out”

retrieval.
•	 When removing an element from a priority queue, the

element with the most urgent priority is retrieved.

Solve programming problems using stacks and queues.

•	 A stack can be used to check whether parentheses in an expression are balanced.
•	 Use a stack to evaluate expressions in reverse Polish notation.
•	 Using two stacks, you can evaluate expressions in standard algebraic notation.
•	 Use a stack to remember choices you haven’t yet made so that you can backtrack

to them.

ISBN 978-0-470-10555-9

9 7 8 0 4 7 0 1 0 5 5 5 9

9 0 0 0 0

Values

Keys
ISBN 978-0-470-10554-2

9 7 8 0 4 7 0 1 0 5 5 4 2

9 0 0 0 0
ISBN 978-0-470-50948-1

9 7 8 0 4 7 0 5 0 9 4 8 1

9 0 0 0 0

ISBN 978-0-470-38329-2

9 7 8 0 4 7 0 3 8 3 2 9 2

9 0 0 0 0
ISBN 978-0-471-79191-1

9 7 8 0 4 7 1 7 9 1 9 1 1

9 0 0 0 0

Review Exercises  703

•• R15.1	 An invoice contains a collection of purchased items. Should that collection be imple-
mented as a list or set? Explain your answer.

•• R15.2	 Consider a program that manages an appointment calendar. Should it place the
appointments into a list, stack, queue, or priority queue? Explain your answer.

••• R15.3	 One way of implementing a calendar is as a map from date objects to event objects.
However, that only works if there is a single event for a given date. How can you use
another collection type to allow for multiple events on a given date?

• R15.4	 Explain what the following code prints. Draw a picture of the linked list after each
step.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());
System.out.println(staff.removeFirst());

• R15.5	 Explain what the following code prints. Draw a picture of the linked list after each
step.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addFirst("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

java.util.Collection<E>
 add
 contains
 iterator
 remove
 size
java.util.HashMap<K, V>
java.util.HashSet<K, V>
java.util.Iterator<E>
 hasNext
 next
 remove
java.util.LinkedList<E>
 addFirst
 addLast

 getFirst
 getLast
 removeFirst
 removeLast
java.util.List<E>
 listIterator
java.util.ListIterator<E>
 add
 hasPrevious
 previous
 set
java.util.Map<K, V>
 get
 keySet
 put
 remove

java.util.Queue<E>
 peek
java.util.PriorityQueue<E>
 remove
java.util.Set<E>
java.util.Stack<E>
 peek
 pop
 push
java.util.TreeMap<K, V>
java.util.TreeSet<K, V>

S ta n d a r d L i b r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e v i e w E x e r c i s e s

704  Chapter 15  The Java Collections Framework

• R15.6	 Explain what the following code prints. Draw a picture of the linked list after each
step.

LinkedList<String> staff = new LinkedList<String>();
staff.addFirst("Harry");
staff.addLast("Diana");
staff.addFirst("Tom");
System.out.println(staff.removeLast());
System.out.println(staff.removeFirst());
System.out.println(staff.removeLast());

• R15.7	 Explain what the following code prints. Draw a picture of the linked list and the
iterator position after each step.

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
if (iterator.next().equals("Tom")) { iterator.remove(); }
while (iterator.hasNext()) { System.out.println(iterator.next()); }

• R15.8	 Explain what the following code prints. Draw a picture of the linked list and the
iterator position after each step.

LinkedList<String> staff = new LinkedList<String>();
ListIterator<String> iterator = staff.listIterator();
iterator.add("Tom");
iterator.add("Diana");
iterator.add("Harry");
iterator = staff.listIterator();
iterator.next();
iterator.next();
iterator.add("Romeo");
iterator.next();
iterator.add("Juliet");
iterator = staff.listIterator();
iterator.next();
iterator.remove();
while (iterator.hasNext()) { System.out.println(iterator.next()); }

•• R15.9	 What advantages do linked lists have over arrays? What disadvantages do they have?

•• R15.10	 Suppose you need to organize a collection of telephone numbers for a company
division. There are currently about 6,000 employees, and you know that the phone
switch can handle at most 10,000 phone numbers. You expect several hundred look
ups against the collection every day. Would you use an array list or a linked list to
store the information?

•• R15.11	 Suppose you need to keep a collection of appointments. Would you use a linked list
or an array list of Appointment objects?

• R15.12	 Suppose you write a program that models a card deck. Cards are taken from the
top of the deck and given out to players. As cards are returned to the deck, they are
placed on the bottom of the deck. Would you store the cards in a stack or a queue?

• R15.13	 Suppose the strings "A" . . . "Z" are pushed onto a stack. Then they are popped off the
stack and pushed onto a second stack. Finally, they are all popped off the second
stack and printed. In which order are the strings printed?

Programming Exercises  705

• R15.14	 What is the difference between a set and a map?

•• R15.15	 The union of two sets A and B is the set of all elements that are contained in A, B, or
both. The intersection is the set of all elements that are contained in A and B. How
can you compute the union and intersection of two sets, using the add and contains
methods, together with an iterator?

•• R15.16	 How can you compute the union and intersection of two sets, using some of the
methods that the java.util.Set interface provides, but without using an iterator?
(Look up the interface in the API documentation.)

• R15.17	 Can a map have two keys with the same value? Two values with the same key?

•• R15.18	 A map can be implemented as a set of (key, value) pairs. Explain.

••• R15.19	 Verify the hash code of the string "Juliet" in Table 6.

••• R15.20	 Verify that the strings "VII" and "Ugh" have the same hash code.

• R15.21	 Consider the algorithm for traversing a maze from Section 15.6.4 Assume that we
start at position A and push in the order West, South, East, and North. In which
order will the lettered locations of the sample maze be visited?

O P

L N

I

Q R

J
H

A
E
B C

G
F
D

K

M

• R15.22	 Repeat Exercise R15.21, using a queue instead of a stack.

•• P15.1	 Write a method
public static void downsize(LinkedList<String> employeeNames, int n)

that removes every nth employee from a linked list.

•• P15.2	 Write a method
public static void reverse(LinkedList<String> strings)

that reverses the entries in a linked list.

•• P15.3	 Use a stack to reverse the words of a sentence. Keep reading words until you have a
word that ends in a period, adding them onto a stack. When you have a word with a
period, pop the words off and print them. Stop when there are no more words in the
input. For example, you should turn the input

Mary had a little lamb. Its fleece was white as snow.

into
Lamb little a had mary. Snow as white was fleece its.

Pay attention to capitalization and the placement of the period.

P r o g r a m m i n g E x e r c i s e s

706  Chapter 15  The Java Collections Framework

• P15.4	 Your task is to break a number into its individual digits, for example, to turn 1729
into 1, 7, 2, and 9. It is easy to get the last digit of a number n as n % 10. But that gets
the numbers in reverse order. Solve this problem with a stack. Your program should
ask the user for an integer, then print its digits separated by spaces.

•• P15.5	 A homeowner rents out parking spaces in a driveway during special events. The
driveway is a “last-in, first-out” stack. Of course, when a car owner retrieves a
vehicle that wasn’t the last one in, the cars blocking it must temporarily move to
the street so that the requested vehicle can leave. Write a program that models this
behavior, using one stack for the driveway and one stack for the street. Use integers
as license plate numbers. Positive numbers add a car, negative numbers remove a car,
zero stops the simulation. Print out the stack after each operation is complete.

• P15.6	 Implement a to do list. Tasks have a priority between 1 and 9, and a description.
When the user enters the command add priority description, the program adds a new
task. When the user enters next, the program removes and prints the most urgent
task. The quit command quits the program. Use a priority queue in your solution.

• P15.7	 Write a program that reads text from a file and breaks it up into individual words.
Insert the words into a tree set. At the end of the input file, print all words, followed
by the size of the resulting set. This program determines how many unique words a
text file has.

•• P15.8	 Implement the sieve of Eratosthenes: a method for computing
prime numbers, known to the ancient Greeks. This method
will compute all prime numbers up to n. Choose an n.
First insert all numbers from 2 to n into a set. Then erase all
multiples of 2 (except 2); that is, 4, 6, 8, 10, 12, Erase
all multiples of 3; that is, 6, 9, 12, 15, Go up to n . Then
print the set.

•• P15.9	 Write a program that keeps a map in which both keys and
values are strings—the names of students and their course
grades. Prompt the user of the program to add or remove students, to modify grades,
or to print all grades. The printout should be sorted by name and formatted like this:

Carl: B+
Joe: C
Sarah: A

••• P15.10	 Reimplement Exercise P15.9 so that the keys of the map are objects of class Student.
A student should have a first name, a last name, and a unique integer ID. For grade
changes and removals, lookup should be by ID. The printout should be sorted
by last name. If two students have the same last name, then use the first name as a
tie breaker. If the first names are also identical, then use the integer ID. Hint: Use
two maps.

••• P15.11	 Write a class Polynomial that stores a polynomial such as

p x x x x() = + − −5 9 1010 7

as a linked list of terms. A term contains the coefficient and the power of x. For
example, you would store p(x) as

5 10 9 7 1 1 10 0, , , , , , ,() () −() −()

Programming Exercises  707

Supply methods to add, multiply, and print polynomials. Supply a constructor that
makes a polynomial from a single term. For example, the polynomial p can be
constructed as

Polynomial p = new Polynomial(new Term(-10, 0));
p.add(new Polynomial(new Term(-1, 1)));
p.add(new Polynomial(new Term(9, 7)));
p.add(new Polynomial(new Term(5, 10)));

Then compute p x p x() ()× .
Polynomial q = p.multiply(p);
q.print();

••• P15.12	 Repeat Exercise P15.11, but use a Map<Integer, Double> for the coefficients.

• P15.13	 Insert all words from a large file (such as the novel “War and Peace”, which is avail
able on the Internet) into a hash set and a tree set. Time the results. Which data
structure is faster?

••• P15.14	 Write a program that reads a Java source file and produces an index of all identifiers
in the file. For each identifier, print all lines in which it occurs. For simplicity, we
will consider each string consisting only of letters, numbers, and underscores
an identifer. Declare a Scanner in for reading from the source file and call
in.useDelimiter("[^A-Za-z0-9_]+"). Then each call to next returns an identifier.

•• P15.15	 Try to find two words with the same hash code in a large file. Keep a Map<Integer,
HashSet<String>>. When you read in a word, compute its hash code h and put the
word in the set whose key is h. Then iterate through all keys and print the sets whose
size is > 1.

•• P15.16	 Supply compatible hashCode and equals methods to the Student class described in
Exercise P15.10. Test the hash code by adding Student objects to a hash set.

• P15.17	 Supply compatible hashCode and equals methods to the BankAccount class of Chapter 8.
Test the hashCode method by printing out hash codes and by adding BankAccount
objects to a hash set.

•• P15.18	 A labeled point has x- and y-coordinates and a string label. Provide a class Labeled
Point with a constructor LabeledPoint(int x, int y, String label) and hashCode and
equals methods. Two labeled points are considered the same when they have the
same location and label.

•• P15.19	 Reimplement the LabeledPoint class of the preceding exercise by storing the location
in a java.awt.Point object. Your hashCode and equals methods should call the hashCode
and equals methods of the Point class.

•• P15.20	 Modify the LabeledPoint class of Exercise P15.18 so that it implements the Compa-
rable interface. Sort points first by their x-coordinates. If two points have the same
x-coordinate, sort them by their y-coordinates. If two points have the same x- and
y-coordinates, sort them by their label. Write a tester program that checks all cases
by inserting points into a TreeSet.

• P15.21	 Write a program that checks whether a sequence of HTML tags is properly nested.
For each opening tag, such as <p>, there must be a closing tag </p>. A tag such as <p>
may have other tags inside, for example

<p> <a> </p>

708  Chapter 15  The Java Collections Framework

The inner tags must be closed before the outer ones. Your program should process a
file containing tags. For simplicity, assume that the tags are separated by spaces, and
that there is no text inside the tags.

• P15.22	 Add a % (remainder) operator to the expression calculator of Section 15.6.3.

•• P15.23	 Add a ̂ (power) operator to the expression calculator of Section 15.6.3. For example,
2 ̂ 3 evaluates to 8. As in mathematics, your power operator should be evaluated
from the right. That is, 2 ̂ 3 ̂ 2 is 2 ̂ (3 ̂ 2), not (2 ̂ 3) ̂ 2. (That’s more useful
because you could get the latter as 2 ̂ (3 × 2).)

••• P15.24	 Modify the expression calculator of Section 15.6.3 to convert an expression into
reverse Polish notation. Hint: Instead of evaluating the top and pushing the result,
append the instructions to a string.

••• P15.25	 Modify the maze solver program of Section 15.6.4 to handle mazes with cycles. Keep
a set of visited intersections. When you have previously seen an intersection, treat it
as a dead end and do not add paths to the stack.

••• P15.26	 In a paint program, a “flood fill” fills all empty pixels of a drawing with a given color,
stopping when it reaches occupied pixels. In this exercise, you will implement a
simple variation of this algorithm, flood-filling a 10 × 10 array of integers that are
initially 0.

Prompt for the starting row and column.
Push the (row, column) pair onto a stack.

You will need to provide a simple Pair class.
Repeat the following operations until the stack is empty.

Pop off the (row, column) pair from the top of the stack.
If it has not yet been filled, fill the corresponding array location with a number 1, 2, 3, and so on

(to show the order in which the square is filled).
Push the coordinates of any unfilled neighbors in the north, east, south, or west direction on the stack.

When you are done, print the entire array.

• P15.27	 Repeat Exercise P15.26, but use a queue instead.

•• P15.28	 Use a stack to enumerate all permutations of a string. Suppose you want to find all
permutations of the string meat.

Push the string +meat on the stack.
While the stack is not empty
	 Pop off the top of the stack.
	 If that string ends in a + (such as tame+)
		 Remove the + and add the string to the list of permutations.
	 Else
		 Remove each letter in turn from the right of the +.
		 Insert it just before the +.
		 Push the resulting string on the stack.

For example, after popping e+mta, you push em+ta, et+ma, and ea+mt.

•• P15.29	 Repeat Exercise P15.28, but use a queue instead.

Programming Exercises  709

•• Business P15.30	 An airport has only one runway. When it is busy, planes wishing to take off or land
have to wait. Implement a simulation, using two queues, one each for the planes
waiting to take off and land. Landing planes get priority. The user enters commands
takeoff flightSymbol, land flightSymbol, next, and quit. The first two commands place
the flight in the appropriate queue. The next command finishes the current takeoff or
landing and enables the next one, printing the action (takeoff or land) and the flight
symbol.

•• Business P15.31	 Suppose you buy 100 shares of a stock at $12 per share, then another 100 at $10 per
share, and then sell 150 shares at $15. You have to pay taxes on the gain, but exactly
what is the gain? In the United States, the FIFO rule holds: You first sell all shares
of the first batch for a profit of $300, then 50 of the shares from the second batch, for
a profit of $250, yielding a total profit of $550. Write a program that can make these
calculations for arbitrary purchases and sales of shares in a single company. The
user enters commands buy quantity price, sell quantity (which causes the gain to be
displayed), and quit. Hint: Keep a queue of objects of a class Block that contains the
quantity and price of a block of shares.

••• Business P15.32	 Extend Exercise P15.31 to a program that can handle shares of multiple compa-
nies. The user enters commands buy symbol quantity price and sell symbol quantity.
Hint: Keep a Map<String, Queue<Block>> that manages a separate queue for each stock
symbol.

••• Business P15.33	 Consider the problem of finding the least expensive routes to all cities in a network
from a given starting point.

Pierre
Pendleton

Pittsburgh

Phoenix

Pensacola

PrincetonPeoria
Pueblo

3

2

3
8

4 3

4

10

5

5 2

4
5

For example, in this network, the least expensive route from Pendleton to Peoria has
cost 8 (going through Pierre and Pueblo).
The following helper class expresses the distance to another city:

public class DistanceTo implements Comparable<DistanceTo>
{
 private String target;
 private int distance;

710  Chapter 15  The Java Collections Framework

 public DistanceTo(String city, int dist) { target = city; distance = dist; }
 public String getTarget() { return target; }
 public int getDistance() { return distance; }
 public int compareTo(DistanceTo other) { return distance - other.distance; }
}

All direct connections between cities are stored in a Map<String, TreeSet<DistanceTo>>.
The algorithm now proceeds as follows:

Let from be the starting point.
Add DistanceTo(from, 0) to a priority queue.
Construct a map shortestKnownDistance from city names to distances.
While the priority queue is not empty
	 Get its smallest element.
	 If its target is not a key in shortestKnownDistance
		 Let d be the distance to that target.
		 Put (target, d) into shortestKnownDistance.
		 For all cities c that have a direct connection from target
			 Add DistanceTo(c, d + distance from target to c) to the priority queue.

When the algorithm has finished, shortestKnownDistance contains the shortest distance
from the starting point to all reachable targets.
Your task is to write a program that implements this algorithm. Your program
should read in lines of the form city1 city2 distance. The starting point is the first city
in the first line. Print the shortest distances to all other cities.

A n s w e r s t o S e l f- C h e c k Q u e s t i o n s

1.	 A list is a better choice because the application
will want to retain the order in which the quiz-
zes were given.

2.	 A set is a better choice. There is no intrinsically
useful ordering for the students. For example,
the registrar’s office has little use for a list of all
students by their GPA. By storing them in a
set, adding, removing, and finding students can
be fast.

3.	 With a stack, you would always read the latest
required reading, and you might never get to
the oldest readings.

4.	 A collection stores elements, but a map stores
associations between elements.

5.	 Yes, for two reasons. A linked list needs to
store the neighboring node references, which
are not needed in an array, Moreover, there
is some overhead for storing an object. In a
linked list, each node is a separate object that
incurs this overhead, whereas an array is a
single object.

6.	 We can simply access each array element with
an integer index.

7.	 |ABCD

A|BCD

AB|CD

A|CD

AC|D

ACE|D

ACED|

ACEDF|
8.	 ListIterator<String> iter = words.iterator();

while (iter.hasNext())
{
 String str = iter.next();
 if (str.length() < 4) { iter.remove(); }
}

9.	 ListIterator<String> iter = words.iterator();
while (iter.hasNext())
{
 System.out.println(iter.next());
 if (iter.hasNext())
 {
 iter.next(); // Skip the next element
 }
}

Answers to Self-Check Questions  711

10.	 Adding and removing elements as well as test-
ing for membership is faster with sets.

11.	 Sets do not have an ordering, so it doesn’t
make sense to add an element at a particular
iterator position, or to traverse a set backward.

12.	 You do not know in which order the set keeps
the elements.

13.	 Here is one possibility:
if (s.size() == 3 && s.contains("Tom")
 && s.contains("Diana")
 && s.contains("Harry"))
 . . .

14.	 for (String str : s)
{
 if (t.contains(str))
 {
 System.out.println(str);
 }
}

15.	 The words would be listed in sorted order.
16.	 A set stores elements. A map stores associa-

tions between keys and values.
17.	 The ordering does not matter, and you cannot

have duplicates.
18.	 Because it might have duplicates.
19.	 Map<String, Integer> wordFrequency;

Note that you cannot use a Map<String, int>
because you cannot use primitive types as type
parameters in Java.

20.	 It associates strings with sets of strings. One
application would be a thesaurus that lists
synonyms for a given word. For example, the
key "improve" might have as its value the set
["ameliorate", "better", "enhance", "enrich",

"perfect", "refine"].

21.	 This way, we can ensure that only queue
operations can be invoked on the q object.

22.	 Depending on whether you consider the 0
position the head or the tail of the queue, you
would either add or remove elements at that
position. Both are expensive operations.

23.	 A B C
24.	 Stacks use a “last-in, first-out” discipline. If

you are the first one to submit a print job and
lots of people add print jobs before the printer
has a chance to deal with your job, they get
their printouts first, and you have to wait until
all other jobs are completed.

25.	 Yes––the smallest string (in lexicographic
ordering) is removed first. In the example,
that is the string starting with 1, then the
string starting with 2, and so on. However, the
scheme breaks down if a priority value exceeds
9. For example, a string "10 - Line up braces"
comes before "2 - Order cleaning supplies" in
lexicographic order.

26.	 70.
27.	 It would then subtract the first argument from

the second. Consider the input 5 3 –. The stack
contains 5 and 3, with the 3 on the top. Then
results.pop() - results.pop() computes 3 – 5.

28.	 The – gets executed first because + doesn’t
have a higher precedence.

29.	 No, because there may be parentheses on
the stack. The parentheses separate groups
of operators, each of which is in increasing
precedence.

30.	 A B E F G D C K J N

16C h a p t e r

713

 Basic Data
Structures

To understand the implementation of
linked lists and array lists

To analyze the efficiency of fundamental operations
of lists and arrays

To implement the stack and queue data types

To implement a hash table and understand the efficiency of its operations

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

16.1  Implementing Linked Lists  714

Special Topic 16.1: Static Classes  728
Worked Example 16.1:  Implementing a

Doubly-Linked List 

16.2  Implementing Array Lists  728

16.3  Implementing Stacks and
Queues  733

16.4  Implementing a Hash Table  739

Special Topic 16.2: Open Addressing  747

714

This chapter deals with simple data structures in which ele-
ments are arranged in a linear sequence. You will learn how
linked lists, array lists, stacks, queues, and hash tables are
implemented. You will study how these data structures add,
remove, and locate elements, and how to use this informa-
tion to analyze their efficiency. Estimating efficiency will
help you choose the best implementation for a given task.

16.1  Implementing Linked Lists
In the last chapter you saw how to use the linked list class supplied by the Java library.
Now we will look at the implementation of a simplified version of this class. This will
show you how the list operations manipulate the links as the list is modified.

To keep this sample code simple, we will not implement all methods of the linked
list class. We will implement only a singly-linked list, and the list class will supply
direct access only to the first list element, not the last one. (A worked example and
several exercises explore additional implementation options.) Our list will not use a
type parameter. We will simply store raw Object values and insert casts when retriev-
ing them. (You will see how to use type parameters in Chapter 18.) The result will be
a fully functional list class that shows how the links are updated when elements are
added or removed, and how the iterator traverses the list.

16.1.1  The Node Class

A linked list stores elements in a sequence of nodes. We need a class to represent the
nodes. In a singly-linked list, a Node object stores an element and a reference to the
next node.

Because the methods of both the linked list class and the iterator class have fre-
quent access to the Node instance variables, we do not make the instance variables of
the Node class private. Instead, we make Node a private inner class of the LinkedList
class. An inner class is a class that is defined inside another class. The methods of the
outer class can access the public features of the inner class. However, because the
inner class is private, it cannot be accessed anywhere other than from the outer class.

public class LinkedList
{
 . . .
 class Node
 {
 public Object data;
 public Node next;
 }
}

Our LinkedList class holds a reference first to the first node (or null, if the list is com-
pletely empty):

public class LinkedList
{
 private Node first;

A linked list object
holds a reference to
the first node, and
each node holds a
reference to the
next node.

16.1 I mplementing Linked Lists   715

 public LinkedList() { first = null; }

 public Object getFirst()
 {
 if (first == null) { throw new NoSuchElementException(); }
 return first.data;
 }
}

16.1.2  Adding and Removing the First Element

Figure 1 shows the addFirst method in action. When a new node is added, it becomes
the head of the list, and the node that was the old list head becomes its next node:

public class LinkedList
{
 . . .
 public void addFirst(Object element)
 {
 Node newNode = new Node(); 1
 newNode.data = element;
 newNode.next = first; 2
 first = newNode; 3
 }
 . . .
}

When adding or
removing the first
element, the
reference to the
first node must
be updated.

Figure 1 
Adding a Node
to the Head of a
Linked List

newNode =

data =

Node

next =

Amy

first =

LinkedList

data =

Node

next =

Diana

1

Before insertion

newNode =

data =

Node

next =

Amy

first =

LinkedList

data =

Node

next =

Diana

2

3

After insertion

716  Chapter 16  Basic Data Structures

Figure 2  Removing the First Node from a Linked List

first =

LinkedList

data =

Node

next =

Amy data =

Node

next =

Diana

Before removal

first =

LinkedList

data =

Node

next =

Amy data =

Node

next =

Diana

1

After removal

Removing the first element of the list works as follows. The data of the first node are
saved and later returned as the method result. The successor of the first node becomes
the first node of the shorter list (see Figure 2). Then there are no further references to
the old node, and the garbage collector will eventually recycle it.

public class LinkedList
{
 . . .
 public Object removeFirst()
 {
 if (first == null) { throw new NoSuchElementException(); }
 Object element = first.data;
 first = first.next; 1
 return element;
 }
 . . .
}

16.1.3  The Iterator Class

The ListIterator interface in the standard library declares nine methods. Our simpli-
fied ListIterator interface omits four of them (the methods that move the iterator
backward and the methods that report an integer index of the iterator). Our interface
requires us to implement list iterator methods next, hasNext, remove, add, and set.

Our LinkedList class declares a private inner class LinkedListIterator, which imple-
ments our simplified ListIterator interface. Because LinkedListIterator is an inner
class, it has access to the private features of the LinkedList class—in particular, the
instance variable first and the private Node class.

Note that clients of the LinkedList class don’t actually know the name of the itera-
tor class. They only know it is a class that implements the ListIterator interface.

public class LinkedList
{
 . . .

16.1 I mplementing Linked Lists   717

 public ListIterator listIterator()
 {
 return new LinkedListIterator();
 }

 class LinkedListIterator implements ListIterator
 {
 private Node position;
 private Node previous;
 private boolean isAfterNext;

 public LinkedListIterator()
 {
 position = null;
 previous = null;
 isAfterNext = false;
 }
 . . .
 }
}

Each iterator object has a reference, position, to the last visited node. We also store a
reference to the last node before that, previous. We will need that reference to adjust
the links properly in the remove method. Finally, because calls to remove and set are
only valid after a call to next, we use the isAfterNext flag to track when the next method
has been called.

16.1.4  Advancing an Iterator

When advancing an iterator with the next method, the position reference is updated to
position.next, and the old position is remembered in previous. The previous position
is used for just one purpose: to remove the element if the remove method is called after
the next method.

There is a special case, however—if the iterator points before the first element of
the list, then the old position is null, and position must be set to first:

class LinkedListIterator implements ListIterator
{
 . . .
 public Object next()
 {
 if (!hasNext()) { throw new NoSuchElementException(); }
 previous = position; // Remember for remove
 isAfterNext = true;

 if (position == null)
 {
 position = first;
 }
 else
 {
 position = position.next;
 }

 return position.data;
 }
 . . .
}

A list iterator object
has a reference to the
last visited node.

To advance an
iterator, update the
position and
remember the old
position for the
remove method.

718  Chapter 16  Basic Data Structures

The next method is supposed to be called only when the iterator is not yet at the end
of the list, so we declare the hasNext method accordingly. The iterator is at the end if
the list is empty (that is, first == null) or if there is no element after the current posi-
tion (position.next == null):

class LinkedListIterator implements ListIterator
{
 . . .
 public boolean hasNext()
 {
 if (position == null)
 {
 return first != null;
 }
 else
 {
 return position.next != null;
 }
 }
 . . .

}

16.1.5  Removing an Element

Next, we implement the remove method of the list iterator. Recall that, in order to
remove an element, one must first call next and then call remove on the iterator.

If the element to be removed is the first element, we just call removeFirst. Other-
wise, an element in the middle of the list must be removed, and the node preceding it
needs to have its next reference updated to skip the removed element (see Figure 3).

Figure 3  Removing a Node from the Middle of a Linked List

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

previous =

ListIterator

position =

isAfterNext =

Before removal

true

16.1 I mplementing Linked Lists   719

Figure 3 (continued)  Removing a Node from the Middle of a Linked List

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

12

After removal

previous =

ListIterator

position =

isAfterNext = false 3

We also need to update the position reference so that a subsequent call to the next
method skips over the element after the removed one.

If the previous reference equals position, then this call to remove does not immedi-
ately follow a call to next, and we throw an IllegalStateException.

Note that, according to the specification of the remove method, it is illegal to call
remove twice in a row. Our implementation handles this situation correctly. After
completion of the remove method, previous equals position, and an exception occurs if
remove is called again.

class LinkedListIterator implements ListIterator
{
 . . .
 public void remove()
 {
 if (!isAfterNext) { throw new IllegalStateException(); }

 if (position == first)
 {
 removeFirst();
 }
 else
 {
 previous.next = position.next;  1
 }
 position = previous;  2

 isAfterNext = false;   3
 }
 . . .
}

720  Chapter 16  Basic Data Structures

16.1.6  Adding an Element

The add method of the iterator inserts the new node after the last visited node (see
Figure 4).

After adding the new element, we set the isAfterNext flag to false, in order to disal-
low a subsequent call to the remove or set method.

Figure 4  Adding a Node to the Middle of a Linked List

Before insertion

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

newNode = data =

Node

next =

Juliet

After insertion

data =

Node

next =

Harry data =

Node

next =

Romeodata =

Node

next =

Diana

first =

LinkedList

newNode = data =

Node

next =

Juliet

1

2

3

4

previous =

ListIterator

position =

isAfterNext = false

previous =

ListIterator

position =

isAfterNext =

16.1 I mplementing Linked Lists   721

class LinkedListIterator implements ListIterator
{
 . . .
 public void add(Object element)
 {
 if (position == null)
 {
 addFirst(element);
 position = first;
 }
 else
 {
 Node newNode = new Node();
 newNode.data = element;
 newNode.next = position.next;  1
 position.next = newNode;  2
 position = newNode;  3
 }
 isAfterNext = false;  4
 }
 . . .
}

16.1.7  Setting an Element to a Different Value

The set method changes the data stored in the previously visited element:
public void set(Object element)
{
 if (!isAfterNext) { throw new IllegalStateException(); }
 position.data = element;
}

As with the remove method, a call to set is only valid if it was preceded by a call to
the next method. We throw an exception if we find that there was a call to add or remove
immediately before calling set.

You will find the complete implementation of our LinkedList class after the next
section.

16.1.8  Efficiency of Linked List Operations

Now that you have seen how linked list operations are implemented, we can deter-
mine their efficiency.

Consider first the cost of accessing an element. To get the kth element of a linked
list, you start at the beginning of the list and advance the iterator k times. Suppose it
takes an amount of time T to advance the iterator once. This quantity is independent
of the iterator position—advancing an iterator does some checking and then it fol-
lows the next reference of the current node (see Section 16.1.4).

Therefore, advancing the iterator to the kth element consumes kT time. If the
linked list has n elements and k is chosen at random, then k will average out to be
n / 2, and kT is on average nT / 2. Since T / 2 is a constant, this is an O(n) expression.
We have determined that accessing an element in a linked list of length n is an O(n)
operation.

In a doubly-linked
list, accessing an
element is an O(n)
operation; adding
and removing an
element is O(1) .

722  Chapter 16  Basic Data Structures

Now consider the cost of adding an element at a given position, assuming that we
already have an iterator to the position. Look at the implementation of the add method
in Section 16.1.6. To add an element, one updates a couple of references in the neigh-
boring nodes and the iterator. This operation requires a constant number of steps,
independent of the size of the linked list.

Using the big-Oh notation, an operation that requires a bounded amount of time,
regardless of the total number of elements in the structure, is denoted as O(1). Add-
ing an element to a linked list takes O(1) time.

Similar reasoning shows that removing an element at a given position is an O(1)
operation.

Now consider the task of adding an element at the end of the list. We first need to
get to the end, at a cost of O(n). Then it takes O(1) time to add the element. How-
ever, we can improve on this performance if we add a reference to the last node to the
LinkedList class:

public class LinkedList
{
 private Node first;
 private Node last;
 . . .
}

Of course, this reference must be updated when the last node changes, as elements are
added or removed. In order to keep the code as simple as possible, our implementa-
tion does not have a reference to the last node. However, we will always assume that
a linked list implementation can access the last element in constant time. This is the
case for the LinkedList class in the standard Java library, and it is an easy enhancement
to our implementation. Worked Example 16.1 shows how to add the last reference,
update it as necessary, and provide an addLast method for adding an element at the
end.

The code for the addLast method is very similar to the addFirst method in Section
16.1.2. It too requires constant time, independent of the length of the list. We con-
clude that, with an appropriate implementation, adding an element at the end of a
linked list is an O(1) operation.

How about removing the last element? We need a reference to the next-to-last ele-
ment, so that we can set its next reference to null. (See Figure 5.)

We also need to update the last reference and set it to the next-to-last reference.
But how can we get that next-to-last reference? It takes n – 1 iterations to obtain it,

To get to the kth node
of a linked list, one
must skip over the
preceding nodes.

Figure 5  Removing the Last Element of a Singly-Linked List

data =

Node

next =

data =

Node

next =

data =

Node

next =

first =

LinkedList

last =
. . .

Obtaining this reference
is an O(n) operation.

16.1 I mplementing Linked Lists   723

Figure 6  Removing the Last Element of a Doubly-Linked List

data =

Node

next =

data =

Node

next =

data =

Node

next =

previous = previous =previous =

first =

LinkedList

last =
. . .

beforeLast = 1

2

3

starting at the beginning of the list. Thus, removing an element from the back of a
singly-linked list is an O(n) operation.

We can do better in a doubly-linked list, such as the one in the standard Java library.
In a doubly-linked list, each node has a reference to the previous node in addition to
the next one (see Figure 6).

public class LinkedList
{
 . . .
 class Node
 {
 public Object data;
 public Node next;
 public Node previous;
 }
}

In that case, removal of the last element takes a constant number of steps:
Node beforeLast = last.previous; 1
beforeLast.next = null; 2
last = beforeLast; 3

Therefore, removing an element from the end of a doubly-linked list is also an O(1)
operation. Worked Example 16.1 contains a full implementation.

Table 1 summarizes the efficiency of linked list operations.

Table 1 Efficiency of Linked List Operations

Operation Singly-Linked List Doubly-Linked List

Access an element. O(n) O(n)

Add/remove at an iterator position. O(1) O(1)

Add/remove first element. O(1) O(1)

Add last element. O(1) O(1)

Remove last element. O(n) O(1)

724  Chapter 16  Basic Data Structures

section_1/LinkedList.java

1 import java.util.NoSuchElementException;
2
3 /**
4 A linked list is a sequence of nodes with efficient
5 element insertion and removal. This class
6 contains a subset of the methods of the standard
7 java.util.LinkedList class.
8 */
9 public class LinkedList

10 {
11 private Node first;
12
13 /**
14 Constructs an empty linked list.
15 */
16 public LinkedList()
17 {
18 first = null;
19 }
20
21 /**
22 Returns the first element in the linked list.
23 @return the first element in the linked list
24 */
25 public Object getFirst()
26 {
27 if (first == null) { throw new NoSuchElementException(); }
28 return first.data;
29 }
30
31 /**
32 Removes the first element in the linked list.
33 @return the removed element
34 */
35 public Object removeFirst()
36 {
37 if (first == null) { throw new NoSuchElementException(); }
38 Object element = first.data;
39 first = first.next;
40 return element;
41 }
42
43 /**
44 Adds an element to the front of the linked list.
45 @param element the element to add
46 */
47 public void addFirst(Object element)
48 {
49 Node newNode = new Node();
50 newNode.data = element;
51 newNode.next = first;
52 first = newNode;
53 }
54
55 /**
56 Returns an iterator for iterating through this list.
57 @return an iterator for iterating through this list
58 */

16.1 I mplementing Linked Lists   725

59 public ListIterator listIterator()
60 {
61 return new LinkedListIterator();
62 }
63
64 class Node
65 {
66 public Object data;
67 public Node next;
68 }
69
70 class LinkedListIterator implements ListIterator
71 {
72 private Node position;
73 private Node previous;
74 private boolean isAfterNext;
75
76 /**
77 Constructs an iterator that points to the front
78 of the linked list.
79 */
80 public LinkedListIterator()
81 {
82 position = null;
83 previous = null;
84 isAfterNext = false;
85 }
86
87 /**
88 Moves the iterator past the next element.
89 @return the traversed element
90 */
91 public Object next()
92 {
93 if (!hasNext()) { throw new NoSuchElementException();)
94 previous = position; // Remember for remove
95 isAfterNext = true;
96
97 if (position == null)
98 {
99 position = first;

100 }
101 else
102 {
103 position = position.next;
104 }
105
106 return position.data;
107 }
108
109 /**
110 Tests if there is an element after the iterator position.
111 @return true if there is an element after the iterator position
112 */
113 public boolean hasNext()
114 {
115 if (position == null)
116 {
117 return first != null;
118 }

726  Chapter 16  Basic Data Structures

119 else
120 {
121 return position.next != null;
122 }
123 }
124
125 /**
126 Adds an element before the iterator position
127 and moves the iterator past the inserted element.
128 @param element the element to add
129 */
130 public void add(Object element)
131 {
132 if (position == null)
133 {
134 addFirst(element);
135 position = first;
136 }
137 else
138 {
139 Node newNode = new Node();
140 newNode.data = element;
141 newNode.next = position.next;
142 position.next = newNode;
143 position = newNode;
144 }
145
146 isAfterNext = false;
147 }
148
149 /**
150 Removes the last traversed element. This method may
151 only be called after a call to the next method.
152 */
153 public void remove()
154 {
155 if (!isAfterNext) { throw new IllegalStateException(); }
156
157 if (position == first)
158 {
159 removeFirst();
160 }
161 else
162 {
163 previous.next = position.next;
164 }
165 position = previous;
166 isAfterNext = false;
167 }
168
169 /**
170 Sets the last traversed element to a different value.
171 @param element the element to set
172 */
173 public void set(Object element)
174 {
175 if (!isAfterNext) { throw new IllegalStateException(); }
176 position.data = element;
177 }
178 }

16.1 I mplementing Linked Lists   727

179 }

section_1/ListIterator.java

1 /**
2 A list iterator allows access to a position in a linked list.
3 This interface contains a subset of the methods of the
4 standard java.util.ListIterator interface. The methods for
5 backward traversal are not included.
6 */
7 public interface ListIterator
8 {
9 /**

10 Moves the iterator past the next element.
11 @return the traversed element
12 */
13 Object next();
14
15 /**
16 Tests if there is an element after the iterator position.
17 @return true if there is an element after the iterator position
18 */
19 boolean hasNext();
20
21 /**
22 Adds an element before the iterator position
23 and moves the iterator past the inserted element.
24 @param element the element to add
25 */
26 void add(Object element);
27
28 /**
29 Removes the last traversed element. This method may
30 only be called after a call to the next method.
31 */
32 void remove();
33
34 /**
35 Sets the last traversed element to a different value.
36 @param element the element to set
37 */
38 void set(Object element);
39 }

1.	 Trace through the addFirst method when adding an element to an empty list.
2.	 Conceptually, an iterator is located between two elements (see Figure 9 in

Chapter 15). Does the position instance variable refer to the element to the left or
the element to the right?

3.	 Why does the add method have two separate cases?
4.	 Assume that a last reference is added to the LinkedList class, as described in

Section 16.1.8. How does the add method of the ListIterator need to change?
5.	 Provide an implementation of an addLast method for the LinkedList class, assum-

ing that there is no last reference.
6.	 Expressed in big-Oh notation, what is the efficiency of the addFirst method of

the LinkedList class? What is the efficiency of the addLast method of Self Check 5?

O NL I NE E x a m p l e

A program to
demonstrate linked
list operations.

S e l f Ch e c k

728  Chapter 16  Basic Data Structures

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

7.	 How much slower is the binary search algorithm for a linked list compared to
the linear search algorithm?

Practice It	 Now you can try these exercises at the end of the chapter: R16.1, P16.2, P16.4, P16.6.

Static Classes

You first saw the use of inner classes for event handlers in Chapter 10. Inner classes are useful
in that context, because their methods have the privilege of accessing private instance variables
of outer-class objects. The same is true for the LinkedListIterator inner class in the sample code
for this section. The iterator needs to access the first instance variable of its linked list.

However, there is a cost for this feature. Every object of the inner class has a reference to
the object of the enclosing class that constructed it. If an inner class has no need to access the
enclosing class, you can declare the class as static and eliminate the reference to the enclosing
class. This is the case with the Node class.

You can declare it as follows:

public class LinkedList
{
 . . .
 static class Node
 {
 . . .
 }
}

However, the LinkedListIterator class cannot be a static class. Its methods must access the
first element of the enclosing LinkedList.

16.2  Implementing Array Lists
Array lists were introduced in Chapter 6. They are conceptually similar to linked
lists, allowing you to add and remove elements at any position. In the following sec-
tions, we will develop an implementation of an array list, study the efficiency of oper-
ations on array lists, and compare them with the equivalent operations on linked lists.

16.2.1  Getting and Setting Elements

An array list maintains a reference to an array of elements that we call the buffer.
The buffer is large enough to hold all elements in the collection—in fact, it is usually
larger to allow for adding additional elements. When the buffer gets full, it is replaced
by a larger one. We discuss that process in Section 16.2.3.

Special Topic 16.1

Worked Example 16.1	 Implementing a Doubly-Linked List

This Worked Example modifies a singly-linked list to implement a doubly-linked list.

16.2 I mplementing Array Lists   729

Figure 7  An Array List Stores its Elements in an Array

currentSize =

ArrayList

buffer =

3
Object[]

"Harry"

"Tom"
"Diana"

In addition to the buffer, an array list has an instance field that stores the current
number of elements (see Figure 7).

For simplicity, our ArrayList implementation does not work with arbitrary ele-
ment types, but it simply manages elements of type Object. (Chapter 18 shows how to
implement classes with type parameters.)

public class ArrayList
{
 private Object[] buffer;
 private int currentSize;

 public ArrayList()
 {
 final int INITIAL_SIZE = 10;
 buffer = new Object[INITIAL_SIZE];
 currentSize = 0;
 }

 public int size() { return currentSize; }
 . . .

}

To access array list elements, we provide get and set methods. These methods simply
check for valid positions and access the buffer at the given position:

private void checkBounds(int n)
{
 if (n < 0 || n >= currentSize)
 {
 throw new IndexOutOfBoundsException();
 }
}

public Object get(int pos)
{
 checkBounds(pos);
 return buffer[pos];
}

public void set(int pos, Object element)
{

730  Chapter 16  Basic Data Structures

 checkBounds(pos);
 buffer[pos] = element;
}

As you can see, getting and setting an element can be carried out with a bounded set
of instructions, independent of the size of the array list. These are O(1) operations.

16.2.2  Removing or Adding Elements

When removing an element at position k, the elements with higher index values need
to move (see Figure 8). Here is the implementation, following Section 6.3.6:

public Object remove(int pos)
{
 checkBounds(pos);

 Object removed = buffer[pos];

 for (int i = pos + 1; i < currentSize; i++)
 {
 buffer[i - 1] = buffer[i];
 }

 currentSize--;
 return removed;
}

How many elements are affected? If we assume that removal happens at random
locations, then on average, each removal moves n / 2 elements, where n is the size of
the array list.

The same argument holds for inserting an element. On average, n / 2 elements need to
be moved. Therefore, we say that adding and removing elements are O(n) operations.

There is one situation where adding an element to an array list isn’t so costly: when
the insertion happens after the last element. If the current size is less than the length
of the buffer, the size is incremented and the new element is simply stored in the buf-
fer. This is an O(1) operation.

public boolean addLast(Object newElement)
{
 growBufferIfNecessary();
 currentSize++;

 buffer[currentSize - 1] = newElement;
 return true;
}

Getting or setting an
array list element is
an O(1) operation.

Inserting or removing
an array list element
is an O(n) operation.

Figure 8 
Removing and
Adding Elements

[0]

[k]

[currentSize - 1]

1
2
3
4
5

[0]

[k]

[currentSize - 1]

5
4
3
2
1

Remove
this element

Add
element here

16.2 I mplementing Array Lists   731

One issue remains: If there is no more room in the buffer, then we need to grow the
buffer. That is the topic of the next section.

16.2.3  Growing the Buffer

Before inserting an element into a buffer that is
completely full, we must replace the buffer with a
bigger one. This new buffer is typically twice the
size of the current buffer. (See Figure 9.) The exist-
ing elements are then copied into the new buffer.
Reallocation is an O(n) operation because all ele-
ments need to be copied to the new buffer.

private void growBufferIfNecessary()
{
 if (currentSize == buffer.length)
 {
 Object[] newBuffer =
 new Object[2 * buffer.length]; 1
 for (int i = 0; i < buffer.length; i++)
 {
 newBuffer[i] = buffer[i]; 2
 }
 buffer = newBuffer; 3
 }
}

When an array list is completely
full, we must move the contents to
a larger buffer.

Figure 9  Reallocating the Buffer

Object[]

Object[]newBuffer =

1

2

currentSize =

ArrayList

buffer =

10

...

...

.

.

.

3

732  Chapter 16  Basic Data Structures

If we carefully analyze the total cost of a sequence of addLast operations, it turns
out that these reallocations are not as expensive as they first appear. The key observa-
tion is that buffer growth does not happen very often. Suppose we start with an array
list of capacity 10 and double the size with each reallocation. We must reallocate the
buffer when it reaches sizes 10, 20, 40, 80, 160, 320, 640, 1280, and so on.

Let us assume that one insertion without reallocation takes time T1 and that real-
location of k elements takes time kT2. What is the cost of 1280 addLast operations?

Of course, we pay 1280 ⋅ T1 for the insertions. The reallocation cost is

10 20 40 1280 1 2 4 128 102 2 2 2 2T T T T T+ + + + = + + + + ⋅ ⋅� �()

== ⋅ ⋅

< ⋅ ⋅

= ⋅ ⋅

255 10

256 10

1280 2

2

2

2

T

T

T

Therefore, the total cost is a bit less than

1280 21 2⋅ +()T T

In general, the total cost of n addLast operations is less than n · (T1 + 2T2). Because the
second factor is a constant, we conclude that n addLast operations take O(n) time.

We know that it isn’t quite true that an individual addLast operation takes O(1)
time. After all, occasionally a call to addLast is unlucky and must reallocate the buffer.

But if the cost of that reallocation is distributed over the preceding addLast oper-
ations, then the surcharge for each of them is still a constant amount. We say that
addLast takes amortized O(1) time, which is written as O(1)+. (Accountants say that a
cost is amortized when it is distributed over multiple periods.)

In our implementation, we do not shrink the array when elements are removed.
However, it turns out that you can (occasionally) shrink the array and still have
O(1)+ performance for removing the last element (see Exercise P16.22).

Table 2 Efficiency of Array List and Linked List Operations

Operation Array List Doubly-Linked List

Add/remove element at end. O(1)+ O(1)

Add/remove element in the middle. O(n) O(1)

Get kth element. O(1) O(k)

8.	 Why is it much more expensive to get the kth element in a linked list than in an
array list?

9.	 Why is it much more expensive to insert an element at the beginning of an array
list than at the beginning of a linked list?

10.	 What is the efficiency of adding an element exactly in the middle of a linked list?
An array list?

11.	 Suppose we insert an element at the beginning of an array list, and the buffer
must be grown to hold the new element. What is the efficiency of the add opera-
tion in this situation?

Adding or removing
the last element in an
array list takes
amortized O(1) time.

O n l i n e E x a m p l e

A program to
demonstrate
this array list
implementation.

S e l f Ch e c k

16.3 I mplementing Stacks and Queues   733

12.	 Using big-Oh notation, what is the cost of adding an element to an array list as
the second-to-last element?

Practice It	 Now you can try these exercises at the end of the chapter: R16.9, R16.10, R16.11.

16.3  Implementing Stacks and Queues
In Section 15.5, we introduced the stack and queue data types. Stacks and queues are
very simple. Elements are added and retrieved, either in last-in, first-out order or in
first-in, first-out order.

In the following sections, we will study several implementations of stacks and
queues and determine how efficient they are.

16.3.1  Stacks as Linked Lists

Let us first implement a stack as a sequence of nodes. New elements are added (or
“pushed”) to an end of the sequence, and they are removed (or “popped”) from the
same end.

Which end? It is up to us to choose, and we will make the least expensive choice: to
add and remove elements at the front (see Figure 10).

The push and pop operations are identical to the addFirst and removeFirst operations
from Section 16.1.2. They are both O(1) operations.

A stack can be
implemented as a
linked list, adding
and removing
elements at the front.

Figure 10  Push and Pop for a Stack Implemented as a Linked List

data =

Node

next =

data =

Node

next =

data =

Node

next =

first =

Stack

. . .

Adding an element

data =

Node

next =

data =

Node

next =

data =

Node

next =

first =

Stack

. . .

Removing an element

734  Chapter 16  Basic Data Structures

Here is the complete implementation:

section_3_1/LinkedListStack.java

1 import java.util.NoSuchElementException;
2
3 /**
4 An implementation of a stack as a sequence of nodes.
5 */
6 public class LinkedListStack
7 {
8 private Node first;
9

10 /**
11 Constructs an empty stack.
12 */
13 public LinkedListStack()
14 {
15 first = null;
16 }
17
18 /**
19 Adds an element to the top of the stack.
20 @param element the element to add
21 */
22 public void push(Object element)
23 {
24 Node newNode = new Node();
25 newNode.data = element;
26 newNode.next = first;
27 first = newNode;
28 }
29
30 /**
31 Removes the element from the top of the stack.
32 @return the removed element
33 */
34 public Object pop()
35 {
36 if (first == null) { throw new NoSuchElementException(); }
37 Object element = first.data;
38 first = first.next;
39 return element;
40 }
41
42 /**
43 Checks whether this stack is empty.
44 @return true if the stack is empty
45 */
46 public boolean empty()
47 {
48 return first == null;
49 }
50
51 class Node
52 {
53 public Object data;
54 public Node next;
55 }
56 }

16.3 I mplementing Stacks and Queues   735

16.3.2  Stacks as Arrays

In the preceding section, you saw how a list was implemented as a sequence of nodes.
In this section, we will instead store the values in an array, thus saving the storage of
the node references.

Again, it is up to us at which end of the array we place new elements. This time, it is
better to add and remove elements at the back of the array (see Figure 11).

Of course, an array may eventually fill up as more elements are pushed on the
stack. As with the ArrayList implementation of Section 16.2, the array must grow
when it gets full.

The push and pop operations are identical to the addLast and removeLast operations of
an array list. They are both O(1)+ operations.

16.3.3  Queues as Linked Lists

We now turn to the implementation of a queue. When implementing a queue as a
sequence of nodes, we add nodes at one end and remove them at the other. As we dis-
cussed in Section 16.1.8, a singly-linked node sequence is not able to remove the last
node in O(1) time. Therefore, it is best to remove elements at the front and add them
at the back (see Figure 12).

When implementing
a stack as an array
list, add and remove
elements at the back.

Figure 11  A Stack Implemented as an Array

currentSize =

Stack

buffer =

5

pop removes
this element

push adds an
element here

A queue can be
implemented as a
linked list, adding
elements at the back
and removing them
at the front.

Figure 12  A Queue Implemented as a Linked List

data =

Node

next =

data =

Node

next =

data =

Node

next =

first =

Queue

. . .
last =

Adding an element

736  Chapter 16  Basic Data Structures

Figure 12 (continued)  A Queue Implemented as a Linked List

data =

Node

next =

data =

Node

next =

data =

Node

next =

first =

Queue

last =
. . .

Removing an element

The add and remove operations of a queue are O(1) operations because they are the
same as the addLast and removeFirst operations of a doubly-linked list. Note that we
need a reference to the last node so that we can efficiently add elements.

16.3.4  Queues as Circular Arrays

When storing queue elements in an array, we
have a problem: elements get added at one end of
the array and removed at the other. But adding
or removing the first element of an array is an
O(n) operation, so it seems that we cannot avoid
this expensive operation, no matter which end
we choose for adding elements and which for
removing.

However, we can solve this problem with a
trick. We add elements at the end, but when we
remove them, we don’t actually move the
remaining elements. Instead, we increment the
index at which the head of the queue is located (see Figure 13).

After adding sufficiently many elements, the last element of the buffer will be
filled. However, if there were also a few calls to remove, then there is additional room

In a circular array, we wrap around to
the beginning after the last element.

In a circular array
implementation of a
queue, element
locations wrap from
the end of the array
to the beginning.

Figure 13  Queue Elements in a Circular Array

[0]

head

tail

This element
is removed next

The next element
is added here

[0]

tail

head
The element storage

“wraps around”,
continuing at index 0

1 2

16.3 I mplementing Stacks and Queues   737

in the front of the buffer. Then we “wrap around” and start storing elements again at
index 0—see part 2 of Figure 13. For that reason, the array is called “circular”.

Eventually, of course, the tail reaches the head, and a larger buffer must be allocated.
As you can see from the source code that follows, adding or removing an element

requires a bounded set of operations, independent of the queue size, except for buf-
fer reallocation. However, as discussed in Section 16.2.3, reallocation happens rarely
enough that the total cost is still amortized constant time, O(1)+.

section_3_4/CircularArrayQueue.java

1 import java.util.NoSuchElementException;
2
3 /**
4 An implementation of a queue as a circular array.
5 */
6 public class CircularArrayQueue
7 {
8 private Object[] buffer;
9 private int currentSize;

10 private int head;
11 private int tail;
12
13 /**
14 Constructs an empty queue.
15 */
16 public CircularArrayQueue()
17 {
18 final int INITIAL_SIZE = 10;
19 buffer = new Object[INITIAL_SIZE];
20 currentSize = 0;
21 head = 0;
22 tail = 0;
23 }
24
25 /**
26 Checks whether this queue is empty.
27 @return true if this queue is empty
28 */
29 public boolean empty() { return currentSize == 0; }
30
31 /**
32 Adds an element to the tail of this queue.
33 @param newElement the element to add
34 */
35 public void add(Object newElement)
36 {
37 growBufferIfNecessary();
38 currentSize++;
39 buffer[tail] = newElement;
40 tail = (tail + 1) % buffer.length;
41 }
42
43 /**
44 Removes an element from the head of this queue.
45 @return the removed element
46 */
47 public Object remove()
48 {
49 if (currentSize == 0) { throw new NoSuchElementException(); }
50 Object removed = buffer[head];
51 head = (head + 1) % buffer.length;

738  Chapter 16  Basic Data Structures

52 currentSize--;
53 return removed;
54 }
55
56 /**
57 Grows the buffer if the current size equals the buffer's capacity.
58 */
59 private void growBufferIfNecessary()
60 {
61 if (currentSize == buffer.length)
62 {
63 Object[] newBuffer = new Object[2 * buffer.length];
64 for (int i = 0; i < buffer.length; i++)
65 {
66 newBuffer[i] = buffer[(head + i) % buffer.length];
67 }
68 buffer = newBuffer;
69 head = 0;
70 tail = currentSize;
71 }
72 }
73 }

13.	 Add a method peek to the Stack implementation in Section 16.3.1 that returns the
top of the stack without removing it.

14.	 When implementing a stack as a sequence of nodes, why isn’t it a good idea to
push and pop elements at the back end?

15.	 When implementing a stack as an array, why isn’t it a good idea to push and pop
elements at index 0?

16.	 What is wrong with this implementation of the empty method for the circular
array queue?
public boolean empty()
{
 return head == 0 && tail == 0;
}

17.	 What is wrong with this implementation of the empty method for the circular
array queue?
public boolean empty()
{
 return head == tail;
}

18.	 Have a look at the growBufferIfNecessary method of the CircularArrayQueue class.
Why isn’t the loop simply
for (int i = 0; i < buffer.length; i++)
{
 newBuffer[i] = buffer[i];
}

Practice It	 Now you can try these exercises at the end of the chapter: R16.20, R16.23, P16.23,
P16.24.

S e l f Ch e c k

16.4 I mplementing a Hash Table   739

16.4  Implementing a Hash Table
In Section 15.3, you were introduced to the set data structure and its two implemen-
tations in the Java collections framework, hash sets and tree sets. In these sections,
you will see how hash sets are implemented and how efficient their operations are.

16.4.1  Hash Codes

The basic idea behind hashing is to place objects into an array, at a location that can be
determined from the object itself. Each object has a hash code, an integer value that
is computed from an object in such a way that different objects are likely to yield dif-
ferent hash codes.

Table 3 shows some examples of strings and their hash codes. Special Topic 15.1
shows how these values are computed.

It is possible for two or more distinct objects to have the same hash code; this is
called a collision. For example, the strings "VII" and "Ugh" happen to have the same
hash code.

Table 3 Sample Strings and Their Hash Codes

String Hash Code String Hash Code

"Adam" 2035631 "Juliet" –2065036585

"Eve" 70068 "Katherine" 2079199209

"Harry" 69496448 "Sue" 83491

"Jim" 74478 "Ugh" 84982

"Joe" 74656 "VII" 84982

16.4.2  Hash Tables

A hash code is used as an array index into a hash table, an array
that stores the set elements. In the simplest implementation of
a hash table, you could make a very long array and insert each
object at the location of its hash code (see Figure 14).

If there are no collisions, it is a very simple matter to find out
whether an object is already present in the set or not. Compute
its hash code and check whether the array position with that hash
code is already occupied. This doesn’t require a search through
the entire array!

Figure 14 
A Simplistic Implementation
of a Hash Table

A good hash
function minimizes
collisions—identical
hash codes for
different objects.

...

...

...

...

[70068]

[74478]

[74656]

Eve

Jim

Joe

A hash table uses the
hash code to
determine where to
store each element.

740  Chapter 16  Basic Data Structures

Elements with the same
hash code are placed in
the same bucket.

Of course, it is not feasible to allocate an array that is large enough to hold all pos-
sible integer index positions. Therefore, we must pick an array of some reasonable
size and then “compress” the hash code to become a valid array index. Compression
can be easily achieved by using the remainder operation:

int h = x.hashCode();
if (h < 0) { h = -h; }
position = h % arrayLength;

See Exercise P16.30 for an alternative compression technique.
After compressing the hash code, it becomes more likely that several objects will

collide. There are several techniques for handling collisions. The most common one
is called separate chaining. All colliding elements are collected in a “bucket”, a linked
list of elements with the same position value (see Figure 15). Special Topic 16.2 dis-
cusses open addressing, in which colliding elements are placed in empty locations of
the hash table.

In the following, we will use the first technique. Each entry of the hash table points
to a sequence of nodes containing elements with the same (compressed) hash code.

A hash table can be
implemented as an
array of buckets—
sequences of nodes
that hold elements
with the same
hash code.

Figure 15  A Hash Table with Buckets to Store Elements with the Same Hash Code

...

...
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Sue

Nina

Susannah

Larry
Eve

Sarah
Adam

Juliet

Harry

Katherine Tony

16.4 I mplementing a Hash Table   741

16.4.3  Finding an Element

Let’s assume that our hash table has been filled with a number of elements. Now we
want to find out whether a given element is already present.

Here is the algorithm for finding an object obj in a hash table:

1.	Compute the hash code and compress it. This gives an index h into the hash
table.

2.	Iterate through the elements of the bucket at position h. For each element of the
bucket, check whether it is equal to obj.

3.	If a match is found among the elements of that bucket, then obj is in the set.
Otherwise, it is not.

How efficient is this operation? It depends on the hash code computation. In the best
case, in which there are no collisions, all buckets either are empty or have a single
element.

But in practice, some collisions will occur. We need to make some assumptions
that are reasonable in practice.

First, we assume that the hash code does a good job scattering the elements into
different buckets. In practice, the hash functions described in Special Topic 15.1 work
well.

Next, we assume that the table is large enough. This is measured by the load factor
F = n / L, where n is the number of elements and L the table length. For example, if
the table is an array of length 1,000, and it has 700 elements, then the load factor is 0.7.

If the load factor gets too large, the elements should be moved into a larger table.
The hash table in the standard Java library reallocates the table when the load factor
exceeds 0.75.

Under these assumptions, each bucket can be expected to have, on average, F
elements.

Finally, we assume that the hash code, its compression, and the equals method can
be computed in bounded time, independent of the size of the set.

Now let us compute the cost of finding an element. Computing the array index
takes constant time, due to our last assumption. Now we traverse a chain of buckets,
which on average has a bounded length F. Finally, we invoke the equals method on
each bucket element, which we also assume to be O(1). The entire operation takes
constant or O(1) time.

16.4.4  Adding and Removing Elements

Adding an element is a straightforward extension of the algorithm for finding an
object. First compute the hash code to locate the bucket in which the element should
be inserted:

1.	Compute the compressed hash code h.
2.	Iterate through the elements of the bucket at position h. For each element of the

bucket, check whether it is equal to obj.
3.	If a match is found among the elements of that bucket, then exit.
4.	Otherwise, add a node containing obj to the beginning of the node sequence.

5.	If the load factor exceeds a fixed threshold, reallocate the table.

If there are no or only
a few collisions, then
adding, locating, and
removing hash table
elements takes
constant or
O(1) time.

742  Chapter 16  Basic Data Structures

As you saw in the preceding section, the first three steps are O(1). Inserting at the
beginning of a node sequence is also O(1). As with array lists, we can choose the new
table to be twice the size of the old table, and amortize the cost of reallocation over
the preceding insertions. That is, adding an element to a hash table is O(1)+.

Removing an element is equally simple. First compute the hash code to locate the
bucket in which the element should be inserted. Try finding the object in that bucket.
If it is present, remove it. Otherwise, do nothing. Again, this is a constant time opera-
tion. If we shrink a table that becomes too sparse, the cost is O(1)+.

16.4.5  Iterating over a Hash Table

An iterator for a linked list points to the current node in a list. A hash table has multiple
node chains. When we are at the end of one chain, we need to move to the start of the
next one. Therefore, the iterator also needs to store the bucket number (see Figure 16).

When the iterator points into the middle of a node chain, then it is easy to advance
it to the next element. However, when the iterator points to the last node in a chain,
then we must skip past all empty buckets. When we find a non-empty bucket, we
advance the iterator to its first node:

if (current != null && current.next != null)
{
 current = current.next; // Move to next element in bucket
}
else // Move to next bucket
{
 do
 {
 bucket++;
 if (bucket == buckets.length)
 {
 throw new NoSuchElementException();
 }
 current = buckets[bucket];
 }
 while (current == null);
}

Figure 16  An Iterator to a Hash Table

...

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Node Node

current =

Iterator

bucket = 3

Node

The index of the bucket
containing the current node

16.4 I mplementing a Hash Table   743

As you can see, the cost of iterating over all elements of a hash table is proportional
to the table length. Note that the table length could be in excess of O(n) if the table
is sparsely filled. This can be avoided if we shrink the table when the load factor gets
too small. In that case, iterating over the entire table is O(n), and each iteration step
is O(1).

Table 4 summarizes the efficiency of the operations on a hash table.

Table 4 Hash Table Efficiency

Operation Hash Table

Find an element. O(1)

Add/remove an element. O(1)+

Iterate through all elements. O(n)

Here is an implementation of a hash set. For simplicity, we do not reallocate the table
when it grows or shrinks, and we do not support the remove operation on iterators.
Exercises P16.33 and P16.34 ask you to provide these enhancements.

section_4/HashSet.java

1 import java.util.Iterator;
2 import java.util.NoSuchElementException;
3
4 /**
5 This class implements a hash set using separate chaining.
6 */
7 public class HashSet
8 {
9 private Node[] buckets;

10 private int currentSize;
11
12 /**
13 Constructs a hash table.
14 @param bucketsLength the length of the buckets array
15 */
16 public HashSet(int bucketsLength)
17 {
18 buckets = new Node[bucketsLength];
19 currentSize = 0;
20 }
21
22 /**
23 Tests for set membership.
24 @param x an object
25 @return true if x is an element of this set
26 */
27 public boolean contains(Object x)
28 {
29 int h = x.hashCode();
30 if (h < 0) { h = -h; }
31 h = h % buckets.length;
32

744  Chapter 16  Basic Data Structures

33 Node current = buckets[h];
34 while (current != null)
35 {
36 if (current.data.equals(x)) { return true; }
37 current = current.next;
38 }
39 return false;
40 }
41
42 /**
43 Adds an element to this set.
44 @param x an object
45 @return true if x is a new object, false if x was
46 already in the set
47 */
48 public boolean add(Object x)
49 {
50 int h = x.hashCode();
51 if (h < 0) { h = -h; }
52 h = h % buckets.length;
53
54 Node current = buckets[h];
55 while (current != null)
56 {
57 if (current.data.equals(x)) { return false; }
58 // Already in the set
59 current = current.next;
60 }
61 Node newNode = new Node();
62 newNode.data = x;
63 newNode.next = buckets[h];
64 buckets[h] = newNode;
65 currentSize++;
66 return true;
67 }
68
69 /**
70 Removes an object from this set.
71 @param x an object
72 @return true if x was removed from this set, false
73 if x was not an element of this set
74 */
75 public boolean remove(Object x)
76 {
77 int h = x.hashCode();
78 if (h < 0) { h = -h; }
79 h = h % buckets.length;
80
81 Node current = buckets[h];
82 Node previous = null;
83 while (current != null)
84 {
85 if (current.data.equals(x))
86 {
87 if (previous == null) { buckets[h] = current.next; }
88 else { previous.next = current.next; }
89 currentSize--;
90 return true;
91 }
92 previous = current;

16.4 I mplementing a Hash Table   745

93 current = current.next;
94 }
95 return false;
96 }
97
98 /**
99 Returns an iterator that traverses the elements of this set.

100 @return a hash set iterator
101 */
102 public Iterator iterator()
103 {
104 return new HashSetIterator();
105 }
106
107 /**
108 Gets the number of elements in this set.
109 @return the number of elements
110 */
111 public int size()
112 {
113 return currentSize;
114 }
115
116 class Node
117 {
118 public Object data;
119 public Node next;
120 }
121
122 class HashSetIterator implements Iterator
123 {
124 private int bucket;
125 private Node current;
126
127 /**
128 Constructs a hash set iterator that points to the
129 first element of the hash set.
130 */
131 public HashSetIterator()
132 {
133 current = null;
134 bucket = -1;
135 }
136
137 public boolean hasNext()
138 {
139 if (current != null && current.next != null) { return true; }
140 for (int b = bucket + 1; b < buckets.length; b++)
141 {
142 if (buckets[b] != null) { return true; }
143 }
144 return false;
145 }
146
147 public Object next()
148 {
149 if (current != null && current.next != null)
150 {
151 current = current.next; // Move to next element in bucket
152 }

746  Chapter 16  Basic Data Structures

153 else // Move to next bucket
154 {
155 do
156 {
157 bucket++;
158 if (bucket == buckets.length)
159 {
160 throw new NoSuchElementException();
161 }
162 current = buckets[bucket];
163 }
164 while (current == null);
165 }
166 return current.data;
167 }
168
169 public void remove()
170 {
171 throw new UnsupportedOperationException();
172 }
173 }
174 }

section_4/HashSetDemo.java

1 import java.util.Iterator;
2
3 /**
4 This program demonstrates the hash set class.
5 */
6 public class HashSetDemo
7 {
8 public static void main(String[] args)
9 {

10 HashSet names = new HashSet(101);
11
12 names.add("Harry");
13 names.add("Sue");
14 names.add("Nina");
15 names.add("Susannah");
16 names.add("Larry");
17 names.add("Eve");
18 names.add("Sarah");
19 names.add("Adam");
20 names.add("Tony");
21 names.add("Katherine");
22 names.add("Juliet");
23 names.add("Romeo");
24 names.remove("Romeo");
25 names.remove("George");
26
27 Iterator iter = names.iterator();
28 while (iter.hasNext())
29 {
30 System.out.println(iter.next());
31 }
32 }
33 }

16.4 I mplementing a Hash Table   747

Program Run

Harry
Sue
Nina
Susannah
Larry
Eve
Sarah
Adam
Juliet
Katherine
Tony

19.	 If a hash function returns 0 for all values, will the hash table work correctly?
20.	 If a hash table has size 1, will it work correctly?
21.	 Suppose you have two hash tables, each with n elements. To find the elements

that are in both tables, you iterate over the first table, and for each element,
check whether it is contained in the second table. What is the big-Oh efficiency
of this algorithm?

22.	 In which order does the iterator visit the elements of the hash table?
23.	 What does the hasNext method of the HashSetIterator do when it has reached the

end of a bucket?
24.	 Why doesn’t the iterator have an add method?

Practice It	 Now you can try these exercises at the end of the chapter: P16.30, P16.31, P16.33.

Open Addressing

In the preceding sections, you studied a hash table implementation that uses separate chaining
for collision handling, placing all elements with the same hash code in a bucket. This imple-
mentation is fast and easy to understand, but it requires storage for the links to the nodes. If
one places the elements directly into the hash table, then one doesn’t need to store any links.
This alternative technique is called open addressing. It can be beneficial if one must minimize
the memory usage of a hash table.

Of course, open addressing makes collision handling more complicated. If you have two
elements with (compressed) hash code h, and the first one is placed at index h, then the second
must be placed in another location.

There are different techniques for placing colliding elements. The simplest is linear probing.
If possible, place the colliding element at index h + 1. If that slot is occupied, try h + 2, h + 3,
and so on, wrapping around to 0, 1, 2, and so on, if necessary. This sequence of index values
is called the probing sequence. (You can see other probing sequences in Exercises P16.36 and
P16.37.) If the probing sequence contains no empty slots, one must reallocate to a larger table.

How do we find an element in such a hash table? We compute the hash code and traverse
the probing sequence until we either find a match or an empty slot. As long as the hash table
is not too full, this is still an O(1) operation, but it may require more comparisons than with
separate chaining. With separate chaining, we only compare objects with the same hash code.

S e l f Ch e c k

Special Topic 16.2

748  Chapter 16  Basic Data Structures

With open addressing, there may be some objects with different hash codes that happen to lie
on the probing sequence.

h h + 1 h + 2 h + 3

The probing sequence
can contain elements with

a different hash code

First empty slot

Linear probing sequence

Adding an element is similar. Try finding the element first. If it is not present, add it in the first
empty slot in the probing sequence.

Removing an element is trickier. You cannot simply empty the slot at which you find the
element. Instead, you must traverse the probing sequence, look for the last element with the
same hash code, and move that element into the slot of the removed element (Exercise P16.35).

h h + 1 h + 2 h + 3 h + 4 h + 5

Element to
be removed

Move this
element

Alternatively, you can replace the removed element with a special “inactive” marker that,
unlike an empty slot, does not indicate the end of a probing sequence. When adding another
element, you can overwrite an inactive slot (Exercise P16.38).

Describe the implementation and efficiency of linked list operations.

•	 A linked list object holds a reference to the first node, and each node holds a
reference to the next node.

•	 When adding or removing the first element, the reference to the first node must
be updated.

•	 A list iterator object has a reference to the last visited node.
•	 To advance an iterator, update the position and remember the old position for the

remove method.
•	 In a doubly-linked list, accessing an element is an O(n) operation; adding and

removing an element is O(1) .

C h a p t e r S u mm a r y

Review Exercises  749

Understand the implementation and efficiency of array list operations.

•	 Getting or setting an array list element is an O(1)
operation.

•	 Inserting or removing an array list element is an O(n)
operation.

•	 Adding or removing the last element in an array list takes
amortized O(1) time.

Compare different implementations of stacks and queues.

•	 A stack can be implemented as a linked list, adding and removing elements at
the front.

•	 When implementing a stack as an array list, add and remove elements at the back.
•	 A queue can be implemented as a linked list, adding elements at the back and

removing them at the front.
•	 In a circular array implementation of a queue, element locations wrap from the

end of the array to the beginning.

Understand the implementation of hash tables and the efficiencies of its operations.

•	 A good hash function minimizes collisions—identical hash
codes for different objects.

•	 A hash table uses the hash code to determine where to store
each element.

•	 A hash table can be implemented as an array of buckets—sequences of nodes that
hold elements with the same hash code.

•	 If there are no or only a few collisions, then adding, locating, and removing hash
table elements takes constant or O(1) time.

• R16.1	 The linked list class in the Java library supports operations addLast and removeLast. To
carry out these operations efficiently, the LinkedList class has an added reference last
to the last node in the linked list. Draw a “before/after” diagram of the changes to
the links in a linked list when the addLast method is executed.

•• R16.2	 The linked list class in the Java library supports bidirectional iterators. To go back
ward efficiently, each Node has an added reference, previous, to the predecessor node
in the linked list. Draw a “before/after” diagram of the changes to the links in a
linked list when the addFirst and removeFirst methods execute. The diagram should
show how the previous references need to be updated.

• R16.3	 What is the big-Oh efficiency of replacing all negative values in a linked list of
Integer objects with zeroes? Of removing all negative values?

• R16.4	 What is the big-Oh efficiency of replacing all negative values in an array list of
Integer objects with zeroes? Of removing all negative values?

R e v i e w E x e r c i s e s

750  Chapter 16  Basic Data Structures

•• R16.5	 In the LinkedList implementation of Section 16.1, we use a flag isAfterNext to ensure
that calls to the remove and set methods occur only when they are allowed.
It is not actually necessary to introduce a new instance variable for this check.
Instead, one can set the previous instance variable to null at the end of every call to add
or remove. With that change, how should the remove and set methods check whether
they are allowed?

• R16.6	 What is the big-Oh efficiency of the size method of Exercise P16.4?

• R16.7	 Show that the introduction of the size method in Exercise P16.4 does not affect the
big-Oh efficiency of the other list operations.

•• R16.8	 Given the size operation of Exercise P16.4 and the get operation of Exercise P16.7,
what is the big-Oh efficiency of this loop?

for (int i = 0; i < myList.size(); i++) { System.out.println(myList.get(i)); }

•• R16.9	 Given the size operation of Exercise P16.4 and the get operation of Exercise P16.9,
what is the big-Oh efficiency of this loop?

for (int i = 0; i < myList.size(); i++) { System.out.println(myList.get(i)); }

•• R16.10	 It is not safe to remove the first element of a linked list with the removeFirst method
when an iterator has just traversed the first element. Explain the problem by tracing
the code and drawing a diagram.

•• R16.11	 Continue Exercise R16.10 by providing a code example that demonstrates the
problem.

••• R16.12	 It is not safe to simultaneously modify a linked list using two iterators. Find a
situation where two iterators refer to the same linked list, and when you add an
element with one iterator and remove an element with the other, the result is incor-
rect. Explain the problem by tracing the code and drawing a diagram.

••• R16.13	 Continue Exercise R16.12 by providing a code example that demonstrates the
problem.

••• R16.14	 In the implementation of the LinkedList class of the standard Java library, the prob-
lem described in Exercises R16.10 and R16.12 results in a ConcurrentModification
Exception. Describe how the LinkedList class and the iterator classes can discover that
a list was modified through multiple sources. Hint: Count mutating operations.
Where are the counts stored? Where are they updated? Where are they checked?

• R16.15	 Consider the efficiency of locating the kth element in a linked list of length n.
If k > n / 2, it is more efficient to start at the end of the list and move the iterator to
the previous element. Why doesn’t this increase in efficiency improve the big-Oh
estimate of element access in a linked list?

• R16.16	 A linked list implementor, hoping to improve the speed of accessing elements, pro-
vides an array of Node references, pointing to every tenth node. Then the operation
get(n) looks up the reference at position n / 10 and follows n % 10 links.

a.	With this implementation, what is the efficiency of the get operation?
b.	What is the disadvantage of this implementation?

• R16.17	 Suppose an array list implementation were to add ten elements at each realloca-
tion instead of doubling the capacity. Show that the addLast operation no longer has
amortized constant time.

Programming Exercises  751

• R16.18	 Consider an array list implementation with a removeLast method that shrinks the
buffer to half of its size when it is at most half full. Give a sequence of addLast and
removeLast calls that does not have amortized O(1) efficiency.

••• R16.19	 Suppose the ArrayList implementation of Section 16.2 had a removeLast method that
shrinks the buffer by 50 percent when it is less than 25 percent full. Show that any
sequence of addLast and removeLast calls has amortized O(1) efficiency.

• R16.20	 Given a queue with O(1) methods add, remove, and size, what is the big-Oh efficiency
of moving the element at the head of the queue to the tail? Of moving the element at
the tail of the queue to the head? (The order of the other queue elements should be
unchanged.)

• R16.21	 A deque (double-ended queue) is a data structure with operations addFirst, remove-
First, addLast, and removeLast. What is the O(1) efficiency of these operations if the
deque is implemented as

a.	a singly-linked list?
b.	a doubly-linked list?
c.	a circular array?

•• R16.22	 In our circular array implementation of a queue, can you compute the value of the
currentSize from the values of the head and tail fields? Why or why not?

• R16.23	 Draw the contents of a circular array implementation of a queue, with an initial buf-
fer size of 10, after each of the following loops:

a.	for (int i = 1; i <= 5; i++) { q.add(i); }
b.	for (int i = 1; i <= 3; i++) { q.remove(); }
c.	for (int i = 1; i <= 10; i++) { q.add(i); }
d.	for (int i = 1; i <= 8; i++) { q.remove(); }

•• R16.24	 Suppose you are stranded on a desert island on which stacks
are plentiful, but you need a queue. How can you imple-
ment a queue using two stacks? What is the big-Oh running
time of the queue operations?

•• R16.25	 Suppose you are stranded on a desert island on which
queues are plentiful, but you need a stack. How can you
implement a stack using two queues? What is the big-Oh
running time of the stack operations?

•• R16.26	 Craig Coder doesn’t like the fact that he has to implement a hash function for the
objects that he wants to collect in a hash table. “Why not assign a unique ID to each
object?” he asks. What is wrong with his idea?

••• P16.1	 Add a method reverse to our implementation of the LinkedList class that reverses the
links in a list. Implement this method by directly rerouting the links, not by using an
iterator.

•• P16.2	 Consider a version of the LinkedList class of Section 16.1 in which the addFirst
method has been replaced with the following faulty version:

P r o g r a mm i n g E x e r c i s e s

752  Chapter 16  Basic Data Structures

public void addFirst(Object element)
{
 Node newNode = new Node();
 first = newNode;
 newNode.data = element;
 newNode.next = first;
}

Develop a program ListTest with a test case that shows the error. That is, the
program should print a failure message with this implementation but not with the
correct implementation.

•• P16.3	 Consider a version of the LinkedList class of Section 16.1 in which the iterator’s has-
Next method has been replaced with the following faulty version:

public boolean hasNext()
{
 return position != null;
}

Develop a program ListTest with a test case that shows the error. That is, the
program should print a failure message with this implementation but not with the
correct implementation.

• P16.4	 Add a method size to our implementation of the LinkedList class that computes the
number of elements in the list by following links and counting the elements until the
end of the list is reached.

•• P16.5	 Solve Exercise P16.4 recursively by calling a recursive helper method
private static int size(Node start)

Hint: If start is null, then the size is 0. Otherwise, it is one larger than the size of
start.next.

• P16.6	 Add an instance variable currentSize to our implementation of the LinkedList class.
Modify the add, addLast, and remove methods of both the linked list and the list iterator
to update the currentSize variable so that it always contains the correct size. Change
the size method of Exercise P16.4 so that it simply returns the value of this instance
variable.

• P16.7	 Add methods Object get(int n) and void set(int n, Object newElement) to the LinkedList
class. Use a helper method

private static Node getNode(int n)

that starts at first and follows n links.

• P16.8	 Solve Exercise P16.7 by using a recursive helper method
private static Node getNode(Node start, int distance)

••• P16.9	 Improve the efficiency of the get and set methods of Exercise P16.7 by storing (or
“caching”) the last known (node, index) pair. If n is larger than the last known index,
start from the corresponding node instead of the front of the list. Be sure to discard
the last known pair when it is no longer accurate. (This can happen when another
method edits the list).

•• P16.10	 Add a method boolean contains(Object obj) that checks whether our LinkedList imple-
mentation contains a given object. Implement this method by directly traversing the
links, not by using an iterator.

Programming Exercises  753

Use the equals method to determine whether obj equals node.data for a given node.

•• P16.11	 Solve Exercise P16.10 recursively, by calling a recursive helper method
private static boolean contains(Node start, Object obj)

Hint: If start is null, then it can’t contain the object. Otherwise, check start.data
before recursively moving on to start.next.

•• P16.12	 A linked list class with an O(1) addLast method needs an efficient mechanism to get
to the end of the list, for example by setting an instance variable to the last element. It
is then possible to remove the reference to the first node if one makes the next refer-
ence of the last node point to the first node, so that all nodes form a cycle. Such an
implementation is called a circular linked list. Turn the linked list implementation of
Section 16.1 into a circular singly-linked list.

••• P16.13	 In a circular doubly-linked list, the previous reference of the first node points to the
last node, and the next reference of the last node points to the first node. Change the
doubly-linked list implementation of Worked Example 16.1 into a circular list. You
should remove the last instance variable because you can reach the last element as
first.previous.

•• P16.14	 Modify the insertion sort algorithm of Special Topic 14.2 to sort a linked list.

•• P16.15	 The LISP language, created in 1960, implements linked lists in a very elegant way.
You will explore a Java analog in this set of exercises. Conceptually, the tail of a list—
that is, the list with its head node removed—is also a list. The tail of that list is again a
list, and so on, until you reach the empty list. Here is a Java interface for such a list:

public interface LispList
{
 boolean empty();
 Object head();
 LispList tail();
 . . .
}

There are two kinds of lists, empty lists and nonempty lists:
public class EmptyList extends LispList { ... }
public class NonEmptyList extends LispList { ... }

These classes are quite trivial. The EmptyList class has no instance variables. Its head
and tail methods simply throw an UnsupportedOperationException, and its empty
method returns true. The NonEmptyList class has instance variables for the head and
tail.
Here is one way of making a lisp list with three elements:

LispList list = new NonEmptyList("A", new NonEmptyList("B",
 new NonEmptyList("C", new EmptyList())));

This is a bit tedious, and it is a good idea to supply a convenience method cons that
calls the constructor, as well as a static variable NIL that is an instance of an empty list.
Then our list construction becomes

LispList list = LispList.NIL.cons("C").cons("B").cons("A");

Note that you need to build up the list starting from the (empty) tail.

754  Chapter 16  Basic Data Structures

To see the elegance of this approach, consider the implementation of a toString
method that produces a string containing all list elements. The method must be
implemented by both subclasses:

public class EmptyList
{
 ...
 public String toString() { return ""; }
}

public class NonEmptyList
{
 ...
 public String toString() { return head() + " " + tail().toString(); }
}

Note that no if statement is required. A list is either empty or nonempty, and the
correct toString method is invoked due to polymorphism.
In this exercise, complete the LispList interface and the EmptyList and NonEmptyList
classes. Write a test program that constructs a list and prints it.

• P16.16	 Add a method length to the LispList interface of Exercise P16.15 that returns the
length of the list. Implement the method in the EmptyList and NonEmptyList classes.

•• P16.17	 Add a method
LispList merge(LispList other)

to the LispList interface of Exercise P16.15. Implement the method in the
EmptyList and NonEmptyList classes. When merging two lists, alternate between the
elements, then add the remainder of the longer list. For example, merging the lists
with elements 1 2 3 4 and 5 6 yields 1 5 2 6 3 4.

• P16.18	 Add a method
boolean contains(Object obj)

to the LispList interface of Exercise P16.15 that returns true if the list contains an
element that equals obj.

••• P16.19	 Reimplement the LinkedList class of Section 16.1 so that the Node and LinkedList
Iterator classes are not inner classes.

••• P16.20	 Reimplement the LinkedList class of Section 16.1 so that it implements the java.util.
LinkedList interface. Hint: Extend the java.util.AbstractList class.

••• P16.21	 Provide a listIterator method for the ArrayList implementation in Section 16.2. Your
method should return an object of a class implementing java.util.ListIterator. Also
have the ArrayList class implement the Iterable interface type and provide a test pro-
gram that demonstrates that your array list can be used in an enhanced for loop.

• P16.22	 Provide a removeLast method for the ArrayList implementation in Section 16.2 that
shrinks the buffer by 50 percent when it is less than 25 percent full.

• P16.23	 Complete the implementation of a stack in Section 16.3.2, using an array for storing
the elements.

• P16.24	 Complete the implementation of a queue in Section 16.3.3, using a sequence of nodes
for storing the elements.

Programming Exercises  755

• P16.25	 Add a method firstToLast to the implementation of a queue in Exercise P16.24. The
method moves the element at the head of the queue to the tail of the queue. The ele-
ment that was second in line will now be at the head.

• P16.26	 Add a method lastToFirst to the implementation of a queue in Exercise P16.24. The
method moves the element at the tail of the queue to the head.

• P16.27	 Add a method firstToLast, as described in Exercise P16.25, to the circular array
implementation of a queue.

• P16.28	 Add a method lastToFirst, as described in Exercise P16.26, to the circular array
implementation of a queue.

•• P16.29	 A deque (double-ended queue) is a data structure with operations addFirst, remove-
First, addLast, removeLast, and size. Implement a deque as a circular array, so that these
operations have amortized constant time.

• P16.30	 Implement the hash set in Section 16.4, using the “MAD (multiply-add-divide)
method” for hash code compression. For that method, you choose a prime number p
larger than the length L of the hash table and two values a and b between 1 and p – 1.
Then reduce h to ((a h + b) % p) % L.

• P16.31	 Add methods to count collisions to the hash set in Section 16.4 and the one in
Exercise P16.30. Insert all words from a dictionary (which you can find in /usr/
share/dict/words on a UNIX or Linux computer) into both hash set implementations.
Does the MAD method reduce collisions? (Use a table size that equals the number
of words in the file. Choose p to be the next prime greater than L, a = 3, and b = 5.)

• P16.32	 The hasNext method of the hash set implementation in Section 16.4 finds the location
of the next element, but when next is called, the same search happens again. Improve
the efficiency of these methods so that next (or a repeated call to hasNext) uses the
position located by a preceding call to hasNext.

•• P16.33	 Reallocate the buckets of the hash set implementation in Section 16.4 when the load
factor is greater than 1.0 or less than 0.5, doubling or halving its size. Note that you
need to recompute the hash values of all elements.

••• P16.34	 Implement the remove operation for iterators on the hash set in Section 16.4.

••• P16.35	 Implement a hash table with open addressing. When removing an element that is
followed by other elements with the same hash code, replace it with the last such
element.

••• P16.36	 Modify Exercise P16.35 to use quadratic probing. The ith index in the probing
sequence is computed as (h + i2) % L.

••• P16.37	 Modify Exercise P16.35 to use double hashing. The ith index in the probing
sequence is computed as (h + i h2(k)) % L, where k is the original hash key before
compression and h2 is a function mapping integers to non-zero values. A common
choice is h2(k) = 1 + k % q for a prime q less than L.

••• P16.38	 Modify Exercise P16.35 so that you mark removed elements with an “inactive” ele-
ment. You can’t use null––that is already used for empty elements. Instead, declare a
static variable

private static final Object INACTIVE = new Object();

Use the test if (table[i] == INACTIVE) to check whether a table entry is inactive.

756  Chapter 16  Basic Data Structures

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 When the list is empty, first is null. A new
Node is allocated. Its data instance variable is
set to the element that is being added. It’s next
instance variable is set to null because first is
null. The first instance variable is set to the
new node. The result is a linked list of length 1.

2.	 It refers to the element to the left. You can see
that by tracing out the first call to next. It leaves
position to refer to the first node.

3.	 If position is null, we must be at the head of the
list, and inserting an element requires updat-
ing the first reference. If we are in the middle
of the list, the first reference should not be
changed.

4.	 If an element is added after the last one, then
the last reference must be updated to point to
the new element. After
position.next = newNode;

add
if (position == last) { last = newNode; }

5.	 public void addLast(Object element)
{
 if (first == null) { addFirst(element); }
 else
 {
 Node last = first;
 while (last.next != null)
 {
 last = last.next;
 }
 last.next = new Node();
 last.next.data = element;
 }
}

6.	 O(1) and O(n).
7.	 To locate the middle element takes n / 2 steps.

To locate the middle of the subinterval to
the left or right takes another n / 4 steps. The
next lookup takes n / 8 steps. Thus, we expect
almost n steps to locate an element. At this
point, you are better off just making a linear
search that, on average, takes n / 2 steps.

8.	 In a linked list, one must follow k links to get
to the kth elements. In an array list, one can
reach the kth element directly as buffer[k].

9.	 In a linked list, one merely updates references
to the first and second node––a constant cost

that is independent of the number of elements
that follow. In an array list of size n, insert-
ing an element at the beginning requires us to
move all n elements.

10.	 It is O(n) in both cases. In the case of the
linked list, it costs O(n) steps to move an itera-
tor to the middle.

11.	 It is still O(n). Reallocating the array is an O(n)
operation, and moving the array elements also
requires O(n) time.

12.	 O(1)+. The cost of moving one element is
O(1), but every so often one has to pay for a
reallocation.

13.	 public Object peek()
{
 if (first == null)
 {
 throw new NoSuchElementException();
 }
 return first.data;
}

14.	 Removing an element from a singly-linked list
is O(n).

15.	 Adding and removing an element at index 0 is
O(n).

16.	 The queue can be empty when the head and tail
are at a position other than zero. For example,
after the calls q.add(obj) and q.remove(), the
queue is empty, but head and tail are 1.

17.	 Indeed, if the queue is empty, then the head
and tail are equal. But that situation also occurs
when the buffer is completely full.

18.	 Then the circular wrapping wouldn’t work. If
we simply added new elements without reor-
dering the existing ones, the new buffer layout
would be

head

Second half

First half

New locations

Answers to Self-Check Questions  757

19.	 Yes, the hash set will work correctly. All ele-
ments will be inserted into a single bucket.

20.	 Yes, but there will be a single bucket contain-
ing all elements. Finding, adding, and remov-
ing elements is O(n).

21.	 The iteration takes O(n) steps. Each step
makes an O(1) containment check. Therefore,
the total cost is O(n).

22.	 Elements are visited by increasing (com-
pressed) hash code. This ordering will appear
random to users of the hash table.

23.	 It locates the next bucket in the bucket array
and points to its first element.

24.	 In a set, it doesn’t make sense to add an ele-
ment at a specific position.

17C h a p t e r

759

Tree
Structures

To study trees and binary trees

To understand how binary search trees
can implement sets

To learn how red-black trees provide performance
guarantees for set operations

To choose appropriate methods for tree traversal

To become familiar with the heap data structure

To use heaps for implementing priority queues and for sorting

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

17.1  Basic Tree Concepts  760

17.2  Binary Trees  764

Worked Example 17.1: Building a Huffman Tree 

17.3  Binary Search Trees  769

17.4  Tree Traversal  778

17.5  Red-Black Trees  784

Worked Example 17.2:  Implementing a
Red-Black Tree 

17.6  Heaps  791

17.7  The Heapsort Algorithm  802

760

In this chapter, we study data structures that organize
elements hierarchically, creating arrangements that resemble
trees. These data structures offer better performance for
adding, removing, and finding elements than the linear
structures you have seen so far. You will learn about
commonly used tree-shaped structures and study their
implementation and performance.

17.1  Basic Tree Concepts
In computer science, a tree is
a hierarchical data structure
composed of nodes. Each
node has a sequence of child
nodes, and one of the nodes is
the root node.

Like a linked list, a tree is
composed of nodes, but with
a key difference. In a linked
list, a node can have only one
child node, so the data struc-
ture is a linear chain of nodes.
In a tree, a node can have more than one child. The resulting shape resembles an actual
tree with branches. However, in computer science, it is customary to draw trees
upside-down, with the root on top (see Figure 1).

A family tree shows the descendants of a common ancestor.

A tree is composed of
nodes, each of which
can have child nodes.

The root is the node
with no parent. A leaf
is a node with no
children.

Figure 1  A Family Tree

George V

Edward VIII George VI Mary Henry George John

Elizabeth II Margaret Richard Edward Michael Alexandra

Charles Anne Andrew Edward

Harry Peter Zara Beatrice Eugenie Louise SevernWilliam

Savannah

17.1  Basic Tree Concepts   761

Trees are commonly used to represent hierarchical relationships. When we talk
about nodes in a tree, it is customary to use intuitive words such as roots and leaves,
but also parents, children, and siblings—see Table 1 for commonly used terms.

Table 1 Tree Terminology

Term Definition Example (using Figure 1)

Node The building block of a tree: A tree is
composed of linked nodes.

This tree has 26 nodes: George V,
Edward VIII, ..., Savannah.

Child Each node has, by definition, a sequence of
links to other nodes called its child nodes.

The children of Elizabeth II are
Charles, Anne, Andrew, and Edward.

Leaf A node with no child nodes. This tree has 16 leaves, including
William, Harry, and Savannah.

Interior node A node that is not a leaf. George V or George VI, but not Mary.

Parent If the node c is a child of the node p, then p
is a parent of c.

Elizabeth II is the parent of Charles.

Sibling If the node p has children c and d, then
these nodes are siblings.

Charles and Anne are siblings.

Root The node with no parent. By definition,
each tree has one root node.

George V.

Path A sequence of nodes c1, c2, ..., ckwhere ci+ 1
is a child of ci.

Elizabeth II, Anne, Peter, Savannah is
a path of length 4.

Descendant d is a descendant of c if there is a path from
c to d.

Peter is a descendant of Elizabeth II
but not of Henry.

Ancestor c is an ancestor of d if d is a descendant of c. Elizabeth II is an ancestor of Peter, but
Henry is not.

Subtree The subtree rooted at node n is the tree
formed by taking n as the root node and
including all its descendants.

The subtree with root Anne is

Anne

Peter Zara

Savannah

Height The number of nodes in the longest path
from the root to a leaf. (Some authors
define the height to be the number of edges
in the longest path, which is one less than
the height used in this book.)

This tree has height 6. The longest
path is George V, George VI,
Elizabeth II, Anne, Peter, Savannah.

762  Chapter 17  Tree Structures

Figure 2  A Directory Tree

Sample Code

ch01 ch02

section_4 section_1 section_2 worked_example_1 how_to_1

Trees have many applications in computer science; see for example Figures 2 and 3.
There are multiple ways of implementing a tree. Here we present an outline of a

simple implementation that is further explored in Exercises P17.1 and P17.2. A node
holds a data item and a list of references to the child nodes. A tree holds a reference to
the root node.

public class Tree
{
 private Node root;

 class Node
 {
 public Object data;
 public List<Node> children;
 }

 public Tree(Object rootData)
 {
 root = new Node();
 root.data = rootData;
 root.children = new ArrayList<Node>();
 }

 public void addSubtree(Tree subtree)
 {
 root.children.add(subtree.root);
 }
 . . .

}

A tree class uses a
node class to
represent nodes and
has an instance
variable for the
root node.

Figure 3  An Inheritance Tree

Question

MultiChoiceQuestion

FillInQuestion ChoiceQuestion NumericQuestion FreeResponseQuestion

17.1  Basic Tree Concepts   763

Note that, as with linked lists, the Node class is nested inside the Tree class. It is consid-
ered an implementation detail. Users of the class only work with Tree objects.

When computing properties of trees, it is often convenient to use recursion. For
example, consider the task of computing the tree size, that is, the number of nodes
in the tree. Compute the sizes of its subtrees, add them up, and add one for the root.

For example, in Figure 1, the tree with root node Elizabeth II has four subtrees,
with node counts 3, 4, 3, and 3, yielding a count of 1 + 3 + 4 + 3 + 3 = 14 for that tree.

Formally, if r is the root node of a tree, then

size(r) = 1 + size(c1) + ... + size(ck), where c1 ... ck are the children of r

. . .

size(c1)

size(c2)

size(ck)

1

To implement this size method, first provide a recursive helper:
class Node
{
 . . .
 public int size()
 {
 int sum = 0;
 for (Node child : children) { sum = sum + child.size(); }
 return 1 + sum;
 }
}

Then call this helper method from a method of the Tree class:
public class Tree
{
 . . .
 public int size() { return root.size(); }
}

It is useful to allow an empty tree; a tree whose root node is null. This is analogous to
an empty list—a list with no elements. Because we can’t invoke the helper method on
a null reference, we need to refine the Tree class’s size method:

public int size()
{
 if (root == null) { return 0; }
 else { return root.size(); }
}

1.	 What are the paths starting with Anne in the tree shown in Figure 1?
2.	 What are the roots of the subtrees consisting of 3 nodes in the tree shown in

Figure 1?
3.	 What is the height of the subtree with root Anne?
4.	 What are all possible shapes of trees of height 3 with two leaves?

When computing tree
properties, it is com-
mon to recursively
visit smaller and
smaller subtrees.

Many tree properties
are computed with
recursive methods.

O n l i n e E x a m p l e

The code for the Tree
class and recursive
size method.

S e l f C h e c k

764  Chapter 17  Tree Structures

5.	 Describe a recursive algorithm for counting all leaves in a tree.
6.	 Using the public interface of the Tree class in this section, construct a tree that is

identical to the subtree with root Anne in Figure 1.
7.	 Is the size method of the Tree class recursive? Why or why not?

Practice It	 Now you can try these exercises at the end of the chapter: R17.1, R17.2, P17.3.

17.2  Binary Trees
In the following sections, we discuss binary trees,
trees in which each node has at most two children.
As you will see throughout this chapter, binary
trees have many very important applications.

17.2.1  Binary Tree Examples

In this section, you will see several typical examples of binary trees. Figure 4 shows a
decision tree for guessing an animal from one of several choices. Each non-leaf node
contains a question. The left subtree corresponds to a “yes” answer, and the right
subtree to a “no” answer.

This is a binary tree because every node has either two children (if it is a decision)
or no children (if it is a conclusion). Exercises P17.6 and P17.8 show you how you can
build decision trees that ask good questions for a particular data set.

In a binary tree, each node has a left
and a right child node.

A binary tree consists
of nodes, each of
which has at most
two child nodes.

A decision tree
contains questions
to decide among a
number of options.

Figure 4  A Decision Tree for an Animal Guessing Game

Is it a mammal?

Does it have stripes?

Is it a carnivore? It is a pig.

It is a tiger. It is a zebra. It is a penguin. It is an ostrich.

Does it fly?

It is an eagle. Does it swim?

Yes No

Yes No Yes No

Yes No Yes No

17.2  Binary Trees   765

Figure 5  A Huffman Tree for Encoding the Thirteen Characters of Hawaiian Text

A

O K

L H U INE

M

PW

'

Encoded as 010.

0 1

0 1 0 1

0 10 1 0 1

0 10 1 0 1 0 1

0 1

0 1

Another example of a binary tree is a Huffman tree. In a Huffman tree, the leaves
contain symbols that we want to encode. To encode a particular symbol, walk along
the path from the root to the leaf containing the symbol, and produce a zero for every
left turn and a one for every right turn. For example, in the Huffman tree of Figure 5,
an H is encoded as 0001 and an A as 10. Worked Example 17.1 shows how to build a
Huffman tree that gives the shortest codes for the most frequent symbols.

Binary trees are also used to show the evaluation order in arithmetic expressions.
For example, Figure 6 shows the trees for the expressions

(3 + 4) * 5
3 + 4 * 5

The leaves of the expression trees contain numbers, and the interior nodes contain the
operators. Because each operator has two operands, the tree is binary.

In a Huffman tree, the
left and right turns
on the paths to the
leaves describe
binary encodings.

An expression tree
shows the order
of evaluation in
an arithmetic
expression.

Figure 6  Expression Trees

+ 5

*

3 4 4 5

*3

+

766  Chapter 17  Tree Structures

17.2.2  Balanced Trees

When we use binary trees to store data, as we will
in Section 17.3, we would like to have trees that are
balanced. In a balanced tree, all paths from the root
to one of the leaf nodes have approximately the
same length. Figure 7 shows examples of a balanced
and an unbalanced tree.

Recall that the height of a tree is the number of
nodes in the longest path from the root to a leaf.
The trees in Figure 7 have height 5. As you can see,
for a given height, a balanced tree can hold more
nodes than an unbalanced tree.

We care about the height of a tree because many
tree operations proceed along a path from the root
to a leaf, and their efficiency is better expressed by
the height of the tree than the number of elements
in the tree.

A binary tree of height h can have up to n = 2h – 1
nodes. For example, a completely filled binary tree
of height 4 has 1 + 2 + 4 + 8 = 15 = 24 – 1 nodes (see Figure 8).

In other words, h = log2(n + 1) for a completely filled binary tree. For a balanced
tree, we still have h ≈ log2 n. For example, the height of a balanced binary tree with
1,000 nodes is approximately 10 (because 1000 ≈ 1024 = 210). A balanced binary tree
with 1,000,000 nodes has approximately height 20 (because 106 ≈ 220). As you will see
in Section 17.3, you can find any element in such a tree in about 20 steps. That is a lot
faster than traversing the 1,000,000 elements of a list.

In a balanced binary tree, each
subtree has approximately the
same number of nodes.

In a balanced tree, all
paths from the root
to the leaves have
approximately the
same length.

Figure 7  Balanced and Unbalanced Trees

Balanced Unbalanced

17.2  Binary Trees   767

17.2.3 

Figure 8  A Completely Filled Binary Tree of Height 4

1 node

2 nodes

4 nodes

8 nodes

A Binary Tree Implementation

Every node in a binary tree has references to two children, a left child and a right
child. Either one may be null. A node in which both children are null is a leaf.

A binary tree can be implemented in Java as follows:
public class BinaryTree
{
 private Node root;

 public BinaryTree() { root = null; } // An empty tree

 public BinaryTree(Object rootData, BinaryTree left, BinaryTree right)
 {
 root = new Node();
 root.data = rootData;
 root.left = left.root;
 root.right = right.root;
 }

 class Node
 {
 public Object data;
 public Node left;
 public Node right;
 }

 . . .
}

As with general trees, we often use recursion to define operations on binary trees.
Consider computing the height of a tree; that is, the number of nodes in the longest
path from the root to a leaf.

To get the height of the tree t, take the larger of the heights of the children and add
one, to account for the root.

height(t) = 1 + max(height(l), height(r))

where l and r are the left and right subtrees.

768  Chapter 17  Tree Structures

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

height(l)

1

l
r

height(r)

When we implement this method, we could add a height method to the Node class.
However, nodes can be null and you can’t call a method on a null reference. It is easier
to make the recursive helper method a static method of the Tree class, like this:

public class BinaryTree
{
 . . .
 private static int height(Node n)
 {
 if (n == null) { return 0; }
 else { return 1 + Math.max(height(n.left), height(n.right)); }
 }
 . . .
}

To get the height of the tree, we provide this public method:
public class BinaryTree
{
 . . .
 public int height() { return height(root); }
}

Note that there are two height methods: a public method with no arguments, return-
ing the height of the tree, and a private recursive helper method, returning the height
of a subtree with a given node as its root.

8.	 Encode ALOHA, using the Huffman code in Figure 5.
9.	 In an expression tree, where is the operator stored that gets executed last?

10.	 What is the expression tree for the expression 3 – 4 – 5?
11.	 How many leaves do the binary trees in Figure 4, Figure 5, and Figure 6 have?

How many interior nodes?
12.	 Show how the recursive height helper method can be implemented as an instance

method of the Node class. What is the disadvantage of that approach?

Practice It	 Now you can try these exercises at the end of the chapter: R17.4, P17.4, P17.5, P17.6.

O n l i n e E x a m p l e

A program that
implements the
animal guessing
game in Figure 4.

S e l f C h e c k

Worked Example 17.1	 Building a Huffman Tree

This Worked Example shows how to build a Huffman tree for
compressing the color data of an image.

17.3  Binary Search Trees   769

17.3  Binary Search Trees
A set implementation is allowed to rearrange its elements in any way it chooses so
that it can find elements quickly. Suppose a set implementation sorts its entries. Then
it can use binary search to locate elements quickly. Binary search takes O(log(n))
steps, where n is the size of the set. For example, binary search in an array of 1,000 ele-
ments is able to locate an element in at most 10 steps by cutting the size of the search
interval in half in each step.

If we use an array to store the elements of a set, inserting or removing an element is
an O(n) operation. In the following sections, you will see how tree-shaped data struc-
tures can keep elements in sorted order with more efficient insertion and removal.

17.3.1  The Binary Search Property

A binary search tree is a binary tree in which all nodes fulfill the following property:

•	 The data values of all descendants to the left are less than the data value stored in
the node, and all descendants to the right have greater data values.

d

> d
< d

The tree in Figure 9 is a binary search tree.
We can verify the binary search property for each node in Figure 9. Consider the

node “Juliet”. All descendants to the left have data before “Juliet”. All descendants
on the right have data after “Juliet”. Move on to “Eve”. There is a single descendant
to the left, with data “Adam” before “Eve”, and a single descendant to the right, with
data “Harry” after “Eve”. Check the remaining nodes in the same way.

Figure 10 shows a binary tree that is not a binary search tree. Look carefully—the
root node passes the test, but its two children do not.

All nodes in a binary
search tree fulfill the
property that the
descendants to the
left have smaller data
values than the node
data value, and the
descendants to the
right have larger
data values.

Figure 9  A Binary Search Tree

Left descendants
Adam, Eve, Harry < Juliet

Right descendants
Romeo, Tom > Juliet

Left descendant
Adam < Eve

Right descendant
Tom > Romeo

Juliet

Eve Romeo

Adam Harry Tom

770  Chapter 17  Tree Structures

Figure 10  A Binary Tree That Is Not a Binary Search Tree

Eve
is in the left subtree

but Eve > Adam

Romeo
is in the right subtree

but Romeo < Tom

Juliet

Adam Tom

Eve Harry Romeo

When you implement binary search tree classes, the data variable should have type
Comparable, not Object. After all, you must be able to compare the values in a binary
search tree in order to place them into the correct position.

public class BinarySearchTree
{
 private Node root;

 public BinarySearchTree() { . . . }
 public void add(Comparable obj) { . . . }
 . . .
 class Node
 {
 public Comparable data;
 public Node left;
 public Node right;

 public void addNode(Node newNode) { . . . }
 . . .
 }
}

17.3.2  Insertion

To insert data into the tree, use the following algorithm:

•	 If you encounter a non-null node reference, look at its data value. If the data value
of that node is larger than the one you want to insert, continue the process with
the left child. If the node’s data value is smaller than the one you want to insert,
continue the process with the right child.

•	 If you encounter a null node reference, replace it with the new node.

For example, consider the tree in Figure 11. It is the result of the following statements:
BinarySearchTree tree = new BinarySearchTree();
tree.add("Juliet"); 1
tree.add("Tom");   2
tree.add("Diana");   3
tree.add("Harry");   4

To insert a value into
a binary search tree,
keep comparing the
value with the node
data and follow the
nodes to the left or
right, until reaching a
null node.

17.3  Binary Search Trees   771

Figure 11  Binary Search Tree After Four Insertions

1

23

4

Juliet

Diana Tom

Harry

We want to insert a new element Romeo into it:
tree.add("Romeo");  5

Start with the root node, Juliet. Romeo comes after Juliet, so you move to the right
subtree. You encounter the node Tom. Romeo comes before Tom, so you move to the left
subtree. But there is no left subtree. Hence, you insert a new Romeo node as the left
child of Tom (see Figure 12).

You should convince yourself that the resulting tree is still a binary search tree.
When Romeo is inserted, it must end up as a right descendant of Juliet—that is what the
binary search tree condition means for the root node Juliet. The root node doesn’t
care where in the right subtree the new node ends up. Moving along to Tom, the right
child of Juliet, all it cares about is that the new node Romeo ends up somewhere on its
left. There is nothing to its left, so Romeo becomes the new left child, and the resulting
tree is again a binary search tree.

Here is the code for the add method of the BinarySearchTree class:
public void add(Comparable obj)
{
 Node newNode = new Node();
 newNode.data = obj;
 newNode.left = null;
 newNode.right = null;
 if (root == null) { root = newNode; }
 else { root.addNode(newNode); }
}

Figure 12  Binary Search Tree After Five Insertions

Juliet

Diana Tom

Harry
5

Romeo

Romeo comes
after Juliet

Romeo comes
before Tom

772  Chapter 17  Tree Structures

If the tree is empty, simply set its root to the new node. Otherwise, you know that
the new node must be inserted somewhere within the nodes, and you can ask the root
node to perform the insertion. That node object calls the addNode method of the Node
class, which checks whether the new object is less than the object stored in the node.
If so, the element is inserted in the left subtree; if not, it is inserted in the right subtree:

class Node
{
 . . .
 public void addNode(Node newNode)
 {
 int comp = newNode.data.compareTo(data);
 if (comp < 0)
 {
 if (left == null) { left = newNode; }
 else { left.addNode(newNode); }
 }
 else if (comp > 0)
 {
 if (right == null) { right = newNode; }
 else { right.addNode(newNode); }
 }
 }
 . . .
}

Let’s trace the calls to addNode when inserting Romeo into the tree in Figure 11. The first
call to addNode is

root.addNode(newNode)

Because root points to Juliet, you compare Juliet with Romeo and find that you must
call

root.right.addNode(newNode)

The node root.right is Tom. Compare the data values again (Tom vs. Romeo) and find that
you must now move to the left. Since root.right.left is null, set root.right.left to
newNode, and the insertion is complete (see Figure 12).

Unlike a linked list or an array, and like a hash table, a binary tree has no insert posi-
tions. You cannot select the position where you would like to insert an element into a
binary search tree. The data structure is self-organizing; that is, each element finds its
own place.

17.3.3  Removal

We will now discuss the removal algorithm. Our task is to remove a node from the
tree. Of course, we must first find the node to be removed. That is a simple matter,
due to the characteristic property of a binary search tree. Compare the data value to
be removed with the data value that is stored in the root node. If it is smaller, keep
looking in the left subtree. Otherwise, keep looking in the right subtree.

Let us now assume that we have located the node that needs to be removed. First,
let us consider the easiest case. If the node to be removed has no children at all, then
the parent link is simply set to null (Figure 13).

When the node to be removed has only one child, the situation is still simple (see
Figure 14).

17.3  Binary Search Trees   773

Figure 13  Removing a Node with No Children

Parent

Node to be removed

Set to null

Figure 14  Removing a Node with One Child

Parent

Node to be removed

Reroute
link

To remove the node, simply modify the parent link that points to the node so that
it points to the child instead.

The case in which the node to be removed has two children is more challenging.
Rather than removing the node, it is easier to replace its data value with the next larger
value in the tree. That replacement preserves the binary search tree property. (Alter-
natively, you could use the largest element of the left subtree—see Exercise P17.12).

To locate the next larger value, go to the right subtree and find its smallest data
value. Keep following the left child links. Once you reach a node that has no left
child, you have found the node containing the smallest data value of the subtree. Now
remove that node—it is easily removed because it has at most one child to the right.
Then store its data value in the original node that was slated for removal. Figure 15
shows the details.

When removing a
node with only one
child from a binary
search tree, the child
replaces the node to
be removed.

When removing a
node with two
children from a
binary search tree,
replace it with the
smallest node of the
right subtree.

Figure 15 
Removing a Node
with Two Children

Node to be removed

Smallest child in
right subtree

Reroute
link

Copy
value

774  Chapter 17  Tree Structures

At the end of this section, you will find the source code for the BinarySearchTree
class. It contains the add and remove methods that we just described, as well as a find
method that tests whether a value is present in a binary search tree, and a print method
that we will analyze in Section 17.4.

17.3.4  Efficiency of the Operations

Now that you have seen the implementation of this data structure, you may well
wonder whether it is any good. Like nodes in a list, the nodes are allocated one at
a time. No existing elements need to be moved when a new element is inserted or
removed; that is an advantage. How fast insertion and removal are, however, depends
on the shape of the tree. These operations are fast if the tree is balanced.

Because the operations of finding, adding, and removing an element process the
nodes along a path from the root to a leaf, their execution time is proportional to the
height of the tree, and not to the total number of nodes in the tree.

For a balanced tree, we have h ≈ O(log(n)). Therefore, inserting, finding, or remov-
ing an element is an O(log(n)) operation. On the other hand, if the tree happens to be
unbalanced, then binary tree operations can be slow—in the worst case, as slow as
insertion into a linked list. Table 2 summarizes these observations.

If elements are added in fairly random order, the resulting tree is likely to be well
balanced. However, if the incoming elements happen to be in sorted order already,
then the resulting tree is completely unbalanced. Each new element is inserted at the
end, and the entire tree must be traversed every time to find that end!

Binary search trees work well for random data, but if you suspect that the data in
your application might be sorted or have long runs of sorted data, you should not
use a binary search tree. There are more sophisticated tree structures whose methods
keep trees balanced at all times. In these tree structures, one can guarantee that find-
ing, adding, and removing elements takes O(log(n)) time. The standard Java library
uses red-black trees, a special form of balanced binary trees, to implement sets and
maps. We discuss these structures in Section 17.5.

Table 2 Efficiency of Binary Search Tree Operations

Operation
Balanced Binary

Search Tree
Unbalanced Binary

Search Tree

Finding an element. O(log(n)) O(n)

Adding an element. O(log(n)) O(n)

Removing an element. O(log(n)) O(n)

section_3/BinarySearchTree.java

1 /**
2 This class implements a binary search tree whose
3 nodes hold objects that implement the Comparable
4 interface.
5 */

In a balanced tree,
all paths from the
root to the leaves
have about the
same length.

If a binary search tree
is balanced, then
adding, locating, or
removing an element
takes O(log(n)) time.

17.3  Binary Search Trees   775

6 public class BinarySearchTree
7 {
8 private Node root;
9

10 /**
11 Constructs an empty tree.
12 */
13 public BinarySearchTree()
14 {
15 root = null;
16 }
17
18 /**
19 Inserts a new node into the tree.
20 @param obj the object to insert
21 */
22 public void add(Comparable obj)
23 {
24 Node newNode = new Node();
25 newNode.data = obj;
26 newNode.left = null;
27 newNode.right = null;
28 if (root == null) { root = newNode; }
29 else { root.addNode(newNode); }
30 }
31
32 /**
33 Tries to find an object in the tree.
34 @param obj the object to find
35 @return true if the object is contained in the tree
36 */
37 public boolean find(Comparable obj)
38 {
39 Node current = root;
40 while (current != null)
41 {
42 int d = current.data.compareTo(obj);
43 if (d == 0) { return true; }
44 else if (d > 0) { current = current.left; }
45 else { current = current.right; }
46 }
47 return false;
48 }
49
50 /**
51 Tries to remove an object from the tree. Does nothing
52 if the object is not contained in the tree.
53 @param obj the object to remove
54 */
55 public void remove(Comparable obj)
56 {
57 // Find node to be removed
58
59 Node toBeRemoved = root;
60 Node parent = null;
61 boolean found = false;
62 while (!found && toBeRemoved != null)
63 {
64 int d = toBeRemoved.data.compareTo(obj);
65 if (d == 0) { found = true; }

776  Chapter 17  Tree Structures

66 else
67 {
68 parent = toBeRemoved;
69 if (d > 0) { toBeRemoved = toBeRemoved.left; }
70 else { toBeRemoved = toBeRemoved.right; }
71 }
72 }
73
74 if (!found) { return; }
75
76 // toBeRemoved contains obj
77
78 // If one of the children is empty, use the other
79
80 if (toBeRemoved.left == null || toBeRemoved.right == null)
81 {
82 Node newChild;
83 if (toBeRemoved.left == null)
84 {
85 newChild = toBeRemoved.right;
86 }
87 else
88 {
89 newChild = toBeRemoved.left;
90 }
91
92 if (parent == null) // Found in root
93 {
94 root = newChild;
95 }
96 else if (parent.left == toBeRemoved)
97 {
98 parent.left = newChild;
99 }

100	 else
101	 {
102	 parent.right = newChild;
103	 }
104	 return;
105	 }
106	
107	 // Neither subtree is empty
108	
109	 // Find smallest element of the right subtree
110	
111	 Node smallestParent = toBeRemoved;
112	 Node smallest = toBeRemoved.right;
113	 while (smallest.left != null)
114	 {
115	 smallestParent = smallest;
116	 smallest = smallest.left;
117	 }
118	
119	 // smallest contains smallest child in right subtree
120	
121	 // Move contents, unlink child
122	
123	 toBeRemoved.data = smallest.data;
124	 if (smallestParent == toBeRemoved)
125	 {

17.3  Binary Search Trees   777

126	 smallestParent.right = smallest.right;
127	 }
128	 else
129	 {
130	 smallestParent.left = smallest.right;
131	 }
132	 }
133	
134	 /**
135	 Prints the contents of the tree in sorted order.
136	 */
137	 public void print()
138	 {
139	 print(root);
140	 System.out.println();
141	 }
142	
143	 /**
144	 Prints a node and all of its descendants in sorted order.
145	 @param parent the root of the subtree to print
146	 */
147	 private static void print(Node parent)
148	 {
149	 if (parent == null) { return; }
150	 print(parent.left);
151	 System.out.print(parent.data + " ");
152	 print(parent.right);
153	 }
154	
155	 /**
156	 A node of a tree stores a data item and references
157	 to the left and right child nodes.
158	 */
159	 class Node
160	 {
161	 public Comparable data;
162	 public Node left;
163	 public Node right;
164	
165	 /**
166	 Inserts a new node as a descendant of this node.
167	 @param newNode the node to insert
168	 */
169	 public void addNode(Node newNode)
170	 {
171	 int comp = newNode.data.compareTo(data);
172	 if (comp < 0)
173	 {
174	 if (left == null) { left = newNode; }
175	 else { left.addNode(newNode); }
176	 }
177	 else if (comp > 0)
178	 {
179	 if (right == null) { right = newNode; }
180	 else { right.addNode(newNode); }
181	 }
182	 }
183	 }
184	 }

778  Chapter 17  Tree Structures

13.	 What is the difference between a tree, a binary tree, and a balanced binary tree?
14.	 Are the left and right children of a binary search tree always binary search trees?

Why or why not?
15.	 Draw all binary search trees containing data values A, B, and C.
16.	 Give an example of a string that, when inserted into the tree of Figure 12,

becomes a right child of Romeo.
17.	 Trace the removal of the node “Tom” from the tree in Figure 12.
18.	 Trace the removal of the node “Juliet” from the tree in Figure 12.

Practice It	 Now you can try these exercises at the end of the chapter: R17.7, R17.13, R17.15,
P17.10.

17.4  Tree Traversal
We often want to visit all elements in a tree. There are many different orderings in
which one can visit, or traverse, the tree elements. The following sections introduce
the most common ones.

17.4.1  Inorder Traversal

Suppose you inserted a number of data values into a binary search tree. What can you
do with them? It turns out to be surprisingly simple to print all elements in sorted
order. You know that all data in the left subtree of any node must come before the
root node and before all data in the right subtree. That is, the following algorithm will
print the elements in sorted order:

Print the left subtree.
Print the root data.
Print the right subtree.

Let’s try this out with the tree in Figure 12 on page 771. The algorithm tells us to

1.	Print the left subtree of Juliet; that is, Diana and descendants.
2.	Print Juliet.
3.	Print the right subtree of Juliet; that is, Tom and descendants.

How do you print the subtree starting at Diana?

1.	Print the left subtree of Diana. There is nothing to print.
2.	Print Diana.
3.	Print the right subtree of Diana, that is, Harry.

That is, the left subtree of Juliet is printed as
Diana Harry

The right subtree of Juliet is the subtree starting at Tom. How is it printed? Again,
using the same algorithm:

1.	Print the left subtree of Tom, that is, Romeo.
2.	Print Tom.
3.	Print the right subtree of Tom. There is nothing to print.

S e l f C h e c k

To visit all elements
in a tree, visit the
root and recursively
visit the subtrees.

17.4 T ree Traversal   779

Thus, the right subtree of Juliet is printed as
Romeo Tom

Now put it all together: the left subtree, Juliet, and the right subtree:
Diana Harry Juliet Romeo Tom

The tree is printed in sorted order.
It is very easy to implement this print method. We start with a recursive helper

method:
private static void print(Node parent)
{
 if (parent == null) { return; }
 print(parent.left);
 System.out.print(parent.data + " ");
 print(parent.right);
}

To print the entire tree, start this recursive printing process at the root:
public void print()
{
 print(root);
}

This visitation scheme is called inorder traversal (visit the left subtree, the root, the
right subtree). There are two related traversal schemes, called preorder traversal and
postorder traversal, which we discuss in the next section.

17.4.2  Preorder and Postorder Traversals

In Section 17.4.1, we visited a binary tree in order:
first the left subtree, then the root, then the right
subtree. By modifying the visitation rules, we
obtain other traversals.

In preorder traversal, we visit the root before
visiting the subtrees, and in postorder traversal,
we visit the root after the subtrees.

Preorder(n)	 Postorder(n)
Visit n.	 For each child c of n
For each child c of n		 Postorder(c).
	 Preorder(c).	 Visit n.

These two visitation schemes will not print a binary search tree in sorted order. How-
ever, they are important in other applications. Here is an example.

In Section 17.2, you saw trees for arithmetic expressions. Their leaves store num-
bers, and their interior nodes store operators. The expression trees describe the order
in which the operators are applied.

Let’s apply postorder traversal to the expression trees in Figure 6 on page 765. The
first tree yields

3 4 + 5 *

whereas the second tree yields
3 4 5 * +

When visiting all nodes of a tree, one
needs to choose a traversal order.

We distinguish
between preorder,
inorder, and
postorder traversal.

780  Chapter 17  Tree Structures

You can interpret the traversal result as an expression in “reverse Polish notation”
(see Random Fact 15.2), or equivalently, instructions for a stack-based calculator (see
Section 15.6.2).

Here is another example of the importance of traversal order. Consider a directory
tree such as the following:

Sample Code

ch01 ch02

section_4 section_1 section_2 worked_example_1 how_to_1

These directories are
removed first.

This directory is
removed last.

Consider the task of removing all directories from such a tree, with the restriction
that you can only remove a directory when it contains no other directories. In this
case, you use a postorder traversal.

Conversely, if you want to copy the directory tree, you start copying the root,
because you need a target directory into which to place the children. This calls for
preorder traversal.

Sample Code Sample Code

ch01 ch02

section_4 section_1 section_2 worked_example_1 how_to_1

These files can be
copied after the parent

has been copied.

Note that pre- and postorder traversal can be defined for any trees, not just binary
trees (see the sample code for this section). However, inorder traversal makes sense
only for binary trees.

17.4.3  The Visitor Pattern

In the preceding sections, we simply printed each tree node that we visited. Often,
we want to process the nodes in some other way. To make visitation more generic, we
define an interface type

public interface Visitor
{
 void visit(Object data);
}

Postorder traversal
of an expression tree
yields the
instructions for
evaluating the
expression on a
stack-based
calculator.

17.4 T ree Traversal   781

The preorder method receives an object of some class that implements this interface
type, and calls its visit method:

private static void preorder(Node n, Visitor v)
{
 if (n == null) { return; }
 v.visit(n.data);
 for (Node c : n.children) { preorder(c, v); }
}

public void preorder(Visitor v) { preorder(root, v); }

Methods for postorder and, for a binary tree, inorder traversals can be implemented
in the same way.

Let’s say we want to count short names (with at most five letters). The following
visitor will do the job. We’ll make it into an inner class of the method that uses it.

public static void main(String[] args)
{
 BinarySearchTree bst = . . .;

 class ShortNameCounter implements Visitor
 {
 public int counter = 0;
 public void visit(Object data)
 {
 if (data.toString().length() <= 5) { counter++; }
 }
 }

 ShortNameCounter v = new ShortNameCounter();
 bst.inorder(v);
 System.out.println("Short names: " + v.counter);
}

Here, the visitor object accumulates the count. After the visit is complete, we can
obtain the result. Because the class is an inner class, we don’t worry about making the
counter private.

17.4.4  Depth-First and Breadth-First Search

The traversals in the preceding sections are
expressed using recursion. If you want to process
the nodes of a tree, you supply a visitor, which is
applied to all nodes. Sometimes, it is useful to use an
iterative approach instead. Then you can stop pro-
cessing nodes when a goal has been met.

To visit the nodes of a tree iteratively, we replace
the recursive calls with a stack that keeps track of
the children that need to be visited. Here is the
algorithm:

Push the root node on a stack.
While the stack is not empty
	 Pop the stack; let n be the popped node.
	 Process n.
	 Push the children of n on the stack, starting with the last one.

In a depth-first search, one moves
as quickly as possible to the deep-
est nodes of the tree.

782  Chapter 17  Tree Structures

This algorithm is called depth-first search because it goes deeply into the tree and then
backtracks when it reaches the leaves (see Figure 16). Note that the tree can be an
arbitrary tree––it need not be binary.

We push the children on the stack in right-to-left order so that the visit starts with the
leftmost path. If the leftmost child had been pushed first, we would still have a depth-
first search, just in a less intuitive order.

If we replace the stack with a queue, the visitation order changes. Instead of going
deeply into the tree, we first visit all nodes at the same level before going on to the
next level. This is called breadth-first search (Figure 17).

For this algorithm, we modify the Visitor interface of Section 17.4.3. The visit method
now returns a flag indicating whether the traversal should continue. For example, if
you want to visit the first ten nodes, you should provide an implementation of the
Visitor interface whose visit method returns false when it has visited the tenth node.

Here is an implementation of the breadth-first algorithm:
public interface Visitor
{
 boolean visit(Object data);
}

public void breadthFirst(Visitor v)
{
 if (root == null) { return; }
 Queue<Node> q = new LinkedList<Node>();
 q.add(root);
 boolean more = true;
 while (more && q.size() > 0)
 {
 Node n = q.remove();
 more = v.visit(n);

Depth-first search
uses a stack to track
the nodes that it still
needs to visit.

Figure 16 
Depth-First
Search

E HD

F

A

B G

IC

Stack
A
G F B Push children of A
G F E D C Push children of B
G F E D
G F E
G F
G
I H Push children of G
I

Breadth-first search
first visits all nodes
on the same level
before visiting the
children.

Figure 17 
Breadth-First
Search

G HF

C

A

B D

IE

Queue
A
B C D Add children of A
C D E F G Add children of B
D E F G
E F G H I Add children of D
F G H I
G H I
H I
I

17.4 T ree Traversal   783

 if (more)
 {
 for (Node c : n.children) { q.add(c); }
 }
 }
}

For depth-first search, replace the queue with a stack (Exercise P17.17).

17.4.5  Tree Iterators

The Java collection library uses iterators to process elements of a tree, like this:
TreeSet<String> t = . . .
Iterator<String> iter = t.iterator();
String first = iter.next();
String second = iter.next();

It is easy to implement such an iterator with depth-first or breadth-first search. Make
the stack or queue into an instance variable of the iterator object. The next method
executes one iteration of the loop that you saw in the last section.

class BreadthFirstIterator
{
 private Queue<Node> q;
 public BreadthFirstIterator(Node root)
 {
 q = new LinkedList<Node>();
 if (root != null) { q.add(root); }
 }
 public boolean hasNext() { return q.size() > 0; }
 public Object next()
 {
 Node n = q.remove();
 for (Node c : n.children) { q.add(c); }
 return n.data;
 }
}

Note that there is no visit method. The user of the iterator receives the node data,
processes it, and decides whether to call next again.

This iterator produces the nodes in breadth-first order. For a binary search tree,
one would want the nodes in sorted order instead. Exercise P17.20 shows how to
implement such an iterator.

19.	 What are the inorder traversals of the two trees in Figure 6 on page 765?
20.	 Are the trees in Figure 6 binary search trees?
21.	 Why did we have to declare the variable v in the sample program in Section

17.4.4 as ShortNameCounter and not as Visitor?
22.	 Consider this modification of the recursive inorder traversal. We want traversal

to stop as soon as the visit method returns false for a node.
public static void inorder(Node n, Visitor v)
{
 if (n == 0) { return; }
 inorder(n.left, v);
 if (v.visit(n.data)) { inorder(n.right, v); }

O n l i n e E x a m p l e

Sample code that
demonstrates
preorder and
breadth-first
traversal in a tree.

S e l f C h e c k

784  Chapter 17  Tree Structures

}

Why doesn’t that work?
23.	 In what order are the nodes in Figure 17 visited if one pushes children on the

stack from left to right instead of right to left?
24.	 What are the first eight visited nodes in the breadth-first traversal of the tree in

Figure 1?

Practice It	 Now you can try these exercises at the end of the chapter: R17.11, R17.14, P17.16.

17.5  Red-Black Trees
As you saw in Section 17.3, insertion and removal in a binary search tree are O(log(n))
operations provided that the tree is balanced. In this section, you will learn about
red-black trees, a special kind of binary search tree that rebalances itself after each
insertion or removal. With red-black trees, we can guarantee efficiency of these oper-
ations. In fact, the Java Collections framework uses red-black trees to implement tree
sets and tree maps.

17.5.1  Basic Properties of Red-Black Trees

A red-black tree is a binary search tree with the following additional properties:

•	 Every node is colored red or black.
•	 The root is black.
•	 A red node cannot have a red child (the “no double reds” rule).
•	 All paths from the root to a null have the same number of black nodes (the “equal

exit cost” rule).

Of course, the nodes aren’t actually colored. Each node simply has a flag to indicate
whether it is considered red or black. (The choice of these colors is traditional; one
could have equally well used some other attributes. Perhaps, in an alternate universe,
students learn about chocolate-vanilla trees.)

In a red-black tree,
node coloring rules
ensure that the tree
is balanced.

Figure 18 
A Red-Black Tree

F

B

A D

C E

H

G

nullnull null null

null

null nullnull null

17.5 R ed-Black Trees   785

Figure 19  A Tree That Violates the “Equal Exit Cost” Rule

F

B

A

H

G

null null null

null

null

null

Path to here
has cost 1

Instead of thinking of the colors,
imagine each node to be a toll booth. As
you travel from the root to one of the
null references (an exit), you have to pay
$1 at each black toll booth, but the red
toll booths are free. The “equal exit cost”
rule says that the cost of the trip is the
same, no matter which exit you choose.

Figure 18 shows an example of a red-
black tree, and Figures 19 and 20 show
examples of trees that violate the “equal
exit cost” and “no double reds” rules.

Note that the “equal exit cost” rule
applies to paths to null references, not to
leaves of the tree. For example, the last node of the path in Figure 19 that violates the
rule is not a leaf.

Think of each node of a red-black tree as a toll
booth. The total toll to each exit is the same.

Figure 20  A Tree That Violates the “No Double Red” Rule

G

C

A

B

I

H

null null null

null

nullnull

null

Double red

786  Chapter 17  Tree Structures

The “equal exit cost” rule eliminates highly unbalanced trees. You can’t have null
references high up in the tree. In other words, the nodes that aren’t near the leaves
need to have two children.

The “no double reds” rule gives some flexibility to add nodes without having to
restructure the tree all the time. Some paths can be a bit longer than others—by alter-
nating red and black nodes—but none can be longer than twice the black height.

The cost of traveling on a path from a given node to a null (that is, the number of
black nodes on the path), is called the black height of the node. The cost of traveling
from the root to a null is called the black height of the tree.

A tree with given black height bh can’t be too sparse—it must have at least 2bh – 1
nodes (see Exercise R17.18). Or, if we turn this relationship around,

2bh – 1 ≤ n

2bh ≤ n + 1

bh ≤ log(n + 1)

The “no double reds” rule says that the total height h of a tree is at most twice the
black height:

h ≤ 2 · bh ≤ 2 · log(n + 1)

Therefore the height is O(log(n)).

17.5.2  Insertion

To insert a new node into a red-black tree, first insert it as you would into a regular
binary search tree (see Section 17.3.2). Note that the new node is a leaf.

If it is the first node of the tree, it must be black. Otherwise, color it red. If its par-
ent is black, we still have a red-black tree, and we are done.

However, if the parent is also red, we have a “double red” and need to fix it. Because
the rest of the tree is a proper red-black tree, we know that the grandparent is black.

There are four possible configurations of a “double red”, shown in Figure 21.
Of course, our tree is a binary search tree, and we will now take advantage of that

fact. In each tree of Figure 21, we labeled the smallest, middle, and largest of the three
nodes as n1, n2, and n3. We also labeled their children in sorted order, starting with
t1. To fix the “double red”, rearrange the three nodes as shown in Figure 22, keeping
their data values, but updating their left and right references.

To rebalance a
red-black tree after
inserting an element,
fix all double-red
violations.

Figure 21  The Four Possible Configurations of a “Double Red”

n3

n1
t4

t1 n2

t2 t3

n3

n2
t4

t3n1

t1 t2

n1

n3

n2

t2 t3

t1

t4

n1

n2

n3

t3 t4

t1

t2

Figure 22 
Fixing the “Double Red”
Violation

n1

t1 t2

n2

n3

t3 t4

Because the fix preserves the sort order, the result is a binary search tree. The fix
does not change the number of black nodes on a path. Therefore, it preserves the
“equal exit cost” rule.

If the parent of n2 is black, we get a red-black tree, and we are done. If that parent
is red, we have another “double red“, but it is one level closer to the root. In that case,
fix the double-red violation of n2 and its parent. You may have to continue fixing
double-red violations, moving closer to the root each time. If the red parent is the
root, simply turn it black. This increments all path costs, preserving the “equal exit
cost” rule.

Worked Example 17.2 has an implementation of this algorithm.
We can determine the efficiency with more precision than we were able to in Sec-

tion 17.5.1. To find the insertion location requires at most h steps, where h is the
height of the tree. To fix the “double red” violations takes at most h / 2 steps. (Look
carefully at Figures 21 and 22 to see that each fix pushes the violation up two nodes.
If the top node of each subtree in Figure 21 has height t, then the nodes of the double-
red violation have heights t + 1 and t + 2. In Figure 22, the top node also has height t.
If there is a double-red violation, it is between that node and its parent at height t – 1.)
We know from Section 17.5.1 that h = O(log(n)). Therefore, insertion into a red-black
tree is guaranteed to be O(log(n)).

17.5.3  Removal

To remove a node from a red-black tree, you first use the removal algorithm for
binary search trees (Section 17.3.3). Note that in that algorithm, the removed node
has at most one child. We never remove a node with two children; instead, we fill it
with the value of another node with at most one child and remove that node.

Two cases are easy. First, if the node to be removed is red, there is no problem with
the removal—the resulting tree is still a red-black tree.

Next, assume that the node to be removed has a child. Because of the “equal exit
cost” rule, the child must be red. Simply remove the parent and color the child black.

n1

n2

t1 t2

null n2

t1 t2

To be removed
Color black

17.5 R ed-Black Trees   787

788  Chapter 17  Tree Structures

The troublesome case is the removal of a black leaf. We can’t just remove it because
the exit cost to the null replacing it would be too low. Instead, we’ll first turn it into a
red node.

To turn a black node into a red one, we will temporarily “bubble up” the costs,
raising the cost of the parent by 1 and lowering the cost of the children by 1.

Add 1

Subtract 1Subtract 1

This process leaves all path costs unchanged, and it turns the black leaf into a red one
which we can safely remove.

Now consider a black leaf that is to be
removed. Because of the equal-exit rule, it
must have a sibling. The sibling and the par-
ent can be black or red, but they can’t both
be red. The leaf to be removed can be to the
left or to the right. The figure at right shows
all possible cases.

In the first column, bubbling up will work
perfectly—it simply turns the red node into
a black one and the black ones into red ones.
One of the red ones is removed. The other
may cause a double-red violation with one
of its children, which we fix if necessary.

But in the other cases, a new problem arises. Adding 1 to a black parent yields a
price of 2, which we call double-black. Subtracting 1 from a red child yields a nega-
tive-red node with a price of –1. These are not valid nodes in a red-black tree, and we
need to eliminate them.

A negative-red node is always below a double-black one, and the pair can be elimi-
nated by the transformation shown in Figure 23.

X X X

X X X

Before removing a
node in a red-black
tree, turn it red and
fix any double-black
and double-red
violations.

Figure 23  Eliminating a Negative-Red Node with a Double-Black Parent

n4

n2
t3

n3

t1 t2

n1

n3

n2

n1

n4

t2 t3t1

May need to
fix double red

Double black

Negative red

17.5 R ed-Black Trees   789

n3

n1
t4

t1 n2

t2 t3

n2
t4

t3n1

t1 t2

n1

n3

n2

t2 t3

t1

t4

n1

n2

n3

t3 t4

t1

t2

n1

t1 t2

n2

n3

t3 t4

n3

Figure 24 
Fixing a Double-Red
Violation Also Fixes
a Double-Black
Grandparent

Sometimes, the creation of a double-black node also causes a double-red violation
below. We can fix the double-red violation as in the preceding section, but now we
color the middle node black instead of red—see Figure 24.

To see that this transformation is valid, imagine a trip through one of the node
sequences in Figure 24 from the top node to one of the trees below. The price of that
portion of the trip is 2 for each tree, both before and after the transformation.

Sometimes, neither of the two transformations applies, and then we need to “bub-
ble up” again, which pushes the double-black node closer to the root. Figure 25 shows
the possible cases.

Figure 25 
Bubbling Up a
Double-Black Node

790  Chapter 17  Tree Structures

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

If the double-black node reaches the root, we can replace it with a regular black
node. This reduces the cost of all paths by 1 and preserves the “equal exit cost” rule.

See Worked Example 17.2 for an implementation of node removal.
Let us now determine the efficiency of this process. Removing a node from a

binary search tree requires O(h) steps, where h is the height of the tree. The double-
black node may bubble up, perhaps all the way to the root. Bubbling up will happen
at most h times, and its cost is constant—it only involves changing the costs of three
nodes. If we generate a negative red, we remove it (as shown in Figure 23), and the
bubbling stops. We may have to fix one double-red violation, which takes O(h) steps.
It is also possible that bubbling creates a double-red violation, but its fix will absorb
the double-black node, and bubbling also stops. The entire process takes O(h) steps.
Since h = O(log(n)), removal from a red-black tree is also guaranteed to be O(log(n)).

Table 3 Efficiency of Red-Black Tree Operations

Finding an element. O(log(n))

Adding an element. O(log(n))

Removing an element. O(log(n))

25.	 Consider the extreme example of a tree with only right children
and at least three nodes. Why can’t this be a red-black tree?

26.	 What are the shapes and colorings of all possible red-black
trees that have four nodes?

27.	 Why does Figure 21 show all possible configurations of a
double-red violation?

28.	 When inserting an element, can there ever be a triple-red violation in Figure 21?
That is, can you have a red node with two red children? (For example, in the first
tree, can t1 have a red root?)

29.	 When removing an element, show that it is possible to have a triple-red violation
in Figure 23.

30.	 What happens to a triple-red violation when the double-red fix is applied?

Practice It	 Now you can try these exercises at the end of the chapter: R17.18, R17.20, P17.13.

Adding or removing
an element in a
red-black tree is an
O(log(n)) operation.

S e l f C h e c k

Worked Example 17.2	 Implementing a Red-Black Tree

In this Worked Example, we will implement a red-black tree as described in Section 17.5.

17.6 H eaps   791

17.6  Heaps
In this section, we discuss a tree structure that
is particularly suited for implementing a prior-
ity queue, in which the smallest element can be
removed efficiently. (Priority queues were intro-
duced in Section 15.5.3.)

A heap (or, for greater clarity, min-heap) is a
binary tree with two properties:

1.	A heap is almost completely filled: all nodes
are filled in, except the last level which may
have some nodes missing toward the right
(see Figure 26).

2.	All nodes of the tree fulfill the heap property:
all descendants of the node have values that
are at least as large as the node value (see
Figure 27 on page 792).

In particular, because the root fulfills the heap
property, its value is the minimum of all values in
the tree.

A heap is superficially similar to a binary search
tree, but there are two important differences:

1.	The shape of a heap is very regular. Binary search trees can have arbitrary
shapes.

2.	In a heap, the left and right subtrees both store elements that are larger than the
root element. In contrast, in a binary search tree, smaller elements are stored in
the left subtree and larger elements are stored in the right subtree.

In an almost complete tree, all lay-
ers but one are completely filled.

A heap is an almost
completely filled
binary tree in which
the values of all
nodes are at most as
large as those of their
descendants.

Figure 26  An Almost Completely Filled Tree

Some nodes missing toward the right

All nodes filled in

792  Chapter 17  Tree Structures

Figure 27  A Heap

20

75 43

84 90 57 71

96 91 93

Suppose you have a heap and want to insert a new element. After insertion, the heap
property should again be fulfilled. The following algorithm carries out the insertion
(see Figure 28).

1.	First, add a vacant slot to the end of the tree.
2.	Next, demote the parent of the empty slot if it is larger than the element to be

inserted. That is, move the parent value into the vacant slot, and move the
vacant slot up. Repeat this demotion as long as the parent of the vacant slot is
larger than the element to be inserted.

3.	At this point, either the vacant slot is at the root, or the parent of the vacant
slot is smaller than the element to be inserted. Insert the element into the
vacant slot.

Figure 28  Inserting an Element into a Heap

1 Add vacant slot at end
20

75 43

84 90 57 71

96 91 93

Insert 60

17.6 H eaps   793

Figure 28 (continued)  Inserting an Element into a Heap

2 Demote parents
20

75 43

84

90

57 71

96 91 93

Insert 60

20

75

43

84

90

57 71

96 91 93

3 Insert element into vacant slot
20

60 43

84

90

57 71

96 91 93

Insert

75

60

794  Chapter 17  Tree Structures

We will not consider an algorithm for removing an arbitrary node from a heap. The
only node that we will remove is the root node, which contains the minimum of all of
the values in the heap. Figure 29 shows the algorithm in action.

1.	Extract the root node value.
2.	Move the value of the last node of the heap into the root node, and remove the

last node. Now the heap property may be violated for the root node, because
one or both of its children may be smaller.

3.	Promote the smaller child of the root node. Now the root node again fulfills
the heap property. Repeat this process with the demoted child. That is, pro-
mote the smaller of its children. Continue until the demoted child has no
smaller children. The heap property is now fulfilled again. This process is
called “fixing the heap”.

Figure 29  Removing the Minimum Value from a Heap

1 Remove the minimum element from the root
20

75 43

84 90 57 71

96 91 93

2 Move the last element into the root
93

75 43

84 90 57 71

96 91

17.6 H eaps   795

Figure 29 (continued)  Removing the Minimum Value from a Heap

3 Fix the heap
43

75 93

84 90 57 71

96 91

43

75 57

84 90 93 71

96 91

Inserting and removing heap elements is very efficient. The reason lies in the balanced
shape of a heap. The insertion and removal operations visit at most h nodes, where h is
the height of the tree. A heap of height h contains at least 2h–1 elements, but less than
2h elements. In other words, if n is the number of elements, then

n2 21h h≤ <−

or

n1 log ()2h h− ≤ <

This argument shows that the insertion and removal operations in a heap with n ele-
ments take O(log(n)) steps.

Contrast this finding with the situation of a binary search tree. When a binary
search tree is unbalanced, it can degenerate into a linked list, so that in the worst case
insertion and removal are O(n) operations.

Inserting or removing
a heap element is an
O(log(n)) operation.

796  Chapter 17  Tree Structures

Figure 30  Storing a Heap in an Array

20

75 43

84 90 57 71

96 91 93

Layer 1

Layer 2

Layer 3

Layer 4

Layer 4Layer 3Layer 2Layer 1

20 75 43 84 90 57 71 96 91 93

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Heaps have another major advantage. Because of the regular layout of the heap
nodes, it is easy to store the node values in an array or array list. First store the first
layer, then the second, and so on (see Figure 30). For convenience, we leave the 0 ele-
ment of the array empty. Then the child nodes of the node with index i have index 2 · i
and 2 · i + 1 , and the parent node of the node with index i has index i 2 . For example,
as you can see in Figure 30, the children of the node with index 4 are the nodes with
index values 8 and 9, and the parent is the node with index 2.

Storing the heap values in an array may not be intuitive, but it is very efficient.
There is no need to allocate individual nodes or to store the links to the child nodes.
Instead, child and parent positions can be determined by very simple computations.

The program at the end of this section contains an implementation of a heap. For
greater clarity, the computation of the parent and child index positions is carried out
in methods getParentIndex, getLeftChildIndex, and getRightChildIndex. For greater effi-
ciency, the method calls could be avoided by using expressions index / 2, 2 * index, and
2 * index + 1 directly.

In this section, we have organized our heaps such that the smallest element is
stored in the root. It is also possible to store the largest element in the root, simply by
reversing all comparisons in the heap-building algorithm. If there is a possibility of
misunderstanding, it is best to refer to the data structures as min-heap or max-heap.

The test program demonstrates how to use a min-heap as a priority queue.

section_6/MinHeap.java

1 import java.util.*;
2
3 /**
4 This class implements a heap.
5 */

The regular layout
of a heap makes it
possible to store
heap nodes
efficiently in an array.

17.6 H eaps   797

6 public class MinHeap
7 {
8 private ArrayList<Comparable> elements;
9

10 /**
11 Constructs an empty heap.
12 */
13 public MinHeap()
14 {
15 elements = new ArrayList<Comparable>();
16 elements.add(null);
17 }
18
19 /**
20 Adds a new element to this heap.
21 @param newElement the element to add
22 */
23 public void add(Comparable newElement)
24 {
25 // Add a new leaf
26 elements.add(null);
27 int index = elements.size() - 1;
28
29 // Demote parents that are larger than the new element
30 while (index > 1
31 && getParent(index).compareTo(newElement) > 0)
32 {
33 elements.set(index, getParent(index));
34 index = getParentIndex(index);
35 }
36
37 // Store the new element in the vacant slot
38 elements.set(index, newElement);
39 }
40
41 /**
42 Gets the minimum element stored in this heap.
43 @return the minimum element
44 */
45 public Comparable peek()
46 {
47 return elements.get(1);
48 }
49
50 /**
51 Removes the minimum element from this heap.
52 @return the minimum element
53 */
54 public Comparable remove()
55 {
56 Comparable minimum = elements.get(1);
57
58 // Remove last element
59 int lastIndex = elements.size() - 1;
60 Comparable last = elements.remove(lastIndex);
61
62 if (lastIndex > 1)
63 {
64 elements.set(1, last);
65 fixHeap();

798  Chapter 17  Tree Structures

66 }
67
68 return minimum;
69 }
70
71 /**
72 Turns the tree back into a heap, provided only the root
73 node violates the heap condition.
74 */
75 private void fixHeap()
76 {
77 Comparable root = elements.get(1);
78
79 int lastIndex = elements.size() - 1;
80 // Promote children of removed root while they are smaller than last
81
82 int index = 1;
83 boolean more = true;
84 while (more)
85 {
86 int childIndex = getLeftChildIndex(index);
87 if (childIndex <= lastIndex)
88 {
89 // Get smaller child
90
91 // Get left child first
92 Comparable child = getLeftChild(index);
93
94 // Use right child instead if it is smaller
95 if (getRightChildIndex(index) <= lastIndex
96 && getRightChild(index).compareTo(child) < 0)
97 {
98 childIndex = getRightChildIndex(index);
99 child = getRightChild(index);

100 }
101
102 // Check if larger child is smaller than root
103 if (child.compareTo(root) < 0)
104 {
105 // Promote child
106 elements.set(index, child);
107 index = childIndex;
108 }
109 else
110	 {
111	 // Root is smaller than both children
112	 more = false;
113	 }
114	 }
115	 else
116	 {
117	 // No children
118	 more = false;
119	 }
120	 }
121	
122	 // Store root element in vacant slot
123	 elements.set(index, root);
124	 }
125	

17.6 H eaps   799

126	 /**
127	 Checks whether this heap is empty.
128	 */
129	 public boolean empty()
130	 {
131	 return elements.size() == 1;
132	 }
133	
134	 /**
135	 Returns the index of the left child.
136	 @param index the index of a node in this heap
137	 @return the index of the left child of the given node
138	 */
139	 private static int getLeftChildIndex(int index)
140	 {
141	 return 2 * index;
142	 }
143	
144	 /**
145	 Returns the index of the right child.
146	 @param index the index of a node in this heap
147	 @return the index of the right child of the given node
148	 */
149	 private static int getRightChildIndex(int index)
150	 {
151	 return 2 * index + 1;
152	 }
153	
154	 /**
155	 Returns the index of the parent.
156	 @param index the index of a node in this heap
157	 @return the index of the parent of the given node
158	 */
159	 private static int getParentIndex(int index)
160	 {
161	 return index / 2;
162	 }
163	
164	 /**
165	 Returns the value of the left child.
166	 @param index the index of a node in this heap
167	 @return the value of the left child of the given node
168	 */
169	 private Comparable getLeftChild(int index)
170	 {
171	 return elements.get(2 * index);
172	 }
173	
174	 /**
175	 Returns the value of the right child.
176	 @param index the index of a node in this heap
177	 @return the value of the right child of the given node
178	 */
179	 private Comparable getRightChild(int index)
180	 {
181	 return elements.get(2 * index + 1);
182	 }
183	
184	 /**
185	 Returns the value of the parent.

800  Chapter 17  Tree Structures

186	 @param index the index of a node in this heap
187	 @return the value of the parent of the given node
188	 */
189	 private Comparable getParent(int index)
190	 {
191	 return elements.get(index / 2);
192	 }
193	 }

section_6/WorkOrder.java

1 /**
2 This class encapsulates a work order with a priority.
3 */
4 public class WorkOrder implements Comparable
5 {
6 private int priority;
7 private String description;
8
9 /**

10 Constructs a work order with a given priority and description.
11 @param aPriority the priority of this work order
12 @param aDescription the description of this work order
13 */
14 public WorkOrder(int aPriority, String aDescription)
15 {
16 priority = aPriority;
17 description = aDescription;
18 }
19
20 public String toString()
21 {
22 return "priority=" + priority + ", description=" + description;
23 }
24
25 public int compareTo(Object otherObject)
26 {
27 WorkOrder other = (WorkOrder) otherObject;
28 if (priority < other.priority) { return -1; }
29 if (priority > other.priority) { return 1; }
30 return 0;
31 }
32 }

section_6/HeapDemo.java

1 /**
2 This program demonstrates the use of a heap as a priority queue.
3 */
4 public class HeapDemo
5 {
6 public static void main(String[] args)
7 {
8 MinHeap q = new MinHeap();
9 q.add(new WorkOrder(3, "Shampoo carpets"));

10 q.add(new WorkOrder(7, "Empty trash"));
11 q.add(new WorkOrder(8, "Water plants"));
12 q.add(new WorkOrder(10, "Remove pencil sharpener shavings"));
13 q.add(new WorkOrder(6, "Replace light bulb"));
14 q.add(new WorkOrder(1, "Fix broken sink"));

17.6 H eaps   801

15 q.add(new WorkOrder(9, "Clean coffee maker"));
16 q.add(new WorkOrder(2, "Order cleaning supplies"));
17
18 while (!q.empty())
19 {
20 System.out.println(q.remove());
21 }
22 }
23 }

Program Run

priority=1, description=Fix broken sink
priority=2, description=Order cleaning supplies
priority=3, description=Shampoo carpets
priority=6, description=Replace light bulb
priority=7, description=Empty trash
priority=8, description=Water plants
priority=9, description=Clean coffee maker
priority=10, description=Remove pencil sharpener shavings

31.	 The software that controls the events in a user interface keeps the events in a data
structure. Whenever an event such as a mouse move or repaint request occurs,
the event is added. Events are retrieved according to their importance. What
abstract data type is appropriate for this application?

32.	 In an almost-complete tree with 100 nodes, how many nodes are missing in the
lowest level?

33.	 If you traverse a heap in preorder, will the nodes be in sorted order?
34.	 What is the heap that results from inserting 1 into the following?

2

3 9

5 4

35.	 What is the result of removing the minimum from the following?

2

3 9

5 4

Practice It	 Now you can try these exercises at the end of the chapter: R17.24, R17.25, P17.22.

S e l f C h e c k

802  Chapter 17  Tree Structures

17.7  The Heapsort Algorithm
Heaps are not only useful for implementing priority queues, they also give rise to
an efficient sorting algorithm, heapsort. In its simplest form, the heapsort algorithm
works as follows. First insert all elements to be sorted into the heap, then keep
extracting the minimum.

This algorithm is an O(n log(n)) algorithm: each insertion and removal is O(log(n)),
and these steps are repeated n times, once for each element in the sequence that is to
be sorted.

The algorithm can be made a bit more efficient. Rather than inserting the elements
one at a time, we will start with a sequence of values in an array. Of course, that array
does not represent a heap. We will use the procedure of “fixing the heap” that you
encountered in the preceding section as part of the element removal algorithm. “Fix-
ing the heap” operates on a binary tree whose child trees are heaps but whose root
value may not be smaller than the descendants. The procedure turns the tree into a
heap, by repeatedly promoting the smallest child value, moving the root value to its
proper location.

Of course, we cannot simply apply this procedure to the initial sequence of
unsorted values—the child trees of the root are not likely to be heaps. But we can
first fix small subtrees into heaps, then fix larger trees. Because trees of size 1 are auto-
matically heaps, we can begin the fixing procedure with the subtrees whose roots are
located in the next-to-last level of the tree.

The sorting algorithm uses a generalized fixHeap method that fixes a subtree:
public static void fixHeap(int[] a, int rootIndex, int lastIndex)

The subtree is specified by the index of its root and of its last node.
The fixHeap method needs to be invoked on all subtrees whose roots are in the

next-to-last level. Then the subtrees whose roots are in the next level above are fixed,
and so on. Finally, the fixup is applied to the root node, and the tree is turned into a
heap (see Figure 31).

That repetition can be programmed easily. Start with the last node on the next-
to-lowest level and work toward the left. Then go to the next higher level. The node
index values then simply run backward from the index of the last node to the index of
the root.

int n = a.length - 1;
for (int i = (n - 1) / 2; i >= 0; i--)
{
 fixHeap(a, i, n);
}

It can be shown that this procedure turns an arbitrary array into a heap in O(n) steps.
Note that the loop ends with index 0. When working with a given array, we don’t

have the luxury of skipping the 0 entry. We consider the 0 entry the root and adjust
the formulas for computing the child and parent index values.

After the array has been turned into a heap, we repeatedly remove the root ele-
ment. Recall from the preceding section that removing the root element is achieved by
placing the last element of the tree in the root and calling the fixHeap method. Because
we call the O(log(n)) fixHeap method n times, this process requires O(n log(n)) steps.

The heapsort
algorithm is based on
inserting elements
into a heap and
removing them in
sorted order.

Heapsort is an
O (n log(n))
algorithm.

17.7 T he Heapsort Algorithm   803

Figure 31  Turning a Tree into a Heap

1

Call fixHeap
on these nodes

2

Call fixHeap
on these nodes

3 Call fixHeap
on the root

804  Chapter 17  Tree Structures

Rather than moving the root element into a separate array, we can swap the root
element with the last element of the tree and then reduce the tree size. Thus, the
removed root ends up in the last position of the array, which is no longer needed by
the heap. In this way, we can use the same array both to hold the heap (which gets
shorter with each step) and the sorted sequence (which gets longer with each step).

while (n > 0)
{
 ArrayUtil.swap(a, 0, n);
 n--;
 fixHeap(a, 0, n);
}

There is just a minor inconvenience. When we use a min-heap, the sorted sequence is
accumulated in reverse order, with the smallest element at the end of the array. We
could reverse the sequence after sorting is complete. However, it is easier to use a
max-heap rather than a min-heap in the heapsort algorithm. With this modification,
the largest value is placed at the end of the array after the first step. After the next step,
the next-largest value is swapped from the heap root to the second position from the
end, and so on (see Figure 32).

The following class implements the heapsort algorithm:

section_7/HeapSorter.java

1 /**
2 The sort method of this class sorts an array, using the heap
3 sort algorithm.
4 */
5 public class HeapSorter
6 {
7 /**
8 Sorts an array, using selection sort.
9 @param a the array to sort

10 */
11 public static void sort(int[] a)
12 {
13 int n = a.length - 1;
14 for (int i = (n - 1) / 2; i >= 0; i--)
15 {
16 fixHeap(a, i, n);
17 }
18 while (n > 0)
19 {
20 ArrayUtil.swap(a, 0, n);
21 n--;

Figure 32  Using Heapsort to Sort an Array

Already sorted values

Root Last element
of unsorted heap

Largest
value

17.7 T he Heapsort Algorithm   805

22 fixHeap(a, 0, n);
23 }
24 }
25
26 /**
27 Ensures the heap property for a subtree, provided its
28 children already fulfill the heap property.
29 @param a the array to sort
30 @param rootIndex the index of the subtree to be fixed
31 @param lastIndex the last valid index of the tree that
32 contains the subtree to be fixed
33 */
34 private static void fixHeap(int[] a, int rootIndex, int lastIndex)
35 {
36 // Remove root
37 int rootValue = a[rootIndex];
38
39 // Promote children while they are larger than the root
40
41 int index = rootIndex;
42 boolean more = true;
43 while (more)
44 {
45 int childIndex = getLeftChildIndex(index);
46 if (childIndex <= lastIndex)
47 {
48 // Use right child instead if it is larger
49 int rightChildIndex = getRightChildIndex(index);
50 if (rightChildIndex <= lastIndex
51 && a[rightChildIndex] > a[childIndex])
52 {
53 childIndex = rightChildIndex;
54 }
55
56 if (a[childIndex] > rootValue)
57 {
58 // Promote child
59 a[index] = a[childIndex];
60 index = childIndex;
61 }
62 else
63 {
64 // Root value is larger than both children
65 more = false;
66 }
67 }
68 else
69 {
70 // No children
71 more = false;
72 }
73 }
74
75 // Store root value in vacant slot
76 a[index] = rootValue;
77 }
78
79	 /**
80	 Returns the index of the left child.
81	 @param index the index of a node in this heap

806  Chapter 17  Tree Structures

82	 @return the index of the left child of the given node
83	 */
84	 private static int getLeftChildIndex(int index)
85	 {
86	 return 2 * index + 1;
87	 }
88	
89	 /**
90	 Returns the index of the right child.
91	 @param index the index of a node in this heap
92	 @return the index of the right child of the given node
93	 */
94	 private static int getRightChildIndex(int index)
95	 {
96	 return 2 * index + 2;
97	 }
98	 }

36.	 Which algorithm requires less storage, heapsort or merge sort?
37.	 Why are the computations of the left child index and the right child index in the

HeapSorter different than in MinHeap?
38.	 What is the result of calling HeapSorter.fixHeap(a, 0, 4) where a contains 1 4 9 5 3?
39.	 Suppose after turning the array into a heap, it is 9 4 5 1 3. What happens in the

first iteration of the while loop in the sort method?
40.	 Does heapsort sort an array that is already sorted in O(n) time?

Practice It	 Now you can try these exercises at the end of the chapter: R17.28, P17.24.

Describe and implement general trees.

•	 A tree is composed of nodes, each of which can have child nodes.
•	 The root is the node with no parent. A leaf is a node with no children.
•	 A tree class uses a node class to represent nodes and has an instance variable for

the root node.
•	 Many tree properties are computed with recursive methods.

Describe binary trees and their applications.

•	 A binary tree consists of nodes, each of which has at most two child nodes.
•	 In a Huffman tree, the left and right turns on the paths to the leaves describe

binary encodings.
•	 An expression tree shows the order of evaluation in an arithmetic expression.
•	 In a balanced tree, all paths from the root to the leaves have approximately the

same length.

S e l f C h e c k

C h a p t e r S u mm a r y

Chapter Summary  807

Explain the implementation of a binary search tree and its performance characteristics.

•	 All nodes in a binary search tree fulfill the property that the descendants to the
left have smaller data values than the node data value, and the descendants to the
right have larger data values.

•	 To insert a value into a binary search tree, keep comparing the value with the node
data and follow the nodes to the left or right, until reaching a null node.

•	 When removing a node with only one child from a binary search tree, the child
replaces the node to be removed.

•	 When removing a node with two children from a binary search tree, replace it
with the smallest node of the right subtree.

•	 In a balanced tree, all paths from the root to the leaves have about the same length.
•	 If a binary search tree is balanced, then adding, locating, or removing an element

takes O(log(n)) time.

Describe preorder, inorder, and postorder tree traversal.

•	 To visit all elements in a tree, visit the root and recursively visit the subtrees.
•	 We distinguish between preorder, inorder, and postorder traversal.
•	 Postorder traversal of an expression tree yields the instructions for evaluating the

expression on a stack-based calculator.
•	 Depth-first search uses a stack to track the nodes that it still needs to visit.
•	 Breadth-first search first visits all nodes on the same level before visiting the

children.

Describe how red-black trees provide guaranteed O(log(n)) operations.

•	 In a red-black tree, node coloring rules ensure that the tree is balanced.
•	 To rebalance a red-black tree after inserting an element, fix all double-red

violations.
•	 Before removing a node in a red-black tree, turn it red and fix any double-black

and double-red violations.
•	 Adding or removing an element in a red-black tree is an O(log(n)) operation.

Describe the heap data structure and the efficiency of its operations.

•	 A heap is an almost completely filled tree in which the values of all nodes are at
most as large as those of their descendants.

•	 Inserting or removing a heap element is an O(log(n)) operation.
•	 The regular layout of a heap makes it possible to store heap nodes efficiently in

an array.

Describe the heapsort algorithm and its run-time performance.

•	 The heapsort algorithm is based on inserting elements into a heap and removing
them in sorted order.

•	 Heapsort is an O(n log(n)) algorithm.

808  Chapter 17  Tree Structures

• R17.1	 What are all possible shapes of trees of height h with one leaf? Of height 2 with k
leaves?

•• R17.2	 Describe a recursive algorithm for finding the maximum number of siblings in a tree.

••• R17.3	 Describe a recursive algorithm for finding the total path length of a tree. The total
path length is the sum of the lengths of all paths from the root to the leaves. (The
length of a path is the number of nodes on the path.) What is the efficiency of your
algorithm?

•• R17.4	 Show that a binary tree with l leaves has at least l – 1 interior nodes, and exactly l – 1
interior nodes if all of them have two children.

• R17.5	 What is the difference between a binary tree and a binary search tree? Give examples
of each.

• R17.6	 What is the difference between a balanced tree and an unbalanced tree? Give exam
ples of each.

• R17.7	 The following elements are inserted into a binary search tree. Make a drawing that
shows the resulting tree after each insertion.

Adam
Eve
Romeo
Juliet
Tom
Diana
Harry

•• R17.8	 Insert the elements of Exercise R17.7 in opposite order. Then determine how the
BinarySearchTree.print method from Section 17.4 prints out both the tree from Exer-
cise R17.7 and this tree. Explain how the printouts are related.

•• R17.9	 Consider the following tree. In which order are the nodes printed by the Binary
SearchTree.print method? The numbers identify the nodes. The data stored in the
nodes is not shown.

1

2 3

7 98 10

4 65

•• R17.10	 Design an algorithm for finding the kth element (in sort order) of a binary search
tree. How efficient is your algorithm?

•• R17.11	 Design an O(log(n)) algorithm for finding the kth element in a binary search tree,
provided that each node has an instance variable containing the size of the subtree.
Also describe how these instance variables can be maintained by the insertion and
removal operations without affecting their big-Oh efficiency.

R e vi e w E x e r cis e s

Review Exercises  809

•• R17.12	 Design an algorithm for deciding whether two binary trees have the same shape.
What is the running time of your algorithm?

• R17.13	 Insert the following eleven words into a binary search tree:
	 Mary had a little lamb. Its fleece was white as snow.
Draw the resulting tree.

• R17.14	 What is the result of printing the tree from Exercise R17.13 using preorder, inorder,
and postorder traversal?

•• R17.15	 Locate nodes with no children, one child, and two children in the tree of Exercise
R17.13. For each of them, show the tree of size 10 that is obtained after removing the
node.

•• R17.16	 Repeat Exercise R17.13 for a red-black tree.

••• R17.17	 Repeat Exercise R17.15 for a red-black tree.

•• R17.18	 Show that a red-black tree with black height bh has at least 2bh –1 nodes. Hint: Look
at the root. A black child has black height bh – 1. A red child must have two black
children of black height bh – 1.

•• R17.19	 Let rbts(bh) be the number of red-black trees with black height bh. Give a recursive
formula for rbts(bh) in terms of rbts(bh – 1). How many red-black trees have heights
1, 2, and 3? Hint: Look at the hint for Exercise R17.18.

•• R17.20	 What is the maximum number of nodes in a red-black tree with black height bh?

•• R17.21	 Show that any red-black tree must have fewer interior red nodes than it has black
nodes.

••• R17.22	 Show that the “black root” rule for red-black trees is not essential. That is, if one
allows trees with a red root, insertion and deletion still occur in O(log(n)) time.

•• R17.23	 Many textbooks use “dummy nodes”—black nodes with two null children—instead
of regular null references in red-black trees. In this representation, all non-dummy
nodes of a red-black tree have two children. How does this simplify the description
of the removal algorithm?

•• R17.24	 Could a priority queue be implemented efficiently as a binary search tree? Give a
detailed argument for your answer.

••• R17.25	 Will preorder, inorder, or postorder traversal print a heap in sorted order? Why or
why not?

••• R17.26	 Prove that a heap of height h contains at least 2h–1 elements but less than 2h elements.

810  Chapter 17  Tree Structures

••• R17.27	 Suppose the heap nodes are stored in an array, starting with index 1. Prove that the
child nodes of the heap node with index i have index 2 · i and 2 · i + 1, and the parent
node of the heap node with index i has index i 2 .

•• R17.28	 Simulate the heapsort algorithm manually to sort the array

11 27 8 14 45 6 24 81 29 33

Show all steps.

••• P17.1	 A general tree (in which each node can have arbitrarily many children) can be imple-
mented as a binary tree in this way: For each node with n children, use a chain of n
binary nodes. Each left reference points to a child and each right reference points
to the next node in the chain. Using the binary tree implementation of Section 17.2,
implement a tree class with the same interface as the one in Section 17.1.

••• P17.2	 A general tree in which all non-leaf nodes have null data can be implemented as a list
of lists. For example, the tree

B D

C

A

is the list [[A, B], C, [D]].
Using the list implementation from Section 16.1, implement a tree class with the
same interface as the one in Section 17.1. Hint: Use n instanceof List to check whether
a list element n is a subtree or a leaf.

• P17.3	 Write a method that counts the number of all leaves in a tree.

• P17.4	 Add a method countNodesWithOneChild to the BinaryTree class.

• P17.5	 Add a method swapChildren that swaps all left and right children to the BinaryTree
class.

•• P17.6	 Implement the animal guessing game described in Section 17.2.1. Start with the tree
in Figure 4, but present the leaves as “Is it a(n) X?” If it wasn’t, ask the user what the
animal was, and ask for a question that is true for that animal but false for X. For
example,

Is it a mammal? Y
Does it have stripes? N
Is it a pig? N
I give up. What is it? A hamster
Please give me a question that is true for a hamster and false for a pig.
Is it small and cuddly?

In this way, the program learns additional facts.

P r o g r a mmi n g E x e r cis e s

Programming Exercises  811

••• P17.7	 Continue Exercise P17.6 and write the tree to a file when the program exits. Load the
file when the program starts again.

••• P17.8	 The ID3 algorithm describes how to build a decision tree for a given a set of sample
facts. The tree asks the most important questions first. We have a set of criteria
(such as “Is it a mammal?”) and an objective that we want to decide (such as “Can
it swim?”). Each fact has a value for each criterion and the objective. Here is a set of
five facts about animals. (Each row is a fact.) There are four criteria and one objective
(the columns of the table). For simplicity, we assume that the values of the criteria
and objective are binary (Y or N).

Is it a mammal? Does it have fur? Does it have a tail? Does it lay eggs? Can it swim?

N N Y Y N

N N N Y Y

N N Y Y Y

Y N Y N Y

Y Y Y N N

We now need several definitions. Given any probability value p between 0 and 1, its
uncertainty is

U p p p p p() = − () − −() −()log log2 21 1

If p is 0 or 1, the outcome is certain, and the uncertainty U(p) is 0. If p = 1 / 2, then the
outcome is completely uncertain and U(p) = 1.

0

1

1

Let n be the number of facts and n(c = Y) be the number of facts for which the
criterion c has the value Y. Then the uncertainty U(c, o) that c contributes to the
outcome o is the weighted average of two uncertainties:

U c o
n c

n
U

n c o

n c

n c
,

() ,() = = ⋅
= =()

=()






+

=Y Y Y

Y

N(()
⋅

= =()
=()






n
U

n c o

n c

N Y

N

,

Find the criterion c that minimizes the uncertainty U(c, o). That question becomes
the root of your tree. Recursively, repeat for the subsets of the facts for which c is Y
(in the left subtree) and N (in the right subtree). If it happens that the objective is
constant, then you have a leaf with an answer, and the recursion stops.

812  Chapter 17  Tree Structures

In our example, we have

Is it a mammal?

Do

2
5

1
2

3
5

2
3

0 95⋅ 





+ ⋅ 





=U U .

ees it have fur?
1
5

0
1

4
5

3
4

0 65⋅ 





+ ⋅ 





=U U .

DDoes it have a tail?
4
5

2
4

1
5

1
1

⋅ 





+ ⋅ 





=U U 00 8

3
5

2
3

2
5

1
2

.

Does it lay eggs? ⋅ 





+ ⋅ 





=U U 00 95.

Two out of five
are mammals.

One of those
two swims.

Two of those
three swim.

Three out of five
aren’t mammals.

Therefore, we choose “Does it have fur?” as our first criterion.
In the left subtree, look at the animals with fur. There is only one, a non-swimmer, so
you can declare “It doesn’t swim.” For the right subtree, you now have four facts
(the animals without fur) and three criteria. Repeat the process.

•• P17.9	 Reimplement the addNode method of the Node class in BinarySearchTree as a static
method of the BinarySearchTree class:

private static Node addNode(Node parent, Node newNode)

If parent is null, return newNode. Otherwise, recursively add newNode to parent and
return parent. Your implementation should replace the three null checks in the add
and original addNode methods with just one null check.

• P17.10	 Write a method of the BinarySearchTree class
Comparable smallest()

that returns the smallest element of a tree. You will also need to add a method to the
Node class.

••• P17.11	 Change the BinarySearchTree.print method to print the tree as a tree shape. You can
print the tree sideways. Extra credit if you instead display the tree with the root node
centered on the top.

••• P17.12	 In the BinarySearchTree class, modify the remove method so that a node with two chil
dren is replaced by the largest child of the left subtree.

•• P17.13	 Write a method for the RedBlackTree class of Worked Example 17.2 that checks that
the tree fulfills the rules for a red-black tree.

••• P17.14	 Reimplement the remove method in the RedBlackTree class of Worked Example 17.2 so
that the node is first removed using the binary search tree removal algorithm, and the
tree is rebalanced after removal.

Programming Exercises  813

• P17.15	 Add methods
void preorder(Visitor v)
void inorder(Visitor v)
void postorder(Visitor v)

to the BinaryTree class of Section 17.2.

•• P17.16	 Using a visitor, compute the average value of the elements in a binary tree filled with
Integer objects.

• P17.17	 Add a method void depthFirst(Visitor v) to the Tree class of Section 17.4. Keep visit-
ing until the visit method returns false.

•• P17.18	 Implement an inorder method for the BinaryTree class of Section 17.2 so that it stops
visiting when the visit method returns false. (Hint: Have inorder return false when
visit returns false.)

••• P17.19	 Modify the expression evaluator from Section 13.6 to produce an expression tree.
(Note that the resulting tree is a binary tree but not a binary search tree.) Then use
postorder traversal to evaluate the expression, using a stack for the intermediate
results.

••• P17.20	 Implement an iterator for the BinarySearchTree class that visits the nodes in sorted
order. Hint: In the constructor, keep pushing left nodes on a stack until you reach
null. In each call to next, deliver the top of the stack as the visited node, but first push
the left nodes in its right subtree.

E H

G

B I

A

Stack
G B A Constructor
G B
G E D C
G E D
G E After calling next
G F
G
I H
I

FD

C

••• P17.21	 Implement an iterator for the RedBlackTree class in Worked Example 17.2 that visits
the nodes in sorted order. Hint: Take advantage of the parent links.

•• P17.22	 Modify the implementation of the MinHeap class so that the parent and child index
positions and elements are computed directly, without calling helper methods.

••• P17.23	 Modify the implementation of the MinHeap class so that the 0 element of the array is
not wasted.

• P17.24	 Time the results of heapsort and merge sort. Which algorithm behaves better in
practice?

814  Chapter 17  Tree Structures

A n sw e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 There are four paths:
Anne
Anne, Peter
Anne, Zara
Anne, Peter, Savannah

2.	 There are three subtrees with three nodes—
they have roots Charles, Andrew, and Edward.

3.	 3.
4.	

5.	 If n is a leaf, the leaf count is 1
Otherwise
	 Let c1 ... cn be the children of n
	 The leaf count is leafCount(c1) + ...
		 + leafCount(cn)

6.	 Tree t1 = new Tree("Anne");
Tree t2 = new Tree("Peter");
t1.addSubtree(t2);
Tree t3 = new Tree("Zara");
t1.addSubtree(t3);
Tree t4 = new Tree("Savannah");
t2.addSubtree(t4);

7.	 It is not. However, it calls a recursive
method—the size method of the Node class.

8.	 A=10, L=0000, O=001, H=0001, therefore
ALOHA = 100000001000110

9.	 In the root.
10.	

11.	 Figure 4: 6 leaves, 5 interior nodes.
Figure 5: 13 leaves, 12 interior nodes.
Figure 6: 3 leaves, 2 interior nodes
You might guess from these data that the
number of leaves always equals the

number of interior nodes + 1. That is true
if all interior nodes have two children,
but it is false otherwise—consider this
tree whose root only has one child.

12.	 public class Tree
{
 . . .
 public int height()
 {
 if (root == null) { return 0; }
 else { return root.height(); }
 }

 class Node
 {
 . . .
 public int height()
 {
 int leftHeight = 0;
 if (left != null)
 {
 leftHeight = left.height();
 }
 int rightHeight = 0;
 if (right != null)
 {
 rightHeight = right.height();
 }
 return 1 + Math.max(
 leftHeight, rightHeight);
 }
 }
}

This solution requires three null checks; the
solution in Section 17.2.3 only requires one.

13.	 In a tree, each node can have any number of
children. In a binary tree, a node has at most
two children. In a balanced binary tree, all
nodes have approximately as many descen-
dants to the left as to the right.

14.	 Yes––because the binary search condition
holds for all nodes of the tree, it holds for all
nodes of the subtrees.

15.	

5

3

–

4

–

B C

B

C B

A

A

B

A A B C C

C

A

Answers to Self-Check Questions  815

16.	 For example, Sarah. Any string between Romeo
and Tom will do.

17.	 “Tom” has a single child. That child replaces
“Tom” in the parent “Juliet”.

Juliet

Diana Romeo

Harry

18.	 “Juliet” has two children. We look for the
smallest child in the right subtree, “Romeo”.
The data replaces “Juliet”, and the node is
removed from its parent “Tom”.

Romeo

Diana Tom

Harry

19.	 For both trees, the inorder traversal is 3 + 4 * 5.
20.	 No—for example, consider the children of +.

Even without looking up the Unicode values
for 3, 4, and +, it is obvious that + isn’t between
3 and 4.

21.	 Because we need to call v.counter in order to
retrieve the result.

22.	 When the method returns to its caller, the
caller can continue traversing the tree. For
example, suppose the tree is

3

–1

2

0

1

Let’s assume that we want to stop visit-
ing as soon as we encounter a zero, so visit
returns false when it receives a zero. We first
call inorder on the node containing 2. That
calls inorder on the node containing 0, which

calls inorder on the node containing –1. Then
visit is called on 0, returning false. Therefore,
inorder is not called on the node containing 1,
and the inorder call on the node containing 0
is finished, returning to the inorder call on the
root node. Now visit is called on 2, returning
true, and the visitation continues, even though
it shouldn’t. See Exercise P17.18 for a fix.

23.	 AGIHFBEDC
24.	 That’s the royal family tree, the first tree in the

chapter: George V, Edward VIII, George VI,
Mary, Henry, George, John, Elizabeth II

25.	 The root must be black, and the second or
third node must also be black, because of the
“no double reds” rule. The left null of the root
has black height 1, but the null child of the next
black node has black height 2.

26.	

27.	 The top red node can be the left or right child
of the black parent, and the bottom red node
can be the left or right child of its (red) parent,
yielding four configurations.

28.	 No. Look at the first tree. At the beginning, n2
must have been the inserted node. Because the
tree was a valid red-black tree before insertion,
t1 couldn’t have had a red root. Now consider
the step after one double-red removal. The
parent of n2 in Figure 22 may be red, but then
n2 can’t have a red sibling—otherwise the tree
would not have been a red-black tree.

816  Chapter 17  Tree Structures

29.	 Consider this scenario, where X is the black
leaf to be removed.

X

n4

n2

n1
n3

Bubble up:

X

n4

n2

n1
n3

Fix the negative-red:

X

n3

n2

n1

n4

30.	 It goes away. Suppose the sibling of the red
grandchild in Figure 21 is also red. That means
that one of the ti has a red root. However, all of
them become children of the black n1 and n3 in
Figure 22.

31.	 A priority queue is appropriate because we
want to get the important events first, even if
they have been inserted later.

32.	 27. The next power of 2 greater than 100 is 128,
and a completely filled tree has 127 nodes.

33.	 Generally not. For example, the heap in Figure
30 in preorder is 20 75 84 90 96 91 93 43 57 71.

34.	

35.	

36.	 Heapsort requires less storage because it
doesn’t need an auxiliary array.

37.	 The MinHeap wastes the 0 entry to make the
formulas more intuitive. When sorting an
array, we don’t want to waste the 0 entry, so
we adjust the formulas instead.

38.	 In tree form, that is

1

4 9

5 3

1

5 9

4 3

15

4 3

9

Remember, it’s a max-heap!
39.	 The 9 is swapped with 3, and the heap is fixed

up again, yielding
	 5 4 3 1 | 9.

40.	 Unfortunately not. The largest element is
removed first, and it must be moved to the
root, requiring O(log(n)) steps. The second-
largest element is still toward the end of the
array, again requiring O(log(n)) steps, and
so on.

2

3 9

5 4

2

3

95 4

23

95 4

23

95 4

1

4

3 9

5

3

4 9

5

18C h a p t e r

817

Generic
Classes

To understand the objective of
generic programming

To implement generic classes and methods

To explain the execution of generic methods in the virtual machine

To describe the limitations of generic programming in Java

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

18.1  Generic Classes and
Type Parameters  818

18.2  Implementing Generic Types  819

Syntax 18.1: Declaring a Generic Class  820

18.3  Generic Methods  823

Syntax 18.2: Declaring a Generic Method  824

18.4  Constraining Type
Parameters  825

Common Error 18.1: Genericity and
Inheritance  827

Common Error 18.2: The Array
Store Exception  827

Special Topic 18.1: Wildcard Types  828

18.5  Type Erasure  829

Common Error 18.3: Using Generic Types in
a Static Context  832

Special Topic 18.2: Reflection  832
Worked Example 18.1: Making a

Generic Binary Search Tree Class 

818

In the supermarket, a generic product can be sourced
from multiple suppliers. In computer science, generic
programming involves the design and implementation of
data structures and algorithms that work for multiple types.
You have already seen the generic ArrayList class that
can be used to collect elements of arbitrary types. In this
chapter, you will learn how to implement your own generic
classes and methods.

18.1  Generic Classes and Type Parameters
Generic programming is the creation of programming constructs that can be used
with many different types. For example, the Java library programmers who imple-
mented the ArrayList class used the technique of generic programming. As a result,
you can form array lists that collect elements of different types, such as Array­
List<String>, Array­List<BankAccount>, and so on.

The LinkedList class that we implemented in Section 16.1 is also an example of
generic programming—you can store objects of any class inside a LinkedList. That
LinkedList class achieves genericity by using inheritance. It uses references of type
Object and is therefore capable of storing objects of any class. For example, you can
add elements of type String because the String class extends Object. In contrast, the
ArrayList and LinkedList classes from the standard Java library are generic classes. Each
of these classes has a type parameter for specifying the type of its elements. For exam-
ple, an ArrayList<String> stores String elements.

When declaring a generic class, you supply a variable for each type parameter. For
example, the standard library declares the class ArrayList<E>, where E is the type vari-
able that denotes the element type. You use the same variable in the declaration of the
methods, whenever you need to refer to that type. For example, the ArrayList<E> class
declares methods

public void add(E element)
public E get(int index)

You could use another name, such as ElementType, instead of E. However, it is custom-
ary to use short, uppercase names for type parameters.

In order to use a generic class, you need to instantiate the type parameter, that is,
supply an actual type. You can supply any class or interface type, for example

ArrayList<BankAccount>
ArrayList<Measurable>

However, you cannot substitute any of the eight primitive types for a type parameter.
It would be an error to declare an ArrayList<double>. Use the corresponding wrapper
class instead, such as ArrayList<Double>.

When you instantiate a generic class, the type that you supply replaces all occur-
rences of the type variable in the declaration of the class. For example, the add method
for ArrayList<BankAccount> has the type variable E replaced with the type BankAccount:

public void add(BankAccount element)

Contrast that with the add method of the LinkedList class in Chapter 16:
public void add(Object element)

In Java, generic
programming can be
achieved with
inheritance or with
type parameters.

A generic class has
one or more type
parameters.

Type parameters
can be instantiated
with class or
interface types.

18.2 I mplementing Generic Types   819

The add method of the generic ArrayList class is safer. It is impossible to add a String
object into an ArrayL­ist<BankAccount>, but you can accidentally add a String into a
LinkedList that is intended to hold bank accounts:

ArrayList<BankAccount> accounts1 = new ArrayList<BankAccount>();
LinkedList accounts2 = new LinkedList(); // Should hold BankAccount objects
accounts1.add("my savings"); // Compile-time error
accounts2.addFirst("my savings"); // Not detected at compile time

The latter will result in a class cast exception when some other part of the code
retrieves the string, believing it to be a bank account:

BankAccount account = (BankAccount) accounts2.getFirst(); // Run-time error

Code that uses the generic ArrayList class is also easier to read. When you spot an
ArrayList<BankAccount>, you know right away that it must contain bank accounts.
When you see a LinkedList, you have to study the code to find out what it contains.

In Chapters 16 and 17, we used inheritance to implement generic linked lists, hash
tables, and binary trees, because you were already familiar with the concept of inheri-
tance. Using type parameters requires new syntax and additional techniques—those
are the topic of this chapter.

1.	 The standard library provides a class HashMap<K, V> with key type K and value
type V. Declare a hash map that maps strings to integers.

2.	 The binary search tree class in Chapter 17 is an example of generic programming
because you can use it with any classes that implement the Comparable interface.
Does it achieve genericity through inheritance or type parameters?

3.	 Does the following code contain an error? If so, is it a compile-time or run-time
error?
ArrayList<Integer> a = new ArrayList<Integer>();
String s = a.get(0);

4.	 Does the following code contain an error? If so, is it a compile-time or run-time
error?
ArrayList<Double> a = new ArrayList<Double>();
a.add(3);

5.	 Does the following code contain an error? If so, is it a compile-time or run-time
error?
LinkedList a = new LinkedList();
a.addFirst("3.14");
double x = (Double) a.removeFirst();

Practice It	 Now you can try these exercises at the end of the chapter: R18.4, R18.5, R18.6.

18.2  Implementing Generic Types
In this section, you will learn how to implement your own generic classes. We will
write a very simple generic class that stores pairs of objects, each of which can have an
arbitrary type. For example,

Pair<String, Integer> result = new Pair<String, Integer>("Harry Morgan", 1729);

ONLINE E x a m p l e

Sample programs
that demonstrate
safety problems
when using
collections without
type parameters.

Type parameters
make generic code
safer and easier
to read.

S e l f C h e c k

820  Chapter 18  Generic Classes

Syntax 18.1	 Declaring a Generic Class

modifier class GenericClassName<TypeVariable1, TypeVariable2, . . .>
{
 instance variables
 constructors
 methods
}

Syntax

public class Pair<T, S>
{
 private T first;
 private S second;
 . . .
 public T getFirst() { return first; }
 . . .
}

Supply a variable for each type parameter.

Instance variables with a variable data type
A method with a
variable return type

The getFirst and getSecond methods retrieve the first and second values of the pair:
String name = result.getFirst();
Integer number = result.getSecond();

This class can be useful when you implement a method that computes two values at
the same time. A method cannot simultaneously return a String and an Integer, but it
can return a single object of type Pair<String, Integer>.

The generic Pair class requires two type parameters, one for the type of the first
element and one for the type of the second element.

We need to choose variables for the type parameters. It is considered good form
to use short uppercase names for type variables, such as those in the following table:

Type Variable Meaning

E Element type in a collection

K Key type in a map

V Value type in a map

T General type

S, U Additional general types

You place the type variables for a generic class after the class name, enclosed in angle
brackets (< and >):

public class Pair<T, S>

When you declare the instance variables and methods of the Pair class, use the vari-
able T for the first element type and S for the second element type:

public class Pair<T, S>
{

Type variables of a
generic class follow
the class name and
are enclosed in
angle brackets.

18.2 I mplementing Generic Types   821

 private T first;
 private S second;

 public Pair(T firstElement, S secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public T getFirst() { return first; }
 public S getSecond() { return second; }
}

Some people find it simpler to start out with a regular class, choosing some actual
types instead of the type parameters. For example,

public class Pair // Here we start out with a pair of String and Integer values
{
 private String first;
 private Integer second;

 public Pair(String firstElement, Integer secondElement)
 {
 first = firstElement;
 second = secondElement;
 }

 public String getFirst() { return first; }
 public Integer getSecond() { return second; }
}

Now it is an easy matter to replace all String types with the type variable T and all
Integer types with the type variable S.

This completes the declaration of the generic Pair class. It is ready to use whenever
you need to form a pair of two objects of arbitrary types.

The following sample program shows how to make use of a Pair for returning two
values from a method.

section_2/Pair.java

1 /**
2 This class collects a pair of elements of different types.
3 */
4 public class Pair<T, S>
5 {
6 private T first;
7 private S second;
8
9 /**

10 Constructs a pair containing two given elements.
11 @param firstElement the first element
12 @param secondElement the second element
13 */
14 public Pair(T firstElement, S secondElement)
15 {
16 first = firstElement;
17 second = secondElement;
18 }
19

Use type parameters
for the types of
generic instance
variables, method
parameter variables,
and return values.

822  Chapter 18  Generic Classes

20 /**
21 Gets the first element of this pair.
22 @return the first element
23 */
24 public T getFirst() { return first; }
25
26 /**
27 Gets the second element of this pair.
28 @return the second element
29 */
30 public S getSecond() { return second; }
31
32 public String toString() { return "(" + first + ", " + second + ")"; }
33 }

section_2/PairDemo.java

1 public class PairDemo
2 {
3 public static void main(String[] args)
4 {
5 String[] names = { "Tom", "Diana", "Harry" };
6 Pair<String, Integer> result = firstContaining(names, "a");
7 System.out.println(result.getFirst());
8 System.out.println("Expected: Diana");
9 System.out.println(result.getSecond());

10 System.out.println("Expected: 1");
11 }
12
13 /**
14 Gets the first String containing a given string, together
15 with its index.
16 @param strings an array of strings
17 @param sub a string
18 @return a pair (strings[i], i) where strings[i] is the first
19 strings[i] containing str, or a pair (null, -1) if there is no
20 match.
21 */
22 public static Pair<String, Integer> firstContaining(
23 String[] strings, String sub)
24 {
25 for (int i = 0; i < strings.length; i++)
26 {
27 if (strings[i].contains(sub))
28 {
29 return new Pair<String, Integer>(strings[i], i);
30 }
31 }
32 return new Pair<String, Integer>(null, -1);
33 }
34 }

Program Run

Diana
Expected: Diana
1
Expected: 1

18.3  Generic Methods   823

6.	 How would you use the generic Pair class to construct a pair of strings "Hello"
and "World"?

7.	 How would you use the generic Pair class to construct a pair containing “Hello”
and 1729?

8.	 What is the difference between an ArrayList<Pair<String, Integer>> and a
Pair<ArrayList<String>, Inte­ger>?

9.	 Write a method roots with a Double parameter variable x that returns both the
positive and negative square root of x if x ≥ 0 or null otherwise.

10.	 How would you implement a class Triple that collects three values of arbitrary
types?

Practice It	 Now you can try these exercises at the end of the chapter: P18.1, P18.2, P18.9.

18.3  Generic Methods
A generic method is a method with a type parameter. Such a method can occur in a
class that in itself is not generic. You can think of it as a template for a set of methods
that differ only by one or more types. For example, we may want to declare a method
that can print an array of any type:

public class ArrayUtil
{
 /**
 Prints all elements in an array.
 @param a the array to print
 */
 public static <T> void print(T[] a)
 {
 . . .
 }
 . . .
}

As described in the previous section, it is often easier to see how to implement a
generic method by starting with a concrete example. This method prints the elements
in an array of strings:

public class ArrayUtil
{
 public static void print(String[] a)
 {
 for (String e : a)
 {
 System.out.print(e + " ");
 }
 System.out.println();
 }
 . . .
}

S e l f C h e c k

A generic method
is a method with a
type parameter.

824  Chapter 18  Generic Classes

Syntax 18.2	 Declaring a Generic Method

modifiers <TypeVariable1, TypeVariable2, . . .> returnType methodName(parameters)
{
 body
}

Syntax

public static <E> String toString(ArrayList<E> a)
{
 String result = "";
 for (E e : a)
 {
 result = result + e + " ";
 }
 return result;
}

Supply the type variable before the return type.

Local variable with a
variable data type

In order to make the method into a generic method, replace String with a type param-
eter, say E, to denote the element type of the array. Add a type parameter list, enclosed
in angle brackets, between the modifiers (public static) and the return type (void):

public static <E> void print(E[] a)
{
 for (E e : a)
 {
 System.out.print(e + " ");
 }
 System.out.println();
}

When you call the generic method, you need not specify which type to use for the
type parameter. (In this regard, generic methods differ from generic classes.) Simply
call the method with appropriate arguments, and the compiler will match up the type
parameters with the argument types. For example, consider this method call:

Rectangle[] rectangles = . . .;
ArrayUtil.print(rectangles);

The type of the rectangles argument is Rectangle[], and the type of the parameter vari-
able is E[]. The compiler deduces that E is Rectangle.

This particular generic method is a static method in an ordinary class. You can also
declare generic methods that are not static. You can even have generic methods in
generic classes.

As with generic classes, you cannot replace type parameters with primitive types.
The generic print method can print arrays of any type except the eight primitive types.
For example, you cannot use the generic print method to print an array of type int[].
That is not a major problem. Simply implement a print(int[] a) method in addition to
the generic print method.

11.	 Exactly what does the generic print method print when you pass an array of
BankAccount objects containing two bank accounts with zero balances?

12.	 Is the getFirst method of the Pair class a generic method?

Supply the type
parameters of a
generic method
between the
modifiers and the
method return type.

When calling a
generic method, you
need not instantiate
the type parameters.

O n l i n e E x a m p l e

A sample program
with a generic
method for printing
an array of objects
and a non-generic
method for printing
an array of integers.

S e l f C h e c k

18.4  Constraining Type Parameters   825

13.	 Consider this fill method:
public static <T> void fill(List<T> lst, T value)
{
 for (int i = 0; i < lst.size(); i++) { lst.set(i, value); }
}

If you have an array list
ArrayList<String> a = new ArrayList<String>(10);

how do you fill it with ten "*"?
14.	 What happens if you pass 42 instead of "*" to the fill method?
15.	 Consider this fill method:

public static <T> fill(T[] arr, T value)
{
 for (int i = 0; i < arr.length; i++) { arr[i] = value; }
}

What happens when you execute the following statements?
String[] a = new String[10];
fill(a, 42);

Practice It	 Now you can try these exercises at the end of the chapter: P18.3, P18.4, P18.19.

18.4  Constraining Type Parameters
It is often necessary to specify what types can be
used in a generic class or method. Consider a generic
method that finds the average of the values in an array
list of objects. How can you compute averages when
you know nothing about the element type? You need
to have a mechanism for measuring the elements. In
Section 9.6, we designed an interface for that purpose:

public interface Measurable
{
 double getMeasure();
}

We can constrain the type of the elements, requiring
that the type implement the Measurable type. In Java,
this is achieved by adding the clause extends Measurable
after the type parameter:

public static <E extends Measurable> double average(ArrayList<E> objects)

This means, “E or one of its superclasses extends or implements Measurable”. In this
situation, we say that E is a subtype of the Measurable type.

Here is the complete average method:

public static <E extends Measurable> double average(ArrayList<E> objects)
{
 if (objects.size() == 0) { return 0; }
 double sum = 0;
 for (E obj : objects)
 {

You can place restrictions on
the type parameters of generic
classes and methods.

Type parameters
can be constrained
with bounds.

826  Chapter 18  Generic Classes

 sum = sum + obj.getMeasure();
 }
 return sum / objects.size();
}

Note the call obj.getMeasure(). The variable obj has type E, and E is a subtype of
Measurable. Therefore, we know that it is legal to apply the getMeasure method to obj.

If the BankAccount class implements the Measurable interface, then you can call the
average method with an array list of BankAccount objects. But you cannot compute the
average of an array list of strings because the String class does not implement the
Measurable interface.

Now consider the task of finding the minimum in an array list. We can return
the element with the smallest measure (see Self Check 17). However, the Measurable
interface was created for this book and is not widely used. Instead, we will use the
Comparable interface type that many classes implement. The Comparable interface is itself
a generic type. The type parameter specifies the type of the parameter variable of the
compareTo method:

public interface Comparable<T>
{
 int compareTo(T other);
}

For example, String implements Comparable<String>. You can compare strings with
other strings, but not with objects of different classes.

If the array list has elements of type E, then we want to require that E implements
Comparable<E>. Here is the method:

public static <E extends Comparable<E>> E min(ArrayList<E> objects)
{
 E smallest = objects.get(0);
 for (int i = 1; i < objects.size(); i++)
 {
 E obj = objects.get(i);
 if (obj.compareTo(smallest) < 0)
 {
 smallest = obj;
 }
 }
 return smallest;
}

Because of the type constraint, we know that obj has a method
int compareTo(E other)

Therefore, the call
obj.compareTo(smallest)

is valid.
Very occasionally, you need to supply two or more type bounds. Then you sepa-

rate them with the & character, for example
<E extends Comparable<E> & Measurable>

The extends reserved word, when applied to type parameters, actually means “extends
or implements”. The bounds can be either classes or interfaces, and the type param-
eter can be replaced with a class or interface type.

O n l i n e E x a m p l e

A sample program
that demonstrates a
constraint on a type
parameter.

18.4  Constraining Type Parameters   827

16.	 How would you constrain the type parameter for a generic BinarySearchTree
class?

17.	 Modify the min method to compute the minimum of an array list of elements that
implements the Measurable interface.

18.	 Could we have declared the min method of Self Check 17 without type param-
eters, like this?
public static Measurable min(ArrayList<Measurable> a)

19.	 Could we have declared the min method of Self Check 17 without type param-
eters for arrays, like this?
public static Measurable min(Measurable[] a)

20.	 How would you implement the generic average method for arrays?
21.	 Is it necessary to use a generic average method for arrays of measurable objects?

Practice It	 Now you can try these exercises at the end of the chapter: P18.5, P18.7, P18.20.

Genericity and Inheritance

If SavingsAccount is a subclass of BankAccount, is ArrayList<SavingsAccount> a subclass of Array­
List<BankAccount>? Perhaps surprisingly, it is not. Inheritance of type parameters does not lead
to inheritance of generic classes. There is no relationship between Array­List<Savings­Account>
and Array­List<Bank­Account>.

This restriction is necessary for type checking. Without the restriction, it would be pos-
sible to add objects of unrelated types to a collection. Suppose it was possible to assign an
ArrayList<SavingsAccount> object to a variable of type ArrayList<BankAccount>:

ArrayList<SavingsAccount> savingsAccounts = new ArrayList<SavingsAccount>();
ArrayList<BankAccount> bankAccounts = savingsAccounts;
 // Not legal, but suppose it was
BankAccount harrysChecking = new CheckingAccount();
 // CheckingAccount is another subclass of BankAccount
bankAccounts.add(harrysChecking); // OK—can add BankAccount object

But bankAccounts and savingsAccounts refer to the same array list! If the assignment was legal,
we would be able to add a CheckingAccount into an ArrayList<SavingsAccount>.

In many situations, this limitation can be overcome by using wildcards—see Special
Topic 18.1.

The Array Store Exception

In Common Error 18.1, you saw that one cannot assign a subclass list to a superclass list.
For example, an ArrayList<SavingsAccount> cannot be used where an ArrayList<BankAccount> is
expected.

This is surprising, because you can perform the equivalent assignment with arrays. For
example,

SavingsAccount[] savingsAccounts = new SavingsAccount[10];
BankAccount bankAccounts = savingsAccounts; // Legal

But there was a reason the assignment wasn’t legal for array lists—it would have allowed stor-
ing a CheckingAccount into savingsAccounts.

S e l f C h e c k

Common Error 18.1

Common Error 18.2

828  Chapter 18  Generic Classes

Let’s try that with arrays:

BankAccount harrysChecking = new CheckingAccount();
bankAccounts[harrysChecking]; // Throws ArrayStoreException

This code compiles. The object harrysChecking is a CheckingAccount and hence a BankAccount. But
bankAccounts and savingsAccounts are references to the same array—an array of type Savings­
Account[]. When the program runs, that array refuses to store a CheckingAccount, and throws an
ArrayStoreException.

Both ArrayList and arrays avoid the type error, but they do it in different ways. The Array­
List class avoids it at compile-time, and arrays avoid it at run-time. Generally, we prefer a
compile-time error notification, but the cost is steep, as you can see from Special Topic 18.1. It
is a lot of work to tell the compiler precisely which conversions should be permitted.

Wildcard Types

It is often necessary to formulate subtle constraints on type parameters. Wildcard types were
invented for this purpose. There are three kinds of wildcard types:

Name Syntax Meaning

Wildcard with lower bound ? extends B Any subtype of B

Wildcard with upper bound ? super B Any supertype of B

Unbounded wildcard ? Any type

A wildcard type is a type that can remain unknown. For example, we can declare the following
method in the LinkedList<E> class:

public void addAll(LinkedList<? extends E> other)
{
 ListIterator<E> iter = other.listIterator();
 while (iter.hasNext())
 {
 add(iter.next());
 }
}

The method adds all elements of other to the end of the linked list.
The addAll method doesn’t require a specific type for the element type of other. Instead,

it allows you to use any type that is a subtype of E. For example, you can use addAll to add a
LinkedList<SavingsAccount> to a LinkedList<BankAccount>.

To see a wildcard with a super bound, have another look at the min method:

public static <E extends Comparable<E>> E min(ArrayList<E> a)

However, this bound is too restrictive. Suppose the BankAccount class implements
Comparable<BankAccount>. Then the subclass SavingsAccount also implements Comparable<Bank­
Account> and not Comparable<SavingsAccount>. If you want to use the min method with a Savings­
Account array list, then the type parameter of the Comparable interface should be any supertype
of the array list’s element type:

public static <E extends Comparable<? super E>> E min(ArrayList<E> a)

Here is an example of an unbounded wildcard. The Collections class declares a method

public static void reverse(List<?> list)

Special Topic 18.1

18.5 T ype Erasure   829

You can think of that declaration as a shorthand for

public static <T> void reverse(List<T> list)

Common Error 18.2 compares this limitation with the seemingly more permissive behavior of
arrays in Java.

18.5  Type Erasure
Because generic types are a fairly recent addition to the Java language, the virtual
machine that executes Java programs does not work with generic classes or meth-
ods. Instead, type parameters are “erased”, that is, they are replaced with ordinary
Java types. Each type parameter is replaced with its bound, or with Object if it is not
bounded.

For example, the generic class Pair<T, S> turns into the following raw class:
public class Pair
{
 private Object first;
 private Object second;

 public Pair(Object firstElement, Object secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public Object getFirst() { return first; }
 public Object getSecond() { return second; }
}

As you can see, the type parameters T and S have been replaced by Object. The result is
an ordinary class.

The same process is applied to generic methods. Consider this method:
public static <E extends Measurable> E min(E[] objects)
{
 E smallest = objects[0];
 for (int i = 1; i < objects.length; i++)
 {
 E obj = objects[i];
 if (obj.getMeasure() < smallest.getMeasure())
 {
 smallest = obj;
 }
 }
 return smallest;
}

In the Java virtual machine, generic types are erased.

O n l i n e E x a m p l e

A program that
demonstrates the
need for wildcards.

The virtual machine
erases type
parameters,
replacing them with
their bounds or
Objects.

830  Chapter 18  Generic Classes

When erasing the type parameter, it is replaced with its bound, the Measurable interface:
public static Measurable min(Measurable[] objects)
{
 Measurable smallest = objects[0];
 for (int i = 1; i < objects.length; i++)
 {
 Measurable obj = objects[i];
 if (obj.getMeasure() < smallest.getMeasure())
 {
 smallest = obj;
 }
 }
 return smallest;
}

Knowing about type erasure helps you understand the limitations of Java gener-
ics. For example, you cannot construct new objects of a generic type. The following
method, which tries to fill an array with copies of default objects, would be wrong:

public static <E> void fillWithDefaults(E[] a)
{
 for (int i = 0; i < a.length; i++)
 {
 a[i] = new E(); // ERROR
 }
}

To see why this is a problem, carry out the type erasure process, as if you were the
compiler:

public static void fillWithDefaults(Object[] a)
{
 for (int i = 0; i < a.length; i++)
 {
 a[i] = new Object(); // Not useful
 }
}

Of course, if you start out with a Rectangle[] array, you don’t want it to be filled with
Object instances. But that’s what the code would do after erasing types.

In situations such as this one, the compiler will report an error. You then need to
come up with another mechanism for solving your problem. In this particular exam-
ple, you can supply a default object:

public static <E> void fill(E[] a, E defaultValue)
{
 for (int i = 0; i < a.length; i++)
 {
 a[i] = defaultValue;
 }
}

Similarly, you cannot construct an array of a generic type:
public class Stack<E>
{
 private E[] elements;
 . . .
 public Stack()
 {
 elements = new E[MAX_SIZE]; // Error

You cannot construct
objects or arrays of a
generic type.

18.5 T ype Erasure   831

 }
}

Because the array construction expression new E[] would be erased to new Object[], the
compiler disallows it. A remedy is to use an array list instead:

public class Stack<E>
{
 private ArrayList<E> elements;
 . . .
 public Stack()
 {
 elements = new ArrayList<E>(); // Ok
 }
 . . .
}

Another solution is to use an array of objects and provide a cast when reading ele-
ments from the array:

public class Stack<E>
{
 private Object[] elements;
 private int currentSize;
 . . .
 public Stack()
 {
 elements = new Object[MAX_SIZE]; // Ok
 }
 . . .
 public E pop()
 {
 size--;
 return (E) elements[currentSize];
 }
}

The cast (E) generates a warning because it cannot be checked at run time.
These limitations are frankly awkward. It is hoped that a future version of Java will

no longer erase types so that the current restrictions due to erasure can be lifted.

22.	 Suppose we want to eliminate the type bound in the min method of Section 18.5,
by declaring the parameter variable as an array of Comparable<E> objects. Why
doesn’t this work?

23.	 What is the erasure of the print method in Section 18.3?
24.	 Could the Stack example be implemented as follows?

public class Stack<E>
{
 private E[] elements;
 . . .
 public Stack()
 {
 elements = (E[]) new Object[MAX_SIZE];
 }
 . . .
}

O n l i n e E x a m p l e

This program shows
how to implement a
generic stack as an
array of objects.

S e l f C h e c k

832  Chapter 18  Generic Classes

25.	 The ArrayList<E> class has a method
Object[] toArray()

Why doesn’t the method return an E[]?
26.	 The ArrayList<E> class has a second method

E[] toArray(E[] a)

Why can this method return an array of type E[]? (Hint: Special Topic 18.2.)
27.	 Why can’t the method

static <T> T[] copyOf(T[] original, int newLength)

be implemented without reflection?

Practice It	 Now you can try these exercises at the end of the chapter: R18.11, R18.14, P18.22.

Using Generic Types in a Static Context

You cannot use type parameters to declare static variables, static methods, or static inner
classes. For example, the following would be illegal:

public class LinkedList<E>
{
 private static E defaultValue; // ERROR
 . . .
 public static List<E> replicate(E value, int n) { . . . } // ERROR
 private static class Node { public E data; public Node next; } // ERROR
}

In the case of static variables, this restriction is very sensible. After the generic types are erased,
there is only a single variable LinkedList.defaultValue, whereas the static variable declaration
gives the false impression that there is a separate variable for each LinkedList<E>.

For static methods and inner classes, there is an easy workaround; simply add a type
parameter:

public class LinkedList<E>
{
 . . .
 public static <T> List<T> replicate(T value, int n) { . . . } // OK
 private static class Node<T> { public T data; public Node<T> next; } // OK
}

Reflection

As you have seen, type erasure makes it impossible for a generic method to construct a generic
array. There is an advanced technique called reflection that you can sometimes use to over-
come this limitation. Reflection lets you work with classes in a running program.

In Java, the virtual machine keeps a Class object for each class that has been loaded. That
object has information about each class, as well as methods to construct new objects of the
class.

Given an object, you can get its class object by calling getClass:

Class objsClass = obj.getClass();

Common Error 18.3

Special Topic 18.2

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

18.5 T ype Erasure   833

You can then make a new instance of that class by calling the newInstance method:

Object newObj = objsClass.newInstance();

This method throws an exception if it cannot access a constructor with no arguments.
Given an array, you can get the type of the elements this way:

Class arrayClass = array.getClass();
Class elementClass = arrayClass.getComponentType();

If you want to create a new array, use the Array.newInstance method:

Object[] newArray = Array.newInstance(elementClass, length);

Using these methods, you can implement the fillWithDefaults method:

public static <E> void fillWithDefaults(E[] a)
{
 Class arrayClass = a.getClass();
 Class elementClass = arrayClass.getComponentType();
 try
 {
 for (int i = 0; i < a.length; i++)
 {
 a[i] = elementClass.newInstance();
 }
 }
 catch (. . .) { . . . }
}

Note that we must ask for the element type of a. It does no good asking for a[0].getClass. The
array might have length 0, or a[0] might be null, or a[0] might be an instance of a subclass of E.

Here is another example. The Arrays class implements a method

static <T> T[] copyOf(T[] original, int newLength)

That method can’t simply call

T[] result = new T[newLength]; // Error

Instead, it must construct a new array with the same element type as the original:

Class arrayClass = original.getClass();
Class elementClass = arrayClass.getComponentType();
T[] newArray = (T[]) Array.newInstance(elementClass, newLength);

For this technique to work, you must have an element or array of the desired type. You
couldn’t use it to build a Stack<E> that uses an E[] array because the stack starts out empty.

Worked Example 18.1	 Making a Generic Binary Search Tree Class

In this Worked Example, we will turn the binary search tree class from Chapter 17 into a
generic BinarySearchTree<E> that stores elements of type E.

834  Chapter 18  Generic Classes

Describe generic classes and type parameters.

•	 In Java, generic programming can be achieved with inheritance or with type
parameters.

•	 A generic class has one or more type parameters.
•	 Type parameters can be instantiated with class or interface types.
•	 Type parameters make generic code safer and easier to read.

Implement generic classes and interfaces.

•	 Type variables of a generic class follow the class name and are enclosed in angle
brackets.

•	 Use type parameters for the types of generic instance variables, method parameter
variables, and return values.

Implement generic methods.

•	 A generic method is a method with a type parameter.
•	 Supply the type parameters of a generic method between the modifiers and the

method return type.
•	 When calling a generic method, you need not instantiate the type parameters.

Specify constraints on type parameters.

•	 Type parameters can be constrained with bounds.

Recognize how erasure of type parameters places limitations on generic programming in Java.

•	 The virtual machine erases type parameters, replacing them with their bounds
or Objects.

•	 You cannot construct objects or arrays of a generic type.

• R18.1	 What is a type parameter?

• R18.2	 What is the difference between a generic class and an ordinary class?

• R18.3	 What is the difference between a generic class and a generic method?

• R18.4	 Find an example of a non-static generic method in the standard Java library.

•• R18.5	 Find four examples of a generic class with two type parameters in the standard Java
library.

C h a p t e r Summ a r y

R e v i e w E x e r c i s e s

Programming Exercises  835

•• R18.6	 Find an example of a generic class in the standard library that is not a collection class.

• R18.7	 Why is a bound required for the type parameter T in the following method?
<T extends Comparable> int binarySearch(T[] a, T key)

•• R18.8	 Why is a bound not required for the type parameter E in the HashSet<E> class?

• R18.9	 What is an ArrayList<Pair<T, T>>?

•• R18.10	 Explain the type bounds of the following method of the Collections class.
public static <T extends Comparable<? super T>> void sort(List<T> a)

Why doesn’t T extends Comparable or T extends Comparable<T> suffice?

• R18.11	 What happens when you pass an ArrayList<String> to a method with an ArrayList
parameter variable? Try it out and explain.

••• R18.12	 What happens when you pass an ArrayList<String> to a method with an ArrayList
parameter variable, and the method stores an object of type BankAccount into the array
list? Try it out and explain.

•• R18.13	 What is the result of the following test?
ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();
if (accounts instanceof ArrayList<String>) . . .

Try it out and explain.

•• R18.14	 The ArrayList<E> class in the standard Java library must manage an array of objects
of type E, yet it is not legal to construct a generic array of type E[] in Java. Locate the
implementation of the ArrayList class in the library source code that is a part of the
JDK. Explain how this problem is overcome.

• P18.1	 Modify the generic Pair class so that both values have the same type.

• P18.2	 Add a method swap to the Pair class of Exercise P18.1 that swaps the first and second
elements of the pair.

•• P18.3	 Implement a static generic method PairUtil.swap whose argument is a Pair object,
using the generic class declared in Section 18.2. The method should return a new
pair, with the first and second element swapped.

•• P18.4	 Write a static generic method PairUtil.minmax that computes the minimum and max
imum elements of an array of type T and returns a pair containing the minimum and
maximum value. Require that the array elements implement the Measurable interface
of Chapter 9.

•• P18.5	 Repeat Exercise P18.4, but require that the array elements implement the Comparable
interface.

••• P18.6	 Repeat Exercise P18.5, but refine the bound of the type parameter to extend the
generic Comparable type.

•• P18.7	 Implement a generic version of the binary search algorithm.

•• P18.8	 Implement a generic version of the selection sort algorithm.

P r o g r a mm i n g E x e r c i s e s

836  Chapter 18  Generic Classes

••• P18.9	 Implement a generic version of the merge sort algorithm. Your program should
compile without warnings.

• P18.10	 Implement a generic version of the LinkedList class of Chapter 16.

•• P18.11	 Turn the HashSet implementation of Chapter 16 into a generic class. Use an array list
instead of an array to store the buckets.

•• P18.12	 Provide suitable hashCode and equals methods for the Pair class of Section 18.2 and
implement a HashMap class, using a HashSet<Pair<K, V>>.

••• P18.13	 Implement a generic version of the permutation generator in Section 13.5. Generate
all permutations of a List<E>.

•• P18.14	 Write a generic static method print that prints the elements of any object that
implements the Iterable<E> interface. The elements should be separated by commas.
Place your method into an appropriate utility class.

•• P18.15	 Turn the MinHeap class of Chapter 17 into a generic class. As with the TreeSet class
of the standard library, allow a Comparator to compare elements. If no comparator is
supplied, assume that the element type implements the Comparable interface.

•• P18.16	 Make the Measurable interface from Chapter 9 into a generic class. Provide a static
method that returns the largest element of an ArrayList<T>, provided that the ele-
ments are instances of Measurable<T>. Be sure to return a value of type T.

••• P18.17	 Enhance Exercise P18.16 so that the elements of the ArrayList<T> can implement
Measurable<U> for appropriate types U.

•• P18.18	 Make the Measurer interface from Chapter 9 into a generic class. Provide a static
method T max(T[] values, Measurer<T> meas).

• P18.19	 Provide a static method void append(ArrayList<T> a, ArrayList<T> b) that appends the
elements of b to a.

•• P18.20	 Modify the method of Exercise P18.19 so that the second array list can contain ele-
ments of a subclass. For example, if people is an ArrayList<Person> and students is an
ArrayList<Student>, then append(people, students) should compile but append(students,
people) should not.

•• P18.21	 Modify the method of Exercise P18.19 so that it leaves the first array list unchanged
and returns a new array list containing the elements of both array lists.

•• P18.22	 Modify the method of Exercise P18.21 so that it receives and returns arrays, not
array lists. Hint: Arrays.copyOf.

• P18.23	 Provide a static method that reverses the elements of a generic array list.

• P18.24	 Provide a static method that returns the reverse of a generic array list, without
modifying the original list.

•• P18.25	 Provide a static method that checks whether a generic array list is a palindrome; that
is, whether the values at index i and n - 1 - i are equal to each other, where n is the
size of the array list.

•• P18.26	 Provide a static method that checks whether the elements of a generic array list are in
increasing order. The elements must be comparable.

Answers to Self-Check Questions  837

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 HashMap<String, Integer>
2.	 It uses inheritance.
3.	 This is a compile-time error. You cannot assign

the Integer expression a.get(0) to a string.
4.	 This is a compile-time error. The compiler

won’t convert 3 to a Double. Remedy: Call
a.add(3.0).

5.	 This is a run-time error. a.removeFirst() yields
a String that cannot be converted into a Double.
Remedy: Call a.addFirst(3.14);

6.	 new Pair<String, String>("Hello", "World")
7.	 new Pair<String, Integer>(“Hello”, 1729)

8.	 An ArrayList<Pair<String, Integer>> contains
multiple pairs, for example [(Tom, 1), (Harry,
3)]. A Pair<ArrayList<String>, Integer> contains
a list of strings and a single integer, such as
([Tom, Harry], 1).

9.	 public static Pair<Double, Double> roots(
 Double x)
{
 if (x >= 0)
 {
 double r = Math.sqrt(x);
 return new Pair<Double, Double>(r, -r);
 }
 else { return null; }
}

10.	 You have three type parameters: Triple<T, S, U>.
Add an instance variable U third, a construc-
tor argument for initializing it, and a method
U getThird() for returning it.

11.	 The output depends on the implementation of
the toString method in the Bank­­Account class.

12.	 No—the method has no type parameters. It is
an ordinary method in a generic class.

13.	 fill(a, "*")

14.	 You get a compile-time error. An integer can-
not be converted to a string.

15.	 You get a run-time error. Unfortunately, the
call compiles, with T = Object. This choice is
justified because a String[] array is convertible
to an Object[] array, and 42 becomes new Inte­
ger(42), which is convertible to an Object. But
when the program tries to store an Integer in
the String[] array, an exception is thrown.

16.	 public class BinarySearchTree<E
 extends Comparable<E>>

or, if you read Special Topic 18.1,
public class BinarySearchTree<E
 extends Comparable<? superE>>

17.	 public static <E extends Measurable> E min(
 ArrayList<E> objects)
{
 E smallest = objects.get(0);
 for (int i = 1; i < objects.size(); i++)
 {
 E obj = objects.get(i);
 if (obj.getMeasure()
 < smallest.getMeasure())
 {
 smallest = obj;
 }
 }
 return smallest;
}

18.	 No. As described in Common Error 18.1, you
cannot convert an ArrayList<BankAccount> to an
ArrayList<Measurable>, even if BankAccount imple-
ments Measurable.

19.	 Yes, but this method would not be as useful.
Suppose accounts is an array of BankAccount
objects. With this method, min(accounts) would
return a result of type Measurable, whereas the
generic method yields a BankAccount.

20.	 public static <E extends Measurable> ­
 double average(E[] objects)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (E obj : objects)
 {
 sum = sum + obj.getMeasure();
 }
 return sum / objects.length;
}

21.	 No. You can define
public static double average(­
 Measurable[] objects)
{
 if (objects.length == 0) { return 0; }
 double sum = 0;
 for (Measurable obj : objects)
 {
 sum = sum + obj.getMeasure();
 }
 return sum / objects.length;

838  Chapter 18  Generic Classes

}

For example, if BankAccount implements
Measurable, a BankAccount[] array is convert-
ible to a Measurable[] array. Contrast with Self
Check 19, where the return type was a generic
type. Here, the return type is double, and there
is no need for using generic types.

22.	 public static <E> Comparable<E> min(
 Comparable<E>[] objects)

is an error. You cannot have an array of a
generic type.

23.	 public static void print(Object[] a)
{
 for (Object e : a)
 {
 System.out.print(e + " ");
 }
 System.out.println();
}

24.	 This code compiles (with a warning), but it is
a poor technique. In the future, if type erasure
no longer happens, the code will be wrong.
The cast from Object[] to String[] will cause a
class cast exception.

25.	 Internally, ArrayList uses an Object[] array.
Because of type erasure, it can’t make an E[]
array. The best it can do is make a copy of its
internal Object[] array.

26.	 It can use reflection to discover the element
type of the parameter a, and then construct
another array with that element type (or just
call the Arrays.copyOf method).

27.	 The method needs to construct a new array of
type T. However, that is not possible in Java
without reflection.

C h a p t e r

839

19
Streams and
B inary Input/
Output

To become familiar with text and
binary file formats

To learn about encryption

To understand when to use sequential and random file access

To read and write objects using serialization

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

19.1  Readers, Writers, and
Streams  840

19.2  Binary Input and Output  841

Common Error 19.1: Negative byte Values  845

19.3  Random Access  845

19.4  Object Streams  851

How To 19.1: Choosing a File Format  854

840

In this chapter you will learn more about how to write Java
programs that interact with files and other sources of bytes
and characters. You will learn about reading and writing text
and binary data, and the differences between sequential
and random access to data in a file. As an application of
file processing, you will study a program that encrypts and
decrypts data stored in a binary format. Finally, you will
see how you can use object serialization to save and load
complex objects with very little effort.

19.1  Readers, Writers, and Streams
There are two fundamentally different ways to store data: in text format or binary
format. In text format, data items are represented in human-readable form, as a
sequence of characters. For example, in text form, the integer 12,345 is stored as the
sequence of five characters:

'1' '2' '3' '4' '5'

In binary form, data items are represented in bytes. A byte is composed of 8 bits and
can denote one of 256 values. For example, in binary format, the integer 12,345 is
stored as a sequence of four bytes:

0 0 48 57

(because 12,345 = 48 · 256 + 57).
The Java library provides two sets of classes for handling input and output. Streams

handle binary data. Readers and writers handle data in text form. Figure 1 shows a
part of the hierarchy of the Java classes for input and output.

Text input and output are more convenient for humans, because it is easier to pro-
duce input (just use a text editor) and it is easier to check that output is correct (just
look at the output file in an editor). However, binary storage is more compact and
more efficient.

The Reader and Writer classes were designed to process information in text form.
You have already used the PrintWriter class in Chapter 7. However, for reading text,

Streams access
sequences of bytes.
Readers and writers
access sequences
of characters.

Figure 1  Java Classes for Input and Output

File
InputStream

Object
InputStream

InputStream

File
OutputStream

Object
OutputStream PrintStream

OutputStream WriterReader

PrintWriter

Scanner

19.2  Binary Input and Output   841

the Scanner class is more convenient than the Reader class. Internally, the Scanner class
makes use of readers to read characters.

If you store information in binary form, as a sequence of bytes, use the InputStream
and OutputStream classes and their subclasses.

Why use two sets of classes? Characters are made up of bytes, but there is some
variation in how each character is represented. For example, the character 'é' is
encoded as a single byte with value 223 in the ISO-8859-1 encoding that has been
commonly used in North America and Western Europe. However, in the UTF-8
encoding that is capable of encoding all Unicode characters, the character is repre-
sented by two bytes, 195 and 169. In the UTF-16 encoding, another encoding for Uni-
code, the same character is encoded as 0 223.

The Reader and Writer classes have the responsibility of converting between bytes
and characters. By default, these classes use the character encoding of the computer
executing the program. You can specify a different encoding in the constructor of the
Scanner or PrintWriter, like this:

Scanner in = new Scanner(input, "UTF-8");
 // Input can be a File or InputStream
PrintWriter out = new PrintWriter(output, "UTF-8");
 // Output can be a File or OutputStream

Unfortunately, there is no way of automatically determining the character encoding
that is used in a particular text. You need to know which character encoding was used
when the text was written. If you only exchange data with users from the same coun-
try, then you can use the default encoding of your computer. Otherwise, it is a good
idea to use the UTF-8 encoding.

You learned in Chapter 7 how to process text files. In the remainder of this chapter,
we will focus on binary files.

1.	 Suppose you need to read an image file that contains color values for each pixel
in the image. Will you use a Reader or an InputStream?

2.	 Special Topic 7.1 introduced the openStream method of the URL class, which returns
an InputStream:
URL locator = new URL("http://bigjava.com/index.html");
InputStream in = locator.openStream();

Why doesn’t the URL class provide a Reader instead?

Practice It	 Now you can try these exercises at the end of the chapter: R19.1, R19.2, R19.4.

19.2  Binary Input and Output
In this section, you will learn how to process binary data. To read binary data from a
disk file, you create a FileInputStream object:

InputStream inputStream = new FileInputStream("input.bin");

Similarly, you use FileOutputStream objects to write data to a disk file in binary form:
OutputStream outputStream = new FileOutputStream("output.bin");

The InputStream class has a method, read, to read a single byte at a time. (The File
InputStream class overrides this method to read the bytes from a disk file.) The

S e l f C h e c k

Use FileInputStream
and FileOutputStream
classes to read and
write binary data
from and to disk files.

842  Chapter 19  Streams and Binary Input/Output

InputStream.read method returns an int, not a byte, so that it can signal either that a
byte has been read or that the end of input has been reached. It returns the byte read
as an integer between 0 and 255 or, when it is at the end of the input, it returns –1.

You should test the return value. Only process the input when it is not –1:

InputStream in = . . .;
int next = in.read();
if (next != -1)
{
 Process next // A value between 0 and 255
}

The OutputStream class has a write method to write a single byte. The parameter vari-
able of the write method has type int, but only the lowest eight bits of the argument
are written to the stream:

OutputStream out = . . .;
int value = . . .; // Should be between 0 and 255
out.write(value);

When you are done writing to the file, you should close it:

out.close();

These basic methods are the only input and output methods that the input and output
stream classes provide. The Java stream package is built on the principle that each
class should have a very focused responsibility. The job of an input stream is to get
bytes, not to analyze them. If you want to read numbers, strings, or other objects,
you have to combine the class with other classes whose responsibility is to group
individual bytes or characters together into numbers, strings, and objects. You will
see an example of those classes in Section 19.4.

As an application of a task that involves reading and writing individual bytes, we
will implement an encryption program. The program scrambles the bytes in a file so
that the file is unreadable except to those who know the decryption method and the
secret keyword. We will use the Caesar cipher that you saw in Section 7.3, but now
we will encode all bytes. The person performing any encryption chooses an encryp-
tion key; here the key is a number between 1 and 255 that indicates the shift to be used
in encrypting each byte. (Julius Caesar used a key of 3, replacing A with D, B with E,
and so on—see Figure 2).

To decrypt, simply use the negative of the encryption key. For example, to decrypt
a message encoded with a key of 3, use a key of –3.

In this program we read each value separately, encrypt it, and write the encrypted
value:

int next = in.read();
if (next == -1)
{
 done = true;
}
else
{
 int encrypted = encrypt(next);
 out.write(encrypted);
}

In a more complex encryption program, you would read a block of bytes, encrypt the
block, and write it out.

The InputStream.
read method returns
an integer, either –1
to indicate end of
input, or a byte
between 0 and 255.

The OutputStream.
write method writes
a single byte.

19.2  Binary Input and Output   843

Figure 2 
The Caesar Cipher

M e e t m e a t t h e

P h h w # p h # d w # w k h #

Plain text

Encrypted text

Try out the program on a file of your choice. You will find that the encrypted file is
unreadable. In fact, because the newline characters are transformed, you may not be
able to read the encrypted file in a text editor. To decrypt, simply run the program
again and supply the negative of the encryption key.

section_2/CaesarCipher.java

1 import java.io.InputStream;
2 import java.io.OutputStream;
3 import java.io.IOException;
4
5 /**
6 This class encrypts files using the Caesar cipher.
7 For decryption, use an encryptor whose key is the
8 negative of the encryption key.
9 */

10 public class CaesarCipher
11 {
12 private int key;
13
14 /**
15 Constructs a cipher object with a given key.
16 @param aKey the encryption key
17 */
18 public CaesarCipher(int aKey)
19 {
20 key = aKey;
21 }
22
23 /**
24 Encrypts the contents of a stream.
25 @param in the input stream
26 @param out the output stream
27 */
28 public void encryptStream(InputStream in, OutputStream out)
29 throws IOException
30 {
31 boolean done = false;
32 while (!done)
33 {
34 int next = in.read();
35 if (next == -1)
36 {
37 done = true;
38 }
39 else
40 {
41 int encrypted = encrypt(next);
42 out.write(encrypted);
43 }
44 }
45 }
46

844  Chapter 19  Streams and Binary Input/Output

47 /**
48 Encrypts a value.
49 @param b the value to encrypt (between 0 and 255)
50 @return the encrypted value
51 */
52 public int encrypt(int b)
53 {
54 return (b + key) % 256;
55 }
56 }

section_2/CaesarEncryptor.java

1 import java.io.File;
2 import java.io.FileInputStream;
3 import java.io.FileOutputStream;
4 import java.io.InputStream;
5 import java.io.IOException;
6 import java.io.OutputStream;
7 import java.util.Scanner;
8
9 /**

10 This program encrypts a file, using the Caesar cipher.
11 */
12 public class CaesarEncryptor
13 {
14 public static void main(String[] args)
15 {
16 Scanner in = new Scanner(System.in);
17 try
18 {
19 System.out.print("Input file: ");
20 String inFile = in.next();
21 System.out.print("Output file: ");
22 String outFile = in.next();
23 System.out.print("Encryption key: ");
24 int key = in.nextInt();
25
26 InputStream inStream = new FileInputStream(inFile);
27 OutputStream outStream = new FileOutputStream(outFile);
28
29 CaesarCipher cipher = new CaesarCipher(key);
30 cipher.encryptStream(inStream, outStream);
31
32 inStream.close();
33 outStream.close();
34 }
35 catch (IOException exception)
36 {
37 System.out.println("Error processing file: " + exception);
38 }
39 }
40 }

3.	 Why does the read method of the InputStream class return an int and not a byte?
4.	 Decrypt the following message: Khoor/#Zruog$.

S e l f C h e c k

19.3 R andom Access   845

5.	 Can you use the sample program from this section to encrypt a binary file, for
example, an image file?

Practice It	 Now you can try these exercises at the end of the chapter: R19.6, P19.1, P19.5.

Negative byte Values

The read method of the InputStream class returns –1 or the byte that was read, a value between
0 and 255. It is tempting to place this value into a variable of type byte, but that turns out not
to be a good idea.

int next = in.read();
if (next != -1)
{
 byte input = (byte) next; // Not recommended
 ...
}

In Java, the byte type is a signed type. There are 256 values of the byte type, from –128 to 127.
When converting an int value between 128 and 255 to a byte, the result is a negative value. This
can be inconvenient. For example, consider this test:

int next = in.read();
byte input = (byte) next;
if (input == 'é') . . .

The condition is never true, even if next is equal to the Unicode value for the 'é' character. That
Unicode value happens to be 233, but a single byte is always a value between –128 and 127.

The remedy is to work with int values. Don’t use the byte type.

19.3  Random Access
Reading a file sequentially from beginning to end can be inefficient. In this section,
you will learn how to directly access arbitrary locations in a file. Consider a file
that contains a set of bank accounts. We want to change the balances of some of the
accounts. We could read all account data into an array list, update the information
that has changed, and save the data out again. But if the data set in the file is very large,
we may end up doing a lot of reading and writing just to update a handful of records.
It would be better if we could locate the changed information in the file and simply
replace it.

This is quite different from the file access you programmed in Chapter 7, where
you read from a file, starting at the beginning and reading the entire contents until
you reached the end. That access pattern is called sequential access. Now we would
like to access specific locations in a file and change only those locations. This access
pattern is called random access (see Figure 3). There is nothing “random” about ran-
dom access—the term simply means that you can read and modify any byte stored at
any location in the file.

Common Error 19.1

In sequential file
access, a file is
processed one
byte at a time.

846  Chapter 19  Streams and Binary Input/Output

Figure 3  Sequential and Random Access

Sequential access

Random access

Only disk files support random access; the System.in and System.out streams, which
are attached to the keyboard and the terminal window, do not. Each disk file has a
special file pointer position. Normally, the file pointer is at the end of the file, and any
output is appended to the end. However, if you move the file pointer to the middle of
the file and write to the file, the output overwrites what is already there. The next read
command starts reading input at the file pointer location. You can move the file
pointer just beyond the last byte currently in the file but no further.

In Java, you use a RandomAccessFile object to access a file and move a file pointer.
To open a random access file, you supply a file name and a string to specify the open
mode. You can open a file either for reading only ("r") or for reading and writing
("rw"). For example, the following command opens the file bank.dat for both reading
and writing:

RandomAccessFile f = new RandomAccessFile("bank.dat", "rw");

The method call

f.seek(position);

moves the file pointer to the given position, counted from the beginning of the file.
The first byte of a file has position 0. To find out the current position of the file pointer
(counted from the beginning of the file), use

long position = f.getFilePointer();

Because files can be very large, the file pointer values are long integers. To determine
the number of bytes in a file, use the length method:

long fileLength = f.length();

In the example program at the end of this section, we use a random access file to store
a set of bank accounts, each of which has an account number and a current balance.
The test program lets you pick an account and deposit money into it.

If you want to manipulate a data set in a file, you have to pay special attention to
the formatting of the data. Suppose you just store the data as text. Say account 1001
has a balance of $900, and account 1015 has a balance of 0.

1 0 0 1 9 0 0 1 0 1 5 0

We want to deposit $100 into account 1001. Suppose we move the file pointer to the
first character of the old value:

1 0 0 1 9 0 0 1 0 1 5 0

Random access
allows access at
arbitrary locations
in the file, without
first reading the
bytes preceding the
access location.

A file pointer is a
position in a random
access file. Because
files can be very
large, the file pointer
is of type long.

19.3 R andom Access   847

If we now simply write out the new value, the result is

1 0 0 1 1 0 0 0 1 0 1 5 0

That is not working too well. The update is overwriting the space that separates the
values.

In order to be able to update values in a file, you must give each value a fixed size
that is sufficiently large. As a result, every record in the file has the same size. This
has another advantage: It is then easy to skip quickly to, say, the 50th record, without
having to read the first 49 records in. Just set the file pointer to 49 × the record size.

When storing numbers in a file with fixed record sizes, it is easier to access them in
binary form, rather than text form. For that reason, the RandomAccessFile class stores
binary data. The readInt and writeInt methods read and write integers as four-byte
quantities. The readDouble and writeDouble methods process double-precision floating-
point numbers as eight-byte quantities.

double x = f.readDouble();
f.writeDouble(x);

If we save the account number as an integer and the balance as a double value, then
each bank account record consists of 12 bytes: 4 bytes for the integer and 8 bytes for
the double-precision floating-point value.

Now that we have determined the file layout, we can implement our random
access file methods. In the program at the end of this section, we use a BankData class
to translate between the random access file format and bank account objects. The size
method determines the total number of accounts by dividing the file length by the
size of a record.

public int size() throws IOException
{
 return (int) (file.length() / RECORD_SIZE);
}

To read the nth account in the file, the read method positions the file pointer to the
offset n * RECORD_SIZE, then reads the data, and constructs a bank account object:

public BankAccount read(int n) throws IOException
{
 file.seek(n * RECORD_SIZE);
 int accountNumber = file.readInt();
 double balance = file.readDouble();
 return new BankAccount(accountNumber, balance);
}

Writing an account works the same way:

public void write(int n, BankAccount account) throws IOException
{
 file.seek(n * RECORD_SIZE);
 file.writeInt(account.getAccountNumber());
 file.writeDouble(account.getBalance());
}

The test program asks the user to enter an account number and an amount to deposit.
If the account does not currently exist, it is created. The money is deposited, and then

The RandomAccessFile
class reads and
writes numbers in
binary form.

848  Chapter 19  Streams and Binary Input/Output

the user can choose to continue or quit. The bank data are saved and reloaded when
the program is run again.

section_3/BankSimulator.java

1 import java.io.IOException;
2 import java.util.Scanner;
3
4 /**
5 This program demonstrates random access. You can access
6 existing accounts and deposit money, or create new accounts.
7 The accounts are saved in a random access file.
8 */
9 public class BankSimulator

10 {
11 public static void main(String[] args) throws IOException
12 {
13 Scanner in = new Scanner(System.in);
14 BankData data = new BankData();
15 try
16 {
17 data.open("bank.dat");
18
19 boolean done = false;
20 while (!done)
21 {
22 System.out.print("Account number: ");
23 int accountNumber = in.nextInt();
24 System.out.print("Amount to deposit: ");
25 double amount = in.nextDouble();
26
27 int position = data.find(accountNumber);
28 BankAccount account;
29 if (position >= 0)
30 {
31 account = data.read(position);
32 account.deposit(amount);
33 System.out.println("New balance: " + account.getBalance());
34 }
35 else // Add account
36 {
37 account = new BankAccount(accountNumber, amount);
38 position = data.size();
39 System.out.println("Adding new account.");
40 }
41 data.write(position, account);
42
43 System.out.print("Done? (Y/N) ");
44 String input = in.next();
45 if (input.equalsIgnoreCase("Y")) { done = true; }
46 }
47 }
48 finally
49 {
50 data.close();
51 }
52 }
53 }

19.3 R andom Access   849

section_3/BankData.java

1 import java.io.IOException;
2 import java.io.RandomAccessFile;
3
4 /**
5 This class is a conduit to a random access file
6 containing bank account records.
7 */
8 public class BankData
9 {

10 private RandomAccessFile file;
11
12 public static final int INT_SIZE = 4;
13 public static final int DOUBLE_SIZE = 8;
14 public static final int RECORD_SIZE = INT_SIZE + DOUBLE_SIZE;
15
16 /**
17 Constructs a BankData object that is not associated with a file.
18 */
19 public BankData()
20 {
21 file = null;
22 }
23
24 /**
25 Opens the data file.
26 @param filename the name of the file containing bank
27 account information
28 */
29 public void open(String filename)
30 throws IOException
31 {
32 if (file != null) { file.close(); }
33 file = new RandomAccessFile(filename, "rw");
34 }
35
36 /**
37 Gets the number of accounts in the file.
38 @return the number of accounts
39 */
40 public int size()
41 throws IOException
42 {
43 return (int) (file.length() / RECORD_SIZE);
44 }
45
46 /**
47 Closes the data file.
48 */
49 public void close()
50 throws IOException
51 {
52 if (file != null) { file.close(); }
53 file = null;
54 }
55
56 /**
57 Reads a bank account record.
58 @param n the index of the account in the data file

850  Chapter 19  Streams and Binary Input/Output

59 @return a bank account object initialized with the file data
60 */
61 public BankAccount read(int n)
62 throws IOException
63 {
64 file.seek(n * RECORD_SIZE);
65 int accountNumber = file.readInt();
66 double balance = file.readDouble();
67 return new BankAccount(accountNumber, balance);
68 }
69
70 /**
71 Finds the position of a bank account with a given number.
72 @param accountNumber the number to find
73 @return the position of the account with the given number,
74 or –1 if there is no such account
75 */
76 public int find(int accountNumber)
77 throws IOException
78 {
79 for (int i = 0; i < size(); i++)
80 {
81 file.seek(i * RECORD_SIZE);
82 int a = file.readInt();
83 if (a == accountNumber) { return i; }
84 // Found a match
85 }
86 return -1; // No match in the entire file
87 }
88
89 /**
90 Writes a bank account record to the data file.
91 @param n the index of the account in the data file
92 @param account the account to write
93 */
94 public void write(int n, BankAccount account)
95 throws IOException
96 {
97 file.seek(n * RECORD_SIZE);
98 file.writeInt(account.getAccountNumber());
99 file.writeDouble(account.getBalance());

100 }
101 }

Program Run

Account number: 1001
Amount to deposit: 100
Adding new account.
Done? (Y/N) N
Account number: 1018
Amount to deposit: 200
Adding new account.
Done? (Y/N) N
Account number: 1001
Amount to deposit: 1000
New balance: 1100.0
Done? (Y/N) Y

19.4  Object Streams   851

6.	 Why doesn’t System.out support random access?
7.	 What is the advantage of the binary format for storing numbers? What is the

disadvantage?

Practice It	 Now you can try these exercises at the end of the chapter: R19.12, R19.13, P19.6,
P19.7.

19.4  Object Streams
In the program of Section 19.3 you read BankAccount objects by reading each input
value separately. Actually, there is an easier way. The ObjectOutputStream class can
save entire objects out to disk, and the ObjectInputStream class can read them back in.
Objects are saved in binary format; hence, you use streams and not writers.

For example, you can write a BankAccount object to a file as follows:
BankAccount b = . . .;
ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("bank.dat"));
out.writeObject(b);

The object output stream automatically saves all instance variables of the object
to the stream. When reading the object back in, you use the readObject method of
the ObjectInputStream class. That method returns an Object reference, so you need to
remember the types of the objects that you saved and use a cast:

ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("bank.dat"));
BankAccount b = (BankAccount) in.readObject();

The readObject method can throw a ClassNotFoundException—it is a checked exception,
so you need to catch or declare it.

You can do even better than that, though. You can store a whole bunch of objects
in an array list or array, or inside another object, and then save that object:

ArrayList<BankAccount> a = new ArrayList<BankAccount>();
// Now add many BankAccount objects into a
out.writeObject(a);

With one instruction, you can save the array list and all the objects that it references.
You can read all of them back with one instruction:

ArrayList<BankAccount> a = (ArrayList<BankAccount>) in.readObject();

Of course, if the Bank class contains an ArrayList of bank accounts, then you can sim-
ply save and restore a Bank object. Then its array list, and all the BankAccount objects
that it contains, are automatically saved and restored as well. The sample program at
the end of this section uses this approach.

This is a truly amazing capability that is highly recommended.
To place objects of a particular class into an object stream, the class must imple-

ment the Serializable interface. That interface has no methods, so there is no effort
involved in implementing it:

class BankAccount implements Serializable
{
 . . .
}

S e l f C h e c k

Use object streams
to save and restore
all instance variables
of an object
automatically.

Objects saved to an
object stream must
belong to classes
that implement
the Serializable
interface.

852  Chapter 19  Streams and Binary Input/Output

The process of saving objects to a stream is called serialization because each object
is assigned a serial number on the stream. If the same object is saved twice, only the
serial number is written out the second time. When the objects are read back in, dupli-
cate serial numbers are restored as references to the same object.

Following is a sample program that puts serialization to work. The Bank class man-
ages a collection of bank accounts. Both the Bank and BankAccount classes implement
the Serializable interface. Run the program several times. Whenever the program
exits, it saves the Bank object (and all bank account objects that the bank contains) into
a file bank.dat. When the program starts again, the file is loaded, and the changes from
the preceding program run are automatically reflected. However, if the file is miss-
ing (either because the program is running for the first time, or because the file was
erased), then the program starts with a new bank.

section_4/Bank.java

1 import java.io.Serializable;
2 import java.util.ArrayList;
3
4 /**
5 This bank contains a collection of bank accounts.
6 */
7 public class Bank implements Serializable
8 {
9 private ArrayList<BankAccount> accounts;

10
11 /**
12 Constructs a bank with no bank accounts.
13 */
14 public Bank()
15 {
16 accounts = new ArrayList<BankAccount>();
17 }
18
19 /**
20 Adds an account to this bank.
21 @param a the account to add
22 */
23 public void addAccount(BankAccount a)
24 {
25 accounts.add(a);
26 }
27
28 /**
29 Finds a bank account with a given number.
30 @param accountNumber the number to find
31 @return the account with the given number, or null if there
32 is no such account
33 */
34 public BankAccount find(int accountNumber)
35 {
36 for (BankAccount a : accounts)
37 {
38 if (a.getAccountNumber() == accountNumber) // Found a match
39 {
40 return a;
41 }
42 }
43 return null; // No match in the entire array list

19.4  Object Streams   853

44 }
45 }

section_4/SerialDemo.java

1 import java.io.File;
2 import java.io.IOException;
3 import java.io.FileInputStream;
4 import java.io.FileOutputStream;
5 import java.io.ObjectInputStream;
6 import java.io.ObjectOutputStream;
7
8 /**
9 This program demonstrates serialization of a Bank object.

10 If a file with serialized data exists, then it is loaded.
11 Otherwise the program starts with a new bank.
12 Bank accounts are added to the bank. Then the bank
13 object is saved.
14 */
15 public class SerialDemo
16 {
17 public static void main(String[] args)
18 throws IOException, ClassNotFoundException
19 {
20 Bank firstBankOfJava;
21
22 File f = new File("bank.dat");
23 if (f.exists())
24 {
25 ObjectInputStream in = new ObjectInputStream(
26 new FileInputStream(f));
27 firstBankOfJava = (Bank) in.readObject();
28 in.close();
29 }
30 else
31 {
32 firstBankOfJava = new Bank();
33 firstBankOfJava.addAccount(new BankAccount(1001, 20000));
34 firstBankOfJava.addAccount(new BankAccount(1015, 10000));
35 }
36
37 // Deposit some money
38 BankAccount a = firstBankOfJava.find(1001);
39 a.deposit(100);
40 System.out.println(a.getAccountNumber() + ":" + a.getBalance());
41 a = firstBankOfJava.find(1015);
42 System.out.println(a.getAccountNumber() + ":" + a.getBalance());
43
44 ObjectOutputStream out = new ObjectOutputStream(
45 new FileOutputStream(f));
46 out.writeObject(firstBankOfJava);
47 out.close();
48 }
49 }

Program Run

1001:20100.0
1015:10000.0

854  Chapter 19  Streams and Binary Input/Output

Second Program Run

1001:20200.0
1015:10000.0

8.	 Why is it easier to save an object with an ObjectOutputStream than a RandomAccess-
File?

9.	 What do you have to do to the Country class from Section 9.6.2 so that its objects
can be saved in an ObjectOutputStream?

Practice It	 Now you can try these exercises at the end of the chapter: R19.8, R19.9, P19.9.

Step 1	 Select a data format.

The most important questions you need to ask yourself concern the format to use for saving
your data:
•	 Does your program manipulate text, such as plain text files? If so, use readers and writers.
•	 Does your program update portions of a file? Then use random access.
•	 Does your program read or write individual bytes of binary data, such as image files or

encrypted data? Then use streams.
•	 Does your program save and restore objects? Then use object streams.

Step 2	 Use scanners and writers if you are processing text.

Use a scanner to read the input.

Scanner in = new Scanner(new File("input.txt"));

Then use the familiar methods next, nextInt, and so on. See Chapter 7 for details.
To write output, turn the file output stream into a PrintWriter:

PrintWriter out = new PrintWriter("output.txt");

Then use the familiar print and println methods:

out.println(text);

Step 3	 Use the RandomAccessFile class if you need random access.

The RandomAccessFile class has methods for moving a file pointer to an arbitrary position:

file.seek(position);

S e l f C h e c k

How To 19.1	 Choosing a File Format

Many programs allow users to save their work in files. Program users can later load those files
and continue working on the data, or send the files to other users. When you develop such a
program, you need to decide how to store the data. This How To lets you choose the appro-
priate mechanisms for saving and loading your program’s data.

19.4  Object Streams   855

You can then read or write individual bytes, characters, binary integers, and binary floating-
point numbers.

Step 4	 Use streams if you are processing bytes.

Use this loop to process input one byte at a time:

InputStream in = new FileInputStream("input.bin");
boolean done = false;
while (!done)
{
 int next = in.read();
 if (next == -1)
 {
 done = true;
 }
 else
 {
 Process next. // next is between 0 and 255
 }
}

Similarly, write the output one byte at a time:

OutputStream out = new FileOutputStream("output.bin");
. . .
while (. . .)
{
 int b = . . .; // b is between 0 and 255
 out.write(b);
}
out.close();

Use binary streams only if you are ready to process the input one byte at a time. This makes
sense for encryption/decryption or processing the pixels in an image. In other situations,
binary streams are not appropriate.

Step 5	 Use object streams if you are processing objects.

First go through your classes and tag them with implements Serializable. You don’t need to add
any additional methods.

Also go to the online API documentation to check that the library classes that you are using
implement the Serializable interface. Fortunately, many of them do. In particular, String and
ArrayList are serializable.

Next, put all the objects you want to save into a class (or an array or array list—but why not
make another class containing that?).

Saving all program data is a trivial operation:

ProgramData data = . . .;
ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("program.dat"));
out.writeObject(data);
out.close();

Similarly, to restore the program data, you use an ObjectInputStream and call

ProgramData data = (ProgramData) in.readObject();

The readObject method can throw a ClassNotFoundException. You must catch or declare that
exception.

856  Chapter 19  Streams and Binary Input/Output

Describe the Java class hierarchy for handling input and output.

•	 Streams access sequences of bytes. Readers and writers access sequences of
characters.

Write programs that carry out input and output of binary data.

•	 Use FileInputStream and FileOutputStream classes to read and write binary data from
and to disk files.

•	 The InputStream.read method returns an integer, either –1 to indicate end of input,
or a byte between 0 and 255.

•	 The OutputStream.write method writes a single byte.

Describe random access and use the RandomAccessFile class.

•	 In sequential file access, a file is processed one byte at a time.
•	 Random access allows access at arbitrary locations in the file, without first

reading the bytes preceding the access location.
•	 A file pointer is a position in a random access file. Because files can be very large,

the file pointer is of type long.
•	 The RandomAccessFile class reads and writes numbers in binary form.

Use object streams to automatically read and write entire objects.

•	 Use object streams to save and restore all instance variables of an object
automatically.

•	 Objects saved to an object stream must belong to classes that implement the
Serializable interface.

C h a p t e r S u m m a r y

java.io.FileInputStream
java.io.FileOutputStream
java.io.InputStream
 close
 read
java.io.ObjectInputStream
 readObject
java.io.ObjectOutputStream
 writeObject
java.io.OutputStream
 close
 write

java.io.RandomAccessFile
 getFilePointer
 length
 readChar
 readDouble
 readInt
 seek
 writeChar
 writeChars
 writeDouble
 writeInt
java.io.Serializable

S ta n d a r d L i b r a r y I t e m s I n t r o d u c e d i n t h i s C h a p t e r

Programming Exercises  857

• R19.1	 What is the difference between a stream and a reader?

• R19.2	 Write a few lines of text to a new FileWriter("output1.txt", "UTF-8") and the same text
to a new FileWriter("output2.txt", "UTF-16"). How do the output files differ?

• R19.3	 How can you open a file for both reading and writing in Java?

•• R19.4	 What happens if you try to write to a file reader?

•• R19.5	 What happens if you try to write to a random access file that you opened only for
reading? Try it out if you don’t know.

• R19.6	 How can you break the Caesar cipher? That is, how can you read a document that
was encrypted with the Caesar cipher, even though you don’t know the key?

•• R19.7	 What happens if you try to save an object that is not serializable in an object stream?
Try it out and report your results.

•• R19.8	 Of the classes in the java.lang and java.io packages that you have encountered in this
book, which implement the Serializable interface?

•• R19.9	 Why is it better to save an entire ArrayList to an object stream instead of program
ming a loop that writes each element?

• R19.10	 What is the difference between sequential access and random access?

• R19.11	 What is the file pointer in a file? How do you move it? How do you tell the current
position? Why is it a long integer?

• R19.12	 How do you move the file pointer to the first byte of a file? To the last byte? To the
exact middle of the file?

•• R19.13	 What happens if you try to move the file pointer past the end of a file? Try it out and
report your result.

•• R19.14	 Can you move the file pointer of System.in?

•• P19.1	 Random monoalphabet cipher. The Caesar cipher, which shifts all letters by a fixed
amount, is far too easy to crack. Here is a better idea. For the key, don’t use num
bers but words. Suppose the key word is FEATHER. Then first remove duplicate letters,
yielding FEATHR, and append the other letters of the alphabet in reverse order. Now
encrypt the letters as follows:

A B C D E F G H I J K L M N O

F E A T H R Z Y X W V U S Q P

P

O

Q

N

R

M

S

L

T

K

U

J

V

I

W

G

X

D

Y

C

Z

B

R e v i e w E x e r c i s e s

P r og r a m m i n g E x e r c i s e s

858  Chapter 19  Streams and Binary Input/Output

Write a program that encrypts or decrypts a file using this cipher. The key word is
specified with the -k command line option. The -d command line option specifies
decryption. For example,

java Encryptor -d -k FEATHER encrypt.txt output.txt

decrypts a file using the keyword FEATHER. It is an error not to supply a keyword.

• P19.2	 Letter frequencies. If you encrypt a file using the cipher of Exercise P19.1, it will
have all of its letters jumbled up, and will look as if there is no hope of decrypting it
without knowing the keyword. Guessing the keyword seems hopeless, too. There
are just too many possible keywords. However, someone who is trained in decryp
tion will be able to break this cipher in no time at all. The average letter frequencies
of English letters are well known. The most common letter is E, which occurs about
13 percent of the time. Here are the average frequencies of English letters:

A 8% H 4% O 7% V 1%

B <1% I 7% P 3% W 2%

C 3% J <1% Q <1% X <1%

D 4% K <1% R 8% Y 2%

E 13% L 4% S 6% Z <1%

F 3% M 3% T 9%

G 2% N 8% U 3%

Write a program that reads an input file and prints the letter frequencies in that file.
Such a tool will help a code breaker. If the most frequent letters in an encrypted file
are H and K, then there is an excellent chance that they are the encryptions of E and T.

•• P19.3	 Vigenère cipher. The trouble with a monoalphabetic cipher is that it can be easily
broken by frequency analysis. The so-called Vigenère cipher overcomes this prob
lem by encoding a letter into one of several cipher letters, depending on its position
in the input document. Choose a keyword, for example TIGER. Then encode the first
letter of the input text like this:

A B C D E F G H I J K L M N O

T U V W X Y Z A B C D E F G H

P

I

Q

J

R

K

S

L

T

M

U

N

V

O

W

P

X

Q

Y

R

Z

S

That is, the encoded alphabet is just the regular alphabet shifted to start at T, the first
letter of the keyword TIGER. The second letter is encrypted according to this map:

A B C D E F G H I J K L M N O

I J K L M N O P Q R S T U V W

P

X

Q

Y

R

Z

S

A

T

B

U

C

V

D

W

E

X

F

Y

G

Z

H

The third, fourth, and fifth letters in the input text are encrypted using the alphabet
sequences beginning with characters G, E, and R. Because the key is only five letters
long, the sixth letter of the input text is encrypted in the same way as the first.

Programming Exercises  859

Write a program that encrypts or decrypts an input text using this cipher. Use com-
mand line arguments as in Exercise P19.1.

•• P19.4	 Playfair cipher. Another way of thwarting a simple letter frequency analysis of an
encrypted text is to encrypt pairs of letters together. A simple scheme to do this is
the Playfair cipher. You pick a keyword and remove duplicate letters from it. Then
you fill the keyword, and the remaining letters of the alphabet, into a 5 × 5 square.
(Because there are only 25 squares, I and J are considered the same letter.) Here is
such an arrangement with the keyword PLAYFAIR:

P L A Y F
I R B C D
E G H K M
N O Q S T
U V W X Z

To encrypt a letter pair, say AT, look at the rectangle with corners A and T:
P L A Y F
I R B C D
E G H K M
N O Q S T
U V W X Z

The encoding of this pair is formed by looking at the other two corners of the rect-
angle—in this case, FQ. If both letters happen to be in the same row or column, such
as GO, simply swap the two letters. Decryption is done in the same way.
Write a program that encrypts or decrypts an input text using this cipher. Use
command line arguments as in Exercise P19.1.

• P19.5	 Write a program that opens a binary file and prints all ASCII characters from that
file, that is, all bytes with values between 32 and 126. Print a new line after every 64
characters. What happens when you use your program with word processor docu
ments? With Java class files?

•• P19.6	 Modify the BankSimulator program so that it is possible to delete an account. To delete
a record from the data file, fill the record with zeroes.

•• P19.7	 The data file in Exercise P19.6 may end up with many deleted records that take up
space. Write a program that compacts such a file, moving all active records to the
beginning and shortening the file length. Hint: Use the setLength method of the
RandomAccessFile class to truncate the file length. Look up the method’s behavior in
the API documentation.

••• P19.8	 Write a program that manipulates a database of product records. Records are stored
in a binary file. Each record consists of these items:

•	 Product name: 30 characters at two bytes each = 60 bytes
•	 Price: one double = 8 bytes
•	 Quantity: one int = 8 bytes

The program should allow the user to add a record, find a record that matches a
product name, and change the price and quantity of a product by a given amount.

•• P19.9	 Enhance the SerialDemo program to demonstrate that it can save and restore a bank
that contains a mixture of savings and checking accounts.

•• Graphics P19.10	 Implement a graphical user interface for the BankSimulator program in Section 19.3.

860  Chapter 19  Streams and Binary Input/Output

••• Graphics P19.11	 Write a graphical application in which the user clicks on a panel to add shapes
(rectangles, ellipses, cars, etc.) at the mouse click location. The shapes are stored in an
array list. When the user selects File->Save from the menu, save the selection of
shapes in a file. When the user selects File->Open, load in a file. Use serialization.

••• P19.12	 Write a toolkit that helps a cryptographer decrypt a file that was encrypted using a
monoalphabet cipher. A monoalphabet cipher encrypts each character separately.
Examples are the Caesar cipher and the cipher in Exercise P19.1. Analyze the letter
frequencies as in Exercise P19.2. Use brute force to try all Caesar cipher keys, and
check the output against a dictionary file. Allow the cryptographer to enter some
substitutions and show the resulting text, with the unknown characters represented
as ?. Try out your toolkit by decrypting files that you get from your classmates.

A n sw e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 Image data is stored in a binary format—try
loading an image file into a text editor, and you
won’t see much text. Therefore, you should
use an InputStream.

2.	 For HTML files, a reader would be useful. But
URLs can also point to binary files, such as
http://horstmann.com/bigjava/duke.gif.

3.	 It returns a special value of -1 to indicate that
no more input is available. If the return type
had been byte, no special value would have
been available that is distinguished from a legal
data value.

4.	 It is "Hello, World!", encrypted with a key of 3.
5.	 Yes—the program uses streams and encrypts

each byte.

6.	 Suppose you print something, and then
you call seek(0), and print again to the same
location. It would be difficult to reflect that
behavior in the console window.

7.	 Advantage: The numbers use a fixed amount
of storage space, making it possible to change
their values without affecting surrounding
data. Disadvantage: You cannot read a binary
file with a text editor.

8.	 You can save the entire object with a single
writeObject call. With a RandomAccessFile, you
have to save each instance variable separately.

9.	 Add implements Serializable to the class
definition.

20C h a p t e r

W861

20
Multithreading

To understand how multiple threads can
execute in parallel

To learn to implement threads

To understand race conditions and deadlocks

To avoid corruption of shared objects by using
locks and conditions

To use threads for programming animations

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

20.1  Running Threads  W862

Programming Tip 20.1: Use the Runnable
Interface  W866

Special Topic 20.1: Thread Pools  W866

20.2  Terminating Threads  W867

Programming Tip 20.2: Check for Thread
Interruptions in the run Method of
a Thread  W869

20.3  Race Conditions  W869

20.4  Synchronizing Object
Access  W875

20.5  Avoiding Deadlocks  W877

Common Error 20.1: Calling await Without
Calling signalAll  W882

Common Error 20.2: Calling signalAll Without
Locking the Object  W883

Special Topic 20.2: Object Locks and
Synchronized Methods  W883

Special Topic 20.3: The Java Memory Model  W884

20.6  Application: Algorithm
Animation  W884

Random Fact 20.1: Embedded Systems  W893

W862

It is often useful for a program to carry out two or more
tasks at the same time. For example, a web browser can
load multiple images on a web page at the same time. Or an
animation program can show moving figures, with separate
tasks computing the positions of each separate figure. In
this chapter, you will see how to implement this behavior by
running tasks in multiple threads, and how you can ensure
that the tasks access shared data in a controlled fashion.

20.1  Running Threads
A thread is a program unit that is executed independently of other parts of the pro-
gram. The Java virtual machine executes each thread for a short amount of time and
then switches to another thread. This gives the illusion of executing the threads in
parallel to each other. Actually, if a computer has multiple central processing units
(CPUs), then some of the threads can run in parallel, one on each processor.

Running a thread is simple in Java—follow these steps:

1.	Write a class that implements the Runnable interface. That interface has a single
method called run:

public interface Runnable
{
 void run();
}

2.	Place the code for your task into the run method of your class:
public class MyRunnable implements Runnable
{
 public void run()
 {
 Task statements
 . . .
 }
}

3.	Create an object of your subclass:
Runnable r = new MyRunnable();

4.	Construct a Thread object from the runnable object:
Thread t = new Thread(r);

5.	Call the start method to start the thread:
t.start();

Let’s look at a concrete example. We want to print ten greetings of “Hello, World!”, one
greeting every second. We add a time stamp to each greeting to see when it is printed.

Fri Dec 28 23:12:03 PST 2012 Hello, World!
Fri Dec 28 23:12:04 PST 2012 Hello, World!
Fri Dec 28 23:12:05 PST 2012 Hello, World!
Fri Dec 28 23:12:06 PST 2012 Hello, World!
Fri Dec 28 23:12:07 PST 2012 Hello, World!
Fri Dec 28 23:12:08 PST 2012 Hello, World!

A thread is a program
unit that is executed
concurrently with
other parts of
the program.

The start method
of the Thread class
starts a new thread
that executes the
run method of the
associated
Runnable object.

20.1 R unning Threads   W863

Fri Dec 28 23:12:09 PST 2012 Hello, World!
Fri Dec 28 23:12:10 PST 2012 Hello, World!
Fri Dec 28 23:12:11 PST 2012 Hello, World!
Fri Dec 28 23:12:12 PST 2012 Hello, World!

Using the instructions for creating a thread, define a class that implements the Runnable
interface:

public class GreetingRunnable implements Runnable
{
 private String greeting;

 public GreetingRunnable(String aGreeting)
 {
 greeting = aGreeting;
 }

 public void run()
 {
 Task statements
 . . .
 }
}

The run method should loop ten times through the following task actions:

•	 Print a time stamp.
•	 Print the greeting.
•	 Wait a second.

Get the time stamp by constructing an object of the java.util.Date class. The Date con-
structor without arguments produces a date that is set to the current date and time.

Date now = new Date();
System.out.println(now + " " + greeting);

To wait a second, we use the static sleep method of the Thread class. The call
Thread.sleep(milliseconds)

puts the current thread to sleep for a given number of milliseconds. In our case, it
should sleep for 1,000 milliseconds, or one second.

There is, however, one technical problem. Putting a thread to sleep is potentially
risky—a thread might sleep for so long that it is no longer useful and should be termi-
nated. As you will see in Section 20.2, to terminate a thread, you interrupt it. When a
sleeping thread is interrupted, an InterruptedException is generated. You need to catch
that exception in your run method and terminate the thread.

The simplest way to handle thread interruptions is to give your run method the fol-
lowing form:

public void run()
{
 try
 {
 Task statements
 }
 catch (InterruptedException exception)
 {
 }
 Clean up, if necessary.
}

The sleep method
puts the current
thread to sleep for
a given number
of milliseconds.

When a thread is
interrupted, the most
common response is
to terminate the
run method.

W864  Chapter 20  Multithreading

We follow that structure in our example. Here is the complete code for our runnable
class:

section_1/GreetingRunnable.java

1 import java.util.Date;
2
3 /**
4 A runnable that repeatedly prints a greeting.
5 */
6 public class GreetingRunnable implements Runnable
7 {
8 private static final int REPETITIONS = 10;
9 private static final int DELAY = 1000;

10
11 private String greeting;
12
13 /**
14 Constructs the runnable object.
15 @param aGreeting the greeting to display
16 */
17 public GreetingRunnable(String aGreeting)
18 {
19 greeting = aGreeting;
20 }
21
22 public void run()
23 {
24 try
25 {
26 for (int i = 1; i <= REPETITIONS; i++)
27 {
28 Date now = new Date();
29 System.out.println(now + " " + greeting);
30 Thread.sleep(DELAY);
31 }
32 }
33 catch (InterruptedException exception)
34 {
35 }
36 }
37 }

To start a thread, first construct an object of the runnable class.
Runnable r = new GreetingRunnable("Hello, World!");

Then construct a thread and call the start method.
Thread t = new Thread(r);
t.start();

Now a new thread is started, executing the code in the run method of your runnable
class in parallel with any other threads in your program.

In the GreetingThreadRunner program, we start two threads: one that prints “Hello”
and one that prints “Goodbye”.

20.1 R unning Threads   W865

section_1/GreetingThreadRunner.java

1 /**
2 This program runs two greeting threads in parallel.
3 */
4 public class GreetingThreadRunner
5 {
6 public static void main(String[] args)
7 {
8 GreetingRunnable r1 = new GreetingRunnable("Hello");
9 GreetingRunnable r2 = new GreetingRunnable("Goodbye");

10 Thread t1 = new Thread(r1);
11 Thread t2 = new Thread(r2);
12 t1.start();
13 t2.start();
14 }
15 }

Program Run

Fri Dec 28 12:04:46 PST 2012 Hello
Fri Dec 28 12:04:46 PST 2012 Goodbye
Fri Dec 28 12:04:47 PST 2012 Hello
Fri Dec 28 12:04:47 PST 2012 Goodbye
Fri Dec 28 12:04:48 PST 2012 Hello
Fri Dec 28 12:04:48 PST 2012 Goodbye
Fri Dec 28 12:04:49 PST 2012 Hello
Fri Dec 28 12:04:49 PST 2012 Goodbye
Fri Dec 28 12:04:50 PST 2012 Hello
Fri Dec 28 12:04:50 PST 2012 Goodbye
Fri Dec 28 12:04:51 PST 2012 Hello
Fri Dec 28 12:04:51 PST 2012 Goodbye
Fri Dec 28 12:04:52 PST 2012 Goodbye
Fri Dec 28 12:04:52 PST 2012 Hello
Fri Dec 28 12:04:53 PST 2012 Hello
Fri Dec 28 12:04:53 PST 2012 Goodbye
Fri Dec 28 12:04:54 PST 2012 Hello
Fri Dec 28 12:04:54 PST 2012 Goodbye
Fri Dec 28 12:04:55 PST 2012 Goodbye
Fri Dec 28 12:04:55 PST 2012 Hello

Because both threads are running in parallel, the two message sets are interleaved.
However, if you look closely, you will find that the two threads aren’t exactly inter-
leaved. Sometimes, the second thread seems to jump ahead of the first thread. This
shows an important characteristic of threads. The thread scheduler gives no guarantee
about the order in which threads are executed. Each thread runs for a short amount of
time, called a time slice. Then the scheduler activates another thread. However, there
will always be slight variations in running times, especially when calling operating
system services (such as input and output). Thus, you should expect that the order in
which each thread gains control is somewhat random.

The thread scheduler
runs each thread for
a short amount
of time, called a
time slice.

W866  Chapter 20  Multithreading

1.	 What happens if you change the call to the sleep method in the run method to
Thread.sleep(1)?

2.	 What would be the result of the program if the main method called
r1.run();
r2.run();

instead of starting threads?

Practice It	 Now you can try these exercises at the end of the chapter: R20.2, R20.3, P20.7.

Use the Runnable Interface

In Java, you can define the task statements of a thread in two ways. As you have seen already,
you can place the statements into the run method of a class that implements the Runnable inter-
face. Then you use an object of that class to construct a Thread object. You can also form a
subclass of the Thread class, and place the task statements into the run method of your subclass:

public class MyThread extends Thread
{
 public void run()
 {
 Task statements
 . . .
 }
}

Then you construct an object of the subclass and call the start method:

Thread t = new MyThread();
t.start();

This approach is marginally easier than using a Runnable, and it also seems quite intuitive.
However, if a program needs a large number of threads, or if a program executes in a resource-
constrained device, such as a cell phone, it can be quite expensive to construct a separate thread
for each task. Special Topic 20.1 shows how to use a thread pool to overcome this problem. A
thread pool uses a small number of threads to execute a larger number of runnables.

The Runnable interface is designed to encapsulate the concept of a sequence of statements
that can run in parallel with other tasks, without equating it with the concept of a thread, a
potentially expensive resource that is managed by the operating system.

Thread Pools

A program that creates a huge number of short-lived threads can be inefficient. Threads are
managed by the operating system, and there is a cost for creating threads. Each thread requires
memory, and thread creation takes time. This cost can be reduced by using a thread pool. A
thread pool creates a number of threads and keeps them alive. When you add a Runnable object
to the thread pool, the next idle thread executes its run method.

For example, the following statements submit two runnables to a thread pool:

Runnable r1 = new GreetingRunnable("Hello");
Runnable r2 = new GreetingRunnable("Goodbye");
ExecutorService pool = Executors.newFixedThreadPool(MAX_THREADS);
pool.execute(r1);
pool.execute(r2);

S e l f C h e c k

Programming Tip 20.1

Special Topic 20.1

20.2 T erminating Threads   W867

If many runnables are submitted for execution, then the pool may not have enough threads
available. In that case, some runnables are placed in a queue until a thread is idle. As a result,
the cost of creating threads is minimized. However, the runnables that are run by a particular
thread are executed sequentially, not in parallel.

Thread pools are particularly important for server programs, such as database and web
servers, that repeatedly execute requests from multiple clients. Rather than spawning a new
thread for each request, the requests are implemented as runnable objects and submitted to a
thread pool.

20.2  Terminating Threads
When the run method of a thread has finished executing, the thread terminates. This is
the normal way of terminating a thread—implement the run method so that it returns
when it determines that no more work needs to be done.

However, sometimes you need to terminate a running thread. For example, you
may have several threads trying to find a solution to a problem. As soon as the first
one has succeeded, you may want to terminate the other ones. In the initial release
of the Java library, the Thread class had a stop method to terminate a thread. How-
ever, that method is now deprecated—computer scientists have found that stopping
a thread can lead to dangerous situations when multiple threads share objects. (We
will discuss access to shared objects in Section 20.3.) Instead of simply stopping a
thread, you should notify the thread that it should be terminated. The thread needs
to cooperate, by releasing any resources that it is currently using and doing any other
required cleanup. In other words, a thread should be in charge of terminating itself.

To notify a thread that it should clean up and terminate, you use the interrupt
method.

t.interrupt();

This method does not actually cause the thread to terminate—it merely sets a boolean
variable in the thread data structure.

The run method can check whether that flag has been set, by calling the static inter-
rupted method. In that case, it should do any necessary cleanup and exit. For example,
the run method of the GreetingRunnable could check for interruptions at the beginning
of each loop iteration:

public void run()
{
 for (int i = 1; i <= REPETITIONS && !Thread.interrupted(); i++)
 {
 Do work.
 }
 Clean up.
}

However, if a thread is sleeping, it can’t execute code that checks for interruptions.
Therefore, the sleep method is terminated with an InterruptedException whenever a
sleeping thread is interrupted. The sleep method also throws an InterruptedException
when it is called in a thread that is already interrupted. If your run method calls sleep
in each loop iteration, simply use the InterruptedException to find out whether the

A thread terminates
when its run method
terminates.

The run method can
check whether its
thread has been
interrupted by calling
the interrupted
method.

W868  Chapter 20  Multithreading

thread is terminated. The easiest way to do that is to surround the entire work por-
tion of the run method with a try block, like this:

public void run()
{
 try
 {
 for (int i = 1; i <= REPETITIONS; i++)
 {
 Do work.
 Sleep.
 }
 }
 catch (InterruptedException exception)
 {
 }
 Clean up.
}

Strictly speaking, there is nothing in the Java language specification that says that
a thread must terminate when it is interrupted. It is entirely up to the thread what
it does when it is interrupted. Interrupting is a general mechanism for getting the
thread’s attention, even when it is sleeping. However, in this chapter, we will always
terminate a thread that is being interrupted.

3.	 Suppose a web browser uses multiple threads to load the images on a web page.
Why should these threads be terminated when the user hits the “Back” button?

4.	 Consider the following runnable.
public class MyRunnable implements Runnable
{
 public void run()
 {
 try
 {
 System.out.println(1);
 Thread.sleep(1000);
 System.out.println(2);
 }
 catch (InterruptedException exception)
 {
 System.out.println(3);
 }
 System.out.println(4);
 }
}

Suppose a thread with this runnable is started and immediately interrupted:
Thread t = new Thread(new MyRunnable());
t.start();
t.interrupt();

What output is produced?

Practice It	 Now you can try these exercises at the end of the chapter: R20.4, R20.5, R20.6.

S e l f C h e c k

20.3 R ace Conditions   W869

Check for Thread Interruptions in the run Method of a Thread

By convention, a thread should terminate itself (or at least act in some other well-defined way)
when it is interrupted. You should implement your threads to follow this convention.

To do so, put the thread action inside a try block that catches the InterruptedException. That
exception occurs when your thread is interrupted while it is not running, for example inside a
call to sleep. When you catch the exception, do any required cleanup and exit the run method.

Some programmers don’t understand the purpose of the InterruptedException and muzzle it
by placing only the call to sleep inside a try block:

public void run()
{
 while (. . .)
 {
 . . .
 try
 {
 Thread.sleep(delay);
 }
 catch (InterruptedException exception) {} // DON’T
 . . .
 }
}

Don’t do that. If you do, users of your thread class can’t get your thread’s attention by inter-
rupting it. It is just as easy to place the entire thread action inside a single try block. Then
interrupting the thread terminates the thread action.

public void run()
{
 try
 {
 while (. . .)
 {
 . . .
 Thread.sleep(delay);
 . . .
 }
 }
 catch (InterruptedException exception) {} // OK
}

20.3  Race Conditions
When threads share access to a common object, they can conflict with each other.
To demonstrate the problems that can arise, we will investigate a sample program in
which multiple threads manipulate a bank account.

We construct a bank account that starts out with a zero balance. We create two sets
of threads:

•	 Each thread in the first set repeatedly deposits $100.
•	 Each thread in the second set repeatedly withdraws $100.

Programming Tip 20.2

W870  Chapter 20  Multithreading

Here is the run method of the DepositRunnable class:
public void run()
{
 try
 {
 for (int i = 1; i <= count; i++)
 {
 account.deposit(amount);
 Thread.sleep(DELAY);
 }
 }
 catch (InterruptedException exception)
 {
 }
}

The WithdrawRunnable class is similar—it withdraws money instead.
The deposit and withdraw methods of the BankAccount class have been modified to

print messages that show what is happening. For example, here is the code for the
deposit method:

public void deposit(double amount)
{
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " + newBalance);
 balance = newBalance;
}

You can find the complete source code at the end of this section.
Normally, the program output looks somewhat like this:
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
. . .
Withdrawing 100.0, new balance is 0.0

In the end, the balance should be zero. However, when you run this program repeat-
edly, you may sometimes notice messed-up output, like this:

Depositing 100.0Withdrawing 100.0, new balance is 100.0
, new balance is -100.0

And if you look at the last line of the output, you will notice that the final balance is
not always zero. Clearly, something problematic is happening. You may have to try
the program several times to see this effect.

Here is a scenario that explains how a problem can occur.

1.	A deposit thread executes the lines
System.out.print("Depositing " + amount);
double newBalance = balance + amount;

in the deposit method of the BankAccount class. The value of the balance variable is
still 0, and the value of the newBalance local variable is 100.

2.	Immediately afterward, the deposit thread reaches the end of its time slice, and
the second thread gains control.

20.3 R ace Conditions   W871

3.	A withdraw thread calls the withdraw method, which prints a message and
withdraws $100 from the balance variable. It is now -100.

4.	The withdraw thread goes to sleep.
5.	The deposit thread regains control and picks up where it was interrupted. It

now executes the lines
System.out.println(", new balance is " + newBalance);
balance = newBalance;

The value of balance is now 100 (see Figure 1).
Thus, not only are the messages interleaved, but the balance is wrong. The balance
after a withdrawal and deposit should again be 0, not 100. Because the deposit method

Figure 1  Corrupting the Contents of the balance Variable

Deposit thread Withdraw thread

balance =
newBalance

balance =
newBalance

Print ", new
balance is..."

Print ", new
balance is..."

newBalance =
balance - amount

newBalance =
balance + amount

Print
"Withdrawing..."

Print
"Depositing..."

Deposit thread reaches
the end of its time slice

balance
is now –100

balance
is now 100

balance
is 0

Local variable
newBalance in deposit

method is 100

Local variable
newBalance in withdraw

method is –100

W872  Chapter 20  Multithreading

was interrupted, it used the old balance (before the withdrawal) to compute the value
of its local newBalance variable. Later, when it was activated again, it used that new
Balance value to overwrite the changed balance variable.

As you can see, each thread has its own local variables, but all threads share access
to the balance instance variable. That shared access creates a problem. This problem
is often called a race condition. All threads, in their race to complete their respective
tasks, manipulate a shared variable, and the end result depends on which of them hap-
pens to win the race.

You might argue that the reason for this problem is that we made it too easy to
interrupt the balance computation. Suppose the code for the deposit method is reor-
ganized like this:

public void deposit(double amount)
{
 balance = balance + amount;
 System.out.print("Depositing " + amount
 + ", new balance is " + balance);
}

Suppose further that you make the same change in the withdraw method. If you run the
resulting program, everything seems to be fine.

However, that is a dangerous illusion. The problem hasn’t gone away; it has become
much less frequent, and, therefore, more difficult to observe. It is still possible for the
deposit method to reach the end of its time slice after it has computed the right-hand-
side value

balance + amount

but before it performs the assignment
balance = the right-hand-side value

When the method regains control, it finally carries out the assignment, putting the
wrong value into the balance variable.

section_3/BankAccountThreadRunner.java

1 /**
2 This program runs threads that deposit and withdraw
3 money from the same bank account.
4 */
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();

10 final double AMOUNT = 100;
11 final int REPETITIONS = 100;
12 final int THREADS = 100;
13
14 for (int i = 1; i <= THREADS; i++)
15 {
16 DepositRunnable d = new DepositRunnable(
17 account, AMOUNT, REPETITIONS);
18 WithdrawRunnable w = new WithdrawRunnable(
19 account, AMOUNT, REPETITIONS);
20
21 Thread dt = new Thread(d);
22 Thread wt = new Thread(w);

A race condition
occurs if the effect
of multiple threads
on shared data
depends on the order
in which the threads
are scheduled.

20.3 R ace Conditions   W873

23
24 dt.start();
25 wt.start();
26 }
27 }
28 }

section_3/DepositRunnable.java

1 /**
2 A deposit runnable makes periodic deposits to a bank account.
3 */
4 public class DepositRunnable implements Runnable
5 {
6 private static final int DELAY = 1;
7 private BankAccount account;
8 private double amount;
9 private int count;

10
11 /**
12 Constructs a deposit runnable.
13 @param anAccount the account into which to deposit money
14 @param anAmount the amount to deposit in each repetition
15 @param aCount the number of repetitions
16 */
17 public DepositRunnable(BankAccount anAccount, double anAmount,
18 int aCount)
19 {
20 account = anAccount;
21 amount = anAmount;
22 count = aCount;
23 }
24
25 public void run()
26 {
27 try
28 {
29 for (int i = 1; i <= count; i++)
30 {
31 account.deposit(amount);
32 Thread.sleep(DELAY);
33 }
34 }
35 catch (InterruptedException exception) {}
36 }
37 }

section_3/WithdrawRunnable.java

1 /**
2 A withdraw runnable makes periodic withdrawals from a bank account.
3 */
4 public class WithdrawRunnable implements Runnable
5 {
6 private static final int DELAY = 1;
7 private BankAccount account;
8 private double amount;
9 private int count;

10

W874  Chapter 20  Multithreading

11 /**
12 Constructs a withdraw runnable.
13 @param anAccount the account from which to withdraw money
14 @param anAmount the amount to withdraw in each repetition
15 @param aCount the number of repetitions
16 */
17 public WithdrawRunnable(BankAccount anAccount, double anAmount,
18 int aCount)
19 {
20 account = anAccount;
21 amount = anAmount;
22 count = aCount;
23 }
24
25 public void run()
26 {
27 try
28 {
29 for (int i = 1; i <= count; i++)
30 {
31 account.withdraw(amount);
32 Thread.sleep(DELAY);
33 }
34 }
35 catch (InterruptedException exception) {}
36 }
37 }

section_3/BankAccount.java

1 /**
2 A bank account has a balance that can be changed by
3 deposits and withdrawals.
4 */
5 public class BankAccount
6 {
7 private double balance;
8
9 /**

10 Constructs a bank account with a zero balance.
11 */
12 public BankAccount()
13 {
14 balance = 0;
15 }
16
17 /**
18 Deposits money into the bank account.
19 @param amount the amount to deposit
20 */
21 public void deposit(double amount)
22 {
23 System.out.print("Depositing " + amount);
24 double newBalance = balance + amount;
25 System.out.println(", new balance is " + newBalance);
26 balance = newBalance;
27 }
28

20.4 S ynchronizing Object Access   W875

29 /**
30 Withdraws money from the bank account.
31 @param amount the amount to withdraw
32 */
33 public void withdraw(double amount)
34 {
35 System.out.print("Withdrawing " + amount);
36 double newBalance = balance - amount;
37 System.out.println(", new balance is " + newBalance);
38 balance = newBalance;
39 }
40
41 /**
42 Gets the current balance of the bank account.
43 @return the current balance
44 */
45 public double getBalance()
46 {
47 return balance;
48 }
49 }

Program Run

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
. . .
Withdrawing 100.0, new balance is 400.0
Depositing 100.0, new balance is 500.0
Withdrawing 100.0, new balance is 400.0
Withdrawing 100.0, new balance is 300.0

5.	 Give a scenario in which a race condition causes the bank balance to be -100
after one iteration of a deposit thread and a withdraw thread.

6.	 Suppose two threads simultaneously insert objects into a linked list. Using the
implementation in Chapter 16, explain how the list can be damaged in the
process.

Practice It	 Now you can try these exercises at the end of the chapter: R20.8, R20.9, P20.1.

20.4  Synchronizing Object Access
To solve problems such as the one that you observed in the preceding section, use a
lock object. The lock object is used to control the threads that want to manipulate a
shared resource.

The Java library defines a Lock interface and several classes that implement this
interface. The ReentrantLock class is the most commonly used lock class, and the only
one that we cover in this book. (Locks are a feature added in Java version 5.0. Earlier
versions of Java have a lower-level facility for thread synchronization—see Special
Topic 20.2).

S e l f C h e c k

W876  Chapter 20  Multithreading

Typically, a lock object is added to a class whose methods access shared resources,
like this:

public class BankAccount
{
 private Lock balanceChangeLock;
 . . .
 public BankAccount()
 {
 balanceChangeLock = new ReentrantLock();
 . . .
 }
}

All code that manipulates the shared resource is surrounded by calls to lock and
unlock the lock object:

balanceChangeLock.lock();
Manipulate the shared resource.
balanceChangeLock.unlock();

However, this sequence of statements has a potential flaw. If the code between the
calls to lock and unlock throws an exception, the call to unlock never happens. This is
a serious problem. After an exception, the current thread continues to hold the lock,
and no other thread can acquire it. To overcome this problem, place the call to unlock
into a finally clause:

balanceChangeLock.lock();
try
{
 Manipulate the shared resource.
}
finally
{
 balanceChangeLock.unlock();
}

For example, here is the code for the deposit method:
public void deposit(double amount)
{
 balanceChangeLock.lock();
 try
 {
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " + newBalance);
 balance = newBalance;
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

When a thread calls the lock method, it owns the lock until it calls the unlock method. If
a thread calls lock while another thread owns the lock, the first thread is temporarily
deactivated. The thread scheduler periodically reactivates such a thread so that it can
again try to acquire the lock. If the lock is still unavailable, the thread is again deacti-
vated. Eventually, when the lock is available because the original thread unlocked it,
the waiting thread can acquire the lock.

By calling the lock
method, a thread
acquires a Lock
object. Then no
other thread can
acquire the lock until
the first thread
releases the lock.

20.5 A voiding Deadlocks   W877

Figure 2 
Visualizing Object Locks

One way to visualize this behavior is to imagine that the lock object is the lock of
an old-fashioned telephone booth and the threads are people wanting to make tele-
phone calls (see Figure 2). The telephone booth can accommodate only one person at
a time. If the booth is empty, then the first person wanting to make a call goes inside
and closes the door. If another person wants to make a call and finds the booth occu-
pied, then the second person needs to wait until the first person leaves the booth. If
multiple people want to gain access to the telephone booth, they all wait outside.
They don’t necessarily form an orderly queue; a randomly chosen person may gain
access when the telephone booth becomes available again.

With the ReentrantLock class, a thread can call the lock method on a lock object that
it already owns. This can happen if one method calls another, and both start by lock-
ing the same object. The thread gives up ownership if the unlock method has been
called as often as the lock method.

By surrounding the code in both the deposit and withdraw methods with lock and
unlock calls, we ensure that our program will always run correctly. Only one thread
at a time can execute either method on a given object. Whenever a thread acquires the
lock, it is guaranteed to execute the method to completion before the other thread
gets a chance to modify the balance of the same bank account object.

7.	 If you construct two BankAccount objects, how many lock objects are created?
8.	 What happens if we omit the call unlock at the end of the deposit method?

Practice It	 Now you can try these exercises at the end of the chapter: P20.2, P20.6, P20.8.

20.5  Avoiding Deadlocks
You can use lock objects to ensure that shared data are in a consistent state when
several threads access them. However, locks can lead to another problem. It can hap-
pen that one thread acquires a lock and then waits for another thread to do some
essential work. If that other thread is currently waiting to acquire the same lock, then

S e l f C h e c k

W878  Chapter 20  Multithreading

neither of the two threads can proceed. Such a situation is called a deadlock or deadly
embrace. Let’s look at an example.

Suppose we want to disallow negative bank balances in our program. Here’s a
naive way of doing that. In the run method of the WithdrawRunnable class, we can check
the balance before withdrawing money:

if (account.getBalance() >= amount)
{
 account.withdraw(amount);
}

This works if there is only a single thread running that withdraws money. But suppose
we have multiple threads that withdraw money. Then the time slice of the current
thread may expire after the check account.getBalance() >= amount passes, but before the
withdraw method is called. If, in the interim, another thread withdraws more money,
then the test was useless, and we still have a negative balance.

Clearly, the test should be moved inside the withdraw method. That ensures that
the test for sufficient funds and the actual withdrawal cannot be separated. Thus, the
withdraw method could look like this:

public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 {
 Wait for the balance to grow.
 }
 . . .
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

But how can we wait for the balance to grow? We can’t simply call sleep inside the
withdraw method. If a thread sleeps after acquiring a lock, it blocks all other threads
that want to use the same lock. In particular, no other thread can successfully execute
the deposit method. Other threads will call deposit, but they will simply be blocked
until the withdraw method exits. But the withdraw method doesn’t exit until it has funds
available. This is the deadlock situation that we mentioned earlier.

To overcome this problem, we use a condition object. Condition objects allow a
thread to temporarily release a lock, so that another thread can proceed, and to regain
the lock at a later time.

In the telephone booth analogy, suppose that the coin reservoir of the telephone
is completely filled, so that no further calls can be made until a service technician
removes the coins. You don’t want the person in the booth to go to sleep with the
door closed. Instead, think of the person leaving the booth temporarily. That gives
another person (hopefully a service technician) a chance to enter the booth.

Each condition object belongs to a specific lock object. You obtain a condition
object with the newCondition method of the Lock interface. For example,

public class BankAccount
{

A deadlock occurs
if no thread can
proceed because
each thread is
waiting for another
to do some
work first.

20.5 A voiding Deadlocks   W879

 private Lock balanceChangeLock;
 private Condition sufficientFundsCondition;
 . . .
 public BankAccount()
 {
 balanceChangeLock = new ReentrantLock();
 sufficientFundsCondition = balanceChangeLock.newCondition();
 . . .
 }
}

It is customary to give the condition object a name that describes the condition that
you want to test (such as “sufficient funds”). You need to implement an appropri-
ate test. For as long as the test is not fulfilled, call the await method on the condition
object:

public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 {
 sufficientFundsCondition.await();
 }
 . . .
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

When a thread calls await, it is not simply deactivated in the same way as a thread that
reaches the end of its time slice. Instead, it is in a blocked state, and it will not be acti-
vated by the thread scheduler until it is unblocked. To unblock, another thread must
execute the signalAll method on the same condition object. The signalAll method
unblocks all threads waiting on the condition. They can then compete with all other
threads that are waiting for the lock object. Eventually, one of them will gain access to
the lock, and it will exit from the await method.

In our situation, the deposit method calls signalAll:
public void deposit(double amount)
{
 balanceChangeLock.lock();
 try
 {
 . . .
 sufficientFundsCondition.signalAll();
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

The call to signalAll notifies the waiting threads that sufficient funds may be avail-
able, and that it is worth testing the loop condition again.

Calling await on a
condition object
makes the current
thread wait and
allows another
thread to acquire
the lock object.

W880  Chapter 20  Multithreading

In the telephone booth analogy, the thread calling await corresponds to the person
who enters the booth and finds that the phone doesn’t work. That person then leaves
the booth and waits outside, depressed, doing absolutely nothing, even as other peo-
ple enter and leave the booth. The person knows it is pointless to try again. At some
point, a service technician enters the booth, empties the coin reservoir, and shouts a
signal. Now all the waiting people stop being depressed and again compete for the
telephone booth.

There is also a signal method, which randomly picks just one thread that is waiting
on the object and unblocks it. The signal method can be more efficient, but it is use-
ful only if you know that every waiting thread can actually proceed. In general, you
don’t know that, and signal can lead to deadlocks. For that reason, we recommend
that you always call signalAll.

The await method can throw an InterruptedException. The withdraw method propa-
gates that exception, because it has no way of knowing what the thread that calls the
withdraw method wants to do if it is interrupted.

With the calls to await and signalAll in the withdraw and deposit methods, we can
launch any number of withdrawal and deposit threads without a deadlock. If you run
the sample program, you will note that all transactions are carried out without ever
reaching a negative balance.

section_5/BankAccount.java

1 import java.util.concurrent.locks.Condition;
2 import java.util.concurrent.locks.Lock;
3 import java.util.concurrent.locks.ReentrantLock;
4
5 /**
6 A bank account has a balance that can be changed by
7 deposits and withdrawals.
8 */
9 public class BankAccount

10 {
11 private double balance;
12 private Lock balanceChangeLock;
13 private Condition sufficientFundsCondition;
14
15 /**
16 Constructs a bank account with a zero balance.
17 */
18 public BankAccount()
19 {
20 balance = 0;
21 balanceChangeLock = new ReentrantLock();
22 sufficientFundsCondition = balanceChangeLock.newCondition();
23 }
24
25 /**
26 Deposits money into the bank account.
27 @param amount the amount to deposit
28 */
29 public void deposit(double amount)
30 {
31 balanceChangeLock.lock();
32 try
33 {

A waiting thread is
blocked until another
thread calls
signalAll or signal
on the condition
object for which the
thread is waiting.

20.5 A voiding Deadlocks   W881

34 System.out.print("Depositing " + amount);
35 double newBalance = balance + amount;
36 System.out.println(", new balance is " + newBalance);
37 balance = newBalance;
38 sufficientFundsCondition.signalAll();
39 }
40 finally
41 {
42 balanceChangeLock.unlock();
43 }
44 }
45
46 /**
47 Withdraws money from the bank account.
48 @param amount the amount to withdraw
49 */
50 public void withdraw(double amount)
51 throws InterruptedException
52 {
53 balanceChangeLock.lock();
54 try
55 {
56 while (balance < amount)
57 {
58 sufficientFundsCondition.await();
59 }
60 System.out.print("Withdrawing " + amount);
61 double newBalance = balance - amount;
62 System.out.println(", new balance is " + newBalance);
63 balance = newBalance;
64 }
65 finally
66 {
67 balanceChangeLock.unlock();
68 }
69 }
70
71 /**
72 Gets the current balance of the bank account.
73 @return the current balance
74 */
75 public double getBalance()
76 {
77 return balance;
78 }
79 }

section_5/BankAccountThreadRunner.java

1 /**
2 This program runs threads that deposit and withdraw
3 money from the same bank account.
4 */
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();

10 final double AMOUNT = 100;

W882  Chapter 20  Multithreading

11 final int REPETITIONS = 100;
12 final int THREADS = 100;
13
14 for (int i = 1; i <= THREADS; i++)
15 {
16 DepositRunnable d = new DepositRunnable(
17 account, AMOUNT, REPETITIONS);
18 WithdrawRunnable w = new WithdrawRunnable(
19 account, AMOUNT, REPETITIONS);
20
21 Thread dt = new Thread(d);
22 Thread wt = new Thread(w);
23
24 dt.start();
25 wt.start();
26 }
27 }
28 }

Program Run

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
. . .
Withdrawing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

9.	 What is the essential difference between calling sleep and await?
10.	 Why is the sufficientFundsCondition object an instance variable of the BankAccount

class and not a local variable of the withdraw and deposit methods?

Practice It	 Now you can try these exercises at the end of the chapter: R20.12, P20.3, P20.4,
P20.5.

Calling await Without Calling signalAll

It is intuitively clear when to call await. If a thread finds out that it can’t do its job, it has to
wait. But once a thread has called await, it temporarily gives up all hope and doesn’t try again
until some other thread calls signalAll on the condition object for which the thread is wait-
ing. In the telephone booth analogy, if the service technician who empties the coin reservoir
doesn’t notify the waiting people, they’ll wait forever.

A common error is to have threads call await without matching calls to signalAll by other
threads. Whenever you call await, ask yourself which call to signalAll will signal your waiting
thread.

S e l f C h e c k

Common Error 20.1

20.5 A voiding Deadlocks   W883

Calling signalAll Without Locking the Object

The thread that calls signalAll must own the lock that belongs to the condition object on
which signalAll is called. Otherwise, an IllegalMonitorStateException is thrown.

In the telephone booth analogy, the service technician must shout the signal while inside the
telephone booth after emptying the coin reservoir.

In practice, this should not be a problem. Remember that signalAll is called by a thread that
has just changed the state of some shared data in a way that may benefit waiting threads. That
change should be protected by a lock in any case. As long as you use a lock to protect all access
to shared data, and you are in the habit of calling signalAll after every beneficial change, you
won’t run into problems. But if you use signalAll in a haphazard way, you may encounter the
IllegalMonitorStateException.

Object Locks and Synchronized Methods

The Lock and Condition classes were added in Java version 5.0. They overcome limitations of
the thread synchronization mechanism in earlier Java versions. In this note, we discuss that
classic mechanism.

Every Java object has one built-in lock and one built-in condition variable. The lock works
in the same way as a ReentrantLock object. However, to acquire the lock, you call a synchro-
nized method.

You simply tag all methods that contain thread-sensitive code (such as the deposit and with-
draw methods of the BankAccount class) with the synchronized reserved word.

public class BankAccount
{
 public synchronized void deposit(double amount)
 {
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " + newBalance);
 balance = newBalance;
 }

 public synchronized void withdraw(double amount)
 {
 . . .
 }
 . . .
}

When a thread calls a synchronized method on a BankAccount object, it owns that object’s lock
until it returns from the method and thereby unlocks the object. When an object is locked by
one thread, no other thread can enter a synchronized method for that object. When another
thread makes a call to a synchronized method for that object, the calling thread is automati-
cally deactivated and needs to wait until the first thread has unlocked the object again.

In other words, the synchronized reserved word automatically implements the lock/try/
finally/unlock idiom for the built-in lock.

The object lock has a single condition variable that you manipulate with the wait, notifyAll,
and notify methods of the Object class. If you call x.wait(), the current thread is added to the

Common Error 20.2

Special Topic 20.2

W884  Chapter 20  Multithreading

set of threads that is waiting for the condition of the object x. Most commonly, you will call
wait(), which makes the current thread wait on this. For example,

public synchronized void withdraw(double amount)
 throws InterruptedException
{
 while (balance < amount)
 {
 wait();
 }
 . . .
}

The call notifyAll() unblocks all threads that are waiting for this:

public synchronized void deposit(double amount)
{
 . . .
 notifyAll();
}

This classic mechanism is undeniably simpler than using explicit locks and condition variables.
However, there are limitations. Each object lock has one condition variable, and you can’t test
whether another thread holds the lock. If these limitations are not a problem, by all means, go
ahead and use the synchronized reserved word. If you need more control over threads, the Lock
and Condition interfaces give you additional flexibility.

The Java Memory Model

In a computer with multiple CPUs, you have to be particularly careful when multiple threads
access shared data. Because modern processors are quite a bit faster than RAM memory, each
CPU has its own memory cache that stores copies of frequently used memory locations. If a
thread changes shared data, another thread may not see the change until both processor caches
are synchronized. The same effect can happen even on a computer with a single CPU—occa-
sionally, memory values are cached in CPU registers.

The Java language specification contains a set of rules, called the memory model, that
describes under which circumstances the virtual machine must ensure that changes to shared
data are visible in other threads. One of the rules states the following:
•	 If a thread changes shared data and then releases a lock, and another thread acquires the

same lock and reads the same data, then it is guaranteed to see the changed data.
However, if the first thread does not release a lock, then the virtual machine is not required to
write cached data back to memory. Similarly, if the second thread does not acquire the lock,
the virtual machine is not required to refresh its cache from memory.

Thus, you should always use locks or synchronized methods when you access data that is
shared among multiple threads, even if you are not concerned about race conditions.

20.6  Application: Algorithm Animation
One popular use for thread programming is animation. A program that displays an
animation shows different objects moving or changing in some way as time pro-
gresses. This is often achieved by launching one or more threads that compute how
parts of the animation change.

Special Topic 20.3

20.6 A pplication: Algorithm Animation   W885

You can use the Swing Timer class for simple animations without having to do any
thread programming—see Exercise P20.19 for an example. However, more advanced
animations are best implemented with threads.

In this section you will see a particular kind of animation, namely the visualization
of the steps of an algorithm. Algorithm animation is an excellent technique for gain-
ing a better understanding of how an algorithm works. Many algorithms can be ani-
mated—type “Java algorithm animation” into your favorite web search engine, and
you’ll find lots of links to web pages with animations of various algorithms.

 All algorithm animations have a similar structure. The algorithm runs in a separate
thread that periodically updates an image of the current state of the algorithm and
then pauses so that the user can view the image. After a short amount of time, the
algorithm thread wakes up again and runs to the next point of interest in the algo-
rithm. It then updates the image and pauses again. This sequence is repeated until the
algorithm has finished.

Let’s take the selection sort algorithm of Chapter 14 as an example. That algo-
rithm sorts an array of values. It first finds the smallest element, by inspecting all
elements in the array, and bringing the smallest element to the leftmost position. It
then finds the smallest element among the remaining elements and brings it into the
second position. It keeps going in that way. As the algorithm progresses, the sorted
part of the array grows.

How can you visualize this algorithm? It is useful to show the part of the array
that is already sorted in a different color. Also, we want to show how each step of the
algorithm inspects another element in the unsorted part. That demonstrates why the
selection sort algorithm is so slow—it first inspects all elements of the array, then all
but one, and so on. If the array has n elements, the algorithm inspects

(1) (2)
(1)

2
�+ − + − + =

+
n n n

n n

or O(n2) elements. To demonstrate that, we mark the currently visited element in red.
Thus, the algorithm state is described by three items:

•	 The array of values

•	 The size of the already sorted area

•	 The currently marked element

We add this state to the SelectionSorter class.

public class SelectionSorter
{
 // This array is being sorted
 private int[] a;
 // These instance variables are needed for drawing
 private int markedPosition = -1;
 private int alreadySorted = -1;
 . . .
}

The array that is being sorted is now an instance variable, and we will change the sort
method from a static method to an instance method.

This state is accessed by two threads: the thread that sorts the array and the thread
that paints the frame. We use a lock to synchronize access to the shared state.

Use a separate thread
for running the
algorithm that is
being animated.

The algorithm state
needs to be safely
accessed by the
algorithm and
painting threads.

W886  Chapter 20  Multithreading

Finally, we add a component instance variable to the algorithm class and augment the
constructor to set it. That instance variable is needed for repainting the component
and finding out the dimensions of the component when drawing the algorithm state.

public class SelectionSorter
{
 private JComponent component;
 . . .
 public SelectionSorter(int[] anArray, JComponent aComponent)
 {
 a = anArray;
 sortStateLock = new ReentrantLock();
 component = aComponent;
 }
}

At each point of interest, the algorithm needs to pause so that the user can admire
the graphical output. We supply the pause method shown below, and call it at various
places in the algorithm. The pause method repaints the component and sleeps for a
small delay that is proportional to the number of steps involved.

public void pause(int steps) throws InterruptedException
{
 component.repaint();
 Thread.sleep(steps * DELAY);
}

We add a draw method to the algorithm class that can draw the current state of the data
structure, with the items of special interest highlighted. The draw method is specific to
the particular algorithm. This draw method draws the array elements as a sequence of
sticks in different colors. The already sorted portion is blue, the marked position is
red, and the remainder is black (see Figure 3).

public void draw(Graphics g)
{
 sortStateLock.lock();
 try
 {
 int deltaX = component.getWidth() / a.length;
 for (int i = 0; i < a.length; i++)
 {
 if (i == markedPosition)
 {
 g.setColor(Color.RED);
 }
 else if (i <= alreadySorted)
 {
 g.setColor(Color.BLUE);
 }
 else
 {
 g.setColor(Color.BLACK);
 }
 g.drawLine(i * deltaX, 0, i * deltaX, a[i]);
 }
 }
 finally
 {
 sortStateLock.unlock();
 }
}

20.6 A pplication: Algorithm Animation   W887

Figure 3  A Step in the Animation
of the Selection Sort Algorithm

You need to update the special positions as the algorithm progresses and pause the
animation whenever something interesting happens. The pause should be propor-
tional to the number of steps that are being executed. For a sorting algorithm, pause
one unit for each visited array element.

Here is the minimumPosition method from Chapter 14:
public static int minimumPosition(int[] a, int from)
{
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 {
 if (a[i] < a[minPos]) { minPos = i; }
 }
 return minPos;
}

After each iteration of the for loop, update the marked position of the algorithm
state; then pause the program. To measure the cost of each step fairly, pause for two
units of time, because two array elements were inspected. Because we need to access
the marked position and call the pause method, we need to change the method to an
instance method:

private int minimumPosition(int from)
 throws InterruptedException
{
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 {
 sortStateLock.lock();
 try
 {
 if (a[i] < a[minPos]) { minPos = i; }
 // For animation
 markedPosition = i;

W888  Chapter 20  Multithreading

 }
 finally
 {
 sortStateLock.unlock();
 }
 pause(2);
 }
 return minPos;
}

The sort method is augmented in the same way. You will find the code at the end of
this section. This concludes the modification of the algorithm class. Let us now turn
to the component class.

The component’s paintComponent method calls the draw method of the algorithm
object.

public class SelectionSortComponent extends JComponent
{
 private SelectionSorter sorter;
 . . .
 public void paintComponent(Graphics g)
 {
 sorter.draw(g);
 }
}

The SelectionSortComponent constructor constructs a SelectionSorter object, which
supplies a new array and the this reference to the component that displays the sorted
values:

public SelectionSortComponent()
{
 int[] values = ArrayUtil.randomIntArray(30, 300);
 sorter = new SelectionSorter(values, this);
}

The startAnimation method constructs a thread that calls the sorter’s sort method:
public void startAnimation()
{
 class AnimationRunnable implements Runnable
 {
 public void run()
 {
 try
 {
 sorter.sort();
 }
 catch (InterruptedException exception)
 {
 }
 }
 }

 Runnable r = new AnimationRunnable();
 Thread t = new Thread(r);
 t.start();
}

The class for the viewer program that displays the animation is at the end of this
example. Run the program and the animation starts.

20.6 A pplication: Algorithm Animation   W889

Exercise P20.17 asks you to animate the merge sort algorithm of Chapter 14. If you
do that exercise, then start both programs and run them in parallel to see which algo-
rithm is faster. Actually, you may find the result surprising. If you build fair delays
into the merge sort animation to account for the copying from and to the temporary
array, you will find that it doesn’t perform all that well for small arrays. But if you
increase the array size, then the advantage of the merge sort algorithm becomes clear.

section_6/SelectionSortViewer.java

1 import java.awt.BorderLayout;
2 import javax.swing.JButton;
3 import javax.swing.JFrame;
4
5 public class SelectionSortViewer
6 {
7 public static void main(String[] args)
8 {
9 JFrame frame = new JFrame();

10
11 final int FRAME_WIDTH = 300;
12 final int FRAME_HEIGHT = 400;
13
14 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
15 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16
17 final SelectionSortComponent component
18 = new SelectionSortComponent();
19 frame.add(component, BorderLayout.CENTER);
20
21 frame.setVisible(true);
22 component.startAnimation();
23 }
24 }

section_6/SelectionSortComponent.java

1 import java.awt.Graphics;
2 import javax.swing.JComponent;
3
4 /**
5 A component that displays the current state of the selection sort algorithm.
6 */
7 public class SelectionSortComponent extends JComponent
8 {
9 private SelectionSorter sorter;

10
11 /**
12 Constructs the component.
13 */
14 public SelectionSortComponent()
15 {
16 int[] values = ArrayUtil.randomIntArray(30, 300);
17 sorter = new SelectionSorter(values, this);
18 }
19
20 public void paintComponent(Graphics g)
21 {

W890  Chapter 20  Multithreading

22 sorter.draw(g);
23 }
24
25 /**
26 Starts a new animation thread.
27 */
28 public void startAnimation()
29 {
30 class AnimationRunnable implements Runnable
31 {
32 public void run()
33 {
34 try
35 {
36 sorter.sort();
37 }
38 catch (InterruptedException exception)
39 {
40 }
41 }
42 }
43
44 Runnable r = new AnimationRunnable();
45 Thread t = new Thread(r);
46 t.start();
47 }
48 }

section_6/SelectionSorter.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import java.util.concurrent.locks.Lock;
4 import java.util.concurrent.locks.ReentrantLock;
5 import javax.swing.JComponent;
6
7 /**
8 This class sorts an array, using the selection sort algorithm.
9 */

10 public class SelectionSorter
11 {
12 // This array is being sorted
13 private int[] a;
14 // These instance variables are needed for drawing
15 private int markedPosition = -1;
16 private int alreadySorted = -1;
17
18 private Lock sortStateLock;
19
20 // The component is repainted when the animation is paused
21 private JComponent component;
22
23 private static final int DELAY = 100;
24
25 /**
26 Constructs a selection sorter.
27 @param anArray the array to sort
28 @param aComponent the component to be repainted when the animation
29 pauses

20.6 A pplication: Algorithm Animation   W891

30 */
31 public SelectionSorter(int[] anArray, JComponent aComponent)
32 {
33 a = anArray;
34 sortStateLock = new ReentrantLock();
35 component = aComponent;
36 }
37
38 /**
39 Sorts the array managed by this selection sorter.
40 */
41 public void sort()
42 throws InterruptedException
43 {
44 for (int i = 0; i < a.length - 1; i++)
45 {
46 int minPos = minimumPosition(i);
47 sortStateLock.lock();
48 try
49 {
50 ArrayUtil.swap(a, minPos, i);
51 // For animation
52 alreadySorted = i;
53 }
54 finally
55 {
56 sortStateLock.unlock();
57 }
58 pause(2);
59 }
60 }
61
62 /**
63 Finds the smallest element in a tail range of the array.
64 @param from the first position in a to compare
65 @return the position of the smallest element in the
66 range a[from] . . . a[a.length - 1]
67 */
68 private int minimumPosition(int from)
69 throws InterruptedException
70 {
71 int minPos = from;
72 for (int i = from + 1; i < a.length; i++)
73 {
74 sortStateLock.lock();
75 try
76 {
77 if (a[i] < a[minPos]) { minPos = i; }
78 // For animation
79 markedPosition = i;
80 }
81 finally
82 {
83 sortStateLock.unlock();
84 }
85 pause(2);
86 }
87 return minPos;
88 }
89

W892  Chapter 20  Multithreading

90 /**
91 Draws the current state of the sorting algorithm.
92 @param g the graphics context
93 */
94 public void draw(Graphics g)
95 {
96 sortStateLock.lock();
97 try
98 {
99 int deltaX = component.getWidth() / a.length;

100 for (int i = 0; i < a.length; i++)
101 {
102 if (i == markedPosition)
103 {
104 g.setColor(Color.RED);
105 }
106 else if (i <= alreadySorted)
107 {
108 g.setColor(Color.BLUE);
109 }
110 else
111 {
112 g.setColor(Color.BLACK);
113 }
114 g.drawLine(i * deltaX, 0, i * deltaX, a[i]);
115 }
116 }
117 finally
118 {
119 sortStateLock.unlock();
120 }
121 }
122
123 /**
124 Pauses the animation.
125 @param steps the number of steps to pause
126 */
127 public void pause(int steps)
128 throws InterruptedException
129 {
130 component.repaint();
131 Thread.sleep(steps * DELAY);
132 }
133 }

11.	 Why is the draw method added to the SelectionSorter class and not the Selection-
SortComponent class?

12.	 Would the animation still work if the startAnimation method simply called sorter.
sort() instead of spawning a thread that calls that method?

Practice It	 Now you can try these exercises at the end of the chapter: R20.14, P20.14, P20.16.

S e l f C h e c k

Chapter Summary  W893

Describe how multiple threads execute concurrently.

•	 A thread is a program unit that is executed concurrently with other parts of the
program.

•	 The start method of the Thread class starts a new thread that executes the run
method of the associated Runnable object.

•	 The sleep method puts the current thread to sleep for a given number of
milliseconds.

An embedded system
is a computer system

that controls a device. The device
contains a processor and other hard­
ware and is controlled by a computer
program. Unlike a personal computer,
which has been designed to be flex­
ible and run many different computer
programs, the hardware and software
of an embedded system are tailored
to a specific device. Computer-con­
trolled devices are becoming increas­
ingly common, ranging from washing
machines to medical equipment, auto­
mobile engines, and spacecraft.

Several challenges are specific to
programming embedded systems.
Most importantly, a much higher stan­
dard of quality control applies. Vendors
are often unconcerned about bugs in
personal computer software, because
they can always make you install a
patch or upgrade to the next version.
But in an embedded system, that is not
an option. Few consumers would feel
comfortable upgrading the software
in their washing machines or auto­
mobile engines. If you ever handed in
a programming assignment that you
believed to be correct, only to have
the instructor or grader find bugs in it,
then you know how hard it is to write
software that can reliably do its task
for many years without a chance of
changing it.

Quality standards are especially
important in devices whose failure
would destroy property or human
life—see Random Fact 7.2.

Many personal computer purchas­
ers buy computers that are fast and
have a lot of storage, because the
investment is paid back over time
when many programs are run on the
same equipment. But the hardware for
an embedded device is not shared—it
is dedicated to one device. A separate
processor, memory, and so on, are built
for every copy of the device (see the
photo). If it is possible to shave a few
pennies off the manufacturing cost of
every unit, the savings can add up
quickly for devices that are produced
in large volumes. Thus, the embedded-
system programmer has a much larger

economic incentive to conserve
resources than the programmer of
desktop software. Unfortunately, try­
ing to conserve resources usually
makes it harder to write programs that
work correctly.

Generally, embedded systems are
written in lower-level programming
languages to avoid the overhead of a
complex run-time system. The Java
run-time system, with its safety mech­
anisms, garbage collector, support
for multithreading, and so on, would
be too costly to add to every wash­
ing machine. However, some devices
are now being built with a scaled-

down version of Java:
the Java 2 Micro Edi­
tion. Examples are
smart cell phones and
onboard computers
for automobiles. The
Java 2 Micro Edition
is a good candidate
for devices that are
connected to a net­
work and that need
to be able to run new
applications safely.
For example, you can
download a program
into a Java-enabled cell
phone and be assured
that it cannot corrupt
other parts of the cell
phone software.

The Controller of an Embedded System

Random Fact 20.1  Embedded Systems

C h a p t e r S u mm a r y

W894  Chapter 20  Multithreading

•	 When a thread is interrupted, the most common response is to terminate the
run method.

•	 The thread scheduler runs each thread for a short amount of time, called a
time slice.

Choose appropriate mechanisms for terminating threads.

•	 A thread terminates when its run method terminates.
•	 The run method can check whether its thread has been interrupted by calling the

interrupted method.

Recognize the causes and effects of race conditions.

•	 A race condition occurs if the effect of multiple threads on shared data depends
on the order in which the threads are scheduled.

Use locks to control access to resources that are shared by multiple threads.

•	 By calling the lock method, a thread acquires a Lock object. Then
no other thread can acquire the lock until the first thread
releases the lock.

Explain how deadlocks occur and how they can be avoided with condition objects.

•	 A deadlock occurs if no thread can proceed because each thread is waiting for
another to do some work first.

•	 Calling await on a condition object makes the current thread wait and allows
another thread to acquire the lock object.

•	 A waiting thread is blocked until another thread calls signalAll or signal on the
condition object for which the thread is waiting.

Use multiple threads to display an animation of an algorithm.

•	 Use a separate thread for running the algorithm that is being animated.
•	 The algorithm state needs to be safely accessed by the algorithm and painting

threads.

java.lang.InterruptedException
java.lang.Object
 notify
 notifyAll
 wait
java.lang.Runnable
 run
java.lang.Thread
 interrupted
 sleep
 start

java.util.Date
java.util.concurrent.locks.Condition
 await
 signal
 signalAll
java.util.concurrent.locks.Lock
 lock
 newCondition
 unlock
java.util.concurrent.locks.ReentrantLock

S ta n d a r d L i b r a r y I t e m s I n t r o d u c e d i n t h i s C h a p t e r

Programming Exercises  W895

• R20.1	 Run a program with the following instructions:
GreetingRunnable r1 = new GreetingRunnable("Hello");
GreetingRunnable r2 = new GreetingRunnable("Goodbye");
r1.run();
r2.run();

Note that the threads don’t run in parallel. Explain.

••• R20.2	 In the program of Section 20.1, is it possible that both threads are sleeping at the
same time? Is it possible that neither of the two threads is sleeping at a particular
time? Explain.

••• R20.3	 In Java, a graphical user interface program has more than one thread. Explain how
you can prove that.

••• R20.4	 Why is the stop method for stopping a thread deprecated? How do you terminate a
thread?

• R20.5	 Give an example of why you would want to terminate a thread.

•• R20.6	 Suppose you surround each call to the sleep method with a try/catch block to catch
an InterruptedException and ignore it. What problem do you create?

•• R20.7	 What is a race condition? How can you avoid it?

•• R20.8	 Consider the ArrayList implementation from Section 16.2. Describe two different
scenarios in which race conditions can corrupt the data structure.

•• R20.9	 Consider a stack that is implemented as a linked list, as in Section 16.3.1. Describe
two different scenarios in which race conditions can corrupt the data structure.

•• R20.10	 Consider a queue that is implemented as a circular array, as in Section 16.3.4.
Describe two different scenarios in which race conditions can corrupt the data struc-
ture.

•• R20.11	 What is a deadlock? How can you avoid it?

• R20.12	 What is the difference between a thread that sleeps by calling sleep and a thread that
waits by calling await?

• R20.13	 What happens when a thread calls await and no other thread calls signalAll or signal?

•• R20.14	 In the algorithm animation program of Section 20.6, we do not use any conditions.
Why not?

•• P20.1	 Write a program in which multiple threads add and remove elements from a java.
util.LinkedList. Demonstrate that the list is being corrupted.

•• P20.2	 Implement a stack as a linked list in which the push, pop, and isEmpty methods can be
safely accessed from multiple threads.

••• P20.3	 Implement a Queue class whose add and remove methods are synchronized. Supply one
thread, called the producer, which keeps inserting strings into the queue as long as

R e v i e w E x e r c i s e s

P r o g r a mm i n g E x e r c i s e s

W896  Chapter 20  Multithreading

there are fewer than 10 elements in it. When the queue gets too full, the thread waits.
As sample strings, simply use time stamps new Date().toString(). Supply a second
thread, called the consumer, that keeps removing and printing strings from the queue
as long as the queue is not empty. When the queue is empty, the thread waits. Both
the consumer and producer threads should run for 100 iterations.

• P20.4	 Enhance the program of Exercise P20.3 by supplying a variable number of producer
and consumer threads. Prompt the program user for the numbers.

• P20.5	 Reimplement Exercise P20.4 by using the ArrayBlockingQueue class from the standard
library.

•• P20.6	 Modify the ArrayList implementation of Section 16.2 so that all methods can be
safely accessed from multiple threads.

•• P20.7	 Write a program WordCount that counts the words in one or more files. Start a new
thread for each file. For example, if you call

java WordCount report.txt address.txt Homework.java

then the program might print
address.txt: 1052
Homework.java: 445
report.txt: 2099

••• P20.8	 Enhance the program of Exercise P20.7 so that the last active thread also prints a
combined count. Use locks to protect the combined word count and a counter of
active threads.

•• P20.9	 Write a program Find that searches all files specified on the command line and prints
out all lines containing a reserved word. Start a new thread for each file. For example,
if you call

java Find Buff report.txt address.txt Homework.java

then the program might print
report.txt: Buffet style lunch will be available at the
address.txt: Buffet, Warren|11801 Trenton Court|Dallas|TX
Homework.java: BufferedReader in;
address.txt: Walters, Winnie|59 Timothy Circle|Buffalo|MI

•• P20.10	 Add a condition to the deposit method of the BankAccount class in Section 20.5,
restricting deposits to $100,000 (the insurance limit of the U.S. government). The
method should block until sufficient money has been withdrawn by another thread.
Test your program with a large number of deposit threads.

••• P20.11	 Implement the merge sort algorithm of Chapter 14 by spawning a new thread
for each smaller MergeSorter. Hint: Use the join method of the Thread class to wait
for the spawned threads to finish. Look up the method’s behavior in the API docu-
mentation.

•• Graphics P20.12	 Write a program that shows two cars moving across a window. Use a separate thread
for each car.

••• Graphics P20.13	 Modify Exercise P20.12 so that the cars change direction when they hit an edge of
the window.

Programming Exercises  W897

• Graphics P20.14	 Enhance the SelectionSorter of Section 20.6 so that the current minimum is painted in
yellow.

•• Graphics P20.15	 Enhance the SelectionSortViewer of Section 20.6 so that the sorting only starts when
the user clicks a “Start” button.

•• Graphics P20.16	 Instead of using a thread and a pause method, use the Timer class introduced in
Chapter 11 to animate an algorithm. Whenever the timer sends out an action event,
run the algorithm to the next step and display the state. That requires a more exten-
sive recoding of the algorithm. You need to implement a runToNextStep method that is
capable of running the algorithm one step at a time. Add sufficient instance variables
to the algorithm to remember where the last step left off. For example, in the case of
the selection sort algorithm, if you know the values of alreadySorted and markedPosi-
tion, you can determine the next step.

••• Graphics P20.17	 Implement an animation of the merge sort algorithm of Chapter 14. Reimplement
the algorithm so that the recursive calls sort the elements inside a subrange of the
original array, rather than in their own arrays:

public void mergeSort(int from, int to)
{
 if (from == to) { return; }
 int mid = (from + to) / 2;
 mergeSort(from, mid);
 mergeSort(mid + 1, to);
 merge(from, mid, to);
}

The merge method merges the sorted ranges a[from] . . . a[mid] and a[mid + 1] . . .
a[to]. Merge the ranges into a temporary array, then copy back the temporary array
into the combined range.
Pause in the merge method whenever you inspect an array element. Color the range
a[from] . . . a[to] in blue and the currently inspected element in red.

••• Graphics P20.18	 Enhance Exercise P20.17 so that it shows two frames, one for a merge sorter and one
for a selection sorter. They should both sort arrays with the same values.

••• Graphics P20.19	 Reorganize the code of the sorting animation in Section 20.6 so that it can be used
for generic animations. Provide a class Animated with abstract methods

public void run()
public void draw(Graphics g, int width, int height)

and concrete methods
public void lock()
public void unlock(int steps)
public void setComponent(JComponent component)

so that the SelectionSorter can be implemented as
public class SelectionSorter extends Animated
{
 private int[] a;
 private int markedPosition = -1;
 private int alreadySorted = -1;

 public SelectionSorter(int[] anArray) { a = anArray; }

W898  Chapter 20  Multithreading

 public void run()
 {
 for (int i = 0; i < a.length - 1; i++)
 {
 int minPos = minimumPosition(i);
 lock();
 ArrayUtil.swap(a, minPos, i);
 alreadySorted = i;
 unlock(2);
 }
 }

 private int minimumPosition(int from)
 {
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 {
 lock();
 if (a[i] < a[minPos]) { minPos = i; }
 markedPosition = i;
 unlock(2);
 }
 return minPos;
 }

 public void draw(Graphics g, int width, int height)
 {
 int deltaX = width / a.length;
 for (int i = 0; i < a.length; i++)
 {
 if (i == markedPosition) { g.setColor(Color.RED); }
 else if (i <= alreadySorted) { g.setColor(Color.BLUE); }
 else { g.setColor(Color.BLACK); }
 g.drawLine(i * deltaX, 0, i * deltaX, a[i]);
 }
 }
}

The remaining classes should be independent of any particular animation.

Answers to Self-Check Questions  W899

1.	 The messages are printed about one millisec-
ond apart.

2.	 The first call to run would print ten “Hello”
messages, and then the second call to run would
print ten “Goodbye” messages.

3.	 If the user hits the “Back” button, the current
web page is no longer displayed, and it makes
no sense to expend network resources to fetch
additional image data.

4.	 The run method prints the values 1, 3, and 4.
The call to interrupt merely sets the interrup-
tion flag, but the sleep method immediately
throws an InterruptedException.

5.	 There are many possible scenarios. Here is
one:
a.	The first thread loses control after the first

print statement.
b.	The second thread loses control just before

the assignment balance = newBalance.
c.	The first thread completes the deposit

method.
d.	The second thread completes the withdraw

method.
6.	 One thread calls addFirst and is preempted

just before executing the assignment first =
newNode. Then the next thread calls addFirst,

using the old value of first. Then the first
thread completes the process, setting first to
its new node. As a result, the links are not in
sequence.

7.	 Two, one for each bank account object. Each
lock protects a separate balance variable.

8.	 When a thread calls deposit, it continues to
own the lock, and any other thread trying to
deposit or withdraw money in the same bank
account is blocked forever.

9.	 A sleeping thread is reactivated when the sleep
delay has passed. A waiting thread is only reac-
tivated if another thread has called signalAll or
signal.

10.	 The calls to await and signal/signalAll must be
made to the same object.

11.	 The draw method uses the array values and
the values that keep track of the algorithm’s
progress. These values are available only in the
SelectionSorter class.

12.	 Yes, provided you only show a single frame. If
you modify the SelectionSortViewer program to
show two frames, you want the sorters to run
in parallel.

A n s w e r s t o S e l f- C h e c k Q u e s t i o n s

21C h a p t e r

W901

Internet
Networking

To understand the concept of sockets

To send and receive data through sockets

To implement network clients and servers

To communicate with web servers and server-side
applications through the Hypertext Transfer Protocol (HTTP)

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

21.1  The Internet Protocol  W902

21.2  Application Level
Protocols  W904

21.3  A Client Program  W907

21.4  A Server Program  W910

How To 21.1:  Designing Client/Server
Programs W 917

21.5  URL Connections  W918

Programming Tip 21.1: Use High-Level
Libraries W 921

W902

You probably have quite a bit of experience with the
Internet, the global network that links together millions of
computers. In particular, you use the Internet whenever you
browse the World Wide Web. Note that the Internet is not the
same as the “Web”. The World Wide Web is only one of many
services offered over the Internet. E-mail, another popular
service, also uses the Internet, but its implementation
differs from that of the Web. In this chapter, you will see
what goes on “under the hood” when you send an e-mail
message or when you retrieve a web page from a remote
server. You will also learn how to write programs that fetch
data from sites across the Internet and how to write server
programs that can serve information to other programs.

21.1  The Internet Protocol
Computers can be connected with each other through a variety of physical media. In
a computer lab, for example, computers are connected by network cabling. Electrical
impulses representing information flow across the cables. If you use a DSL modem
to connect your computer to the Internet, the signals travel across a regular telephone
wire, encoded as tones. On a wireless network, signals are sent by transmitting a
modulated radio frequency. The physical characteristics of these transmissions dif-
fer widely, but they ultimately consist of sending and receiving streams of zeroes and
ones along the network connection.

These zeroes and ones represent two kinds of information: application data, the
data that one computer actually wants to send to another, and network protocol data,
the data that describe how to reach the intended recipient and how to check for errors
and data loss in the transmission. The protocol data follow certain rules set forth by
the Internet Protocol Suite, also called TCP/IP, after the two most important proto-
cols in the suite. These protocols have become the basis for connecting computers
around the world over the Internet. We will discuss TCP and IP in this chapter.

Suppose that a computer A wants to send data to a computer B, both on the Inter-
net. The computers aren’t connected directly with a cable, as they could be if both
were on the same local area network. Instead, A may be someone’s home computer
and connected to an Internet service provider (ISP), which is in turn connected to
an Internet access point; B might be a computer on a local area network belonging to
a large firm that has an Internet access point of its own, which may be half a world
away from A. The Internet itself, finally, is a complex collection of pathways on
which a message can travel from one Internet access point to, eventually, any other
Internet access point (see Figure 1). Those connections carry millions of messages,
not just the data that A is sending to B.

For the data to arrive at its destination, it must be marked with a destination
address. In IP, addresses are denoted by sequences of four numbers, each one byte
(that is, between 0 and 255); for example, 130.65.86.66. (Because there aren’t enough
four-byte addresses for all devices that would like to connect to the Internet, these
addresses have been extended to sixteen bytes. For simplicity, we use the classic four-
byte addresses in this chapter.) In order to send data, A needs to know the Internet

The Internet is a
worldwide collection
of networks, routing
equipment, and
computers using a
common set of
protocols to define
how each party
will interact with
each other.

21.1 T he Internet Protocol   W903

Figure 1  Two Computers Communicating Across the Internet

Computer A Computer B

Internet Service Provider Internet

Internet
Access Points

address of B and include it in the protocol portion when sending the data across the
Internet. The routing software that is distributed across the Internet can then deliver
the data to B.

Of course, addresses such as 130.65.86.66 are not easy to remember. You would
not be happy if you had to use number sequences every time you sent e-mail or
requested information from a web server. On the Internet, computers can have so-
called domain names that are easier to remember, such as cs.sjsu.edu or horst­mann.com.
A special service called the Domain Name System (DNS) translates between domain
names and Internet addresses. Thus, if computer A wants to have information from
horstmann.com, it first asks the DNS to translate this domain name into a numeric Inter-
net address; then it includes the numeric address with the request.

One interesting aspect of IP is that it breaks large chunks of data up into more
manageable packets. Each packet is delivered separately, and different packets that are
part of the same transmission can take different routes through the Internet. Packets
are numbered, and the recipient reassembles them in the correct order.

The Internet Protocol is used when attempting to deliver data from one computer
to another across the Internet. If some data get lost or garbled in the process, IP has
safeguards built in to make sure that the recipient is aware of that unfortunate fact and
doesn’t rely on incomplete data. However, IP has no provision for retrying an incom-
plete transmission. That is the job of a higher-level protocol, the Transmission Control
Protocol (TCP). This protocol attempts reliable delivery of data, with retries if there
are failures, and it notifies the sender whether or not the attempt succeeded. Most, but
not all, Internet programs use TCP for reliable delivery. (Exceptions are “streaming
media” services, which bypass the slower TCP for the highest possible throughput
and tolerate occasional information loss. However, the most popular Internet ser-
vices—the World Wide Web and e-mail—use TCP.) TCP is independent of the Inter-
net Protocol; it could in principle be used with another lower-level network protocol.

TCP/IP is the
abbreviation for
Transmission Control
Protocol and Internet
Protocol, the pair of
communication
protocols designed
to establish reliable
transmission of
data between two
computers on
the Internet.

W904  Chapter 21  Internet Networking

However, in practice, TCP over IP (often called TCP/IP) is the most commonly used
combination. We will focus on TCP/IP networking in this chapter.

A computer that is connected to the Internet may have programs for many dif
ferent purposes. For example, a computer may run both a web server program and a
mail server program. When data are sent to that computer, they need to be marked so
that they can be forwarded to the appropriate program. TCP uses port numbers for
this purpose. A port number is an integer between 0 and 65,535. The sending com-
puter must know the port number of the receiving program and include it with the
transmitted data. Some applications use “well-known” port numbers. For example,
by convention, web servers use port 80, whereas mail servers running the Post Office
Protocol (POP) use port 110. A TCP connection, therefore, requires

•	 The Internet address of the recipient.
•	 The port number of the recipient.
•	 The Internet address of the sender.
•	 The port number of the sender.

You can think of a TCP connection as a “pipe” between two computers that links
the two ports together. Data flow in either direction through the pipe. In practical
programming situations, you simply establish a connection and send data across it
without worrying about the details of the TCP/IP mechanism. You will see how to
establish such a connection in Section 21.3.

1.	 What is the difference between an IP address and a domain name?
2.	 Why do some streaming media services not use TCP?

Practice It	 Now you can try these exercises at the end of the chapter: R21.1, R21.2, R21.3.

21.2  Application Level Protocols
In the preceding section you saw how the TCP/IP mechanism can establish an Inter-
net connection between two ports on two computers so that the two computers can
exchange data. Each Internet application has a different application protocol, which
describes how the data for that particular application are transmitted.

Consider, for example, HTTP: the Hypertext Transfer Protocol, which is used for
the World Wide Web. Suppose you type a web address, called a Uniform Resource
Locator (URL), such as http://horst­mann.com/index.html, into the address window of
your browser and ask the browser to load the page.

The browser now takes the following steps:

1.	It examines the part of the URL between the double slash and the first single
slash (“horstmann.com”), which identifies the computer to which you want to
connect. Because this part of the URL contains letters, it must be a domain
name rather than an Internet address, so the browser sends a request to a DNS

A TCP connection
requires the Internet
addresses and port
numbers of both
end points.

S e l f C h e c k

HTTP, or Hypertext
Transfer Protocol,
is the protocol
that defines
communication
between web
browsers and
web servers.

A URL, or Uniform
Resource Locator, is
a pointer to an
information resource
(such as a web page
or an image) on the
World Wide Web.

21.2 A pplication Level Protocols   W905

server to obtain the Internet address of the computer with domain name
horst­mann.com.

2.	From the http: prefix of the URL, the browser deduces that the protocol you
want to use is HTTP, which by default uses port 80.

3.	It establishes a TCP/IP connection to port 80 at the Internet address it
obtained in Step 1.

4.	It deduces from the /index.html suffix that you want to see the file /index.html,
so it sends a request, formatted as an HTTP command, through the connection
that was established in Step 3. The request looks like this:

GET /index.html HTTP/1.1
Host: horstmann.com
blank line

(The host is needed because a web server can host multiple domains with the
same Internet address.)

5.	The web server running on the computer whose Internet address is the one the
browser obtained in Step 1 receives the request and decodes it. It then fetches
the file /index.html and sends it back to the browser on your computer.

6.	The browser displays the contents of the file. Because it happens to be an
HTML file, the browser translates the HTML tags into fonts, bullets, separator
lines, and so on. If the HTML file contains images, then the browser makes
more GET requests, one for each image, through the same connection, to fetch
the image data. (Appendix F contains a summary of the most frequently used
HTML tags.)

You can try the following experiment to see this process in action. The “Telnet” pro-
gram enables a user to type characters for sending to a remote computer and view
characters that the remote computer sends back. On Windows, you need to enable
the Telnet program in the control panel. UNIX, Linux, and Mac OS X systems nor-
mally have Telnet preinstalled.

For this experiment, you want to start Telnet with a host of horstmann.com and port
80. To start the program from the command line, simply type

telnet horstmann.com 80

Table 1 HTTP Commands

Command Meaning

GET Return the requested item

HEAD Request only the header information of an item

OPTIONS Request communications options of an item

POST Supply input to a server-side command and return the result

PUT Store an item on the server

DELETE Delete an item on the server

TRACE Trace server communication

The Telnet program
is a useful tool for
establishing test
connections
with servers.

W906  Chapter 21  Internet Networking

Once the program starts, type very carefully, without making any typing errors and
without pressing the backspace key,

GET / HTTP/1.1
Host: horstmann.com

Then press the Enter key twice.
The first / denotes the root page of the web server. Note that there are spaces before

and after the first /, but there are no spaces in HTTP/1.1.
On Windows, you will not see what you type, so you should be extra careful when

typing in the commands.
The server now sends a response to the request—see Figure 2. The response, of

course, consists of the root web page that you requested. The Telnet program is not
a browser and does not understand HTML tags, so it simply displays the HTML
file—text, tags, and all.

The GET command is one of the commands of HTTP. Table 1 shows the other com-
mands of the protocol. As you can see, the protocol is pretty simple.

By the way, be sure not to confuse HTML with HTTP. HTML is a document for-
mat (with commands such as <h1> or) that describes the structure of a document,
including headings, bulleted lists, images, hyperlinks, and so on. HTTP is a protocol
(with commands such as GET and POST) that describes the command set for web server
requests. Web browsers know how to display HTML documents and how to issue
HTTP commands. Web servers know nothing about HTML. They merely under-
stand HTTP and know how to fetch the requested items. Those items may be HTML
documents, GIF or JPEG images, or any other data that a web browser can display.

HTTP is just one of many application protocols in use on the Internet. Another
commonly used protocol is the Post Office Protocol (POP), which is used to down-
load received messages from e-mail servers. To send messages, you use yet another
protocol called the Simple Mail Transfer Protocol (SMTP). We don’t want to go into

The HTTP GET
command requests
information from a
web server. The web
server returns the
requested item,
which may be a web
page, an image, or
other data.

Figure 2  Using Telnet to Connect to a Web Server

21.3 A Client Program   W907

Figure 3  A Sample POP Session

USER harryh

PASS secret

STAT

RETR 1

DELE 1

QUIT

+OK San Quentin State POP server

+OK Password required for harryh

+OK harryh has 2 messages (320 octets)

+OK 2 320

+OK 120 octets
the message is included here

+OK message 1 deleted

+OK POP server signing off

Black = mail client requests

Color = mail server responses

the details of these protocols, but Figure 3 gives you a flavor of the commands used
by the Post Office Protocol.

Both HTTP and POP use plain text, which makes it particularly easy to test and
debug client and server programs (see How To 21.1).

3.	 Why don’t you need to know about HTTP when you use a web browser?
4.	 Why is it important that you don’t make typing errors when you type HTTP

commands in Telnet?

Practice It	 Now you can try these exercises at the end of the chapter: R21.13, R21.14, R21.15.

21.3  A Client Program
In this section you will see how to write a Java program that establishes a TCP con
nection to a server, sends a request to the server, and prints the response.

In the terminology of TCP/IP, there is a socket on each side of the connection (see
Figure 4). In Java, a client establishes a socket with a call

Socket s = new Socket(hostname, portnumber);

For example, to connect to the HTTP port of the server horstmann.com, you use
final int HTTP_PORT = 80;
Socket s = new Socket("horstmann.com", HTTP_PORT);

The socket constructor throws an UnknownHostException if it can’t find the host.
Once you have a socket, you obtain its input and output streams:
InputStream instream = s.getInputStream();
OutputStream outstream = s.getOutputStream();

S e l f C h e c k

A socket is an object
that encapsulates a
TCP connection. To
communicate with
the other end point of
the connection, use
the input and output
streams attached to
the socket.

W908  Chapter 21  Internet Networking

Figure 4  Client and Server Sockets

Client output stream Server input stream

Client input stream Server output stream

Client

Socket

Server

Socket

When you send data to outstream, the socket automatically forwards it to the server.
The socket catches the server’s response, and you can read the response through
instream (see Figure 4).

When you are done communicating with the server, you should close the socket:
s.close();

In Chapter 19, you saw that the InputStream and OutputStream classes are used for read-
ing and writing bytes. If you want to communicate with the server by sending and
receiving text, you should turn the streams into scanners and writers, as follows:

Scanner in = new Scanner(instream);
PrintWriter out = new PrintWriter(outstream);

A print writer buffers the characters that you send to it. That is, characters are not
immediately sent to their destination. Instead, they are placed into an array. When the
array is full, then the print writer sends all characters in the array to its destination.
The advantage of buffering is increased performance—it takes some amount of time
to contact the destination and send it data, and it is expensive to pay for that contact
time for every character. However, when communicating with a server that responds
to requests, you want to make sure that the server gets a complete request at a time.
Therefore, you need to flush the buffer manually whenever you send a command:

out.print(command);
out.flush();

The flush method empties the buffer and forwards all waiting characters to the
destination.

The WebGet program at the end of this section lets you retrieve any item from a
web server. You need to specify the host and the item from the command line. For
example,

java WebGet horstmann.com /

The / item denotes the root page of the web server that listens to port 80 of the host
horstmann.com. Note that there is a space before the /.

The WebGet program establishes a connection to the host, sends a GET command to
the host, and then receives input from the server until the server closes its connection.

When transmission
over a socket is
complete, remember
to close the socket.

For text protocols,
turn the socket
streams into
scanners and writers.

Flush the writer
attached to a socket
at the end of every
command. Then the
command is sent to
the server, even if the
writer’s buffer is not
completely filled.

21.3 A Client Program   W909

section_3/WebGet.java

1 import java.io.InputStream;
2 import java.io.IOException;
3 import java.io.OutputStream;
4 import java.io.PrintWriter;
5 import java.net.Socket;
6 import java.util.Scanner;
7
8 /**
9 This program demonstrates how to use a socket to communicate

10 with a web server. Supply the name of the host and the
11 resource on the command line, for example,
12 java WebGet horstmann.com index.html.
13 */
14 public class WebGet
15 {
16 public static void main(String[] args) throws IOException
17 {
18 // Get command-line arguments
19
20 String host;
21 String resource;
22
23 if (args.length == 2)
24 {
25 host = args[0];
26 resource = args[1];
27 }
28 else
29 {
30 System.out.println("Getting / from horstmann.com");
31 host = "horstmann.com";
32 resource = "/";
33 }
34
35 // Open socket
36
37 final int HTTP_PORT = 80;
38 Socket s = new Socket(host, HTTP_PORT);
39
40 // Get streams
41
42 InputStream instream = s.getInputStream();
43 OutputStream outstream = s.getOutputStream();
44
45 // Turn streams into scanners and writers
46
47 Scanner in = new Scanner(instream);
48 PrintWriter out = new PrintWriter(outstream);
49
50 // Send command
51
52 String command = "GET " + resource + " HTTP/1.1\n"
53 + "Host: " + host + "\n\n";
54 out.print(command);
55 out.flush();
56
57 // Read server response
58

W910  Chapter 21  Internet Networking

59 while (in.hasNextLine())
60 {
61 String input = in.nextLine();
62 System.out.println(input);
63 }
64
65 // Always close the socket at the end
66
67 s.close();
68 }
69 }

Program Run

Getting / from horstmann.com
HTTP/1.1 200 OK
Date: Sat, 15 Sep 2012 14:15:04 GMT
Server: Apache/1.3.41 (Unix) Sun-ONE-ASP/4.0.2
. . .
Content-Length: 6654
Content-Type: text/html

<html>
<head><title>Cay Horstmann's Home Page</title></head>
<body>
<h1>Welcome to Cay Horstmann's Home Page</h1>
. . .
</body>
</html>

5.	 What happens if you call WebGet with a nonexistent resource, such as wombat.html
at horstmann.com?

6.	 How do you open a socket to read e-mail from the POP server at
e-mail.sjsu.edu?

Practice It	 Now you can try these exercises at the end of the chapter: R21.7, R21.8, P21.1,
P21.2.

21.4  A Server Program
Now that you have seen how to write a network client, we will turn to the server side.
In this section we will develop a server program that enables clients to manage a set of
bank accounts in a bank.

Whenever you develop a server application, you need to specify some application-
level protocol that clients can use to interact with the server. For the purpose of this
example, we will create a “Simple Bank Access Protocol”. Table 2 shows the protocol
format. Of course, this is just a toy protocol to show you how to implement a server.

The server program waits for clients to connect to a particular port. We choose
port 8888 for this service. This number has not been preassigned to another ser-
vice, so it is unlikely to be used by another server program. To listen to incoming

S e l f C h e c k

21.4 A Server Program   W911

connections, you use a server socket. To construct a server socket, you need to supply
the port number:

ServerSocket server = new ServerSocket(8888);

The accept method of the ServerSocket class waits for a client connection. When a
client connects, then the server program obtains a socket through which it communi
cates with the client:

Socket s = server.accept();
BankService service = new BankService(s, bank);

The BankService class carries out the service. This class implements the Runnable inter
face, and its run method will be executed in each thread that serves a client connection.
The run method gets a scanner and writer from the socket in the same way as we dis-
cussed in the preceding section. Then it executes the following method:

public void doService() throws IOException
{
 while (true)
 {
 if (!in.hasNext()) { return; }
 String command = in.next();
 if (command.equals("QUIT")) { return; }
 executeCommand(command);
 }
}

The executeCommand method processes a single command. If the command is DEPOSIT,
then it carries out the deposit:

int account = in.nextInt();
double amount = in.nextDouble();
bank.deposit(account, amount);

The WITHDRAW command is handled in the same way. After each command, the account
number and new balance are sent to the client:

out.println(account + " " + bank.getBalance(account));

The doService method returns to the run method if the client closed the connection or
the command equals "QUIT". Then the run method closes the socket and exits.

Let us go back to the point where the server socket accepts a connection and con
structs the BankService object. At this point, we could simply call the run method. But
then our server program would have a serious limitation: only one client could con-
nect to it at any point in time. To overcome that limitation, server programs spawn
a new thread whenever a client connects. Each thread is responsible for serving one
client.

Table 2 A Simple Bank Access Protocol

Client Request Server Response Description

BALANCE n n and the balance Get the balance of account n

DEPOSIT n a n and the new balance Deposit amount a into account n

WITHDRAW n a n and the new balance Withdraw amount a from account n

QUIT None Quit the connection

The ServerSocket
class is used by
server applications to
listen for client
connections.

W912  Chapter 21  Internet Networking

Our BankService class implements the Runnable interface. Therefore, the server pro-
gram BankServer simply starts a thread with the following instructions:

Thread t = new Thread(service);
t.start();

The thread dies when the client quits or disconnects and the run method exits. In the
meantime, the BankServer loops back to accept the next connection.

while (true)
{
 Socket s = server.accept();
 BankService service = new BankService(s, bank);
 Thread t = new Thread(service);
 t.start();
}

The server program never stops. When you are done running the server, you need to
kill it. For example, if you started the server in a shell window, press Ctrl+C.

To try out the program, run the server. Then use Telnet to connect to localhost,
port number 8888. Start typing commands. Here is a typical dialog (see Figure 5):

DEPOSIT 3 1000
3 1000.0
WITHDRAW 3 500
3 500.0
QUIT

Alternatively, you can use a client program that connects to the server. You will find a
sample client program at the end of this section.

Figure 5  Using the Telnet Program to Connect to the Bank Server

21.4 A Server Program   W913

section_4/BankServer.java

1 import java.io.IOException;
2 import java.net.ServerSocket;
3 import java.net.Socket;
4
5 /**
6 A server that executes the Simple Bank Access Protocol.
7 */
8 public class BankServer
9 {

10 public static void main(String[] args) throws IOException
11 {
12 final int ACCOUNTS_LENGTH = 10;
13 Bank bank = new Bank(ACCOUNTS_LENGTH);
14 final int SBAP_PORT = 8888;
15 ServerSocket server = new ServerSocket(SBAP_PORT);
16 System.out.println("Waiting for clients to connect . . . ");
17
18 while (true)
19 {
20 Socket s = server.accept();
21 System.out.println("Client connected.");
22 BankService service = new BankService(s, bank);
23 Thread t = new Thread(service);
24 t.start();
25 }
26 }
27 }

section_4/BankService.java

1 import java.io.InputStream;
2 import java.io.IOException;
3 import java.io.OutputStream;
4 import java.io.PrintWriter;
5 import java.net.Socket;
6 import java.util.Scanner;
7
8 /**
9 Executes Simple Bank Access Protocol commands

10 from a socket.
11 */
12 public class BankService implements Runnable
13 {
14 private Socket s;
15 private Scanner in;
16 private PrintWriter out;
17 private Bank bank;
18
19 /**
20 Constructs a service object that processes commands
21 from a socket for a bank.
22 @param aSocket the socket
23 @param aBank the bank
24 */
25 public BankService(Socket aSocket, Bank aBank)
26 {
27 s = aSocket;
28 bank = aBank;

W914  Chapter 21  Internet Networking

29 }
30
31 public void run()
32 {
33 try
34 {
35 try
36 {
37 in = new Scanner(s.getInputStream());
38 out = new PrintWriter(s.getOutputStream());
39 doService();
40 }
41 finally
42 {
43 s.close();
44 }
45 }
46 catch (IOException exception)
47 {
48 exception.printStackTrace();
49 }
50 }
51
52 /**
53 Executes all commands until the QUIT command or the
54 end of input.
55 */
56 public void doService() throws IOException
57 {
58 while (true)
59 {
60 if (!in.hasNext()) { return; }
61 String command = in.next();
62 if (command.equals("QUIT")) { return; }
63 else executeCommand(command);
64 }
65 }
66
67 /**
68 Executes a single command.
69 @param command the command to execute
70 */
71 public void executeCommand(String command)
72 {
73 int account = in.nextInt();
74 if (command.equals("DEPOSIT"))
75 {
76 double amount = in.nextDouble();
77 bank.deposit(account, amount);
78 }
79 else if (command.equals("WITHDRAW"))
80 {
81 double amount = in.nextDouble();
82 bank.withdraw(account, amount);
83 }
84 else if (!command.equals("BALANCE"))
85 {
86 out.println("Invalid command");
87 out.flush();
88 return;

21.4 A Server Program   W915

89 }
90 out.println(account + " " + bank.getBalance(account));
91 out.flush();
92 }
93 }

section_4/Bank.java

1 /**
2 A bank consisting of multiple bank accounts.
3 */
4 public class Bank
5 {
6 private BankAccount[] accounts;
7
8 /**
9 Constructs a bank account with a given number of accounts.

10 @param size the number of accounts
11 */
12 public Bank(int size)
13 {
14 accounts = new BankAccount[size];
15 for (int i = 0; i < accounts.length; i++)
16 {
17 accounts[i] = new BankAccount();
18 }
19 }
20
21 /**
22 Deposits money into a bank account.
23 @param accountNumber the account number
24 @param amount the amount to deposit
25 */
26 public void deposit(int accountNumber, double amount)
27 {
28 BankAccount account = accounts[accountNumber];
29 account.deposit(amount);
30 }
31
32 /**
33 Withdraws money from a bank account.
34 @param accountNumber the account number
35 @param amount the amount to withdraw
36 */
37 public void withdraw(int accountNumber, double amount)
38 {
39 BankAccount account = accounts[accountNumber];
40 account.withdraw(amount);
41 }
42
43 /**
44 Gets the balance of a bank account.
45 @param accountNumber the account number
46 @return the account balance
47 */
48 public double getBalance(int accountNumber)
49 {
50 BankAccount account = accounts[accountNumber];
51 return account.getBalance();

W916  Chapter 21  Internet Networking

52 }
53 }

section_4/BankClient.java

1 import java.io.InputStream;
2 import java.io.IOException;
3 import java.io.OutputStream;
4 import java.io.PrintWriter;
5 import java.net.Socket;
6 import java.util.Scanner;
7
8 /**
9 This program tests the bank server.

10 */
11 public class BankClient
12 {
13 public static void main(String[] args) throws IOException
14 {
15 final int SBAP_PORT = 8888;
16 Socket s = new Socket("localhost", SBAP_PORT);
17 InputStream instream = s.getInputStream();
18 OutputStream outstream = s.getOutputStream();
19 Scanner in = new Scanner(instream);
20 PrintWriter out = new PrintWriter(outstream);
21
22 String command = "DEPOSIT 3 1000\n";
23 System.out.print("Sending: " + command);
24 out.print(command);
25 out.flush();
26 String response = in.nextLine();
27 System.out.println("Receiving: " + response);
28
29 command = "WITHDRAW 3 500\n";
30 System.out.print("Sending: " + command);
31 out.print(command);
32 out.flush();
33 response = in.nextLine();
34 System.out.println("Receiving: " + response);
35
36 command = "QUIT\n";
37 System.out.print("Sending: " + command);
38 out.print(command);
39 out.flush();
40
41 s.close();
42 }
43 }

Program Run

Sending: DEPOSIT 3 1000
Receiving: 3 1000.0
Sending: WITHDRAW 3 500
Receiving: 3 500.0
Sending: QUIT

21.4 A Server Program   W917

7.	 Why didn’t we choose port 80 for the bank server?
8.	 Can you read data from a server socket?

Practice It	 Now you can try these exercises at the end of the chapter: P21.3, P21.4, P21.6.

Step 1	 Determine whether it really makes sense to implement a stand-alone server and a matching
client.

Many times it makes more sense to build a web application instead. Chapter 24 discusses
the construction of web applications in detail. For example, the bank application of this sec-
tion could easily be turned into a web application, using an HTML form with Withdraw and
Deposit buttons. However, programs for chat or peer-to-peer file sharing cannot easily be
implemented as web applications.

Step 2	 Design a communication protocol.

Figure out exactly what messages the client and server send to each other and what the success
and error responses are.

With each request and response, ask yourself how the end of data is indicated.
•	 Do the data fit on a single line? Then the end of the line serves as the data terminator.
•	 Can the data be terminated by a special line (such as a blank line after the HTTP header or

a line containing a period in SMTP)?
•	 Does the sender of the data close the socket? That’s what a web server does at the end of a

GET request.
•	 Can the sender indicate how many bytes are contained in the request? Web browsers do

that in POST requests.
Use text, not binary data, for the communication between client and server. A text-based pro-
tocol is easier to debug.

Step 3	 Implement the server program.

The server listens for socket connections and accepts them. It starts a new thread for each
connection. Supply a class that implements the Runnable interface. The run method receives
commands, interprets them, and sends responses back to the client.

Step 4	 Test the server with the Telnet program.

Try out all commands in the communication protocol.

Step 5	 Once the server works, write a client program.

The client program interacts with the program user, turns user requests into protocol com
mands, sends the commands to the server, receives the response, and displays the response for
the program user.

S e l f C h e c k

How To 21.1	 Designing Client/Server Programs

The bank server of this section is a typical example of a client/server program. A web browser/
web server is another example. This How To outlines the steps to follow when designing a
client/server application.

W918  Chapter 21  Internet Networking

21.5  URL Connections
In Section 21.3, you saw how to use sockets to connect to a web server and how
to retrieve information from the server by sending HTTP commands. However,
because HTTP is such an important protocol, the Java library contains a URLConnection
class, which provides convenient support for the HTTP. The URLConnection class takes
care of the socket connection, so you don’t have to fuss with sockets when you want
to retrieve from a web server. As an additional benefit, the URLConnection class can also
handle FTP, the file transfer protocol.

The URLConnection class makes it very easy to fetch a file from a web server given the
file’s URL as a string. First, you construct a URL object from the URL in the familiar
format, starting with the http or ftp prefix. Then you use the URL object’s openConnec-
tion method to get the URLConnection object itself:

URL u = new URL("http://horstmann.com/index.html");
URLConnection connection = u.openConnection();

Then you call the getInputStream method to obtain an input stream:
InputStream instream = connection.getInputStream();

You can turn the stream into a scanner in the usual way, and read input from the
scanner.

The URLConnection class can give you additional useful information. To understand
those capabilities, we need to have a closer look at HTTP requests and responses.
You saw in Section 21.2 that the command for getting an item from the server is

GET item HTTP/1.1
Host: hostname
blank line

You may have wondered why you need to provide a blank line. This blank line is a
part of the general request format. The first line of the request is a command, such
as GET or POST. The command is followed by request properties (such as Host:). Some
commands—in particular, the POST command—send input data to the server. The rea-
son for the blank line is to denote the boundary between the request property section
and the input data section.

A typical request property is If-Modified-Since. If you request an item with
GET item HTTP/1.1
Host: hostname
If-Modified-Since: date
blank line

the server sends the item only if it is newer than the date. Browsers use this feature
to speed up redisplay of previously loaded web pages. When a web page is loaded,
the browser stores it in a cache directory. When the user wants to see the same web
page again, the browser asks the server to get a new page only if it has been modified
since the date of the cached copy. If it hasn’t been, the browser simply redisplays the
cached copy and doesn’t spend time downloading another identical copy.

The URLConnection class has methods to set request properties. For example, you
can set the If-Modified-Since property with the setIfModifiedSince method:

connection.setIfModifiedSince(date);

You need to set request properties before calling the getInputStream method. The URL-
Connection class then sends to the web server all the request properties that you set.

The URLConnection
class makes it easy to
communicate with a
web server without
having to issue HTTP
commands.

The URLConnection
and
HttpURLConnection
classes can give
you additional
information about
HTTP requests
and responses.

21.5  URL Connections   W919

Similarly, the response from the server starts with a status line followed by a set of
response parameters. The response parameters are terminated by a blank line and fol-
lowed by the requested data (for example, an HTML page). Here is a typical response:

HTTP/1.1 200 OK
Date: Tue, 28 Aug 2012 00:15:48 GMT
Server: Apache/1.3.3 (Unix)
Last-Modified: Sat, 23 Jun 2012 20:53:38 GMT
Content-Length: 4813
Content-Type: text/html
blank line
requested data

Normally, you don’t see the response code. However, you may have run across
bad links and seen a page that contained a response code 404 Not Found. (A successful
response has status 200 OK.)

To retrieve the response code, you need to cast the URLConnection object to the
HttpURLConnection subclass. You can retrieve the response code (such as the number
200 in this example, or the code 404 if a page was not found) and response message
with the getResponseCode and getResponseMessage methods:

HttpURLConnection httpConnection = (HttpURLConnection) connection;
int code = httpConnection.getResponseCode(); // e.g., 404
String message = httpConnection.getResponseMessage(); // e.g., “Not found”

As you can see from the response example, the server sends some information about
the requested data, such as the content length and the content type. You can request
this information with methods from the URLConnection class:

int length = connection.getContentLength();
String type = connection.getContentType();

You need to call these methods after calling the getInputStream method.
To summarize: You don’t need to use sockets to communicate with a web server,

and you need not master the details of the HTTP protocol. Simply use the URLCon-
nection and HttpURLConnection classes to obtain data from a web server, to set request
properties, or to obtain response information.

The program at the end of this section puts the URLConnection class to work. The
program fulfills the same purpose as that of Section 21.3—to retrieve a web page from
a server—but it works at a higher level of abstraction. There is no longer a need to
issue an explicit GET command. The URLConnection class takes care of that. Similarly, the
parsing of the HTTP request and response headers is handled transparently to the
programmer. Our sample program takes advantage of that fact. It checks whether the
server response code is 200. If not, it exits. You can try that out by testing the pro-
gram with a bad URL, like http://horstmann.com/wombat.html. Then the program prints
a server response, such as 404 Not Found.

This program completes our introduction to Internet programming with Java.
You have seen how to use sockets to connect client and server programs. You also
saw how to use the higher-level URLConnection class to obtain information from web
servers.

section_5/URLGet.java

1 import java.io.InputStream;
2 import java.io.IOException;
3 import java.io.OutputStream;
4 import java.io.PrintWriter;

W920  Chapter 21  Internet Networking

5 import java.net.HttpURLConnection;
6 import java.net.URL;
7 import java.net.URLConnection;
8 import java.util.Scanner;
9

10 /**
11 This program demonstrates how to use a URL connection
12 to communicate with a web server. Supply the URL on
13 the command line, for example
14 java URLGet http://horstmann.com/index.html
15 */
16 public class URLGet
17 {
18 public static void main(String[] args) throws IOException
19 {
20 // Get command-line arguments
21
22 String urlString;
23 if (args.length == 1)
24 {
25 urlString = args[0];
26 }
27 else
28 {
29 urlString = "http://horstmann.com/";
30 System.out.println("Using " + urlString);
31 }
32
33 // Open connection
34
35 URL u = new URL(urlString);
36 URLConnection connection = u.openConnection();
37
38 // Check if response code is HTTP_OK (200)
39
40 HttpURLConnection httpConnection
41 = (HttpURLConnection) connection;
42 int code = httpConnection.getResponseCode();
43 String message = httpConnection.getResponseMessage();
44 System.out.println(code + " " + message);
45 if (code != HttpURLConnection.HTTP_OK)
46 {
47 return;
48 }
49
50 // Read server response
51
52 InputStream instream = connection.getInputStream();
53 Scanner in = new Scanner(instream);
54
55 while (in.hasNextLine())
56 {
57 String input = in.nextLine();
58 System.out.println(input);
59 }
60 }
61 }

21.5  URL Connections   W921

Program Run

Using http://horstmann.com/
200 OK
<html>
<head><title>Cay Horstmann's Home Page</title></head>
<body>
<h1>Welcome to Cay Horstmann's Home Page</h1>
. . .
</body>
</html>

9.	 Why is it better to use a URLConnection instead of a socket when reading data from
a web server?

10.	 What happens if you use the URLGet program to request an image (such as
http://horstmann.com/cay-tiny.gif)?

Practice It	 Now you can try these exercises at the end of the chapter: P21.10, P21.11, P21.12.

Use High-Level Libraries

When you communicate with a web server to obtain data, you have two choices. You can
make a socket connection and send GET and POST commands to the server over the socket. Or
you can use the URLConnection class and have it issue the commands on your behalf.

Similarly, to communicate with a mail server, you can write programs that send SMTP and
POP commands, or you can learn how to use the Java mail extensions. (See http://oracle.com/
technetwork/java/javamail/index.html for more information on the Java Mail API.)

In such a situation, you may be tempted to use the low-level approach and send commands
over a socket connection. It seems simpler than learning a complex set of classes. However,
that simplicity is often deceptive. Once you go beyond the simplest cases, the low-level
approach usually requires hard work. For example, to send binary mail attachments, you may
need to master complex data encodings. The high-level libraries have all that knowledge built
in, so you don’t have to reinvent the wheel.

For that reason, you should not actually use sockets to connect to web servers. Always
use the URLConnection class instead. Why did this book teach you about sockets if you aren’t
expected to use them? There are two reasons. Some client programs don’t communicate with
web or mail servers, and you may need to use sockets when a high-level library is not available.
And, just as importantly, knowing what the high-level library does under the hood helps you
understand it better. For the same reason, you saw in Chapter 16 how to implement linked
lists, even though you probably will never program your own lists and will just use the stan-
dard LinkedList class.

S e l f C h e c k

Programming Tip 21.1

W922  Chapter 21  Internet Networking

Describe the IP and TCP protocols.

•	 The Internet is a worldwide collection of networks, routing equipment, and
computers using a common set of protocols to define how each party will interact
with each other.

•	 TCP/IP is the abbreviation for Transmission Control Protocol and Internet
Protocol, the pair of communication protocols designed to establish reliable
transmission of data between two computers on the Internet.

•	 A TCP connection requires the Internet addresses and port numbers of both end
points.

Describe the HTTP protocol.

•	 HTTP, or Hypertext Transfer Protocol, is the protocol that defines communica
tion between web browsers and web servers.

•	 A URL, or Uniform Resource Locator, is a pointer to an information resource
(such as a web page or an image) on the World Wide Web.

•	 The Telnet program is a useful tool for establishing test connections with servers.
•	 The HTTP GET command requests information from a web server. The web server

returns the requested item, which may be a web page, an image, or other data.

Implement programs that use network sockets for reading data.

•	 A socket is an object that encapsulates a TCP connection. To communicate with
the other end point of the connection, use the input and output streams attached
to the socket.

•	 When transmission over a socket is complete, remember to close the socket.
•	 For text protocols, turn the socket streams into scanners and writers.
•	 Flush the writer attached to a socket at the end of every command. Then the

command is sent to the server, even if the writer’s buffer is not completely filled.

Implement programs that serve data over a network.

•	 The ServerSocket class is used by server applications to listen for client
connections.

Use the URLConnection class to read data from a web server.

•	 The URLConnection class makes it easy to communicate with a web server without
having to issue HTTP commands.

•	 The URLConnection and HttpURLConnection classes can give you additional informa
tion about HTTP requests and responses.

C h a p t e r Summ a r y

Review Exercises  W923

• R21.1	 What is the IP address of the computer that you are using at home? Does it have a
domain name?

• R21.2	 Can a computer somewhere on the Internet establish a network connection with the
computer at your home? If so, what information does the other computer need to
establish the connection?

• R21.3	 What is a port number? Can the same computer receive data on two different ports?

• R21.4	 What is a server? What is a client? How many clients can connect to a server at one
time?

• R21.5	 What is a socket? What is the difference between a Socket object and a ServerSocket
object?

• R21.6	 Under what circumstances would an UnknownHostException be thrown?

•• R21.7	 What happens if the Socket constructor’s second argument is not the same as the port
number at which the server waits for connections?

• R21.8	 When a socket is created, which of the following Internet addresses is used?
a.	The address of the computer to which you want to connect
b.	The address of your computer
c.	The address of your ISP

• R21.9	 What is the purpose of the accept method of the ServerSocket class?

• R21.10	 After a socket establishes a connection, which of the following mechanisms will
your client program use to read data from the server computer?

a.	The Socket will fill a buffer with bytes.
b.	You will use a Reader obtained from the Socket.
c.	You will use an InputStream obtained from the Socket.

• R21.11	 Why is it not common to work directly with the InputStream and OutputStream objects
obtained from a Socket object?

• R21.12	 When a client program communicates with a server, it sometimes needs to flush the
output stream. Explain why.

java.net.HttpURLConnection
 getResponseCode
 getResponseMessage
java.net.ServerSocket
 accept
 close
java.net.Socket
 close
 getInputStream
 getOutputStream

java.net.URL
 openConnection
java.net.URLConnection
 getContentLength
 getContentType
 getInputStream
 setIfModifiedSince

S ta n d a r d Lib r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e v i e w E x e r ci s e s

W924  Chapter 21  Internet Networking

• R21.13	 What is the difference between HTTP and HTML?

• R21.14	 Try out the HEAD command of the HTTP protocol. What command did you use?
What response did you get?

•• R21.15	 Connect to a POP server that hosts your e-mail and retrieve a message. Provide
a record of your session (but remove your password). If your mail server doesn't
allow access on port 110, access it through SSL encryption (usually on port 995). Get
a copy of the openssl utility and use the command openssl s_client -connect server-
name:995.

• R21.16	 How can you communicate with a web server without using sockets?

• R21.17	 What is the difference between a URL instance and a URLConnection instance?

• R21.18	 What is a URL? How do you create an object of class URL? How do you connect to a
URL?

• P21.1	 Modify the WebGet program to print only the HTTP header of the returned HTML
page. The HTTP header is the beginning of the response data. It consists of several
lines, such as

HTTP/1.1 200 OK
Date: Tue, 15 Jan 2013 16:10:34 GMT
Server: Apache/1.3.19 (Unix)
Cache-Control: max-age=86400
Expires: Wed, 16 Jan 2013 16:10:34 GMT
Connection: close
Content-Type: text/html

followed by a blank line.

• P21.2	 Modify the WebGet program to print only the title of the returned HTML page. An
HTML page has the structure

<html><head><title> . . . </title></head><body> . . . </body></html>

For example, if you run the program by typing at the command line
java WebGet horstmann.com /

the output should be the title of the root web page at horstmann.com, such as Cay
Horstmann’s Home Page.

•• P21.3	 Modify the BankServer program so that it can be terminated more elegantly. Provide
another socket on port 8889 through which an administrator can log in. Support
the commands LOGIN password, STATUS, PASSWORD newPassword, LOGOUT, and SHUTDOWN. The
STATUS command should display the total number of clients that have logged in since
the server started.

•• P21.4	 Modify the BankServer program to provide complete error checking. For example,
the program should check to make sure that there is enough money in the account
when withdrawing. Send appropriate error reports back to the client. Enhance the
protocol to be similar to HTTP, in which each server response starts with a number
indicating the success or failure condition, followed by a string with response data or
an error description.

P r o g r a mmi n g E x e r ci s e s

Programming Exercises  W925

•• P21.5	 Write a client application that executes an infinite loop that
a.	Prompts the user for a number.
b.	Sends that value to the server.
c.	Receives the number.
d.	Displays the new number.

Also write a server that executes an infinite loop whose body accepts a client connec-
tion, reads a number from the client, computes its square root, and writes the result
to the client.

•• P21.6	 Implement a client-server program in which the client will print the date and time
given by the server. Two classes should be implemented: DateClient and DateServer.
The DateServer simply prints new Date().toString() whenever it accepts a connection
and then closes the socket.

•• P21.7	 Write a program to display the protocol, host, port, and file components of a URL.
Hint: Look at the API documentation of the URL class.

••• P21.8	 Write a simple web server that recognizes only the GET request (without the Host:
request parameter and blank line). When a client connects to your server and sends a
command, such as GET filename HTTP/1.1, then return a header

HTTP/1.1 200 OK

followed by a blank line and all lines in the file. If the file doesn’t exist, return 404 Not
Found instead.
Your server should listen to port 8080. Test your web server by starting up your web
browser and loading a page, such as localhost:8080/c:\cs1\myfile.html.

••• P21.9	 Write a chat server and client program. The chat server accepts connections from
clients. Whenever one of the clients sends a chat message, it is displayed for all other
clients to see. Use a protocol with three commands: LOGIN name, CHAT message, and
LOGOUT.

•• P21.10	 A query such as
http://aa.usno.navy.mil/cgi-bin/aa_moonphases.pl?year=2011

returns a page containing the moon phases in a given year. Write a program that asks
the user for a year, month, and day and then prints the phase of the moon on that
day.

••• P21.11	 A page such as
http://www.nws.noaa.gov/view/states.php

contains links to pages showing the weather reports for many cities in the fifty states.
Write a program that asks the user for a state and city and then prints the weather
report.

••• P21.12	 A page such as
https://www.cia.gov/library/publications/the-world-factbook/geos/­
 countrytemplate_ca.html

contains information about a country (here Canada, with the symbol ca—see
https://www.cia.gov/library/publications/the-world-factbook/print/textversion.html for
the country symbols). Write a program that asks the user for a country name and
then prints the area and population.

W926  Chapter 21  Internet Networking

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 An IP address is a numerical address, consist-
ing of four or sixteen bytes. A domain name is
an alphanumeric string that is associated with
an IP address.

2.	 TCP is reliable but somewhat slow. When
sending sounds or images in real time, it is
acceptable if a small amount of the data is lost.
But there is no point in transmitting data that
is late.

3.	 The browser software translates your requests
(typed URLs and mouse clicks on links) into
HTTP commands that it sends to the appro-
priate web servers.

4.	 Some Telnet implementations send all key-
strokes that you type to the server, includ-
ing the backspace key. The server does not
recognize a character sequence such as G W
Backspace E T as a valid command.

5.	 The program makes a connection to the server,
sends the GET request, and prints the error mes-
sage that the server returns.

6.	 Socket s = new Socket("e-mail.sjsu.edu", 110);
7.	 Port 80 is the standard port for HTTP. If a web

server is running on the same computer, then
one can’t open a server socket on an open port.

8.	 No, a server socket just waits for a connection
and yields a regular Socket object when a client
has connected. You use that socket object to
read the data that the client sends.

9.	 The URLConnection class understands the
HTTP protocol, freeing you from assembling
requests and analyzing response headers.

10.	 The bytes that encode the images are displayed
on the console, but they will appear to be ran-
dom gibberish.

22C h a p t e r

W927

Relational
Databases

To understand how relational databases
store information

To learn to query a database with the Structured
Query Language (SQL)

To connect to a database with Java Database
Connectivity (JDBC)

To write database programs that insert, update, and query
data in a relational database

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

22.1  Organizing Database
Information  W928

Programming Tip 22.1: Stick with the
Standard  W933

Programming Tip 22.2: Avoid Unnecessary
Data Replication  W934

Programming Tip 22.3: Don’t Replicate Columns
in a Table  W934

Special Topic 22.1: Primary Keys and
Indexes  W935

22.2  Queries  W928

Common Error 22.1:  Joining Tables Without
Specifying a Link Condition  W941

Random Fact 22.1: Databases and Privacy  W942

22.3  Installing a Database  W942

22.4  Database Programming
in Java  W947

Programming Tip 22.4: Don’t Hardwire
Database Connection Parameters into
Your Program  W953

Programming Tip 22.5:  Let the Database Do
the Work  W954

Common Error 22.2: Constructing Queries from
Arbitrary Strings  W954

22.5  Application: Entering
an Invoice  W955

Special Topic 22.2: Transactions  W962
Special Topic 22.3: Object-Relational

Mapping  W963
Worked Example 22.1: Programming a Bank

Database  W965

W928

When you store data in a file, you want to be able to add
and remove data, change data items, and find items that
match certain criteria. However, if you have a lot of data,
it can be difficult to carry out these operations quickly and
efficiently. Because data storage is such a common task,
special database management systems have been invented
that let the programmer think in terms of the data rather
than how it is stored. In this chapter, you will learn how
to use SQL, the Structured Query Language, to query and
update information in a relational database, and how to
access database information from Java programs.

22.1  Organizing Database Information

22.1.1  Database Tables

A relational database stores information in tables. Figure 1 shows a typical table. As
you can see, each row in this table corresponds to a product. The column headers cor-
respond to attributes of the product: the product code, description, and unit price.
Note that all items in a particular column have the same type: product codes and
descriptions are strings, unit prices are floating-point numbers. The allowable col-
umn types differ somewhat from one database to another. Table 1 shows types that
are commonly available in relational databases that follow the SQL (for Structured
Query Language; often pronounced “sequel”) standard.

Most relational databases follow the SQL standard. There is no relationship
between SQL and Java—they are different languages. However, as you will see later
in this chapter, you can use Java to send SQL commands to a database. You will see in
the next section how to use SQL commands to carry out queries, but there are other
SQL commands.

For example, here is the SQL command to create a table named Product:
CREATE TABLE Product
(
 Product_Code CHAR(7),
 Description VARCHAR(40),
 Price DECIMAL(10, 2)

)

A relational database
stores information in
tables. Each table
column has a name
and a data type.

SQL (Structured
Query Language) is a
command language
for interacting with a
database.

Figure 1  A Product Table in a Relational Database

Product

Product_Code Description Price

116-064 Toaster 24.95

257-535 Hair dryer 29.95

643-119 Car vacuum 19.99

22.1 O rganizing Database Information   W929

Table 1 Some Standard SQL Types and
Their Corresponding Java Types

SQL Data Type Java Data Type

INTEGER or INT int

REAL float

DOUBLE double

DECIMAL(m, n) Fixed-point decimal numbers with m total digits and n digits
after the decimal point; similar to BigDecimal

BOOLEAN boolean

VARCHAR(n) Variable-length String of length up to n

CHARACTER(n) or CHAR(n) Fixed-length String of length n

Unlike Java, SQL is not case sensitive. For example, you could spell the command
create table instead of CREATE TABLE. However, as a matter of convention, we will use
uppercase letters for SQL keywords and mixed case for table and column names.

To insert rows into the table, use the INSERT INTO command. Issue one command for
each row, such as

INSERT INTO Product
 VALUES ('257-535', 'Hair dryer', 29.95)

SQL uses single quotes ('), not double quotes, to delimit strings. What if you have a
string that contains a single quote? Rather than using an escape sequence (such as \')
as in Java, you just write the single quote twice, such as

'Sam''s Small Appliances'

If you create a table and subsequently want to remove it, use the DROP TABLE command
with the name of the table. For example,

DROP TABLE Test

22.1.2  Linking Tables

If you have objects whose instance variables are strings, numbers, dates, or other
types that are permissible as table column types, then you can easily store them as
rows in a database table. For example, consider a Java class Customer:

public class Customer
{
 private String name;
 private String address;
 private String city;
 private String state;
 private String zip;
 . . .
}

Use the SQL
commands
CREATE TABLE and
INSERT INTO to add
data to a database.

W930  Chapter 22  Relational Databases

It is simple to come up with a database table structure that allows you to store cus-
tomers—see Figure 2.

For other objects, it is not so easy. Consider an invoice. Each invoice object con-
tains a reference to a customer object:

public class Invoice
{
 private int invoiceNumber;
 private Customer theCustomer;
 . . .
}

Because Customer isn’t a standard SQL type, you might consider simply entering all the
customer data into the invoice table—see Figure 3. However, this is not a good idea.
If you look at the sample data in Figure 3, you will notice that Sam’s Small Appliances
had two invoices, numbers 11731 and 11733. Yet all information for the customer was
replicated in two rows.

This replication has two problems. First, it is wasteful to store the same infor-
mation multiple times. If the same customer places many orders, then the replicated
information can take up a lot of space. More importantly, the replication is danger-
ous. Suppose the customer moves to a new address. Then it would be an easy mistake
to update the customer information in some of the invoice records and leave the old
address in place in others.

In a Java program, neither of these problems occurs. Multiple Invoice objects can
contain references to a single shared Customer object.

Figure 2  A Customer Table

Customer

Name Address City State Zip

VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5)

Sam’s Small Appliances 100 Main Street Anytown CA 98765

Figure 3  A Poor Design for an Invoice Table with Replicated Customer Data

Invoice

Invoice_
Number

Customer_
Name

Customer_
Address

Customer_
City

Customer_
State

Customer_
Zip

. . .

INTEGER VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5) . . .

11731 Sam’s Small
Appliances

100 Main Street Anytown CA 98765 . . .

11732 Electronics
Unlimited

1175 Liberty Ave Pleasantville MI 45066 . . .

11733 Sam’s Small
Appliances

100 Main Street Anytown CA 98765 . . .

22.1 O rganizing Database Information   W931

Figure 4  Two Tables for Invoice and Customer Data

Invoice

Invoice_
Number

Customer_
Number

Payment

INTEGER INTEGER DECIMAL(10, 2)

11731 3175 0

11732 3176 249.95

11733 3175 0

Customer

Customer_
Number

Name Address City State Zip

INTEGER VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5)

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

3176 Electronics Unlimited 1175 Liberty Ave Pleasantville MI 45066

The first step in achieving the same effect in a database is to organize your data into
multiple tables as in Figure 4. Dividing the columns into two tables solves the
replication problem. The customer data are no longer replicated—the Invoice table
contains no customer information, and the Customer table contains a single record
for each customer. But how can we refer to the customer to which an invoice is issued?
Notice in Figure 4 that there is now a Customer_Number column in both the Cus-
tomer table and the Invoice table. Now all invoices for Sam’s Small Appliances share
only the customer number. The two tables are linked by the Customer_Number
field. To find out more details about this customer, you need to use the customer
number to look up the customer in the Customer table.

Note that the customer number is a unique identifier. We introduced the customer
number because the customer name by itself may not be unique. For example, there
may well be multiple Electronics Unlimited stores in various locations. Thus, the
customer name alone does not uniquely identify a record (a row of data), so we can-
not use the name as a link between the two tables.

In database terminology, a column (or combination of columns) that uniquely
identifies a row in a table is called a primary key. In our Customer table, the Cus-
tomer_Number column is a primary key. You need a primary key if you want to
establish a link from another table. For example, the Customer table needs a primary
key so that you can link customers to invoices.

When a primary key is linked to another table, the matching column (or combina-
tion of columns) in that table is called a foreign key. For example, the Customer_
Number in the Invoice table is a foreign key, linked to the primary key in the Cus-
tomer table. Unlike primary keys, foreign keys need not be unique. For example, in
our Invoice table we have several records that have the same value for the Customer_
Number foreign key.

You should avoid
rows with replicated
data. Instead,
distribute the data
over multiple tables.

A primary key is a
column (or set of
columns) whose
value uniquely
specifies a
table record.

A foreign key is a
reference to a
primary key in a
linked table.

W932  Chapter 22  Relational Databases

22.1.3  Implementing Multi-Valued Relationships

Each invoice is linked to exactly one customer. That is called a single-valued relation-
ship. On the other hand, each invoice has many line items. (As in Chapter 12, a line
item identifies the product, quantity, and unit price.) Thus, there is a multi-valued
relationship between invoices and line items. In the Java class, the LineItem objects are
stored in an array list:

public class Invoice
{
 private int invoiceNumber;
 private Customer theCustomer;
 private ArrayList<LineItem> items;
 private double payment;
 . . .
}

However, in a relational database, you need to store the information in tables. Sur-
prisingly many programmers, when faced with this situation, commit a major faux
pas and replicate columns, one for each line item, as in Figure 5 below.

Clearly, this design is not satisfactory. What should we do if there are more than
three line items on an invoice? Perhaps we should have 10 line items instead? But that
is wasteful if the majority of invoices have only a couple of line items, and it still does
not solve our problem for the occasional invoice with lots of line items.

Instead, distribute the information into two tables: one for invoices and another
for line items. Link each line item back to its invoice with an Invoice_Number for-
eign key in the LineItem table—see Figure 6.

Figure 5  A Poor Design for an Invoice Table with Replicated Columns

Invoice

Invoice_
Number

Customer_
Number

Product_
Code1

Quantity1
Product_
Code2

Quantity2
Product_
Code3

Quantity3 Payment

INTEGER INTEGER CHAR(7) INTEGER CHAR(7) INTEGER CHAR(7) INTEGER DECIMAL(10, 2)

11731 3175 116-064 3 257-535 1 643-119 2 0

Figure 6  Linked Invoice and LineItem Tables Implement a Multi-Valued Relationship

LineItem

Invoice_Number Product_Code Quantity

INTEGER CHAR(7) INTEGER

11731 116-064 3

11731 257-535 1

11731 643-119 2

11732 116-064 10

11733 116-064 2

11733 643-119 1

Invoice

Invoice_Number Customer_Number Payment

INTEGER INTEGER DECIMAL(10, 2)

11731 3175 0

11732 3176 249.50

11733 3175 0

22.1 O rganizing Database Information   W933

Figure 7  The Links Between the Tables in the Sample Database

Customer_Number

Invoice_Number

Product_Code

Invoice Customer

LineItem

Product

In a similar fashion, the LineItem table links to the Product table via the Product
table’s Product_Code primary key. Our database now consists of four tables:

•	 Invoice
•	 Customer
•	 LineItem
•	 Product

Figure 7 shows the links between these tables. In the next section you will see how
to query this database for information about invoices, customers, and products. The
queries will take advantage of the links between the tables.

1.	 Would a telephone number be a good primary key for a customer table?
2.	 In the database of Section 22.1.3, what are all the products that customer 3176

ordered?

Practice It	 Now you can try these exercises at the end of the chapter: R22.2, R22.4, R22.5.

Stick with the Standard

The Java language is highly standardized. You will rarely find compilers that allow you to
specify Java code that differs from the standard, and if they do, it is always a compiler bug.
However, SQL implementations are often much more forgiving. For example, many SQL
vendors allow you to use a Java-style escape sequence such as

'Sam\'s Small Appliances'

in a SQL string. The vendor probably thought that this would be “helpful” to programmers
who are familiar with Java or C. (The C language uses the same escape mechanism for denot-
ing special characters.)

Implement one-to-
many relationships
with linked tables,
not replicated
columns.

S e l f C h e c k

Programming Tip 22.1

W934  Chapter 22  Relational Databases

However, this is an illusion. Deviating from the standard limits portability. Suppose you
later want to move your database code to another vendor, perhaps to improve performance or
to lower the cost of the database software. If the other vendor hasn’t implemented a particular
deviation, then your code will no longer work and you need to spend time fixing it.

To avoid these problems, you should stick with the standard. With SQL, you cannot rely
on your database to flag all errors—some of them may be considered “helpful” extensions.
That means that you need to know the standard and have the discipline to follow it. (See A
Guide to the SQL Standard: A User’s Guide to the Standard Database Language, by Chris J.
Date and Hugh Darwen (Addison-Wesley, 1996), for more information.)

Avoid Unnecessary Data Replication

It is very common for beginning database designers to replicate data. When replicating data in
a table, ask yourself if you can move the replicated data into a separate table and use a key, such
as a code or ID number, to link the tables.

Consider this example in an Invoice table:

Invoice

. . . Product_Code Description Price . . .

. . . CHAR(7) VARCHAR(40) DECIMAL(10, 2) . . .

. . . 116-064 Toaster 24.95 . . .

. . . 116-064 Toaster 24.95 . . .

.

As you can see, some product information is replicated. Is this replication an error? It depends.
The product description for the product with code 116-064 is always going to be “Toaster”.
Therefore, that correspondence should be stored in an external Product table.

The product price, however, can change over time. When it does, the old invoices don’t
automatically use the new price. Thus, it makes sense to store the price that the customer was
actually charged in an Invoice table. The current list price, however, is best stored in an exter-
nal Product table.

Don’t Replicate Columns in a Table

If you find yourself numbering columns in a table with suffixes 1, 2, and so forth (such as
Quantity1, Quantity2, Quantity3), then you are probably on the wrong track. How do you
know there are exactly three quantities? In that case, it’s time for another table.

Add a table to hold the information for which you replicated the columns. In that table, add
a column that links back to a key in the first table, such as the invoice number in our example.
By using an additional table, you can implement a multi-valued relationship.

Programming Tip 22.2

Programming Tip 22.3

22.2  Queries   W935

Primary Keys and Indexes

Recall that a primary key is a column (or combination of columns) that uniquely identifies
a row in a table. When a table has a primary key, then the database can build an index file: a
file that stores information on how to access a row quickly when the primary key is known.
Indexing can greatly increase the speed of database queries.

If the primary key is contained in a single column, then you can tag the column with the
PRIMARY KEY attribute, like this:

CREATE TABLE Product
(
 Product_Code CHAR(7) PRIMARY KEY,
 Description VARCHAR(40),
 Price DECIMAL(10, 2)
)

If the primary key is contained in multiple columns, then add a PRIMARY KEY clause to the end of
the CREATE TABLE command, like this:

CREATE TABLE LineItem
(
 Invoice_Number INTEGER,
 Product_Code CHAR(7),
 Quantity INTEGER,
 PRIMARY KEY (Invoice_Number, Product_Code)
)

Occasionally, one can speed queries up by building secondary indexes: index files that index
other column sets, which are not necessarily unique. That is an advanced technique that we
will not discuss here.

22.2  Queries
Let’s assume that the tables in our database have been created and that records have
been inserted. Once a database is filled with data, you will want to query the database
for information, such as

•	 What are the names and addresses of all customers?

•	 What are the names and addresses of all customers in California?

•	 What are the names and addresses of all customers who bought toasters?

•	 What are the names and addresses of all customers with unpaid invoices?

In this section you will learn how to formulate simple and complex queries in SQL.
We will use the data shown in Figure 8 for our examples.

Special Topic 22.1

W936  Chapter 22  Relational Databases

22.2.1 

Figure 8  A Sample Database

Invoice

Invoice_
Number

Customer_
Number

Payment

INTEGER INTEGER DECIMAL(10, 2)

11731 3175 0

11732 3176 249.50

11733 3175 0

Product

Product_Code Description Price

CHAR(7) VARCHAR(40) DECIMAL(10, 2)

116-064 Toaster 24.95

257-535 Hair dryer 29.95

643-119 Car vacuum 19.99

Customer

Customer_
Number

Name Address City State Zip

INTEGER VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5)

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

3176 Electronics Unlimited 1175 Liberty Ave Pleasantville MI 45066

LineItem

Invoice_
Number

Product_
Code

Quantity

INTEGER CHAR(7) INTEGER

11731 116-064 3

11731 257-535 1

11731 643-119 2

11732 116-064 10

11733 116-064 2

11733 643-119 1

Simple Queries

In SQL, you use the SELECT command to issue queries. For example, the command to
select all data from the Customer table is

SELECT * FROM Customer

The result is

Customer_
Number

Name Address City State Zip

3175 Sam’s Small
Appliances

100 Main Street Anytown CA 98765

3176 Electronics
Unlimited

1175 Liberty Ave Pleasantville MI 45066

Use the SQL SELECT
command to query
a database.

22.2  Queries   W937

Figure 9  An Interactive SQL Tool

The outcome of the query is a view—a set of rows and columns that provides a “win-
dow” through which you can see some of the database data. If you select all rows and
columns from a single table, of course you get a view into just that table.

Many database systems have tools that let you issue interactive SQL commands—
Figure 9 shows a typical example. When you issue a SELECT command, the tool dis-
plays the resulting view. You may want to skip ahead to Section 22.3 and install a
database. Or perhaps your computer lab has a database installed already. Then you
can run the interactive SQL tool of your database and try out some queries.

22.2.2  Selecting Columns

Often, you don’t care about all columns in a table. Suppose your traveling salesper-
son is planning a trip to all customers. To plan the route, the salesperson wants to
know the cities and states of all customers. Here is the query:

SELECT City, State FROM Customer

The result is

City State

Anytown CA

Pleasantville MI

W938  Chapter 22  Relational Databases

As you can see, the syntax for selecting columns is straightforward. Simply specify
the names of the columns you want, separated by commas.

22.2.3  Selecting Subsets

You just saw how you can restrict a view to show selected columns. Sometimes you
want to select certain rows that fit a particular criterion. For example, you may want
to find all customers in California. Whenever you want to select a subset, you use the
WHERE clause, followed by the condition that describes the subset. Here is an example:

SELECT * FROM Customer WHERE State = 'CA'

The result is

Customer_
Number

Name Address City State Zip

3175 Sam’s Small
Appliances

100 Main Street Anytown CA 98765

You have to be a bit careful with expressing the condition in the WHERE clause, because
SQL syntax differs from the Java syntax. As you already know, in SQL you use single
quotes to delimit strings, such as 'CA'. You also use a single =, not a double ==, to test
for equality. To test for inequality, you use the <> operator. For example

SELECT * FROM Customer WHERE State <> 'CA'

selects all customers that are not in California.
You can match patterns with the LIKE operator. The right-hand side must be a string

that can contain the special symbols _ (match exactly one character) and % (match any
character sequence). For example, the expression

Name LIKE '_o%'

matches all strings whose second character is an “o”. Thus, “Toaster” is a match but
“Crowbar” is not.

You can combine expressions with the logical connectives AND, OR, and NOT. (Do not
use the Java &&, ||, and ! operators.) For example

SELECT *
 FROM Product
 WHERE Price < 100
 AND Description <> 'Toaster'

selects all products with a price less than 100 that are not toasters.
Of course, you can select both row and column subsets, such as
SELECT Name, City FROM Customer WHERE State = 'CA'

22.2.4  Calculations

Suppose you want to find out how many customers there are in California. Use the
COUNT function:

SELECT COUNT(*) FROM Customer WHERE State = 'CA'

The WHERE clause
selects data that
fulfill a condition.

22.2  Queries   W939

In addition to the COUNT function, there are four other functions: SUM, AVG (average), MAX,
and MIN.

The * means that you want to calculate entire records. That is appropriate only for
the COUNT function. For other functions, you have to access a specific column. Put the
column name inside the parentheses:

SELECT AVG(Price) FROM Product

22.2.5  Joins

The queries that you have seen so far all involve a single table. However, the informa-
tion that you want is usually distributed over multiple tables. For example, suppose
you are asked to find all invoices that include a line item for a car vacuum. From the
Product table, you can issue a query to find the product code:

SELECT Product_Code
 FROM Product
 WHERE Description = 'Car vacuum'

You will find out that the car vacuum has product code 643-119. Then you can issue
a second query:

SELECT Invoice_Number
 FROM LineItem
 WHERE Product_Code = '643-119'

But it makes sense to combine these two queries so that you don’t have to keep track
of the intermediate result. When combining queries, note that the two tables are
linked by the Product_Code field. We want to look at matching rows in both tables.
In other words, we want to restrict the search to rows where

Product.Product_Code = LineItem.Product_Code

Here, the syntax
TableName.ColumnName

denotes the column in a particular table. Whenever a query involves multiple tables,
you should specify both the table name and the column name. Thus, the combined
query is

SELECT LineItem.Invoice_Number
 FROM Product, LineItem
 WHERE Product.Description = 'Car vacuum'
 AND Product.Product_Code = LineItem.Product_Code

The result is

Invoice_Number

11731

11733

In this query, the FROM clause contains the names of multiple tables, separated by com-
mas. (It doesn’t matter in which order you list the tables.) Such a query is often called
a join because it involves joining multiple tables.

A join is a query
that involves
multiple tables.

W940  Chapter 22  Relational Databases

You may want to know in what cities hair dryers are popular. Now you need to add
the Customer table to the query—it contains the customer addresses. The customers
are referenced by invoices, so you need that table as well. Here is the complete query:

SELECT Customer.City, Customer.State, Customer.Zip
 FROM Product, LineItem, Invoice, Customer
 WHERE Product.Description = 'Hair dryer'
 AND Product.Product_Code = LineItem.Product_Code
 AND LineItem.Invoice_Number = Invoice.Invoice_Number
 AND Invoice.Customer_Number = Customer.Customer_Number

The result is

City State Zip

Anytown CA 98765

Whenever you formulate a query that involves multiple tables, remember to:

•	 List all tables that are involved in the query in the FROM clause.
•	 Use the TableName.ColumnName syntax to refer to column names.
•	 List all join conditions (TableName1.ColumnName1 = TableName2.ColumnName2)

in the WHERE clause.

As you can see, these queries can get a bit complex. However, database manage-
ment systems are very good at answering these queries (see Programming Tip 22.5
on page W954). One remarkable aspect of SQL is that you describe what you want, not
how to find the answer. It is entirely up to the database management system to come
up with a plan for how to find the answer to your query in the shortest number of
steps.

Commercial database manufacturers take great pride in coming up with clever
ways to speed up queries: query optimization strategies, caching of prior results, and
so on. In this regard, SQL is a very different language from Java. SQL statements are
descriptive and leave it to the database to determine how to execute them. Java state-
ments are prescriptive—you spell out exactly the steps you want your program to
carry out.

22.2.6  Updating and Deleting Data

Up to now, you have been shown how to formulate increasingly complex SELECT que-
ries. The outcome of a SELECT query is a result set that you can view and analyze. Two
related statement types, UPDATE and DELETE, don’t produce a result set. Instead, they
modify the database. The DELETE statement is the easier of the two. It simply deletes
the rows that you specify. For example, to delete all customers in California, you
issue the statement

DELETE FROM Customer WHERE State = 'CA'

The UPDATE query allows you to update columns of all records that fulfill a certain
condition. For example, here is how you can add another unit to the quantity of every
line item in invoice number 11731:

UPDATE LineItem
 SET Quantity = Quantity + 1
 WHERE Invoice_Number = '11731'

The UPDATE and
DELETE SQL
commands modify
the data in  
a database.

22.2  Queries   W941

You can update multiple column values by specifying multiple update expressions in
the SET clause, separated by commas.

Both the DELETE and the UPDATE statements return a value, namely the number of
rows that are deleted or updated.

3.	 How do you query the names of all customers that are not from Alaska or
Hawaii?

4.	 How do you query all invoice numbers of all customers in Hawaii?

Practice It	 Now you can try these exercises at the end of the chapter: R22.7, R22.13, R22.14.

Joining Tables Without Specifying a Link Condition

If you select data from multiple tables without a restriction, the result is somewhat surpris-
ing—you get a result set containing all combinations of the values, whether or not one of the
combinations exists with actual data. For example, the query

SELECT Invoice.Invoice_Number, Customer.Name
 FROM Invoice, Customer

returns the result set

Invoice.Invoice_Number Customer.Name

11731 Sam’s Small Appliances

11732 Sam’s Small Appliances

11733 Sam’s Small Appliances

11731 Electronics Unlimited

11732 Electronics Unlimited

11733 Electronics Unlimited

As you can see, the result set contains all six combinations of invoice numbers (11731, 11732,
11733) and customer names (Sam’s Small Appliances and Electronics Unlimited), even though
three of those combinations don’t occur with real invoices. You need to supply a WHERE clause
to restrict the set of combinations. For example, the query

SELECT Invoice.Invoice_Number, Customer.Name
 FROM Invoice, Customer
 WHERE Invoice.Customer_Number = Customer.Customer_Number

yields

Invoice.Invoice_Number Customer.Name

11731 Sam’s Small Appliances

11732 Electronics Unlimited

11733 Sam’s Small Appliances

S e l f C h e c k

Common Error 22.1

W942  Chapter 22  Relational Databases

22.3  Installing a Database
A wide variety of database systems are available. Among them are

•	 Production-quality databases, such as Oracle, IBM DB2, Microsoft SQL Server,
PostgreSQL, or MySQL.

•	 Lightweight Java databases, such as Apache Derby.
•	 Desktop databases, such as Microsoft Access.

Which one should you choose for learning database programming? That depends
greatly on your available budget, computing resources, and experience with install-
ing complex software. In a laboratory environment with a trained administrator, it
makes a lot of sense to install a production-quality database. Lightweight Java

Most companies use
computers to keep

huge databases of customer records
and other business information. Data
bases not only lower the cost of doing
business, they improve the quality
of service that companies can offer.
Nowadays it is almost unimaginable
how time-consuming it used to be to
withdraw money from a bank branch
or to make travel reservations.

As these databases became ubiqui-
tous, they started creating problems
for citizens. Consider the “no fly list”
maintained by the U.S. government,
which lists names used by suspected
terrorists. On March 1, 2007, Professor
Walter Murphy, a constitutional scholar
of Princeton University and a decorated
former Marine, was denied a boarding
pass. The airline employee asked him,
“Have you been in any peace marches?
We ban a lot of people from flying
because of that.” As Murphy tells it, “I
explained that I had not so marched
but had, in September 2006, given a
lecture at Princeton, televised and put
on the Web, highly critical of George
Bush for his many violations of the con-
stitution. ‘That’ll do it,’ the man said.”

We do not actually know if Professor
Murphy’s name was on the list because
he was critical of the Bush adminis
tration or because some other poten-
tially dangerous person had traveled
under the same name. Travelers with
similar misfortunes had serious diffi-

culties trying to get themselves off the
list.

Problems such as these have
become commonplace. Companies
and the government routinely merge
multiple databases, derive information
about us that may be quite inaccurate,
and then use that information to make
decisions. An insurance company may
deny coverage, or charge a higher pre-
mium, if it finds that you have too many
relatives with a certain disease. You
may be denied a job because of a credit
or medical report. You do not usually
know what information about you is
stored or how it is used. In cases where
the information can be checked—such
as credit reports—it is often difficult to
correct errors.

Another issue of concern is privacy.
Most people do something, at one time
or another in their lives, that they do
not want everyone to know about. As
judge Louis Brandeis wrote in 1928,
“Privacy is the right to be alone––the
most comprehensive of rights, and the
right most valued by civilized man.”
When employers can see your old
Facebook posts, divorce lawyers have
access to tollroad records, and Google
mines your e-mails and searches to
present you “targeted” advertising, you
have little privacy left.

The 1948 “universal declaration of
human rights” by the United Nations
states, “No one shall be subjected to
arbitrary interference with his privacy,

family, home or correspondence,
nor to attacks upon his honour and
reputation. Everyone has the right to
the protection of the law against such
interference or attacks.” The United
States has surprisingly few legal pro-
tections against privacy invasion,
apart from federal laws protecting stu-
dent records and video rentals (the lat-
ter was passed after a Supreme Court
nominee’s video rental records were
published). Other industrialized coun-
tries have gone much further and rec-
ognize every citizen’s right to control
what information about them should
be communicated to others and under
what circumstances.

If you pay road or bridge tolls with an
electronic pass, your records may not
be private.

Random Fact 22.1  Databases and Privacy

22.3 I nstalling a Database   W943

databases are

Figure 10  JDBC Architecture

Database
ServerJava Program JDBC Driver Database

Tables

much easier to install and work on a variety of platforms. This makes
them a good choice for the beginner. Desktop databases have limited SQL support
and can be difficult to configure for Java programming.

In addition to a database, you need a JDBC driver. The acronym JDBC stands
for Java Database Connectivity, the name of the technology that enables Java pro-
grams to interact with databases. When your Java program issues SQL commands,
the driver forwards them to the database and lets your program analyze the results
(see Figure 10).

Different databases require different drivers, which may be supplied by either the
database manufacturer or a third party. You need to locate and install the driver that
matches your database.

If you work in a computing laboratory, someone will have installed a database for
you, and you should ask your lab for instructions on how to use it. If you need to
provide your own database, we suggest that you choose Apache Derby. It is included
with the Java Development Kit. You can also download it separately from http://
db.apache.org/derby/.

You should run a test program to check that your database is working correctly.
You will find the code for the test program at the end of this section. The following
section describes the implementation of the test program in detail.

If you use Apache Derby, then follow these instructions:

1.	Locate the JDBC driver file derby.jar and copy it into the ch22/section_3
directory of the companion code for this book.

2.	Open a shell window, change to the ch22/section_3 directory, and run
javac TestDB.java
java -classpath derby.jar;. TestDB database.properties

If you run Linux, UNIX, or Mac OS X, use a semicolon, not a colon, as a path
separator:

java -classpath derby.jar:. TestDB database.properties

3.	If you followed the test instructions precisely, you should see one line of
output with the name “Romeo”. You may then skip the remainder of this
section.

If you install a database other than the one included with Java, you will need to set
aside some time to carry out the installation process. Detailed instructions for install-
ing a database vary widely. Here we give you a general sequence of steps on how to
install a database and test your installation:

1.	Install the database program.
2.	Start the database. With most database systems (but not some of the light-

weight Java database systems), you need to start the database server before you

You need a JDBC
(Java Database
Connectivity) driver
to access a database
from a Java program.

W944  Chapter 22  Relational Databases

can carry out any database operations. Read the installation instructions for
details.

3.	Set up user accounts. This typically involves running an administration pro-
gram, logging in as administrator with a default administration account, and
adding user names and passwords. If you are the only user of the database, you
may simply be able to use a default account. Again, details vary greatly among
databases, and you should consult the documentation.

4.	Run a test. Locate the program that allows you to execute interactive SQL
instructions. Run the program and issue the following SQL instructions:

CREATE TABLE Test (Name VARCHAR(20))
INSERT INTO Test VALUES ('Romeo')
SELECT * FROM Test
DROP TABLE Test

At this point, you should get a display that shows a single row and column of
the Test database, containing the string “Romeo”. If not, carefully read the
documentation of your SQL tool to see how you need to enter SQL state-
ments. For example, with some SQL tools, you need a special terminator for
each SQL statement.

Next, locate the JDBC driver and run a sample Java program to verify that the instal-
lation was successful.

Here are the steps for testing the JDBC driver:

1.	Every JDBC driver contains some Java code that your Java programs require
to connect to the database. From the JDBC driver documentation, find the
class path for the driver. Here is a typical example—the class path component
for the Apache Derby JDBC driver that is included in the Java Development
Kit.

c:\jdk1.7.0\db\lib\derby.jar

One version of the Oracle database uses a class path
/usr/local/oracle/jdbc/classes111b.zip

You will find this information in the documentation of your database system.
2.	If your JDBC driver is not fully compliant with the JDBC4 standard, you need

to know the name of the driver class. For example, the Oracle database uses a
driver

oracle.jdbc.driver.OracleDriver

Your database documentation will have this information.
3.	Find the name of the database URL that your driver expects. All database

URLs have the format
jdbc:subprotocol:driver-specific data

The subprotocol is a code that identifies the driver manufacturer, such as derby
or oracle. The driver-specific data encode the database name and the location of
the database. Here are typical examples:

jdbc:derby:InvoiceDB;create=true
jdbc:oracle:thin:@larry.mathcs.sjsu.edu:1521:InvoiceDB

Again, consult your JDBC driver information for details on the format of the
database URL and how to specify the database that you use.

Make sure the
JDBC driver is on
the class path when
you launch the
Java program.

22.3 I nstalling a Database   W945

4.	In order to run the TestDB.java program at the end of this section, edit the file
database.properties and supply

•	 The driver class name (if required).
•	 The database URL.
•	 Your database user name.
•	 Your database password.

With lightweight Java databases such as Apache Derby, you usually specify a
blank user name and password.

5.	Compile the program as
javac TestDB.java

6.	Run the program as
java -classpath driver_class_path;. TestDB database.properties

In UNIX/Linux/Mac OS X, use a : separator in the class path:
java -classpath driver_class_path:. TestDB database.properties

If everything works correctly, you will get an output that lists all data in the
Test table. If you followed the test instructions precisely, you will see one line
of output with the name “Romeo”.

Here is the test program. We will explain the Java instructions in this program in the
following section.

section_3/TestDB.java

1 import java.io.File
2 import java.sql.Connection;
3 import java.sql.ResultSet;
4 import java.sql.Statement;
5
6 /**
7 Tests a database installation by creating and querying
8 a sample table. Call this program as
9 java -classpath driver_class_path;. TestDB propertiesFile

10 */
11 public class TestDB
12 {
13 public static void main(String[] args) throws Exception
14 {
15 if (args.length == 0)
16 {
17 System.out.println(
18 "Usage: java -classpath driver_class_path"
19 + File.pathSeparator
20 + ". TestDB propertiesFile");
21 return;
22 }
23
24 SimpleDataSource.init(args[0]);
25
26 Connection conn = SimpleDataSource.getConnection();
27 try
28 {

To connect to the
database, you need
to specify a database
URL, user name,
and password.

W946  Chapter 22  Relational Databases

29 Statement stat = conn.createStatement();
30
31 stat.execute("CREATE TABLE Test (Name VARCHAR(20))");
32 stat.execute("INSERT INTO Test VALUES ('Romeo')");
33
34 ResultSet result = stat.executeQuery("SELECT * FROM Test");
35 result.next();
36 System.out.println(result.getString("Name"));
37
38 stat.execute("DROP TABLE Test");
39 }
40 finally
41 {
42 conn.close();
43 }
44 }
45 }

section_3/SimpleDataSource.java

1 import java.sql.Connection;
2 import java.sql.DriverManager;
3 import java.sql.SQLException;
4 import java.io.FileInputStream;
5 import java.io.IOException;
6 import java.util.Properties;
7
8 /**
9 A simple data source for getting database connections.

10 */
11 public class SimpleDataSource
12 {
13 private static String url;
14 private static String username;
15 private static String password;
16
17 /**
18 Initializes the data source.
19 @param fileName the name of the property file that
20 contains the database driver, URL, username, and password
21 */
22 public static void init(String fileName)
23 throws IOException, ClassNotFoundException
24 {
25 Properties props = new Properties();
26 FileInputStream in = new FileInputStream(fileName);
27 props.load(in);
28
29 String driver = props.getProperty("jdbc.driver");
30 url = props.getProperty("jdbc.url");
31 username = props.getProperty("jdbc.username");
32 if (username == null) { username = ""; }
33 password = props.getProperty("jdbc.password");
34 if (password == null) { password = ""; }
35 if (driver != null) { Class.forName(driver); }
36 }
37
38 /**
39 Gets a connection to the database.
40 @return the database connection

22.4  Database Programming in Java   W947

41 */
42 public static Connection getConnection() throws SQLException
43 {
44 return DriverManager.getConnection(url, username, password);
45 }
46 }

section_3/database.properties (for Apache Derby)

jdbc.url=jdbc:derby:BigJavaDB;create=true
With other databases, you may need to add entries such as these
jdbc.username=admin
jdbc.password=secret
jdbc.driver=org.apache.derby.jdbc.EmbeddedDriver

5.	 After installing a database system, how can you test that it is properly installed?
6.	 You are starting a Java database program to use the Apache Derby database and

get the following error message:
Exception in thread "main" java.sql.SQLException: No suitable driver found for
jdbc:derby:BigJavaDB;create=true

What is the most likely cause of this error?

Practice It	 Now you can try these exercises at the end of the chapter: R22.18, R22.19, R22.20.

22.4  Database Programming in Java

22.4.1  Connecting to the Database

To connect to a database, you need an object of the Connection class. The following
shows you how to obtain such a connection. With older versions of the JDBC stan-
dard, you first need to manually load the database driver class. Starting with JDBC4
(which is a part of Java 6), the driver is loaded automatically. If you use Java 6 or later
and a fully JDBC4 compatible driver, you can skip the loading step. Otherwise, use
the following code:

String driver = . . .;
Class.forName(driver); // Load driver

Next, you ask the DriverManager for a connection. You need to initialize the url, user-
name, and password strings with the values that apply to your database:

String url = . . .;
String username = . . .;
String password = . . .;
Connection conn = DriverManager.getConnection(url, username, password);

When you are done issuing your database commands, close the database connection
by calling the close method:

conn.close();

This is actually a somewhat simplistic view of connection management. Two prob-
lems occur in practice. Larger programs (such as the bank example in Worked

S e l f C h e c k

Use a Connection
object to access a
database from a
Java program.

W948  Chapter 22  Relational Databases

Example 22.1) need to connect to the database from many classes. You don’t want
to propagate the database login information to a large number of classes. Also, it is
usually not feasible to use a single connection for all database requests. In particular,
as you will see in Chapter 24, a container for web applications can run many simul-
taneous web page requests from different browsers. Each page request needs its own
database connection. But because opening a database connection is quite slow and
page requests come so frequently, database connections need to be pooled rather than
closed and reopened. The details can be complex, and there is currently no standard
implementation available.

It is always a good idea to decouple connection management from the other data-
base code. We supply a SimpleDataSource class for this purpose; the implementation is
at the end of Section 22.3. This class is a very simple tool for connection management.
At the beginning of your program, call the static init method with the name of the
database configuration file, for example

SimpleDataSource.init("database.properties");

The configuration file is a text file that may contain the following lines:
jdbc.driver= . . .
jdbc.url= . . .
jdbc.username= . . .
jdbc.password= . . .

The init method uses the Properties class, which is designed to make it easy to read
such a file. The Properties class has a load method to read a file of key/value pairs from
a stream:

Properties props = new Properties();
FileInputStream in = new FileInputStream(fileName);
props.load(in);

The getProperty method returns the value of a given key:
String driver = props.getProperty("jdbc.driver");

You don’t actually have to think about this—the init method takes care of the details.
Whenever you need a connection, call
Connection conn = SimpleDataSource.getConnection();

You need to close the connection by calling
conn.close();

when you are done using it.
Real-world connection managers have slightly different methods, but the basic

principle is the same.

22.4.2  Executing SQL Statements

Once you have a connection, you can use it to create Statement objects. You need
Statement objects to execute SQL statements.

Statement stat = conn.createStatement();

The execute method of the Statement class executes a SQL statement. For example,
stat.execute("CREATE TABLE Test (Name CHAR(20))");
stat.execute("INSERT INTO Test VALUES ('Romeo')");

A Connection object
can create Statement
objects that are
used to execute
SQL commands.

22.4  Database Programming in Java   W949

To issue a query, use the executeQuery method of the Statement class. The query result is
returned as a ResultSet object. For example,

String query = "SELECT * FROM Test";
ResultSet result = stat.executeQuery(query);

You will see in the next section how to use the ResultSet object to analyze the result of
the query.

For UPDATE statements, you can use the executeUpdate method. It returns the number
of rows affected by the statement:

String command = "UPDATE LineItem"
 + " SET Quantity = Quantity + 1"
 + " WHERE Invoice_Number = '11731'";
int count = stat.executeUpdate(command);

If your statement has variable parts, then you should use a PreparedStatement instead:
String query = "SELECT * WHERE Account_Number = ?";
PreparedStatement stat = conn.prepareStatement(query);

The ? symbols in the query string denote variables that you fill in when you make an
actual query. You call a set method for that purpose, for example

stat.setString(1, accountNumber);

The first parameter of the set methods denotes the variable position: 1 is the first ?, 2
the second, and so on. There are also methods setInt and setDouble for setting numeri-
cal variables. After you set all variables, you call executeQuery or executeUpdate.

Finally, you can use the generic execute method to execute arbitrary SQL state-
ments. It returns a boolean value to indicate whether the SQL command yields a result
set. If so, you can obtain it with the getResultSet method. Otherwise, you can get the
update count with the getUpdateCount method.

String command = . . .;
boolean hasResultSet = stat.execute(command);
if (hasResultSet)
{
 ResultSet result = stat.getResultSet();
 . . .
}
else
{
 int count = stat.getUpdateCount();
 . . .
}

You can reuse a Statement or PreparedStatement object to execute as many SQL com-
mands as you like. However, for each statement, you should only have one active
ResultSet. If your program needs to look at several result sets at the same time, then
you need to create multiple Statement objects.

When you are done using a ResultSet, you should close it before issuing a new
query on the same statement.

result.close();

When you are done with a Statement object, you should close it. That automatically
closes the associated result set.

stat.close();

When you close a connection, it automatically closes all statements and result sets.

The result of a SQL
query is returned in a
ResultSet object.

W950  Chapter 22  Relational Databases

22.4.3  Analyzing Query Results

A ResultSet lets you fetch the query result, one row at a time. You iterate through
the rows, and for each row, you can inspect the column values. Like the collection
iterators that you saw in Chapter 15, the ResultSet class has a next method to visit the
next row. However, the behavior of the next method is somewhat different. The next
method does not return any data; it returns a boolean value that indicates whether
more data are available. Moreover, when you first get a result set from the execute-
Query method, no row data are available. You need to call next to move to the first row.
This appears curious, but it makes the iteration loop simple:

while (result.next())
{
 Inspect column data from the current row.
}

If the result set is completely empty, then the first call to result.next() returns false,
and the loop is never entered. Otherwise, the first call to result.next() fetches the
data for the first row from the database. As you can see, the loop ends when the next
method returns false, which indicates that all rows have been fetched.

Once the result set object has fetched a particular row, you can inspect its columns.
Various get methods return the column value formatted as a number, string, date, and
so on. In fact, for each data type, there are two get methods. One of them has an inte-
ger argument that indicates the column position. The other has a string argument for
the column name. For example, you can fetch the product code as

String productCode = result.getString(1);

or
String productCode = result.getString("Product_Code");

Note that the integer index starts at one, not at zero; that is, getString(1) inspects the
first column. Database column indexes are different from array subscripts.

Accessing a column by an integer index is marginally faster and perfectly accept-
able if you explicitly named the desired columns in the SELECT statement, such as

SELECT Invoice_Number FROM Invoice WHERE Payment = 0

However, if you make a SELECT * query, it is a good idea to use a column name instead
of a column index. It makes your code easier to read, and you don’t have to update
the code when the column layout changes.

In this example, you saw the getString method in action. To fetch a number, use the
getInt and getDouble methods instead, for example

int quantity = result.getInt("Quantity");
double unitPrice = result.getDouble("Price");

22.4.4  Result Set Metadata

When you have a result set from an unknown table, you may want to know the names
of the columns. You can use the ResultSetMetaData class to find out about properties of
a result set. Start by requesting the metadata object from the result set:

ResultSetMetaData metaData = result.getMetaData();

Then you can get the number of columns with the getColumnCount method. The
getColumnLabel method gives you the column name for each column. Finally, the

Metadata are data
about an object.
Result set metadata
describe the
properties of a
result set.

22.4  Database Programming in Java   W951

getColumnDisplaySize method returns the column width, which is useful if you want to
print table rows and have the columns line up. Note that the indexes for these meth-
ods start with 1. For example,

for (int i = 1; i <= metaData.getColumnCount(); i++)
{
 String columnName = metaData.getColumnLabel(i);
 int columnSize = metaData.getColumnDisplaySize(i);
 . . .
}

ExecSQL.java is a useful sample program that puts these concepts to work. The pro-
gram reads a file containing SQL statements and executes them all. When a statement
has a result set, the result set is printed, using the result set metadata to determine the
column count and column labels.

For example, suppose you have the following file:

section_4/Product.sql

CREATE TABLE Product
 (Product_Code CHAR(7), Description VARCHAR(40), Price DECIMAL(10, 2))
INSERT INTO Product VALUES ('116-064', 'Toaster', 24.95)
INSERT INTO Product VALUES ('257-535', 'Hair dryer', 29.95)
INSERT INTO Product VALUES ('643-119', 'Car vacuum', 19.95)
SELECT * FROM Product

Run the Exec.SQL program as
java -classpath derby.jar;. ExecSQL database.properties Product.sql

The program executes the statements in the Product.sql file and prints out the result of
the SELECT query.

You can also use the Exec.SQL program as an interactive testing tool. Run
java -classpath derby.jar;. ExecSQL database.properties

Then type in SQL commands at the command line. Every time you press the Enter
key, the command is executed.

section_4/ExecSQL.java

1 import java.sql.Connection;
2 import java.sql.ResultSet;
3 import java.sql.ResultSetMetaData;
4 import java.sql.Statement;
5 import java.sql.SQLException;
6 import java.io.File;
7 import java.io.IOException;
8 import java.util.Scanner;
9

10 /**
11 Executes all SQL statements from a file or the console.
12 */
13 public class ExecSQL
14 {
15 public static void main(String[] args)
16 throws SQLException, IOException, ClassNotFoundException
17 {
18 if (args.length == 0)
19 {

W952  Chapter 22  Relational Databases

20 System.out.println(
21 "Usage: java -classpath driver_class_path"
22 + File.pathSeparator
23 + ". ExecSQL propertiesFile [SQLcommandFile]");
24 return;
25 }
26
27 SimpleDataSource.init(args[0]);
28
29 Scanner in;
30 if (args.length > 1)
31 {
32 in = new Scanner(new File(args[1]));
33 }
34 else
35 {
36 in = new Scanner(System.in);
37 }
38
39 Connection conn = SimpleDataSource.getConnection();
40 try
41 {
42 Statement stat = conn.createStatement();
43 while (in.hasNextLine())
44 {
45 String line = in.nextLine();
46 try
47 {
48 boolean hasResultSet = stat.execute(line);
49 if (hasResultSet)
50 {
51 ResultSet result = stat.getResultSet();
52 showResultSet(result);
53 result.close();
54 }
55 }
56 catch (SQLException ex)
57 {
58 System.out.println(ex);
59 }
60 }
61 }
62 finally
63 {
64 conn.close();
65 }
66 }
67
68 /**
69 Prints a result set.
70 @param result the result set
71 */
72 public static void showResultSet(ResultSet result)
73 throws SQLException
74 {
75 ResultSetMetaData metaData = result.getMetaData();
76 int columnCount = metaData.getColumnCount();
77
78 for (int i = 1; i <= columnCount; i++)
79 {

22.4  Database Programming in Java   W953

80 if (i > 1) { System.out.print(", "); }
81 System.out.print(metaData.getColumnLabel(i));
82 }
83 System.out.println();
84
85 while (result.next())
86 {
87 for (int i = 1; i <= columnCount; i++)
88 {
89 if (i > 1) { System.out.print(", "); }
90 System.out.print(result.getString(i));
91 }
92 System.out.println();
93 }
94 }
95 }

7.	 Suppose you want to test whether there are any customers in Hawaii. Issue the
statement
ResultSet result = stat.executeQuery("SELECT * FROM Customer WHERE State = 'HI'");

Which Boolean expression answers your question?
8.	 Suppose you want to know how many customers are in Hawaii. What is an

efficient way to get this answer?

Practice It	 Now you can try these exercises at the end of the chapter: R22.22, P22.3, P22.5.

Don’t Hardwire Database Connection Parameters into Your Program

It is considered inelegant to hardwire the database parameters into a program:

public class MyProg
{
 public static void main(String[] args)
 {
 // Don’t do this:
 String driver = "oracle.jdbc.driver.OracleDriver";
 String url = "jdbc:oracle:thin:@larry.mathcs.sjsu.edu:1521:InvoiceDB";
 String username = "admin";
 String password = "secret";
 . . .
 }
}

If you want to change to a different database, you must locate these strings, update them, and
recompile.

Instead, place the strings into a separate configuration file (such as database.properties in
our sample program). The SimpleDataSource.java file reads in the configuration file with the
database connection parameters. To connect to a different database, you simply supply a dif-
ferent configuration file name on the command line.

S e l f C h e c k

Programming Tip 22.4

W954  Chapter 22  Relational Databases

Let the Database Do the Work

You now know how to issue a SQL query from a Java program and iterate through the result
set. A common error that students make is to iterate through one table at a time to find a result.
For example, suppose you want to find all invoices that contain car vacuums. You could use
the following plan:

1.	 Issue the query SELECT * FROM Product and iterate through the result set to find the
product code for a car vacuum.

2.	 Issue the query SELECT * FROM LineItem and iterate through the result set to find the line
items with that product code.

However, that plan is extremely inefficient. Such a program does in very slow motion what a
database has been designed to do quickly.

Instead, you should let the database do all the work. Give the complete query to the data-
base:

SELECT LineItem.Invoice_Number
 FROM Product, LineItem
 WHERE Product.Description = ‘Car vacuum’
 AND Product.Product_Code = LineItem.Product_Code

Then iterate through the result set to read all invoice numbers.
Beginners are often afraid of issuing complex SQL queries. However, you are throwing

away a major benefit of a relational database if you don’t take advantage of SQL.

Constructing Queries from Arbitrary Strings

Suppose you need to issue the following query with different names.

SELECT * FROM Customer WHERE Name = customerName

Many students try to construct a SELECT statement manually, like this:

String customerName = . . . ;
String query = "SELECT * FROM Customer WHERE Name = '" + customerName + "'";
ResultSet result = stat.executeQuery(query);

However, this code will fail if the name contains single quotes, such as "Sam's Small Appli-
ances". The query string has a syntax error: a mismatched quote. More serious failures can be
introduced by hackers who deliberately enter names or addresses with SQL control charac-
ters, changing the meanings of queries. These “SQL injection attacks” have been responsible
for many cases of data theft. Never add a string to a query that you didn’t type yourself.

The remedy is to use a PreparedStatement instead:

String query = "SELECT * FROM Customer WHERE Name = ?";
PreparedStatement stat = conn.prepareStatement(query);
stat.setString(1, aName);
ResultSet result = stat.executeQuery(query);

The setString method of the PreparedStatement class will properly handle quotes and other
special characters in the string.

Programming Tip 22.5

Common Error 22.2

22.5 A pplication: Entering an Invoice   W955

22.5  Application: Entering an Invoice
In this section, we develop a program for entering an invoice into the database shown
in Figure 8. Here is a sample program run:

Name: Robert Lee
Street address: 833 Lyon Street
City: San Francisco
State: CA
Zip: 94155
Product code (D=Done, L=List): L
116-064 Toaster
257-535 Hair dryer
643-119 Car vacuum
Product code (D=Done, L=List): 116-064
Quantity: 2
Product code (D=Done, L=List): 257-535
Quantity: 3
Product code (D=Done, L=List): D
Robert Lee
833 Lyon Street
San Francisco, CA 94155
2 x 116-064 Toaster
3 x 257-535 Hair dryer

This program puts the concepts of the preceding sections to work.
Before running the program, we assume that the Customer, Product, Invoice, and

LineItem tables have been created. To do so, you can run the ExecSQL program of Sec-
tion 22.4 with the following files (provided with the book’s companion code):

Customer.sql

Product.sql

Invoice.sql

LineItem.sql

As in the previous programs, we use our SimpleDataSource helper class to get a database
connection. Then we call newCustomer so it can prompt for the customer information.

SimpleDataSource.init(args[0]);
Connection conn = SimpleDataSource.getConnection();
Scanner in = new Scanner(System.in);

try
{
 int customerNumber = newCustomer(conn, in);
 . . .
}
finally
{
 conn.close();
}

The newCustomer method prompts for the new customer information and adds it to the
database. The nextLine method is a convenience method for prompting the user and
reading a string from a Scanner—see the code at the end of this section.

private static int newCustomer(Connection conn, Scanner in)
 throws SQLException
{

W956  Chapter 22  Relational Databases

 String name = nextLine(in, "Name");
 String address = nextLine(in, "Street address");
 String city = nextLine(in, "City");
 String state = nextLine(in, "State");
 String zip = nextLine(in, "Zip");
 int id = . . .;
 PreparedStatement stat = conn.prepareStatement(
 "INSERT INTO Customer VALUES (?, ?, ?, ?, ?, ?)");
 stat.setInt(1, id);
 stat.setString(2, name);
 stat.setString(3, address);
 stat.setString(4, city);
 stat.setString(5, state);
 stat.setString(6, zip);
 stat.executeUpdate();
 stat.close();
 return id;
}

The method gathers the new customer data and issues an INSERT INTO statement to
store them in the database.

But how do we provide the ID? We don’t want to ask the program user to come up
with IDs. They should be automatically assigned. We will query the largest ID that
has been used so far, and use the next larger value as the new ID:

Statement stat = conn.createStatement();
ResultSet result = stat.executeQuery(
 "SELECT max(Customer_Number) FROM Customer");
result.next();
int id = result.getInt(1) + 1;

There is just one potential problem. If two users access the database simultane-
ously, it is possible that both of them create a customer with the same ID at the same
time. The remedy is to place the code for adding a customer inside a transaction—
see Special Topic 22.2 on page W962. This is an important requirement in a database with
simultaneous users. However, we will skip this step to keep the program simple.

Later, we also need to generate new IDs for invoices. We provide a method getNewId
that works for both tables.

This completes the customer portion of the invoice entry. We now add a row for
the invoice, calling the getNewId method to get a new invoice number.

int id = getNewId(conn, "Invoice");
PreparedStatement stat = conn.prepareStatement(
 "INSERT INTO Invoice VALUES (?, ?, 0)");
stat.setInt(1, id);
stat.setInt(2, customerNumber);
stat.executeUpdate();

Next, the user needs to enter the product codes. When a user provides a code, we
will check that it is valid. That is a very simple SELECT query. We don’t even look at the
result set—if it has a row, we have found the product.

PreparedStatement stat = conn.prepareStatement(
 "SELECT * FROM Product WHERE Product_Code = ?");
stat.setString(1, code);
ResultSet result = stat.executeQuery();
boolean found = result.next();

You will find this code in the findProduct method.

22.5 A pplication: Entering an Invoice   W957

When the user chooses to see a list of products, we issue a simple query and list the
result, as shown here:

Statement stat = conn.createStatement();
ResultSet result = stat.executeQuery(
 "SELECT Product_Code, Description FROM Product");
while (result.next())
{
 String code = result.getString(1);
 String description = result.getString(2);
 System.out.println(code + " " + description);
}

Whenever the user has supplied a product code and a quantity, we add another row
to the LineItem table. That is yet another INSERT INTO statement—you will find it in the
addLineItem method below.

The following loop keeps asking for product codes and quantities:

boolean done = false;
while (!done)
{
 String productCode = nextLine(in, "Product code (D=Done, L=List)");
 if (productCode.equals("D")) { done = true; }
 else if (productCode.equals("L")) { listProducts(conn); }
 else if (findProduct(conn, productCode))
 {
 int quantity = nextInt(in, "Quantity");
 addLineItem(conn, id, productCode, quantity);
 }
 else { System.out.println("Invalid product code."); }
}
showInvoice(conn, id);

When the loop ends, we print the invoice. Here, the queries are more interesting. The
showInvoice method has the invoice ID as a parameter. It needs to find the matching
customer data by joining the Invoice and Customer tables:

PreparedStatement stat = conn.prepareStatement(
 "SELECT Customer.Name, Customer.Address, "
 + "Customer.City, Customer.State, Customer.Zip "
 + "FROM Customer, Invoice "
 + "WHERE Customer.Customer_Number = Invoice.Customer_Number "
 + "AND Invoice.Invoice_Number = ?");
stat.setInt(1, id);

The query result contains the customer information which we print. Then we need
to get all line items and the product descriptions, again linking two tables in a query:

stat = conn.prepareStatement(
 "SELECT Product.Product_Code, Product.Description, LineItem.Quantity "
 + "FROM Product, LineItem "
 + "WHERE Product.Product_Code = LineItem.Product_Code "
 + "AND LineItem.Invoice_Number = ?");
stat.setInt(1, id);

Our program simply prints the data in a simple form, as you saw at the beginning of
this section; Exercise P22.5 asks you to format it better.

Following is the complete invoice entry program.

W958  Chapter 22  Relational Databases

section_5/InvoiceEntry.java

1 import java.sql.Connection;
2 import java.sql.PreparedStatement;
3 import java.sql.ResultSet;
4 import java.sql.SQLException;
5 import java.sql.Statement;
6 import java.io.IOException;
7 import java.io.File;
8 import java.util.Scanner;
9

10 /**
11 Enters an invoice into the database.
12 Be sure to add Customer.sql, Product.sql, Invoice.sql, and LineItem.sql
13 to the database before running this program.
14 */
15 public class InvoiceEntry
16 {
17 public static void main(String args[])
18 {
19 if (args.length == 0)
20 {
21 System.out.println(
22 "Usage: java -classpath driver_class_path"
23 + File.pathSeparator
24 + ". InvoiceEntry propertiesFile");
25 return;
26 }
27
28 try
29 {
30 SimpleDataSource.init(args[0]);
31 Connection conn = SimpleDataSource.getConnection();
32 Scanner in = new Scanner(System.in);
33
34 addInvoice(in, conn);
35 }
36 catch (SQLException ex)
37 {
38 System.out.println("Database error");
39 ex.printStackTrace();
40 }
41 catch (ClassNotFoundException ex)
42 {
43 System.out.println("Error loading database driver");
44 ex.printStackTrace();
45 }
46 catch (IOException ex)
47 {
48 System.out.println("Error loading database properties");
49 ex.printStackTrace();
50 }
51 }
52
53 public static void addInvoice(Scanner in, Connection conn)
54 throws SQLException
55 {
56 try
57 {

22.5 A pplication: Entering an Invoice   W959

58 int customerNumber = newCustomer(conn, in);
59
60 int id = getNewId(conn, "Invoice");
61 PreparedStatement stat = conn.prepareStatement(
62 "INSERT INTO Invoice VALUES (?, ?, 0)");
63 stat.setInt(1, id);
64 stat.setInt(2, customerNumber);
65 stat.executeUpdate();
66 stat.close();
67
68 boolean done = false;
69 while (!done)
70 {
71 String productCode = nextLine(in, "Product code (D=Done, L=List)");
72 if (productCode.equals("D")) { done = true; }
73 else if (productCode.equals("L")) { listProducts(conn); }
74 else if (findProduct(conn, productCode))
75 {
76 int quantity = nextInt(in, "Quantity");
77 addLineItem(conn, id, productCode, quantity);
78 }
79 else { System.out.println("Invalid product code."); }
80 }
81 showInvoice(conn, id);
82 }
83 finally
84 {
85 conn.close();
86 }
87 }
88
89 /**
90 Prompts the user for the customer information and creates a new customer.
91 @param conn the database connection
92 @param in the scanner
93 @return the ID of the new customer
94 */
95 private static int newCustomer(Connection conn, Scanner in)
96 throws SQLException
97 {
98 String name = nextLine(in, "Name");
99 String address = nextLine(in, "Street address");

100 String city = nextLine(in, "City");
101 String state = nextLine(in, "State");
102 String zip = nextLine(in, "Zip");
103 int id = getNewId(conn, "Customer");
104 PreparedStatement stat = conn.prepareStatement(
105 "INSERT INTO Customer VALUES (?, ?, ?, ?, ?, ?)");
106 stat.setInt(1, id);
107 stat.setString(2, name);
108 stat.setString(3, address);
109 stat.setString(4, city);
110 stat.setString(5, state);
111 stat.setString(6, zip);
112 stat.executeUpdate();
113 stat.close();
114 return id;
115 }
116

W960  Chapter 22  Relational Databases

117 /**
118 Finds a product in the database.
119 @param conn the database connection
120 @param code the product code to search
121 @return true if there is a product with the given code
122 */
123 private static boolean findProduct(Connection conn, String code)
124 throws SQLException
125 {
126 PreparedStatement stat = conn.prepareStatement(
127 "SELECT * FROM Product WHERE Product_Code = ?");
128 stat.setString(1, code);
129 ResultSet result = stat.executeQuery();
130 boolean found = result.next();
131 stat.close();
132 return found;
133 }
134
135 /**
136 Adds a line item to the database.
137 @param conn the database connection
138 @param id the invoice ID
139 @param code the product code
140 @param quantity the quantity to order
141 */
142 private static void addLineItem(Connection conn, int id,
143 String code, int quantity) throws SQLException
144 {
145 PreparedStatement stat = conn.prepareStatement(
146 "INSERT INTO LineItem VALUES (?, ?, ?)");
147 stat.setInt(1, id);
148 stat.setString(2, code);
149 stat.setInt(3, quantity);
150 stat.executeUpdate();
151 stat.close();
152 }
153
154 /**
155 Lists all products in the database.
156 @param conn the database connection
157 */
158 private static void listProducts(Connection conn)
159 throws SQLException
160 {
161 Statement stat = conn.createStatement();
162 ResultSet result = stat.executeQuery(
163 "SELECT Product_Code, Description FROM Product");
164 while (result.next())
165 {
166 String code = result.getString(1);
167 String description = result.getString(2);
168 System.out.println(code + " " + description);
169 }
170 stat.close();
171 }
172
173 /**
174 Gets a new ID for a table. This method should be called from
175 inside a transaction that also creates the new row with this ID.
176 The ID field should have name table_Number and type INTEGER.

22.5 A pplication: Entering an Invoice   W961

177 @param table the table name
178 @return a new ID that has not yet been used.
179 */
180 private static int getNewId(Connection conn, String table)
181 throws SQLException
182 {
183 Statement stat = conn.createStatement();
184 ResultSet result = stat.executeQuery(
185 "SELECT max(" + table + "_Number) FROM " + table);
186 result.next();
187 int max = result.getInt(1);
188 stat.close();
189 return max + 1;
190 }
191
192 /**
193 Shows an invoice.
194 @param conn the database connection
195 @param id the invoice ID
196 */
197 private static void showInvoice(Connection conn, int id)
198 throws SQLException
199 {
200 PreparedStatement stat = conn.prepareStatement(
201 "SELECT Customer.Name, Customer.Address, "
202 + "Customer.City, Customer.State, Customer.Zip "
203 + "FROM Customer, Invoice "
204 + "WHERE Customer.Customer_Number = Invoice.Customer_Number "
205 + "AND Invoice.Invoice_Number = ?");
206 stat.setInt(1, id);
207 ResultSet result = stat.executeQuery();
208 result.next();
209 System.out.println(result.getString(1));
210 System.out.println(result.getString(2));
211 System.out.println(result.getString(3).trim() + ", "
212 + result.getString(4) + " " + result.getString(5));
213 stat.close();
214
215 stat = conn.prepareStatement(
216 "SELECT Product.Product_Code, Product.Description, LineItem.Quantity "
217 + "FROM Product, LineItem "
218 + "WHERE Product.Product_Code = LineItem.Product_Code "
219 + "AND LineItem.Invoice_Number = ?");
220 stat.setInt(1, id);
221
222 result = stat.executeQuery();
223 while (result.next())
224 {
225 String code = result.getString(1);
226 String description = result.getString(2).trim();
227 int qty = result.getInt(3);
228
229 System.out.println(qty + " x " + code + " " + description);
230 }
231 stat.close();
232 }
233
234 /**
235 Prompts the user and reads a line from a scanner.
236 @param in the scanner

W962  Chapter 22  Relational Databases

237 @param prompt the prompt
238 @return the string that the user entered
239 */
240 private static String nextLine(Scanner in, String prompt)
241 {
242 System.out.print(prompt + ": ");
243 return in.nextLine();
244 }
245
246 /**
247 Prompts the user and reads an integer from a scanner.
248 @param in the scanner
249 @param prompt the prompt
250 @return the integer that the user entered
251 */
252 private static int nextInt(Scanner in, String prompt)
253 {
254 System.out.print(prompt + ": ");
255 int result = in.nextInt();
256 in.nextLine(); // Consume newline
257 return result;
258 }
259 }

This example completes this introduction to Java database programming. You have
seen how you can use SQL to query and update data in a database and how the JDBC
library makes it easy for you to issue SQL commands in a Java program.

9.	 Why do the InvoiceEntry methods throw a SQLException instead of catching it?
10.	 How could one simplify the first query of the showInvoice method?
11.	 This program assumes that the customer does not pay at the time of order entry.

How can the program be modified to handle payment?
12.	 This program does not display the amount due. How could we display it?

Practice It	 Now you can try these exercises at the end of the chapter: P22.7, P22.8.

Transactions

An important part of database processing is transaction handling. A transaction is a set of
database updates that should either succeed in its entirety or not happen at all. For example,
consider a banking application that transfers money from one account to another. This opera-
tion involves two steps: reducing the balance of one account and increasing the balance of
another account. No software system is perfect, and there is always the possibility of an error.
The banking application, the database program, or the network connection between them
could exhibit an error right after the first part—then the money would be withdrawn from the
first account but never deposited to the second account. Clearly, this would be very bad. There
are many other similar situations. For example, if you change an airline reservation, you don’t
want to give up your old seat until the new one is confirmed.

What all these situations have in common is that there is a set of database operations that are
grouped together to carry out the transaction. All operations in the group must be carried out
together—a partial completion cannot be tolerated. In SQL, you use the COMMIT and ROLLBACK
commands to manage transactions.

S e l f C h e c k

Special Topic 22.2

22.5 A pplication: Entering an Invoice   W963

For example, to transfer money from one account to another, you issue the commands

UPDATE Account SET Balance = Balance - 1000
 WHERE Account_Number = '95667-2574'
UPDATE Account SET Balance = Balance + 1000
 WHERE Account_Number = '82041-1196'
COMMIT

The COMMIT command makes the updates permanent. Conversely, the ROLLBACK command
undoes all changes up to the last COMMIT.

When you program with JDBC, by default the JDBC library automatically commits all
database updates. That is convenient for simple programs, but it is not what you want for
transaction processing. Thus, you should first turn the autocommit mode off:

Connection conn = . . .;
conn.setAutoCommit(false);
Statement stat = conn.createStatement();

Then issue the updates that form the transaction and call the commit method of the Statement
class:

stat.executeUpdate(
 "UPDATE Account SET Balance = Balance - "
 + amount + " WHERE Account_Number = " + fromAccount);
stat.executeUpdate(
 "UPDATE Account SET Balance = Balance + "
 + amount + " WHERE Account_Number = " + toAccount);
conn.commit();

Conversely, if you encounter an error, then call the rollback method. This typically happens in
an exception handler:

try
{
 . . .
}
catch (Exception ex)
{
 conn.rollback();
}

You may wonder how a database can undo updates when a transaction is rolled back. The
database actually stores your changes in a set of temporary tables. If you make queries within a
transaction, the information in the temporary tables is merged with the permanent data for the
purpose of computing the query result, giving you the illusion that the updates have already
taken place. When you commit the transaction, the temporary data are made permanent.
When you execute a rollback, the temporary tables are simply discarded.

Object-Relational Mapping

Database tables store rows that contain strings, numbers, and other fundamental data types,
but not arbitrary objects. In Sections 22.1.2 and 22.1.3, you learned how to translate object ref-
erences into database relationships. An object-relational mapper automates this process. The
Java Enterprise Edition contains such a mapper. You add annotations to the Java classes that
describe the relationships. The rules are simple:
•	 Add @Entity to every class that should be stored in the database.
•	 Each entity class needs an ID that is annotated with @Id.
•	 Relationships between classes are expressed with @OneToOne, @OneToMany, @ManyToOne, and

@ManyToMany.

Special Topic 22.3

W964  Chapter 22  Relational Databases

Here are the annotations for the invoice classes. A customer can have many invoices, but each
invoice has exactly one customer. This is expressed by the @ManyToOne annotation. Conversely,
each line item is contained in exactly one invoice, but each invoice can have many line items.
This is expressed by the @OneToMany relationship.

@Entity public class Invoice
{
 @Id private int id;
 @ManyToOne private Customer theCustomer;
 @OneToMany private List<LineItem> items;
 private double payment;
 . . .
}

@Entity public class LineItem
{
 @Id private int id;
 @ManyToOne private Product theProduct;
 private int quantity
 . . .
}

@Entity public class Product
{
 @Id private int id;
 private String description;
 private double price;
 . . .
}

@Entity public class Customer
{
 @Id private int id;
 private String name;
 private String address;
 private String city;
 private String state;
 private String zip;
 . . .
}

The object-relational mapper processes the annotations and produces a database table layout.
You don’t have to worry exactly how the data are stored in the database. For example, to store
a new invoice, simply build up the Java object and call

entityManager.persist(invoice);

As a result of this call, the data for the invoice and line items are automatically stored in the
various database tables.

To read data from the database, you do not use SQL—after all, you do not know the exact
table layout. Instead, you formulate a query in an object-oriented query language. A typical
query looks like this:

SELECT x FROM Invoice x WHERE x.id = 11731

The result is a Java object of type Invoice. The references to the customer and line item objects
have been automatically populated with the proper data from various tables.

Object-relational mapping technology is powerful and convenient. However, you still
need to understand the underlying principles of relational databases in order to specify effi-
cient mappings and queries.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter Summary  W965

Develop strategies for storing data in a database.

•	 A relational database stores information in tables. Each table column has a name
and a data type.

•	 SQL (Structured Query Language) is a command language for interacting with
a database.

•	 Use the SQL commands CREATE TABLE and INSERT INTO to add data to a database.
•	 You should avoid rows with replicated data. Instead, distribute the data over

multiple tables.
•	 A primary key is a column (or set of columns) whose value uniquely specifies a

table record.
•	 A foreign key is a reference to a primary key in a linked table.
•	 Implement one-to-many relationships with linked tables, not replicated columns.

Use SQL to query and update a database.

•	 Use the SQL SELECT command to query a database.
•	 The WHERE clause selects data that fulfill a condition.
•	 A join is a query that involves multiple tables.
•	 The UPDATE and DELETE SQL commands modify the data in a database.

Install a database system and test that you can connect to it from a Java program.

•	 You need a JDBC (Java Database Connectivity) driver to access a database from a
Java program.

•	 Make sure the JDBC driver is on the class path when you launch the Java program.
•	 To connect to the database, you need to specify a database URL, user name, and

password.

Write Java programs that access and update database records.

•	 Use a Connection object to access a database from a Java program.
•	 A Connection object can create Statement objects that are used to execute

SQL commands.
•	 The result of a SQL query is returned in a ResultSet object.
•	 Metadata are data about an object. Result set metadata describe the properties of a

result set.

Develop programs that use the JDBC library for accessing a database.

Worked Example 22.1	 Programming a Bank Database

In this Worked Example, we will develop a complete database program by reimplementing the
ATM simulation of Chapter 12 so that the customer and account data are stored in a database.

C h a p t e r Summ a r y

W966  Chapter 22  Relational Databases

• R22.1	 Design a set of database tables to store people and cars. A person has a name, a
unique driver license number, and an address. Every car has a unique vehicle identi
fication number, manufacturer, type, and year. Every car has one owner, but one
person can own multiple cars.

• R22.2	 Design a set of database tables to store library books and patrons. A book has an
ISBN (International Standard Book Number), an author, and a title. The library
may have multiple copies of each book, each with a different book ID. A patron has
a name, a unique ID, and an address. A book may be checked out by at most one
patron, but one patron can check out multiple books.

• R22.3	 Design a set of database tables to store sets of coins in purses. Each purse has an
owner name and a unique ID. Each coin type has a unique name and a value. Each
purse contains some quantity of coins of a given type.

• R22.4	 Design a set of database tables to store students, classes, professors, and classrooms.
Each student takes zero or more classes. Each class has one professor, but a professor
can teach multiple classes. Each class has one classroom.

• R22.5	 Give SQL commands to create a Book table, with columns for the ISBN, author, and
title, and to insert all textbooks that you are using this semester.

• R22.6	 Give SQL commands to create a Car table, with columns for the vehicle identifica
tion number, manufacturer, model, and year of each car, and to insert all cars that
your family members own.

Exercises R22.7–R22.17 refer to the invoice database of Section 22.2.

• R22.7	 Give a SQL query that lists all products in the invoice database of Section 22.2.

• R22.8	 Give a SQL query that lists all customers in California.

• R22.9	 Give a SQL query that lists all customers in California or Nevada.

S ta n d a r d L i b r a r y i t e m s i n t r o duc e d i n t h i s c h a p t e r

java.io.File
 pathSeparator
java.lang.Class
 forName
java.sql.Connection
 close
 commit
 createStatement
 prepareStatement
 rollback
 setAutoCommit
java.sql.DriverManager
 getConnection

java.sql.PreparedStatement
 execute
 executeQuery
 executeUpdate
 setDouble
 setInt
 setString
java.sql.ResultSet
 close
 getDouble
 getInt
 getMetaData
 getString
 next

java.sql.ResultSetMetaData
 getColumnCount
 getColumnDisplaySize
 getColumnLabel
java.sql.SQLException
java.sql.Statement
 close
 execute
 executeQuery
 executeUpdate
 getResultSet
 getUpdateCount
java.util.Properties
 getProperty
 load

R e v i e w E x e r c i s e s

Review Exercises  W967

• R22.10	 Give a SQL query that lists all customers not in Hawaii.

•• R22.11	 Give a SQL query that lists all customers who have an unpaid invoice.

•• R22.12	 Give a SQL query that lists all products that have been purchased by a customer in
California.

•• R22.13	 Give a SQL query that lists all line items that are part of invoice number 11731.

•• R22.14	 Give a SQL query that computes the sum of all quantities that are part of invoice
number 11731.

••• R22.15	 Give a SQL query that computes the total cost of all line items in invoice number
11731.

•• R22.16	 Give a SQL update statement that raises all prices by ten percent.

•• R22.17	 Give a SQL statement that deletes all customers in California.

•• R22.18	 Pick a database system (such as DB2, Oracle, Postgres, or SQL Server) and deter
mine from the web documentation:

•	 What JDBC driver do you need? Is it automatically discovered?
•	 What is the database URL?

• R22.19	 Where is the file derby.jar located in your installation of the Java development kit?

•• R22.20	 Suppose you run the command java -classpath derby.jar;. TestDB database.properties,
as described in Section 22.3. Match the following five error messages to the error
conditions they correspond to.

Error Message Error Condition

Usage: java [-options] class [args...]
The suffix ; create=true was missing from
the jdbc.url entry in database.properties.

Exception in thread “main” java.sql.
SQLException: No suitable driver found for
jdbc:derby:BigJavaDB;create=true

The database.properties file was not
present in the current directory.

Exception in thread “main” java.lang.
NoClassDefFoundError: TestDB

derby.jar and . should have been separated
by a colon on this operating system.

Exception in thread “main” java.io.
FileNotFoundException: database.properties

The TestDB.class file was not present in
the current directory.

Exception in thread “main” java.sql.
SQLException: Database 'BigJavaDB' not found.

The derby.jar file was not present in the
current directory.

• R22.21	 What is the difference between a Connection and a Statement?

• R22.22	 Of the SQL commands introduced in this chapter, which yield result sets, which
yield an update count, and which yield neither?

• R22.23	 How is a ResultSet different from an Iterator?

W968  Chapter 22  Relational Databases

• P22.1	 Write a Java program that creates a Coin table with coin names and values; inserts
coin types penny, nickel, dime, quarter, half dollar, and dollar; and prints out the sum
of the coin values. Use SQL commands CREATE TABLE, INSERT, and SELECT SUM.

• P22.2	 Write a Java program that creates a Car table with car manufacturers, models, model
years, and fuel efficiency ratings. Insert several cars. Print out the average fuel effi
ciency. Use SQL commands CREATE TABLE, INSERT, and SELECT AVG.

•• P22.3	 Improve the ExecSQL program and make the columns of the output line up. Hint: Use
the getColumnDisplaySize method of the ResultSetMetaData class.

•• P22.4	 Modify the program in Section 22.5 so that the user has the choice of selecting an
existing customer. Provide an option to search for the customer by name or zip code.

•• P22.5	 Write a Java program that uses the database tables from the invoice database in
Section 22.2. Prompt the user for an invoice number and print out the invoice,
formatted as in Chapter 12.

•• P22.6	 Write a Java program that uses the database tables from the invoice database in
Section 22.2. Produce a report that lists all customers, their invoices, the amounts
paid, and the unpaid balances.

•• P22.7	 Write a Java program that uses a library database of books and patron data, as
described in Exercise R22.2. Patrons should be able to check out and return books.
Supply commands to print the books that a patron has checked out and to find who
has checked out a particular book. Create and populate Patron and Book tables
before running the program.

•• P22.8	 Write a Java program that creates a grade book for a class. Create and populate Stu
dent and Grade tables before running the program. The program should be able to
display all grades for a given student. It should allow the instructor to add a new
grade (such as “Homework 4: 100”) or modify an existing grade.

••• P22.9	 Write a program that assigns seats on an airplane as described in Exercise P12.18.
Keep the seating information in a database.

••• P22.10	 Write a program that keeps an appointment calendar in a database. An appointment
includes a description, a date, the starting time, and the ending time; for example,

Dentist 2012/10/1 17:30 18:30
CS1 class 2012/10/2 08:30 10:00

Supply a user interface to add appointments, remove canceled appointments, and
print out a list of appointments for a particular day.

• P22.11	 Modify the ATM simulation program of Worked Example 22.1 so that the program
pops up two ATM frames. Verify that the database can be accessed simultaneously
by two users.

•• P22.12	 Write a program that uses a database of quizzes. Each quiz has a description and one
or more multiple-choice questions. Each question has one or more choices, one of
which is the correct one. Use tables Quiz, Question, and Choice. The program should
show the descriptions of all quizzes, allow the user to choose one, and present all

P r o g r a mm i n g E x e r c i s e s

Answers to Self-Check Questions  W969

questions in the chosen quiz. When the user has provided responses to all questions,
show the score.

••• P22.13	 Enhance the program of Exercise P22.12 so that it stores the user’s responses in the
database. Add Student and Response tables. (User is a reserved word in SQL.)

•• P22.14	 Write a program that uses the database of Exercise P22.13 and prints a report show-
ing how all students performed on all quizzes.

A n s w e r s t o S e l f - C h e ck Q u e s t i o n s

1.	 The telephone number for each customer
may not be unique—the same number might
be shared by roommates. Even if the number
were unique, however, it can change when a
customer moves. In that situation, both the
primary and all foreign keys would need to be
updated. Therefore, a customer ID is a better
choice.

2.	 Customer 3176 ordered ten toasters.
3.	 SELECT Name

 FROM Customer
 WHERE State <> 'AK' AND State <> 'HI'

4.	 SELECT Invoice.Invoice_Number
 FROM Invoice, Customer
 WHERE Invoice.Customer_Number
 = Customer.Customer_Number
 AND Customer.State = 'HI'

5.	 Connect to the database with a program that
lets you execute SQL instructions. Try creat-
ing a small database table, adding a record, and
selecting all records. Then drop the table again.

6.	 You didn’t set the class path correctly. The
JAR file containing the JDBC driver must be
on the class path.

7.	 result.next(). If there is at least one result, then
next returns true.

8.	 ResultSet result = stat.executeQuery(
 "SELECT COUNT(*) FROM Customer
 WHERE State = 'HI'");
result.next();
int count = result.getInt(1);

Note that the following alternative is sig-
nificantly slower if there are many such
customers.
ResultSet result = stat.executeQuery(
 "SELECT * FROM Customer
 WHERE State = 'HI'");
while (result.next()) { count++; } // Inefficient

9.	 In this program, error reporting is the respon-
sibility of the main method.

10.	 By passing the customer number as an argu-
ment. Then the query would only involve the
customer table.

11.	 The most convenient approach is to ask the
user about the payment before entering the
items. Then the payment can be added to the
statement in the addInvoice method.

12.	 We can either compute it in the loop that dis-
plays the line items, or we can issue a query
SELECT SUM(Product.Price * LineItem.Quantity)
 FROM Product, LineItem
 WHERE Product.Product_Code
 = LineItem.Product_Code
 AND LineItem.Invoice_Number = ?

23C h a p t e r

W971

23
XML

To learn to use XML elements and
attributes

To understand the concept of an XML parser

To read and write XML documents

To design Document Type Definitions
for XML documents

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

23.1  XML Tags and Documents  W972

How To 23.1: Designing an XML Document
Format  W976

Programming Tip 23.1: Prefer XML Elements
over Attributes  W977

Programming Tip 23.2: Avoid Children with
Mixed Elements and Text  W978

Random Fact 23.1: Word Processing and
Typesetting Systems  W979

23.2  Parsing XML Documents  W980

Common Error 23.1: XML Elements Describe
Objects, Not Classes  W984

23.3  Creating XML Documents  W994

How To 23.2: Writing an XML Document  W990
Random Fact 23.2: Grammars, Parsers, and

Compilers  W992

23.4  Validating XML Documents  W994

How To 23.3: Writing a DTD  W1000
Special Topic 23.1: Schema Languages  W1002
Special Topic 23.2: Other XML

Technologies  W1003

W972

The Extensible Markup Language (XML) is a popular
mechanism for encoding data. Independent of any
programming language, XML allows you to encode complex
data in a form that the recipient can easily parse. It is simple
enough that a wide variety of programs can generate XML
data. XML data has a nested structure, so you can use it to
describe hierarchical data sets—for example, an invoice that
contains many items, each of which consists of a product
and a quantity. Because the XML format is standardized,
libraries for parsing the data are widely available and—as
you will see in this chapter—easy to use for a programmer.

23.1  XML Tags and Documents
The XML format uses a mixture of text and tags to describe data. Tags are enclosed in
angle brackets <...>. An element is a unit of information that is delimited by a start-
tag and a matching end-tag. An element can contain text and other elements. For
example, <city>Sunnyvale</city> is an element with a text child, and

<address>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
</address>

is an element with three child elements. In the following sections, you will see why
XML is more useful than a plain text format, how it is related to HTML, and which
rules you need to follow when producing an XML document.

23.1.1  Advantages of XML

To understand the advantages of using XML for encoding data, let’s look at a typi-
cal example. We will encode product descriptions, so that they can be transferred to
another computer. Your first attempt might be a naïve encoding like this:

Toaster
29.95

In contrast, here is an XML encoding of the same data:
<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

The advantage of the XML version is clear: You can look at the data and understand
what they mean. Of course, this is a benefit for the programmer, not for a computer
program. A computer program has no understanding of what a “price” is. As a pro-
grammer, you still need to write code to extract the price as the content of the price
element. Nevertheless, the fact that an XML document is comprehensible by humans
is a huge advantage for program development.

XML allows you to
encode complex
data, independent of
any programming
language, in a form
that the recipient can
easily parse.

XML files are readable
by computer
programs and by
humans.

23.1  XML Tags and Documents   W973

A second advantage of the XML version is that it is resilient to change. Suppose the
product data change, and an additional data item is introduced to denote the manu-
facturer. In the naïve format, the manufacturer might be added after the price, like
this:

Toaster
29.95
General Appliances

A program that can process the old format might get confused when reading a
sequence of products in the new format. The program would think that the price is
followed by the name of the next product. Thus, the program needs to be updated to
work with both the old and new data formats. As data get more complex, program-
ming for multiple versions of a data format can be difficult and time-consuming.

When using XML, on the other hand, it is easy to add new elements:
<product>
 <description>Toaster</description>
 <price>29.95</price>
 <manufacturer>General Appliances</manufacturer>
</product>

Now a program that processes the new data can still extract the old information in the
same way—as the contents of the description and price elements. The program need
not be updated, and it can tolerate different versions of the data format.

23.1.2  Differences Between XML and HTML

If you know HTML, you may have noticed that the XML format of the product data
looked somewhat like HTML code. However, there are some differences that we will
discuss in this section.

Let’s start with the similarities. The XML tag pairs, such as <price> and </price>
look just like HTML tag pairs, for example and . Both in XML and in
HTML, tags are enclosed in angle brackets < >, and a start-tag is paired with an end-
tag that starts with a slash / character.

However, web browsers are quite permissive about HTML. For example, you can
omit an end-tag and the browser will try to figure out what you mean. In XML,
this is not permissible. When writing XML, pay attention to the following rules:

•	 You must pay attention to the letter case of the tags; for example, in XML and
 are different tags that bear no relation to each other.

•	 Every start-tag must have a matching end-tag. You cannot omit tags, such as
. A tag that ends in /> is both a start- and end-tag:

When the parser sees the />, it knows not to look for a matching end-tag.
•	 Finally, attribute values must be enclosed in quotes. For example,

is not acceptable. You must use

XML-formatted
data files are
resilient to change.

W974  Chapter 23  XML

Moreover, there is an important conceptual difference between HTML and XML.
HTML has one specific purpose: to describe web documents. In contrast, XML is an
extensible syntax that can be used to specify many different kinds of data. For exam-
ple, the VRML language uses the XML syntax to describe virtual reality scenes. The
MathML language uses the XML syntax to describe mathematical formulas. You can
use the XML syntax to describe your own data, such as product records or invoices.

Most people who first see XML wonder how an XML document looks inside a
browser. However, that is not generally a useful question to ask. Most data that are
encoded in XML have nothing to do with browsers. For example, it would probably
not be exciting to display an XML document with nothing but product records (such
as the ones in the previous section) in a browser. Instead, you will learn in this chapter
how to write programs that analyze XML data. XML does not tell you how to dis-
play data; it is merely a convenient format for representing data.

23.1.3  The Structure of an XML Document

In this section, you will see the rules for properly formatted XML. In XML, text and
tags are combined into a document. The XML standard recommends that every XML
document start with a declaration

<?xml version="1.0"?>

Next, the XML document contains the actual data. The data are contained in a root
element. For example,

<?xml version="1.0"?>
<invoice>
 more data
</invoice>

The invoice root element is an example of an XML element. An element has one of
two forms:

<elementName> content </elementName>
or

<elementName/>

In the first case, the element has content—elements, text, or a mixture of both. A
good example is a paragraph in an HTML document:

<p>Use XML for robust data formats.</p>

The p element contains

1.	The text: “Use XML for ”
2.	A strong child element
3.	More text: “ data formats.”

For XML files that contain documents in the traditional sense of the term, the mix-
ture of text and elements is useful. The XML specification calls this type of content
mixed content. But for files that describe data sets—such as our product data—it is
better to stick with elements that contain either other elements or text. Content that
consists only of elements is called element content.

XML describes the
meaning of data, not
how to display them.

An XML document
starts out with an
XML declaration and
contains elements
and text.

An element can
contain text, child
elements, or both
(mixed content). For
data descriptions,
avoid mixed content.

23.1  XML Tags and Documents   W975

An element can have attributes. For example, the a element of HTML has an href
attribute that specifies the URL of a hyperlink:

 . . .

An attribute has a name (such as href) and a value. In XML, the value must be enclosed
in single or double quotes.

An element can have multiple attributes, for example

And, as you have already seen, an element can have both attributes and content.
Cay Horstmann's web site

Programmers often wonder whether it is better to use attributes or child elements.
For example, should a product be described as

<product description="Toaster" price="29.95"/>

or
<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

The former is shorter. However, it violates the spirit of attributes. Attributes are
intended to provide information about the element content. For example, the price
element might have an attribute currency that helps interpret the element content. The
content 29.95 has a different interpretation in the element

<price currency="USD">29.95</price>

than it does in the element
<price currency="EUR">29.95</price>

You have now seen the components of an XML document that are needed to use
XML for encoding data. There are other XML constructs for more specialized situ-
ations—see http://www.xml.com/axml/axml.html for more information. In the next sec-
tion, you will see how to use Java to parse XML documents.

1.	 Write XML code with a student element and child elements name and id that
describe you.

2.	 What does your browser do when you load an XML file, such as the section_2/
items.xml file that is contained in the companion code for this book?

3.	 Why does HTML use the src attribute to specify the source of an image instead
of hamster.jpeg?

Practice It	 Now you can try these exercises at the end of the chapter: R23.1, R23.2, R23.3.

Elements can have
attributes. Use
attributes to describe
how to interpret the
element content.

S e l f C h e c k

W976  Chapter 23  XML

Step 1	 Gather the data that you must include in the XML document.

Write them on a sheet of paper. If at all possible, work from some real-life examples. For exam-
ple, suppose you need to design an XML document for an invoice. A typical invoice has
•	 An invoice number
•	 A shipping address
•	 A billing address
•	 A list of items ordered
If possible, gather some actual invoices. Decide which features of the actual invoices you need
to include in your XML document.

Step 2	 Analyze which data elements need to be refined.

Continue refinement until you reach data values that can be described by single strings or
numbers. Make a note of all data items that you discovered during the refinement process.
When done, you should have a list of data elements, some of which can be broken down fur-
ther and some of which are simple enough to be described by a single string or number.

For example, the “shipping address” actually contains the customer name, street, city, state,
and ZIP code.

The “list of items ordered” contains items. Each item contains a product and the quantity
ordered. Each product contains the product name and price.

Thus, our list now contains

How To 23.1	 Designing an XML Document Format

This How To walks you through the process of designing an XML document format. You
will see in Section 23.4 how to formally describe the format with a document type definition.
Right now, we focus on an informal definition of the document content. The “output” of this
activity is a sample document.

•	 Address
•	 Name
•	 Street
•	 City

•	 State
•	 ZIP code
•	 List of items ordered
•	 Item

•	 Product
•	 Description
•	 Price
•	 Quantity

Keep breaking the data items down until each of them can be described by a single string or
number. For example, an address cannot be described by a single string, but a city can be
described by a single string.

Step 3	 Come up with a suitable element name that describes the entire XML document.

This element becomes the root element. For example, the invoice data would be contained in
an element named invoice.

Step 4	 Come up with suitable element names for the top-level decomposition that you found in Step 1.

These become the children of the root element. For example, the invoice element has children
•	 address
•	 items

Step 5	 Repeat this process to give names to the other elements that you discovered in Step 2.

As you do this, make a comprehensive example that shows all elements at work. For the
invoice problem, here is an example:

23.1  XML Tags and Documents   W977

<invoice>
 <address>
 <name>ACME Computer Supplies Inc.</name>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94085</zip>
 </address>
 <items>
 <item>
 <product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
 </product>
 <quantity>8</quantity>
 </item>
 <item>
 <product>
 <description>4-port Mini Hub</description>
 <price>19.95</price>
 </product>
 <quantity>4</quantity>
 </item>
 </items>
</invoice>

Step 6	 Check that the document doesn’t have mixed content.

That is, make sure each element has as its children either additional elements or text, but not
both. If necessary, add more child elements to wrap any text.

For example, suppose the product element looked like this:

<product>
 <description>Ink Jet Refill Kit</description>
 29.95
</product>

Perhaps someone thought it was “obvious” that the last entry was the price. However, follow-
ing Programming Tip 23.2, it is best to wrap the price inside a price element, like this:

<product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
</product>

Prefer XML Elements over Attributes

Attributes are shorter than elements. For example,

<product description="Toaster" price="29.95"/>

seems simpler than

<product>
 <description>Toaster</description>
 <price>29.95</price>
</product>

There is the temptation to use attributes because they are “easier to type”. But of course, you
don’t type XML documents, except for testing purposes. In real-world situations, XML doc-
uments are generated by programs.

Programming Tip 23.1

W978  Chapter 23  XML

Attributes are less flexible than elements. Suppose we want to add a currency indication to
the value. With elements, that’s easy to do:

<price currency="USD">29.95</price>

or even
<price>
 <currency>USD</currency>
 <amount>29.95</amount>
</price>

With attributes, you are stuck—you can’t refine the structure. Of course, you could use

<product description="Toaster" price="USD 29.95"/>

But then your program has to parse the string USD 29.95 and manually take it apart. That’s just
the kind of tedious and error-prone coding that XML is designed to avoid.

In HTML, there is a simple rule when using attributes. All strings that are not part of the
displayed text are attributes. For example, consider a link.

Cay Horstmann's web site

The text inside the a element, Cay Horstmann's web site, is part of what the user sees on the web
page, but the href attribute value http://horstmann.com is not displayed on the page.

Of course, HTML is a little different from the XML documents that you construct to
describe data, such as product lists, but the same basic rule applies. Anything that’s a part
of your data should not be an attribute. An attribute is appropriate only if it tells something
about the data but isn’t a part of the data itself. If you find yourself engaged in metaphysical
discussions to determine whether an item is part of the data or tells something about the data,
make the item an element, not an attribute.

Avoid Children with Mixed Elements and Text

The children of an element can be
1.	 Elements
2.	 Text
3.	 A mixture of both

In HTML, it is common to mix elements and text, for example

<p>Use XML for robust data formats.</p>

But when describing data sets, you should not mix elements and text. For example, you should
not do the following:

<price>
 <currency>USD</currency>
 29.95
</price>

Instead, the children of an element should be either text

<price>29.95</price>

or elements
<price>
 <currency>USD</currency>
 <amount>29.95</amount>
</price>

There is an important reason for this design rule. As you will see later in this chapter, you can
specify much stricter rules for elements that have only child elements than for elements whose
children can contain mixed content.

Programming Tip 23.2

23.1  XML Tags and Documents   W979

You have almost cer-
tainly used a word pro-

cessor for writing letters or reports. A
word processor is a program to write
and edit documents made up of text
and images. The text can contain
characters in various fonts. It can be
arranged in paragraphs, tables, and
footnotes. Paragraphs can be format-
ted in various ways, such as ragged
right (that is, the left ends of the lines
of text are aligned under each other,
but the right ends aren’t), centered,
and fully justified (that is, both the left
and right ends of the lines are aligned).
What is characteristic of modern word
processors is their “what you see is
what you get” operation. You enter text
and commands, using the keyboard
and the mouse. The computer screen
instantly shows what the printed docu-
ment will look like (see Figure 1).

However, there are disadvantages
to the “what you see is what you get”
(WYSIWYG, pronounced wis-ee-wig)
nature of a word processor. You may
labor to arrange various related images
and tables on the same page. Later,
you find that you need to add a couple
of paragraphs on the preceding page.
Now half of the material moves to the
next page, and you have do the arrang-
ing all over again. It would have been
more useful if you could have told
the word processor your intention,
namely: “Always keep these images
and tables together on the same page”.
In general, “what you see is what you
get” programs are very good in letting
you arrange material, but they don’t
know why you arranged the material
in a certain way. Thus, they can’t keep
the arrangement when your document
changes. Some people call these pro-
grams “what you see is all you’ve got”.

More fundamentally, “what you see
is what you get” programs break down
when you need to publish the same
material in multiple ways. You may
want to format product information as
a product parts list and an advertising
brochure. Or you may want to publish
the information in printed form, on the
Web, and in spoken form for telephone
retrieval. Now you no longer want to

“get” a single result, so it isn’t as help-
ful to see what you get. Instead, it
becomes much more important to visu-
alize the structure of the information.

A program for editing structured
text needs to capture three pieces of
information:

•	 The text itself

•	 The structural element (paragraph,
bulleted list, heading, and so on) to
which each part of the text belongs

•	 The rules for formatting the
structural elements

To make it easy to interchange struc-
tured documents between computer
systems, the structural information
is often encoded in markup tags. For
example, XML and HTML use tags that
are enclosed in angle brackets, such as
the familiar <p>, , and <h1> tags.

In the 1970s, when publishers
began to move away from traditional
manual typesetting to computer-
based typesetting, the result at first
was inferior quality, particularly for
mathematical formulas. Arranging
the symbols in complex formulas in a
way that makes mathematical sense
is an art that requires practice and
good judgment, and the first typeset-
ting programs were definitely not up
to the job. Frustrated by this situation,
the famous computer scientist Donald
Knuth of Stanford University decided
to do something about it and invented
a typesetting program that he called

TEX (pronounced “tek” because the
“X” is a capital Greek chi). Input to that
program consists of text with markup
tags that start with a backslash; curly
braces {} for grouping; and other spe-
cial markup symbols, such as _ and ^
to indicate subscript and superscript.
For example, to specify a summation,
you type

\sum_{i=1}^n i^2

The TEX program typesets the sum-
mation as shown below. Note that the
expression is formatted one way when
it occurs inside text and another way
when it appears as part of a displayed
formula.

The same sum as a displayed formula:

A sum inside text: ii
n 2

1=∑

i
i

n
2

1=
∑

A markup tag such as <h1> in HTML
or \sum in TEX is mainly beneficial for
exchanging documents among differ
ent computer systems. Only the most
hardened HTML or TEX authors pro-
duce the markup by hand. For HTML
in particular, many programs are avail-
able that display the structure of an
HTML document and allow authors to
edit both text and structure in a conve-
nient way that combines the benefits of
visual feedback and structure editing.

Figure 1  A “What You See Is What You Get” Word Processor

Random Fact 23.1  Word Processing and Typesetting Systems

W980  Chapter 23  XML

23.2  Parsing XML Documents
 To read and analyze the contents of an XML document, you need an XML parser. A
parser is a program that reads a document, checks whether it is syntactically correct,
and takes some action as it processes the document.

Two kinds of XML parsers are in common use. Streaming parsers read the XML
input one token at a time and report what they encounter: a start-tag, text, an end-
tag, and so on. In contrast, a tree-based parser builds a tree that represents the parsed
document. Once the parser is done, you can analyze the tree.

Streaming parsers are more efficient for handling large XML documents whose
tree structure would require large amounts of memory. Tree-based parsers, however,
are easier to use for most applications—the parse tree gives you a complete overview
of the data, whereas a streaming parser gives you the information in bits and pieces.

In this section, you will learn how to use a tree-based parser that produces a tree
structure according to the DOM (Document Object Model) standard. The DOM
standard defines interfaces and methods to analyze and modify the tree structure that
represents an XML document.

In order to parse an XML document into a DOM tree, use the DocumentBuilder
class from the java.xml package. To get a DocumentBuilder object, first call the static
newInstance method of the DocumentBuilderFactory class, then call the newDocumentBuilder
method on the factory object:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Once you have a DocumentBuilder, you can read a document. To read a document from
a file, first construct a File object from the file name, then call the parse method of the
DocumentBuilder class:

String fileName = . . .;
File f = new File(fileName);
Document doc = builder.parse(f);

If the document is located on the Internet, use a URL:
String urlName = . . .;
URL u = new URL(urlName);
Document doc = builder.parse(u);

You can also read a document from an arbitrary input stream:
InputStream in = . . .;
Document doc = builder.parse(in);

Once you have created a new document or read a document from a file, you can
inspect and modify it.

The easiest method for inspecting a document is the XPath syntax. In the DOM
standard, a node is the common superclass for all components that make up an XML
document. In particular, text sequences and elements are nodes. An XPath describes
a node or set of nodes, using a syntax that is similar to directory paths. For example,
consider the following XPath, applied to the document in Figures 2 and 3:

/items/item[1]/quantity

This XPath selects the quantity of the first item, that is, the value 8. (In XPath, array
positions start with 1. Accessing /items/item[0] would be an error.)

A parser is a
program that
reads a document,
checks whether it is
syntactically correct,
and takes some
action as it processes
the document.

A streaming parser
reports the building
blocks of an XML
document. A tree-
based parser builds a
document tree.

A DocumentBuilder
can read an XML
document from a file,
URL, or input stream.
The result is a
Document object,
which contains
a tree.

An XPath describes
a node or node set,
using a notation
similar to that for
directory paths.

23.2  Parsing XML Documents   W981

Figure 2   
An XML Document

<?xml version="1.0"?>
<items>
 <item>
 <product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
 </product>
 <quantity>8</quantity>
 </item>
 <item>
 <product>
 <description>4-port Mini Hub</description>
 <price>19.95</price>
 </product>
 <quantity>4</quantity>
 </item>
</items>

Similarly, you can get the price of the second product as
/items/item[2]/product/price

To get the number of items, use the XPath expression
count(/items/item)

In our example, the result is 2.
The total number of children can be obtained as
count(/items/*)

In our example, the result is again 2 because the items element has exactly two children.
To select attributes, use an @ followed by the name of the attribute. For example,
/items/item[2]/product/price/@currency

would select the currency attribute of the price element if it had one.
Finally, if you have a document with variable or unknown structure, you can find

out the name of a child with an expression such as the following:
name(/items/item[1]/*[1])

The result is the name of the first child of the first item, or product.

Figure 3   
The Tree  
View of the  
Document

<item>

<quantity> <quantity><product><product>

<description> <description>

Ink Jet
Refill Kit

4-port
Mini Hub

<price> <price>

29.95 19.95

8 4

<items>

<item>

W982  Chapter 23  XML

That is all you need to know about the XPath syntax to analyze simple documents.
(See Table 1 for a summary.) There are many more options in the XPath syntax that
we do not cover here. If you are interested, look up the specification (http://www.
w3.org/TR/xpath) or work through the online tutorial (http://www.zvon.org/xxl/XPathTu-
torial/General/examples.html).

To evaluate an XPath expression in Java, first create an XPath object:
XPathFactory xpfactory = XPathFactory.newInstance();
XPath path = xpfactory.newXPath();

Then call the evaluate method, like this:
String result = path.evaluate(expression, doc)

Here, expression is an XPath expression and doc is the Document object that represents
the XML document. For example, the statement

String result = path.evaluate("/items/item[2]/product/price", doc)

sets result to the string "19.95".
Now you have all the tools that you need to read and analyze an XML document.

The example program at the end of this section puts these techniques to work. (The
program uses the LineItem and Product classes from Section 12.3.) The class ItemList-
Parser can parse an XML document that contains a list of product descriptions. Its
parse method takes the file name and returns an array list of LineItem objects:

ItemListParser parser = new ItemListParser();
ArrayList<LineItem> items = parser.parse("items.xml");

The ItemListParser class translates each XML element into an object of the corre-
sponding Java class. We first get the number of items:

int itemCount = Integer.parseInt(path.evaluate("count(/items/item)", doc));

For each item element, we gather the product data and construct a Product object:
String description = path.evaluate(
 "/items/item[" + i + "]/product/description", doc);
double price = Double.parseDouble(path.evaluate(
 "/items/item[" + i + "]/product/price", doc));
Product pr = new Product(description, price);

Then we construct a LineItem object in the same way, and add it to the items array list.

Table 1 XPath Syntax Summary

Syntax Element Purpose Example

name Matches an element item

/ Separates elements /items/item

[n] Selects a value from a set /items/item[1]

@name Matches an attribute price/@currency

* Matches anything /items/*[1]

count Counts matches count(/items/item)

name The name of a match name(/items/*[1])

23.2 P arsing XML Documents   W983

Here is the complete source code:

section_2/ItemListParser.java

1 import java.io.File;
2 import java.io.IOException;
3 import java.util.ArrayList;
4 import javax.xml.parsers.DocumentBuilder;
5 import javax.xml.parsers.DocumentBuilderFactory;
6 import javax.xml.parsers.ParserConfigurationException;
7 import javax.xml.xpath.XPath;
8 import javax.xml.xpath.XPathExpressionException;
9 import javax.xml.xpath.XPathFactory;

10 import org.w3c.dom.Document;
11 import org.xml.sax.SAXException;
12
13 /**
14 An XML parser for item lists.
15 */
16 public class ItemListParser
17 {
18 private DocumentBuilder builder;
19 private XPath path;
20
21 /**
22 Constructs a parser that can parse item lists.
23 */
24 public ItemListParser()
25 throws ParserConfigurationException
26 {
27 DocumentBuilderFactory dbfactory
28 = DocumentBuilderFactory.newInstance();
29 builder = dbfactory.newDocumentBuilder();
30 XPathFactory xpfactory = XPathFactory.newInstance();
31 path = xpfactory.newXPath();
32 }
33
34 /**
35 Parses an XML file containing an item list.
36 @param fileName the name of the file
37 @return an array list containing all items in the XML file
38 */
39 public ArrayList<LineItem> parse(String fileName)
40 throws SAXException, IOException, XPathExpressionException
41 {
42 File f = new File(fileName);
43 Document doc = builder.parse(f);
44
45 ArrayList<LineItem> items = new ArrayList<LineItem>();
46 int itemCount = Integer.parseInt(path.evaluate(
47 "count(/items/item)", doc));
48 for (int i = 1; i <= itemCount; i++)
49 {
50 String description = path.evaluate(
51 "/items/item[" + i + "]/product/description", doc);
52 double price = Double.parseDouble(path.evaluate(
53 "/items/item[" + i + "]/product/price", doc));
54 Product pr = new Product(description, price);
55 int quantity = Integer.parseInt(path.evaluate(
56 "/items/item[" + i + "]/quantity", doc));

W984  Chapter 23  XML

57 LineItem it = new LineItem(pr, quantity);
58 items.add(it);
59 }
60 return items;
61 }
62 }

section_2/ItemListParserDemo.java

1 import java.util.ArrayList;
2
3 /**
4 This program parses an XML file containing an item list.
5 It prints out the items that are described in the XML file.
6 */
7 public class ItemListParserDemo
8 {
9 public static void main(String[] args) throws Exception

10 {
11 ItemListParser parser = new ItemListParser();
12 ArrayList<LineItem> items = parser.parse("items.xml");
13 for (LineItem anItem : items)
14 {
15 System.out.println(anItem.format());
16 }
17 }
18 }

Program Run

Ink Jet Refill Kit 29.95 8 239.6
4-port Mini Hub 19.95 4 79.8

4.	 What is the result of evaluating the XPath statement /items/item[1]/product/price
in the XML document of Figure 3?

5.	 Which XPath statement yields the name of the root element of any XML
document?

Practice It	 Now you can try these exercises at the end of the chapter: R23.10, P23.1, P23.4.

XML Elements Describe Objects, Not Classes

When you convert XML documents to Java classes, you need to determine a class for each ele-
ment type. A common mistake is to make a separate class for each XML element. For example,
consider a slightly different invoice description, with separate shipping and billing addresses:

<invoice>
 <shipto>
 <name>ACME Computer Supplies Inc.</name>
 <street>1195 W. Fairfield Rd.</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94085</state>
 </shipto>
 <billto>

S e l f C h e c k

Common Error 23.1

23.3  Creating XML Documents   W985

 <name>ACME Computer Supplies Inc.</name>
 <street>P.O. Box 11098</street>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip>94080-1098</zip>
 </billto>
 <items>
 . . .
 </items>
</invoice>

Should you have a class Shipto to match the shipto element and another class Billto to match
the billto element? That makes no sense, because both of them have the same contents: ele-
ments that describe an address.

Instead, you should think of the XML element as the value of an instance variable and then
determine an appropriate class. For example, an invoice object has instance variables
•	 billto, of type Address
•	 shipto, also of type Address
Note that you don’t see the classes in the XML document. There is no notion of a class Address
in the XML document describing an invoice. To make element classes explicit, you use an
XML schema—see Special Topic 23.1 for more information.

23.3  Creating XML Documents
In the preceding section, you saw how to read an XML file into a Document object and
analyze the contents of that object. In this section, you will see how to do the oppo-
site—build up a Document object and then save it as an XML file. Of course, you can
also generate an XML file simply as a sequence of print statements. However, that is
not a good idea—it is easy to build an illegal XML document in this way, as when data
contain special characters such as < or &.

Recall that you needed a DocumentBuilder object to read in an XML document. You
also need such an object to create a new, empty document. Thus, to create a new
document, first make a DocumentBuilderFactory, then a DocumentBuilder, and finally the
empty document:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.newDocument(); // An empty document

A document contains two kind of nodes, elements and text nodes. The DOM stan-
dard provides interfaces for these node types, as well as a common superinterface Node
(see Figure 4). You use the createElement method of the Document interface to create the
elements that you need:

Element priceElement = doc.createElement("price");

You set element attributes with the setAttribute method. For example,
priceElement.setAttribute("currency", "USD");

You have to work a bit harder for inserting text. First create a text node:
Text textNode = doc.createTextNode("29.95");

The Document
interface has
methods to create
elements and
text nodes.

W986  Chapter 23  XML

Figure 4  UML Diagram of DOM Interfaces Used in This Chapter

«interface»
Document

«interface»
Node

«interface»
Element

«interface»
Text

«interface»
CharacterData

Then add the text node to the element:
priceElement.appendChild(textNode);

To construct the tree structure of a document, it is a good idea to use a set of helper
methods. We start out with a helper method that creates an element with text:

private Element createTextElement(String name, String text)
{
 Text t = doc.createTextNode(text);
 Element e = doc.createElement(name);
 e.appendChild(t);
 return e;
}

Using this helper method, we can construct a price element like this:
Element priceElement = createTextElement("price", "29.95");

Next, we write a helper method to create a product element from a Product object:
private Element createProduct(Product p)
{
 Element e = doc.createElement("product");
 e.appendChild(createTextElement("description", p.getDescription()));
 e.appendChild(createTextElement("price", "" + p.getPrice()));
 return e;
}

This helper method is called from the createItem helper method:
private Element createItem(LineItem anItem)
{
 Element e = doc.createElement("item");
 e.appendChild(createProduct(anItem.getProduct()));
 e.appendChild(createTextElement("quantity", "" + anItem.getQuantity()));
 return e;
}

A helper method
private Element createItems(ArrayList<LineItem> items)

for the items element is implemented in the same way—see the program listing at the
end of this section.

Now you build the document as follows:
ArrayList<LineItem> items = . . .;
doc = builder.newDocument();
Element root = createItems(items);
doc.appendChild(root);

Once you have built the document, you will want to write it to a file. The DOM stan-
dard provides the LSSerializer interface for this purpose. Unfortunately, the DOM
standard uses very generic methods, which makes the code that is required to obtain a
serializer object look like a “magic incantation”:

DOMImplementation impl = doc.getImplementation();
DOMImplementationLS implLS
 = (DOMImplementationLS) impl.getFeature("LS", "3.0");
LSSerializer ser = implLS.createLSSerializer();

Once you have the serializer object, you simply use the writeToString method:
String str = ser.writeToString(doc);

By default, the LSSerializer produces an XML document without spaces or line
breaks. As a result, the output looks less pretty, but it is actually more suitable for
parsing by another program because it is free from unnecessary white space.

If you want white space, you use yet another magic incantation after creating the
serializer:

ser.getDomConfig().setParameter("format-pretty-print", true);

Here is an example program that shows how to build and print an XML document:

section_3/ItemListBuilder.java

1 import java.util.ArrayList;
2 import javax.xml.parsers.DocumentBuilder;
3 import javax.xml.parsers.DocumentBuilderFactory;
4 import javax.xml.parsers.ParserConfigurationException;
5 import org.w3c.dom.Document;
6 import org.w3c.dom.Element;
7 import org.w3c.dom.Text;
8
9 /**

10 Builds a DOM document for an array list of items.
11 */
12 public class ItemListBuilder
13 {
14 private DocumentBuilder builder;
15 private Document doc;
16
17 /**
18 Constructs an item list builder.
19 */
20 public ItemListBuilder()
21 throws ParserConfigurationException
22 {

Use an LSSerializer
to write a
DOM document.

23.3  Creating XML Documents   W987

A helper method
private Element createItems(ArrayList<LineItem> items)

for the items element is implemented in the same way—see the program listing at the
end of this section.

Now you build the document as follows:
ArrayList<LineItem> items = . . .;
doc = builder.newDocument();
Element root = createItems(items);
doc.appendChild(root);

Once you have built the document, you will want to write it to a file. The DOM stan-
dard provides the LSSerializer interface for this purpose. Unfortunately, the DOM
standard uses very generic methods, which makes the code that is required to obtain a
serializer object look like a “magic incantation”:

DOMImplementation impl = doc.getImplementation();
DOMImplementationLS implLS
 = (DOMImplementationLS) impl.getFeature("LS", "3.0");
LSSerializer ser = implLS.createLSSerializer();

Once you have the serializer object, you simply use the writeToString method:
String str = ser.writeToString(doc);

By default, the LSSerializer produces an XML document without spaces or line
breaks. As a result, the output looks less pretty, but it is actually more suitable for
parsing by another program because it is free from unnecessary white space.

If you want white space, you use yet another magic incantation after creating the
serializer:

ser.getDomConfig().setParameter("format-pretty-print", true);

Here is an example program that shows how to build and print an XML document:

section_3/ItemListBuilder.java

1 import java.util.ArrayList;
2 import javax.xml.parsers.DocumentBuilder;
3 import javax.xml.parsers.DocumentBuilderFactory;
4 import javax.xml.parsers.ParserConfigurationException;
5 import org.w3c.dom.Document;
6 import org.w3c.dom.Element;
7 import org.w3c.dom.Text;
8
9 /**

10 Builds a DOM document for an array list of items.
11 */
12 public class ItemListBuilder
13 {
14 private DocumentBuilder builder;
15 private Document doc;
16
17 /**
18 Constructs an item list builder.
19 */
20 public ItemListBuilder()
21 throws ParserConfigurationException
22 {

Use an LSSerializer
to write a
DOM document.

W988  Chapter 23  XML

23 DocumentBuilderFactory factory
24 = DocumentBuilderFactory.newInstance();
25 builder = factory.newDocumentBuilder();
26 }
27
28 /**
29 Builds a DOM document for an array list of items.
30 @param items the items
31 @return a DOM document describing the items
32 */
33 public Document build(ArrayList<LineItem> items)
34 {
35 doc = builder.newDocument();
36 doc.appendChild(createItems(items));
37 return doc;
38 }
39
40 /**
41 Builds a DOM element for an array list of items.
42 @param items the items
43 @return a DOM element describing the items
44 */
45 private Element createItems(ArrayList<LineItem> items)
46 {
47 Element e = doc.createElement("items");
48
49 for (LineItem anItem : items)
50 {
51 e.appendChild(createItem(anItem));
52 }
53
54 return e;
55 }
56
57 /**
58 Builds a DOM element for an item.
59 @param anItem the item
60 @return a DOM element describing the item
61 */
62 private Element createItem(LineItem anItem)
63 {
64 Element e = doc.createElement("item");
65
66 e.appendChild(createProduct(anItem.getProduct()));
67 e.appendChild(createTextElement(
68 "quantity", "" + anItem.getQuantity()));
69
70 return e;
71 }
72
73 /**
74 Builds a DOM element for a product.
75 @param p the product
76 @return a DOM element describing the product
77 */
78 private Element createProduct(Product p)
79 {
80 Element e = doc.createElement("product");
81

23.3  Creating XML Documents   W989

82 e.appendChild(createTextElement(
83 "description", p.getDescription()));
84 e.appendChild(createTextElement(
85 "price", "" + p.getPrice()));
86
87 return e;
88 }
89
90 private Element createTextElement(String name, String text)
91 {
92 Text t = doc.createTextNode(text);
93 Element e = doc.createElement(name);
94 e.appendChild(t);
95 return e;
96 }
97 }

section_3/ItemListBuilderDemo.java

1 import java.util.ArrayList;
2 import org.w3c.dom.DOMImplementation;
3 import org.w3c.dom.Document;
4 import org.w3c.dom.ls.DOMImplementationLS;
5 import org.w3c.dom.ls.LSSerializer;
6
7 /**
8 This program demonstrates the item list builder. It prints the XML
9 file corresponding to a DOM document containing a list of items.

10 */
11 public class ItemListBuilderDemo
12 {
13 public static void main(String[] args) throws Exception
14 {
15 ArrayList<LineItem> items = new ArrayList<LineItem>();
16 items.add(new LineItem(new Product("Toaster", 29.95), 3));
17 items.add(new LineItem(new Product("Hair dryer", 24.95), 1));
18
19 ItemListBuilder builder = new ItemListBuilder();
20 Document doc = builder.build(items);
21 DOMImplementation impl = doc.getImplementation();
22 DOMImplementationLS implLS
23 = (DOMImplementationLS) impl.getFeature("LS", "3.0");
24 LSSerializer ser = implLS.createLSSerializer();
25 String out = ser.writeToString(doc);
26
27 System.out.println(out);
28 }
29 }

This program uses the Product and LineItem classes from Chapter 12. The LineItem class
has been modified by adding getProduct and getQuantity methods.

Program Run

<?xml version="1.0" encoding="UTF-8"?><items><item><product>
<description>Toaster</description><price>29.95</price></product>
<quantity>3</quantity></item><item><product><description>Hair dryer
</description><price>24.95</price></product><quantity>1</quantity>
</item></items>

W990  Chapter 23  XML

6.	 Suppose you need to construct a Document object that represents an XML docu-
ment other than an item list. Which methods from the ItemListBuilder class can
you reuse?

7.	 How would you write a document to the file output.xml?

Practice It	 Now you can try these exercises at the end of the chapter: R23.12, P23.10, P23.11.

Step 1	 Provide the outline of a document builder class.

To construct the Document object from an object of some class, you should implement a class
such as this one:

public class MyBuilder
{
 private DocumentBuilder builder;
 private Document doc;

 public Document build(SomeClass x) { . . . }
 . . .
 private Element createTextElement(String name, String text)
 {
 Text t = doc.createTextNode(text);
 Element e = doc.createElement(name);
 e.appendChild(t);
 return e;
 }
}

Step 2	 Look at the format of the XML document that you want to create.

Consider all elements, except for those that only have text content. Find the matching Java
classes. In the ItemListBuilder example, we ignore quantity, description, and price because they
have text content. The remaining elements and their Java classes are
•	 product - Product
•	 item - LineItem
•	 items - ArrayList<LineItem>

Step 3	 For each element in Step 2, add a helper method to your builder class.

Each helper method has the form

private Element createElementName(ClassForElement x)

S e l f C h e c k

How To 23.2	 Writing an XML Document

What is the best way to write an XML document? This How To shows you how to produce a
Document object and generate an XML document from it.

23.3  Creating XML Documents   W991

For example,

public class MyBuilder
{
 . . .
 public Document build(ArrayList<LineItem> x) { . . . }
 private Element createProduct(Product x) { . . . }
 private Element createItem(LineItem x) { . . . }
 private Element createItems(ArrayList<LineItem> x) { . . . }
}

Step 4	 Implement the helper methods.

For each element, call the helper methods of its children. However, if a child has text content,
call createTextElement instead.

For example, the item element has two children: product and quantity. The former has a
helper method, and the latter has text content. Therefore, the createItem method calls create
Product and createTextElement:

private Element createItem(LineItem anItem)
{
 Element e = doc.createElement("item");
 e.appendChild(createProduct(anItem.getProduct()));
 e.appendChild(createTextElement("quantity", "" + anItem.getQuantity()));
 return e;
}

You may find it helpful to implement the helper methods “bottom up”, starting with the
simplest method (such as createProduct) and finishing with the method for the root element
(createItems).

Step 5	 Finish off your builder by writing a constructor and the build method.

public class MyBuilder
{
 public MyBuilder() throws ParserConfigurationException
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 builder = factory.newDocumentBuilder();
 }
 public Document build(ClassForRootElement x)
 {
 doc = builder.newDocument();
 doc.appendChild(createRootElementName(x));
 return doc;
 }
 . . .
}

Step 6	 Use a class, such as the LSSerializer, to convert the Document to a string.

For example,

Invoice x = . . .;
InvoiceBuilder builder = new InvoiceBuilder();
Document doc = builder.build(x);
LSSerializer ser = . . .;
String str = ser.writeToString(doc);

W992  Chapter 23  XML

Grammars are very important in many
areas of computer science to describe the

structure of computer programs or data formats. To intro-
duce the concept of a grammar, consider this set of rules for
a set of simple English language sentences:

1.	A sentence has a noun phrase followed by a verb and
another noun phrase.

2.	A noun phrase consists of an article followed by an
adjective list followed by a noun.

3.	An adjective list consists of an adjective or an adjective
followed by an adjective list.

4.	Articles are “a” and “the”.

5.	Adjectives are “quick”, “brown”, “lazy”, and “hungry”.

6.	Nouns are “fox”, “dog”, and “hamster”.

7.	Verbs are “jumps over” and “eats”.

Here are two sentences that follow these rules:

•	 The quick brown fox jumps over the lazy dog.

•	 The hungry hamster eats a quick brown fox.

Symbolically, these rules can be expressed by a formal
grammar:

<sentence> ::= <noun-phrase> <verb> <noun-phrase>
<noun-phrase> ::= <article> <adjective-list> <noun>
<adjective-list> ::= <adjective> |
 <adjective> <adjective-list>
<article> ::= a | the
<adjective> ::= quick | brown | lazy | hungry
<noun> ::= fox | dog | hamster
<verb> ::= jumps over | eats

Here the symbol ::= means “can be replaced with” and |
separates alternate choices. For example, <article> can be
replaced with “a” or “the”.

Table 2 Deriving a Sentence from a Grammar

String Rule

<sentence> Start

<noun-phrase> <verb> <noun-phrase> 1

<noun-phrase> eats <noun-phrase> 7

<article> <adjective-list> <noun> eats <noun-phrase> 2

the <adjective-list> <noun> eats <noun-phrase> 4

the <adjective> <noun> eats <noun-phrase> 3

the hungry <noun> eats <noun-phrase> 5

the hungry hamster eats <noun-phrase> 6

the hungry hamster eats <article> <adjective-list> <noun> 2

the hungry hamster eats a <adjective-list> <noun> 4

the hungry hamster eats a <adjective> <adjective-list> <noun> 3

the hungry hamster eats a quick <adjective-list> <noun> 5

the hungry hamster eats a quick <adjective> <noun> 3

the hungry hamster eats a quick brown <noun> 5

the hungry hamster eats a quick brown fox 6

Random Fact 23.2  Grammars, Parsers, and Compilers

23.3  Creating XML Documents   W993

The grammar symbols, such as <noun>, happen to be
enclosed in angle brackets just like XML tags, but they are
different from tags. One purpose of a grammar is to pro-
duce strings that are valid according to the grammar by
starting with the start symbol (<sentence> in this example)
and applying replacement rules until the resulting string
is free from symbols. See Table 2 for an example of the
replacement process.

If you have a grammar and a string, such as “the hungry
hamster eats a quick brown fox” or “a brown jumps over
hamster quick lazy”, you can parse the sentence: that is,
check whether the sentence is described by the grammar
rules and, if it is, show how it can be derived from the start
symbol (see Table 2). Another way to show the derivation is
to construct a parse tree (see Figure 5).

A parser is a program that reads strings and decides
whether the input conforms to the rules of a certain gram-
mar. Some parsers—such as the DOM XML parser—build a
parse tree in the process or report an error message when
a parse tree cannot be constructed. Other parsers—such as
the SAX XML parser—call user-specified methods whenever
a part of the input was successfully parsed.

The most important use for parsers is inside compil-
ers for programming languages. Just as our grammar
can describe (some) simple English language sentences,
the valid “sentences” in a programming language can be
described by a grammar. The actual grammar for the Java
programming language occupies about fifteen pages in
The Java Language Specification (http://java.sun.com/

docs/books/jls). To give a flavor of a small subset of such
a grammar, here is a grammar that describes arithmetic
expressions.

<expression> ::= <term> |
 <expression> <additive-operator> <term>
<additive-operator> ::= + | -
<term> ::= <factor> |
 <term> <multiplicative-operator> <factor>
<multiplicative-operator> ::= * | /
<factor> ::= <integer> | (<expression>)
<integer> ::= <digits> | - <digits>
<digits> ::= <digit> | <digit> <digits>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

An example of a valid expression in this grammar is

-2 * (3 + 10)

Try deriving this expression from the <expression> start
symbol, as was done in Table 2 or Figure 5!

In a compiler, parsing the program source is the first
step toward generating code that the target processor (the
Java virtual machine in the case of Java) can execute. Writ-
ing a parser is a challenging and interesting task. You may
at one point in your studies take a course in compiler con-
struction, in which you learn how to write a parser and how
to generate code from the parsed input. Fortunately, to use
XML you don’t have to know how the parser does its job.
You simply ask the XML parser to read the XML input and
then process the resulting Document tree.

Figure 5  A Parse Tree for a Simple Sentence

<sentence>

<verb>

eats

<noun-
phrase>

<noun-
phrase>

<noun> <noun><article><article>

a

<adjective>

<adjective-
list>

<adjective-
list>

<adjective>

quick fox

<adjective-
list>

<adjective>

brown

hungry

hamsterthe

W994  Chapter 23  XML

23.4  Validating XML Documents
In this section you will learn how to specify rules for XML documents of a particular
type. There are several mechanisms for this purpose. The oldest and simplest mecha-
nism is a Document Type Definition (DTD), the topic of this section. We discuss
other mechanisms in Special Topic 23.1.

23.4.1  Document Type Definitions

Consider a document of type items. Intuitively, items denotes a sequence of item ele-
ments. Each item element contains a product and a quantity. A product contains a descrip-
tion and a price. Each of these elements contains text describing the product’s descrip-
tion, price, and quantity. The purpose of a DTD is to formalize this description.

A DTD is a sequence of rules that describes

•	 The valid attributes for each element type
•	 The valid child elements for each element type

Let us first turn to child elements. The valid child elements of an element are described
by an ELEMENT rule:

<!ELEMENT items (item*)>

This means that an item list must contain a sequence of 0 or more item elements.
As you can see, the rule is delimited by <! . . . >, and it contains the name of the ele-

ment whose children are to be constrained (items), followed by a description of what
children are allowed.

Next, let us turn to the definition of an item element:
<!ELEMENT item (product, quantity)>

This means that the children of an item element must be a product element, followed
by a quantity element.

The definition for a product is similar:
<!ELEMENT product (description, price)>

Finally, here are the definitions of the three remaining elements:
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT price (#PCDATA)>

Table 3 Replacements for Special Characters

Character Encoding Name

< < Less than (left angle bracket)

> > Greater than (right angle bracket)

& & Ampersand

' ' Apostrophe

" " Quotation mark

A DTD is a sequence
of rules that
describes the valid
child elements and
attributes for each
element type.

23.4  Validating XML Documents   W995

The symbol #PCDATA refers to text, called “parsed character data” in XML terminol-
ogy. The character data can contain any characters. However, certain characters, such
as < and &, have special meaning in XML and need to be replaced if they occur in char-
acter data. Table 3 shows the replacements for special characters.

The complete DTD for an item list has six rules, one for each element type:
<!ELEMENT items (item*)>
<!ELEMENT item (product, quantity)>
<!ELEMENT product (description, price)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT price (#PCDATA)>

Let us have a closer look at the descriptions of the allowed children. Table 4 shows
the expressions used to describe the children of an element. The EMPTY reserved word
is self-explanatory: an element that is declared as EMPTY may not have any children.
For example, the HTML DTD defines the img element to be EMPTY—an image has only
attributes, specifying the image source, size, and placement, and no children.

More interesting child rules can be formed with the regular expression operations
(* + ? , |). (See Table 4 and Figure 6. Also see Special Topic 7.4 for more information
on regular expressions.) You have already seen the * (“0 or more”) and , (sequence)
operations. The children of an items element are 0 or more item elements, and the chil-
dren of an item are a sequence of product and description elements.

You can also combine these operations to form more complex expressions:
<!ELEMENT section (title, (paragraph | (image, title?))+)

defines an element section whose children are:

1.	A title element
2.	A sequence of one or more of the following:

•	 paragraph elements
•	 image elements followed by optional title elements

Table 4 Regular Expressions for Element Content

Rule Description Element Content

EMPTY No children allowed

(E*) Any sequence of 0 or more elements E

(E+) Any sequence of 1 or more elements E

(E?) Optional element E (0 or 1 occurrences allowed)

(E1, E2, . . .) Element E1, followed by E2 , . . .

(E1 | E2 | . . .) Element E1 or E2 or . . .

(#PCDATA) Text only

(#PCDATA | E1 | E2 . . .)* Any sequence of text and elements E1, E2 , . . . , in any order

ANY Any children allowed

W996  Chapter 23  XML

Figure 6   
DTD Regular  
Expression  
Operations

(E?)

(E+)

(E*) (E1, E2)

(E1 | E2)

E

E

E E1 E2

E2

E1

Thus,
<section>
 <title/>
 <paragraph/>
 <image/>
 <title/>
 <paragraph/>
</section>

is valid, but
<section>
 <paragraph/>
 <paragraph/>
 <title/>
</section>

is not—there is no starting title, and the title at the end doesn’t follow an image.
You already saw the (#PCDATA) rule. It means that the children can consist of any

character data. For example, in our product list DTD, the description element can
have any character data inside.

You can also allow mixed content—any sequence of character data and specified
elements. However, in mixed content, you have no control over the order in which
the elements appear. As explained in Programming Tip 23.2, you should avoid mixed
content for DTDs that describe data sets. This feature is intended for documents that
contain both text and markup instructions, such as HTML pages.

Finally, you can allow an element to have children of any type—you should avoid
that for DTDs that describe data sets.

You now know how to specify what children an element may have. A DTD also
gives you control over the allowed attributes of an element. An attribute description
looks like this:

<!ATTLIST Element Attribute Type Default>

23.4  Validating XML Documents   W997

Table 5 Common Attribute Types

Type Description Attribute Type

CDATA Any character data

(V1 | V2 | . . .) One of V1, V2 , . . .

The most useful attribute type descriptions are listed in Table 5. The CDATA type
describes any sequence of character data. As with #PCDATA, certain characters, such
as < and &, need to be encoded (as <, & and so on). There is no practical differ-
ence between the CDATA and #PCDATA types. Simply use CDATA in attribute declarations and
#PCDATA in element declarations.

Rather than allowing arbitrary attribute values, you can specify a finite number
of choices. For example, you may want to restrict a currency attribute to U.S. dollar,
euro, and Japanese yen. Then use the following declaration:

<!ATTLIST price currency (USD | EUR | JPY) #REQUIRED>

You can use letters, numbers, and the hyphen (-) and underscore (_) characters for the
attribute values.

There are other type descriptions that are less common in practice. You can find
them in the XML reference (http://www.xml.com/axml/axml.html).

The attribute type description is followed by a “default” declaration. The reserved
words that can appear in a “default” declaration are listed in Table 6.

For example, this attribute declaration specifies that each price element must have
a currency attribute whose value is any character data:

<!ATTLIST price currency CDATA #REQUIRED>

To fulfill this declaration, each price element must have a currency attribute, such as
<price currency="USD">. A price without a currency would not be valid. 

For an optional attribute, you use the #IMPLIED reserved word instead:
<!ATTLIST price currency CDATA #IMPLIED>

That means that you can supply a currency attribute in a price element, or you can
omit it. If you omit it, then the application that processes the XML data implicitly
assumes some default currency.

A better choice would be to supply the default value explicitly:
<!ATTLIST price currency CDATA "USD">

Table 6 Attribute Defaults

Default Declaration Explanation

#REQUIRED Attribute is required

#IMPLIED Attribute is optional

V Default attribute, to be used if attribute is not specified

#FIXED V Attribute must either be unspecified or contain this value

W998  Chapter 23  XML

That means that the currency attribute is understood to mean USD if the attribute is not
specified. An XML parser will then report the value of currency as USD if the attribute
was not specified.

Finally, you can state that an attribute can only be identical to a particular value.
For example, the rule

<!ATTLIST price currency CDATA #FIXED "USD">

means that a price element must either not have a currency attribute at all (in which
case the XML parser will report its value as USD), or specify the currency attribute as
USD. Naturally, this kind of rule is not very common.

You have now seen the most common constructs for DTDs. Using these constructs,
you can define your own DTDs for XML documents that describe data sets. In the
next section, you will see how to specify which DTD an XML document should use,
and how to have the XML parser check that a document conforms to its DTD.

23.4.2  Specifying a DTD in an XML Document

When you reference a DTD with an XML document, you can instruct the parser
to check that the document follows the rules of the DTD. That way, the parser can
check errors in the document.

In the preceding section you saw how to develop a DTD for a class of XML docu-
ments. The DTD specifies the permitted elements and attributes in the document. An
XML document has two ways of referencing a DTD:

1.	The document may contain the DTD.
2.	The document may refer to a DTD that is stored elsewhere.

A DTD is introduced with the DOCTYPE declaration. If the document contains its DTD,
then the declaration looks like this:

<!DOCTYPE rootElement [rules]>

For example, an item list can include its DTD like this:
<?xml version="1.0"?>
<!DOCTYPE items [

<!ELEMENT items (item*)>
<!ELEMENT item (product, quantity)>
<!ELEMENT product (description, price)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>
<items>
 <item>
 <product>
 <description>Ink Jet Refill Kit</description>
 <price>29.95</price>
 </product>
 <quantity>8</quantity>
 </item>
 <item>

An XML document
can contain its DTD
or refer to a DTD that
is stored elsewhere.

23.4  Validating XML Documents   W999

 <product>
 <description>4-port Mini Hub</description>
 <price>19.95</price>
 </product>
 <quantity>4</quantity>
 </item>
</items>

However, if the DTD is more complex, then it is better to store it outside the XML
document. In that case, you use the SYSTEM reserved word inside the DOCTYPE declara-
tion to indicate that the system that hosts the XML processor must locate the DTD.
The SYSTEM reserved word is followed by the location of the DTD. For example, a DOC-
TYPE declaration might point to a local file

<!DOCTYPE items SYSTEM "items.dtd">

Alternatively, the resource might be a URL anywhere on the Web:
<!DOCTYPE items SYSTEM "http://www.mycompany.com/dtds/items.dtd">

For commonly used DTDs, the DOCTYPE declaration can contain a PUBLIC reserved
word. For example,

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

A program parsing the DTD can look at the public identifier. If it is a familiar identi-
fier, then it need not spend time retrieving the DTD from the URL.

23.4.3  Parsing and Validation

When you include a DTD with an XML document, then you can tell the parser to
validate the document. That means that the parser will check that all child elements
and attributes of an element conform to the ELEMENT and ATTLIST rules in the DTD. If
a document is invalid, then the parser reports an error. To turn on validation, you
use the setValidating method of the DocumentBuilderFactory class before calling the new
DocumentBuilder method:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(. . .);

Validation can simplify your code for processing XML documents. For example, if
the DTD specifies that the child elements of each item element are product and quantity
elements in that order, then you can rely on that fact and don’t need to put tedious
checks in your code.

If the parser has access to the DTD, it can make another useful improvement. By
default, the parser converts all spaces in the input document to text, even if the spaces
are only used to logically line up elements. As a result, the document contains text
nodes that are wasteful and can be confusing when you analyze the document tree.

To make the parser ignore white space, call the setIgnoringElementContentWhitespace
method of the DocumentBuilderFactory class.

factory.setValidating(true);
factory.setIgnoringElementContentWhitespace(true);

When referencing an
external DTD, you
must supply a URL
for locating the DTD.

When your XML
document has a DTD,
you can request
validation when
parsing.

When you parse an
XML file with a DTD,
tell the parser to
ignore white space.

W1000  Chapter 23  XML

Finally, if the parser has access to the DTD, it can fill in default values for attributes.
For example, suppose a DTD defines a currency attribute for a price element:

<!ATTLIST price currency CDATA "USD">

If a document contains a price element without a currency attribute, then the parser
can supply the default:

String attributeValue = priceElement.getAttribute("currency");
 // Gets "USD" if no currency specified

This concludes our discussion of XML. You now know enough XML to put it to
work for describing data formats. Whenever you are tempted to use a “quick and
dirty” file format, you should consider using XML instead. By using XML for data
interchange, your programs become more professional, robust, and flexible.

8.	 How can a DTD specify that the quantity element in an item is optional?
9.	 How can a DTD specify that a product element can contain a description and a

price element, in any order?
10.	 How can a DTD specify that the description element has an optional attribute

language?

Practice It	 Now you can try these exercises at the end of the chapter: R23.13, P23.3, P23.5.

Step 1	 Get or write a couple of sample XML documents.

For example, if you wanted to make a DTD for XML documents that describe an invoice, you
could study samples such as the one in How To 23.1.

Step 2	 Make a list of all elements that can occur in the XML document.

In the invoice example, they are

S e l f C h e c k

How To 23.3	 Writing a DTD

You write a DTD to describe a set of XML documents of the same type. The DTD specifies
which elements contain child elements (and the order in which they may appear) and which
elements contain text. It also specifies which elements may have attributes, which attributes
are required, and which defaults are used for missing attributes.

These rules are for DTDs that describe program data. DTDs that describe narrative text
generally have a much more complex structure.

•	 invoice

•	 address

•	 name

•	 street

•	 city

•	 state

•	 zip

•	 items

•	 item

•	 product

•	 description

•	 quantity

Step 3	 For each of the elements, decide whether its children are elements or text.

It is best to avoid elements whose children are a mixture of both.

23.4  Validating XML Documents   W1001

In the invoice example, the following elements have element content:
•	 invoice

•	 address

•	 items

•	 item

•	 product

The remainder contain text.

Step 4	 For elements that contain text, the DTD rule is

<!ELEMENT elementName (#PCDATA)>

Thus, we have the following simple rules for the invoice elements that contain text:

<!ELEMENT name (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Step 5	 For each element that contains other elements, make a list of the possible child elements.

Here are the lists in the invoice example:
•	 invoice
	 address

	 items

•	 address
	 name

	 street

	 city

	 state

	 zip

•	 items
	 item

•	 item
	 product

	 quantity

•	 product
	 description

	 price

Step 6	 For each of those elements, decide in which order the child elements should occur and how
often they should occur.

Then form the rule

<!ELEMENT elementName child1 count1, child2 count2, . . .>

where each count is one of the following:

Quantity Count

0 or 1 ?

1 omit

0 or more *

1 or more +

In the invoice example, the items element can contain any number of items, so the rule is

<!ELEMENT items (item*)>

W1002  Chapter 23  XML

In the remaining cases, each child element occurs exactly once. That leads to the rules

<!ELEMENT invoice (address, items)>
<!ELEMENT address (name, street, city, state, zip)>
<!ELEMENT item (product, quantity)>
<!ELEMENT product (descripton, price)>

Step 7	 Decide whether any elements should have attributes.

Following Programming Tip 23.1, it is best to avoid attributes altogether or to minimize the
use of attributes. Because we have no good reason to add attributes in the invoice example, our
invoice is complete without attributes.

Schema Languages

Several mechanisms have been developed to deal with the limitations of DTDs. DTDs can-
not express certain details about the structure of an XML document. For example, you can’t
force an element to contain just a number or a date—any text string is allowed for a (#PCDATA)
element.

The XML Schema specification is one mechanism for overcoming these limitations. An
XML schema is like a DTD in that it is a set of rules that documents of a particular type need to
follow, but a schema can contain far more precise rule descriptions.

Here is just a hint of how an XML schema is specified. For each element, you specify the
element name and the type. For example, this definition restricts the contents of quantity to an
integer.

<xsd:element name="quantity" type="xsd:integer"/>

Note that an XML schema is itself written in XML—unlike a DTD, which uses a com-
pletely different syntax. (The xsd: prefix is a name space prefix to denote that xsd:element and
xsd:integer are part of the XML Schema Definition name space. See Special Topic 23.2 for
more information about name spaces.)

In XML Schema, you can define complex types, much as you define classes in Java. Here is
the definition of an Address type:

<xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Then you can specify that an invoice should have shipto and billto instance variables that are
both of type Address:

<xsd:element name="shipto" type="Address"/>
<xsd:element name="billto" type="Address"/>

These examples show that an XML schema can be more precise than a DTD.
The XML Schema specification has many advanced features—see the W3C web site, www.

w3.org/xml, for details. However, some programmers find that specification overly complex
and instead use a competing standard called Relax NG—see www.relaxng.org. Relax NG is sim-
pler than XML Schema, and it shares a feature with DTDs: a compact notation that is not
XML.

Special Topic 23.1

23.4  Validating XML Documents   W1003

For example, in Relax NG, you simply write

element quantity { xsd:integer }

to denote that quantity is an element containing an integer. The designers of Relax NG realized
that XML, despite its many advantages, is not always the best notation for humans.

Other XML Technologies

This chapter covers the subset of the XML 1.0 specification that is most useful for common
programming situations. Since version 1.0 of the XML specification was released, there has
been a huge amount of interest in advanced XML technologies. A number of useful technolo-
gies have recently been standardized. Among them are:
•	 Schema Definitions
•	 Name Spaces
•	 XHTML
•	 XSL and Transformations
Special Topic 23.1 contains more information about schema definitions.

Name spaces were invented to ensure that many different people and organizations can
develop XML documents without running into conflicts with element names. For example,
if you look inside Special Topic 23.1, you will see that XML Schema definitions have element
names that are prefixed with a tag xsd:, such as

<xsd:element name="city" type="xsd:string"/>

That way, the tag and attribute names, such as element and string, don’t conflict with other
names. In that regard, name spaces are similar to Java packages. However, a name space pre-
fix such as xsd: is just a shortcut for the actual name space identifier, which is a much longer,
unique string. For example, the full name space for XML Schema definitions is http://www.
w3.org/2000/08/XMLSchema. Each schema definition starts out with the statement

<xsd:schema xmlns:xsd="http://www.w3.org/2000/08/XMLSchema">

which binds the xsd prefix to the full name space.
XHTML is the most recent recommendation of the W3C for formatting web pages. Unlike

HTML, XHTML is fully XML-compliant. Once web-editing tools switch to XHTML, it will
become much easier to write programs that parse web pages. The XHTML standard has been
carefully designed to be backward compatible with existing browsers.

While XHTML documents are intended to be viewed by browsers, general XML docu-
ments are not designed to be viewed at all. Nevertheless, it is often desirable to transform an
XML document into a viewable form. XSL (Extensible Stylesheet Language) was created for
this purpose. A style sheet indicates how to change an XML document into an HTML docu-
ment, or even a completely different format, such as PDF.

For more information on these and other emerging technologies, see the W3C web site,
http://www.w3.org/xml.

Special Topic 23.2

W1004  Chapter 23  XML

Describe the purpose of XML and the structure of an XML document.

•	 XML allows you to encode complex data, independent of any programming
language, in a form that the recipient can easily parse.

•	 XML files are readable by computer programs and by humans.
•	 XML-formatted data files are resilient to change.
•	 XML describes the meaning of data, not how to display them.
•	 An XML document starts out with an XML declaration and contains elements

and text.
•	 An element can contain text, child elements, or both (mixed content). For data

descriptions, avoid mixed content.
•	 Elements can have attributes. Use attributes to describe how to interpret the

element content.

Use a parser and the XPath language to process an XML document.

•	 A parser is a program that reads a document, checks whether it is syntactically
correct, and takes some action as it processes the document.

•	 A streaming parser reports the building blocks of an XML document. A tree-
based parser builds a document tree.

•	 A DocumentBuilder can read an XML document from a file, URL, or input stream.
The result is a Document object, which contains a tree.

•	 An XPath describes a node or node set, using a notation similar to that for direc
tory paths.

Write Java programs that create XML documents.

•	 The Document interface has methods to create elements and text nodes.
•	 Use an LSSerializer to write a DOM document.

Explain the use of DTDs for validating XML documents.

•	 A DTD is a sequence of rules that describes the valid child elements and attributes
for each element type.

•	 An XML document can contain its DTD or refer to a DTD that is stored
elsewhere.

•	 When referencing an external DTD, you must supply a URL for locating the
DTD.

•	 When your XML document has a DTD, you can request validation when parsing.
•	 When you parse an XML file with a DTD, tell the parser to ignore white space.

C h a p t e r Summ a r y

Review Exercises  W1005

• R23.1	 Give some examples to show the differences between XML and HTML.

• R23.2	 Design an XML document that describes a bank account.

• R23.3	 Draw a tree view for the XML document you created in Exercise R23.2.

• R23.4	 Write the XML document that corresponds to the parse tree in Figure 4.

• R23.5	 Make an XML document describing a book, with child elements for the author
name, the title, and the publication year.

• R23.6	 Add a description of the book’s language to the document of Exercise R23.5. Should
you use an element or an attribute?

•• R23.7	 What is mixed content? What problems does it cause?

• R23.8	 Design an XML document that describes a purse containing three quarters, a dime,
and two nickels.

•• R23.9	 Explain why a paint program, such as Microsoft Paint, is a WYSIWYG program that
is also “what you see is all you’ve got”.

•• R23.10	 Consider the XML file
<purse>
 <coin>
 <value>0.5</value>
 <name lang="en">half dollar</name>
 </coin>
 <coin>
 <value>0.25</value>
 <name lang="en">quarter</name>
 </coin>
</purse>

javax.xml.parsers.DocumentBuilder
 newDocument
 parse
javax.xml.parsers.DocumentBuilderFactory
 newDocumentBuilder
 newInstance
 setIgnoringElementContentWhitespace
 setValidating
javax.xml.xpath.XPath
 evaluate
javax.xml.xpath.XPathExpressionException
javax.xml.xpath.XPathFactory
 newInstance
 newXPath
org.w3c.dom.Document
 createElement
 createTextNode
 getImplementation

org.w3c.dom.DOMConfiguration
 setParameter
org.w3c.dom.DOMImplementation
 getFeature
org.w3c.dom.Element
 getAttribute
 setAttribute
org.w3c.dom.ls.DOMImplementationLS
 createLSSerializer
org.w3c.dom.ls.LSSerializer
 getDomConfig
 writeToString
org.xml.sax.SAXException

S ta n d a r d L ib r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e vi e w Ex e r ci s e s

W1006  Chapter 23  XML

What are the values of the following XPath expressions?
a.	/purse/coin[1]/value
b.	/purse/coin[2]/name
c.	/purse/coin[2]/name/@lang
d.	name(/purse/coin[2]/*[1])
e.	count(/purse/coin)
f.	 count(/purse/coin[2]/name)

•• R23.11	 With the XML file of Exercise R23.10, give XPath expressions that yield
a.	the value of the first coin.
b.	the number of coins.
c.	the name of the first child element of the first coin element.
d.	the name of the first attribute of the first coin’s name element. (The expression

@* selects the attributes of an element.)
e.	the value of the lang attribute of the second coin’s name element.

••• R23.12	 Harry Hopeless doesn’t want to build a DOM tree to produce an XML document.
Instead, he uses the following code:

System.out.println("<?xml version="1.0"?><items>");
for (LineItem anItem: items)
{
 Product p = anItem.getProduct();
 System.out.println("<item><product><description>" + p.getDescription()
 + "</description><price>" + p.getPrice()
 + "</price></product><quantity>" + anItem.getQuantity()
 + "<quantity></item>");
}
System.out.println("</items>");

What can go wrong? How can one fix the problems?

•• R23.13	 Design a DTD that describes a bank with bank accounts.

•• R23.14	 Design a DTD that describes a library patron who has checked out a set of books.
Each book has an ID number, an author, and a title. The patron has a name and tele
phone number.

•• R23.15	 Write the DTD file for the following XML document
<?xml version="1.0"?>
<productlist>
 <product>
 <name>Comtrade Tornado</name>
 <price currency="USD">2495</price>
 <score>60</score>
 </product>
 <product>
 <name>AMAX Powerstation 75</name>
 <price>2999</price>
 <score>62</score>
 </product>
</productlist>

•• R23.16	 Design a DTD for invoices, as described in How To 23.3.

Programming Exercises  W1007

••• R23.17	 Design a DTD for simple English sentences, as described in Random Fact 23.2.

••• R23.18	 Design a DTD for arithmetic expressions, as described in Random Fact 23.2.

•• P23.1	 Write a program that can read XML files, such as
<purse>
 <coin>
 <value>0.5</value>
 <name>half dollar</name>
 </coin>
 . . .
</purse>

Your program should construct a Purse object and print the total value of the coins in
the purse.

••• P23.2	 Building on Exercise P23.1, make the program read an XML file as described in that
exercise. Then print an XML file of the form

<purse>
 <coins>
 <coin>
 <value>0.5</value>
 <name>half dollar</name>
 </coin>
 <quantity>3</quantity>
 </coins>
 <coins>
 <coin>
 <value>0.25</value>
 <name>quarter</name>
 </coin>
 <quantity>2</quantity>
 </coins>
</purse>

•• P23.3	 Repeat Exercise P23.1, using a DTD for validation.

•• P23.4	 Write a program that can read XML files, such as
<bank>
 <account>
 <number>3</number>
 <balance>1295.32</balance>
 </account>
 . . .
</bank>

Your program should construct a Bank object and print the total value of the balances
in the accounts.

•• P23.5	 Repeat Exercise P23.4, using a DTD for validation.

•• P23.6	 Enhance Exercise P23.4 as follows: First read the XML file in, then add ten percent
interest to all accounts, and write an XML file that contains the increased account
balances.

P r o g r a mmi n g Ex e r ci s e s

W1008  Chapter 23  XML

••• P23.7	 Write a DTD file that describes documents that contain information about coun
tries: name of the country, its population, and its area. Create an XML file that has
five different countries. The DTD and XML should be in different files. Write a
program that uses the XML file you wrote and prints:

•	 The country with the largest area.
•	 The country with the largest population.
•	 The country with the largest population density (people per square

kilometer).

•• P23.8	 Write a parser to parse invoices using the invoice structure described in How To
23.1. The parser should parse the XML file into an Invoice object and print out the
invoice in the format used in Chapter 12.

•• P23.9	 Modify Exercise P23.8 to support separate shipping and billing addresses. Supply a
modified DTD with your solution.

•• P23.10	 Write a document builder that turns an invoice object, as defined in Chapter 12, into
an XML file of the format described in How To 23.2.

••• P23.11	 Modify Exercise P23.10 to support separate shipping and billing addresses.

• Graphics P23.12	 Write a program that can read an XML document of the form
<rectangle>
 <x>5</x>
 <y>10</y>
 <width>20</width>
 <height>30</height>
</rectangle>

and draw the shape in a window.

• Graphics P23.13	 Write a program that can read an XML document of the form
<ellipse>
 <x>5</x>
 <y>10</y>
 <width>20</width>
 <height>30</height>
</ellipse>

and draw the shape in a window.

•• Graphics P23.14	 Write a program that can read an XML document of the form
<rectangularshape shape="ellipse">
 <x>5</x>
 <y>10</y>
 <width>20</width>
 <height>30</height>
</rectangularshape>

Support shape attributes "rectangle", "roundrectangle", and "ellipse".
Draw the shape in a window.

Programming Exercises  W1009

•• Graphics P23.15	 Write a program that can read an XML document of the form
<polygon>
 <point>
 <x>5</x>
 <y>10</y>
 </point>
 . . .
</polygon>

and draw the shape in a window.

••• Graphics P23.16	 Write a program that can read an XML document of the form
<drawing>
 <rectangle>
 <x>5</x>
 <y>10</y>
 <width>20</width>
 <height>30</height>
 </rectangle>
 <line>
 <x1>5</x1>
 <y1>10</y1>
 <x2>25</x2>
 <y2>40</y2>
 </line>
 <message>
 <text>Hello, World!</text>
 <x>20</x>
 <y>30</y>
 </message>
</drawing>

and show the drawing in a window.

••• Graphics P23.17	 Repeat Exercise P23.16, using a DTD for validation.

••• P23.18	 Following Exercise P12.9, design an XML format for the appointments in an
appointment calendar. Write a program that first reads in a file with appointments,
then another file of the format

<commands>
 <add>
 <appointment>
 . . .
 </appointment>
 </add>
 . . .
 <remove>
 <appointment>
 . . .
 </appointment>
 </remove>
</commands>

Your program should process the commands and then produce an XML file that
consists of the updated appointments.

W1010  Chapter 23  XML

A n s w e r s t o S e lf - C h e ck Q u e s t i o n s

1.	 Your answer should look similar to this:
<student>
 <name>James Bond</name>
 <id>007</id>
</student>

2.	 Most browsers display a tree structure that
indicates the nesting of the tags. Some brows-
ers display nothing at all because they can’t
find any HTML tags.

3.	 The text hamster.jpg is never displayed, so it
should not be a part of the document. Instead,
the src attribute tells the browser where to find
the image that should be displayed.

4.	 29.95.
5.	 name(/*[1]).
6.	 The createTextElement method is useful for

creating other documents.
7.	 First construct a string, as described, and then

use a PrintWriter to save the string to a file.
8.	 <!ELEMENT item (product, quantity?)>
9.	 <!ELEMENT product ((description, price) |

(price, description))>
10.	 <!ATTLIST description language CDATA #IMPLIED>

24C h a p t e r

W1011

Web
Applications

To understand the web application
concept

To learn the syntactical elements of the
JavaServer Faces web application framework

To manage navigation in web applications

To build three-tier web applications

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

24.1  The Architecture of a Web
Application  W1012

24.2  The Architecture of a JSF
Application  W1014

Special Topic 24.1:  Session State and
Cookies  W1019

24.3  JavaBeans Components  W1020

24.4  Navigation Between Pages  W1021

How To 24.1: Designing a Managed Bean  W1027

24.5  JSF Components  W1028

24.6  A Three-Tier Application  W1030

Special Topic 24.2: AJAX  W1037

W1012

Web applications for a wide variety of purposes, such as
e-mail, banking, shopping, and playing games, run on
servers and interact with users through a web browser.
Developing web-based user interfaces is more complex
and challenging than writing graphical user interfaces.
Fortunately, frameworks for web programming have
emerged that are roughly analogous to Java’s Swing
framework for user-interface programming. In this chapter,
you will learn how to write web applications using the
JavaServer Faces (JSF) framework.

24.1  The Architecture of a Web Application
A web application is an application whose user interface is displayed in a web
browser. The application program resides on the web server. The user fills out form
elements and clicks on buttons and links. The user inputs are transmitted over the
Internet to the server, and the server program updates the web page that the user sees
(see Figure 1).

The browser sends a request to the server using a protocol called HTTP (Hyper-
text transfer protocol). When a user clicks on a link, the request is very simple. The
browser simply asks the server for the page with a given address, for example:

GET /index.html HTTP/1.1
Host: horstmann.com

When the user fills data (such as a user name and password) into a form and then
clicks on a button, the HTTP request includes the data that the user provided. Such a
request has a slightly different format, like this:

POST /login.xhtml HTTP/1.1
Host: horstmann.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 46
blank line
username=jqpublic&passwd=secret&login=Log%20in

The exact syntax of the request is not important; what matters is that HTTP simply
tells the server what the user requested. As a result of the request, the server sends a
web page in a format called HTML (Hypertext markup language). An HTML page
contains tags that describe the structure of the page: headings, bullets, links, images,
input elements, and so on.

The user interface
of a web application
is displayed in a
web browser.

When a form is
submitted, the
names and values
of the form elements
are sent to the
web server.

Figure 1  The Architecture of a Web Application

Browser Client Web Server

HTTP

HTML

Internet

24.1 T he Architecture of a Web Application   W1013

For example, here is the HTML code for a simple form that prompts for a user name
and password:

<html>
 <head>
 <title>A Simple Form</title>
 </head>
 <body>
 <form action="login.xhtml" method="POST">
 <p>
 User name:
 <input type="text" name="username" />
 Password:
 <input type="password" name="passwd" />
 <input type="submit" name="login" value="Log in"/>
 </p>
 </form>
 </body>

</html>

Figure 2 shows the form. Note that there are three input elements: a text field, a pass-
word field, and a submit button. (The HTML tags are summarized in Appendix F.)

When a submit button is pressed, the form data is submitted to the server. The
web server analyzes the request and sends a new HTML page to the browser. The
new page might tell the user that the login was successful and ask the user to specify
another action. Alternatively, the new page might tell the user that the login failed.

This simple example illustrates why it is difficult to implement a web application.
Imagine what the server program has to do. At any time, it might receive a request
with form data. At that point, the server program has to remember which form it has
last sent to the client. It then needs to analyze the submitted data, decide what form to
show next, and produce the HTML tags for that form.

There are multiple challenges. As described in Special Topic 24.1, the HTTP pro-
tocol is stateless—there is no memory of which form was last sent when a new request
is received. Generating the HTML tags for a form is tedious. Perhaps most impor-
tantly, an application that consists of response strategies for a large number of request
types is very hard to comprehend without additional structure.

In order to overcome these challenges, various web application frameworks have
been developed. A web application framework hides the low-level details of analyz-
ing HTTP and generating HTML from the application programmer. In this chapter,
you will learn about the JavaServer Faces (JSF) framework, the web framework that
is a part of the Java Enterprise Edition. You can think of JSF as “Swing for the Web”.

Upon receiving the
form data, the web
server sends a new
web page to the
browser.

Figure 2  A Simple Form

W1014  Chapter 24  Web Applications

Both Swing and JSF handle the tedious details of capturing user input and painting
text fields and buttons. Swing captures mouse and keyboard events and paints pixels
in a frame. JSF handles form-posting events and paints by emitting HTML code. This
chapter describes JSF 2.0, an improved version of the original JSF framework, that
became available in 2009.

1.	 Why are two different protocols (HTML and HTTP) required by a web
application?

2.	 How can a web application know which user is trying to log in when the infor-
mation of the sample login screen is submitted?

Practice It	 Now you can try these exercises at the end of the chapter: R24.1, R24.2.

24.2  The Architecture of a JSF Application
In the following sections, we give an overview of the architecture of a JSF application
and show a very simple sample application.

24.2.1  JSF Pages

The user interface of a JSF application is described by a set of JSF pages. Each JSF
page has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Page title</title>
 </h:head>
 <h:body>
 <h:form>
 Page contents
 </h:form>
 </h:body>
</html>

You can think of this as the required “plumbing”, similar to the public static void main
incantation that is required for every Java program. If you compare this page with the
HTML page from the preceding section, you will notice that the main elements are
very similar to a regular HTML page, but several elements (head, body, and form) are
JSF tags with an h: prefix.

Here is a complete example of a JSF page:

section_2/time/index.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The time application</title>
6 </h:head>

S e l f C h e c k

A JavaServer Faces
(JSF) page contains
HTML and JSF tags.

24.2 T he Architecture of a JSF Application   W1015

7 <h:body>
8 <h:form>
9 <p>

10 The current time is #{timeBean.time}
11 </p>
12 </h:form>
13 </h:body>
14 </html>

Figure 3 shows the result of executing the program.

The purpose of a JSF page is to generate an HTML page. The basic process is as
follows:

•	 The HTML tags that are present in the JSF page (such as title and p) are retained.
These are the static part of the page: the formatting instructions that do not
change.

•	 The JSF tags are translated into HTML. This translation is dynamic: it depends on
the state of Java objects that are associated with the tags. In our example, the
expression #{timeBean.time} has been replaced by dynamically generated text,
namely the current time.

Figure 4 shows the basic process. The browser requests a JSF page. The page is pro-
cessed by the JSF container, the server-side software that implements the JSF frame-
work. The JSF container translates all JSF tags into text and HTML tags, yielding a
pure HTML page. That page is transmitted to the client browser. The browser dis-
plays the page.

Figure 3  Executing the time Web Application

The JSF container
converts a JSF page
to an HTML page,
replacing all JSF
tags with text and
HTML tags.

Figure 4  The JSF Container Rewrites the Requested Page

JSF Page JSF Container HTML File Web Server Internet Web Browser

W1016  Chapter 24  Web Applications

24.2.2  Managed Beans

The expression #{timeBean.time} is called a value expression. Value expressions invoke
method calls on Java objects, which are called managed beans.

These objects are called “managed” because they are controlled by the JSF con-
tainer. The container creates a managed bean when it is first used in a value expres-
sion. The scope of the managed bean determines which clients can access the object
and how long the object stays alive.

In this chapter, we only consider managed beans with session scope. A session-
scoped object can be accessed by all requests from the same browser. If multiple users
are simultaneously accessing a JSF application, each of them is given a separate object.
This is a good default for simple web applications.

Below is the code for the TimeBean class. Note the following:

•	 You declare a session-scoped managed bean with the annotations @ManagedBean and
@SessionScoped.

•	 The name of the bean in a value expression is the class name with the first letter
changed to lowercase, e.g., timeBean.

•	 The value expression timeBean.time calls the getTime method. You will see the
reason in the next section.

•	 The getTime method uses the DateFormat class to format the current time, producing
a string such as 9:00:00 AM.

•	 When deploying the application, all class files must be placed inside the WEB-INF/
classes directory. Because many application servers also require that classes be
contained in a package, we place our classes inside the bigjava package. For that
reason, the class is contained in the WEB-INF/classes/bigjava directory.

section_2/time/WEB-INF/classes/bigjava/TimeBean.java

1 package bigjava;
2
3 import java.text.DateFormat;
4 import java.util.Date;
5 import java.util.TimeZone;
6 import javax.faces.bean.ManagedBean;
7 import javax.faces.bean.SessionScoped;
8
9 @ManagedBean

10 @SessionScoped
11 public class TimeBean
12 {
13 private DateFormat timeFormatter;
14
15 /**
16 Initializes the formatter.
17 */
18 public TimeBean()
19 {
20 timeFormatter = DateFormat.getTimeInstance();
21 }
22
23 /**
24 Read-only time property.
25 @return the formatted time

A managed bean is
an object that is
controlled by the
JSF container.

A bean with session
scope is available for
multiple requests by
the same browser.

24.2 T he Architecture of a JSF Application   W1017

26 */
27 public String getTime()
28 {
29 Date time = new Date();
30 String timeString = timeFormatter.format(time);
31 return timeString;
32 }
33 }

24.2.3  Separation of Presentation and Business Logic

We will look at value expressions and managed beans in more detail in the next sec-
tion. The key observation is that every JSF application has two parts: presentation
and business logic.

The term “presentation” refers to the user interface of the web application: the
arrangement of the text, images, buttons, and so on. The business logic is the part of
the application that is independent of the visual presentation. In commercial applica-
tions, it contains the rules that are used for business decisions: what products to offer,
how much to charge, to whom to extend credit, and so on. In our example, we simu-
lated the business logic with a TimeBean object.

JSF pages define the presentation logic. Managed beans define the business logic.
Value expressions tie the two together.

The separation of presentation logic and business logic is very important when
designing web applications. Some web technologies place the code for the business
logic right into the web page. However, this quickly turns into a serious problem.
Programmers are rarely skilled in web design (as you can see from the boring web
pages in this chapter). Graphic designers don’t usually know much about program-
ming and find it very challenging to improve web pages that contain a lot of code. JSF
solves this problem. In JSF, the graphic designer only sees the elements that make up
the presentation logic. It is easy to take a boring JSF page and make it pretty by add-
ing banners, icons, and so on.

24.2.4  Deploying a JSF Application

To run a JSF application, you need a server with a JSF container. We suggest that you
use the GlassFish application server, http://glassfish.java.net, which has, together
with many other features that you can ignore, a JSF container and a convenient
administration interface.

To deploy a JSF application, follow these steps:

1.	Make a separate directory tree for each web application.
2.	Place JSF pages (such as index.xhtml) into the root directory of the application’s

directory tree.
3.	Create a WEB-INF subdirectory in your application directory.
4.	Place all Java classes inside a classes subdirectory of the WEB-INF directory. Note

that you should place your classes into a package. Compile with
cd WEB-INF/classes
javac -classpath glassfish/modules/jsf-api.jar bigjava/*.java

The JSF technology
enables the
separation of
presentation and
business logic.

W1018  Chapter 24  Web Applications

5.	Place the file web.xml (which is shown below) inside the WEB-INF subdirectory.
Some servers need the web.xml file to configure the JSF container. We also turn
on development mode, which gives better error messages.

6.	Zip up all application files into a file with extension .war (Web Archive). This is
easily achieved by running the jar command from the command line, after
changing to the application directory. For example,

cd time
jar cvf time.war .

The period (.) denotes the current directory. The jar command creates an
archive time.war consisting of all files in all subdirectories of the current
directory.

7.	Make sure the application server is started. The application server listens to
web requests, typically on port 8080.

8.	Deploy the application to the application server. With GlassFish, this can be
achieved either through the administrative interface or simply by copying the
WAR file into a special deployment directory. By default, this is the subdirec-
tory domains/domain1/autodeploy inside the GlassFish installation directory.

9.	Point your browser to a URL such as http://localhost:8080/time/faces/index.
xhtml. Note the faces part in the URL. If you forget this part, the file will not be
processed by the JSF container.

Figure 5 shows the directory structure for the application.

section_2/time/WEB-INF/web.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xmlns="http://java.sun.com/xml/ns/javaee"
4 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
5 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
6 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
7 version="2.5">
8 <servlet>
9 <servlet-name>Faces Servlet</servlet-name>

10 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
11 </servlet>
12 <servlet-mapping>
13 <servlet-name>Faces Servlet</servlet-name>
14 <url-pattern>/faces/*</url-pattern>
15 </servlet-mapping>
16 <welcome-file-list>
17 <welcome-file>faces/index.xhtml</welcome-file>
18 </welcome-file-list>
19 <context-param>
20 <param-name>javax.faces.PROJECT_STAGE</param-name>

Figure 5 
The Directory
Structure of the
time Application

24.2 T he Architecture of a JSF Application   W1019

21 <param-value>Development</param-value>
22 </context-param>
23 </web-app>

3.	 What steps are required to add the image of a clock to the time application? (The
clock doesn’t have to show the correct time.)

4.	 Does a Swing program automatically separate presentation and business logic?
5.	 Why does the WAR file need to be deployed to the application server?

Practice It	 Now you can try these exercises at the end of the chapter: R24.3, R24.7, P24.1.

Session State and Cookies

Recall that HTTP is a stateless protocol. A browser sends a request to a web server. The web
server sends the reply and then disconnects. This is different from other protocols, such as
POP, where the mail client logs into the mail server and stays connected until it has retrieved
all e-mail messages. In contrast, a browser makes a new connection to the web server for each
web page, and the web server has no way of knowing that those connections originate from
the same browser. This makes it difficult to implement web applications. For example, in a
shopping application, it is essential to track which requests came from a particular shopper.

Cookies were invented to overcome this restriction. A cookie consists of a small string that
the web server sends to a browser, and that the browser sends back to the same server with all
further requests. That way, the server can tie the stream of requests together. The JSF container
matches up the cookies with the beans that have session scope. When a browser request con-
tains a cookie, the value expressions in the JSF page refer to the matching beans.

S e l f C h e c k

Special Topic 24.1

Figure 6  Viewing the Cookies in a Browser

W1020  Chapter 24  Web Applications

You may have heard some privacy advocates complaining about cookies. Cookies are not
inherently evil. When used to establish a session or to remember login information, they can
make web applications more user-friendly. But when cookies are used to track your identity
while you surf the Web, there can be privacy concerns. For example, Figure 6 shows some
of the cookies that my browser held on a particular day. I have no recollection of visiting the
advertising sites, so it is a bit disconcerting to see that my browser communicated with them.

Some people turn off cookies, and then web applications need to use another scheme to
establish a session, typically by embedding a session identifier in the request URL or in a hid-
den field of a form. The JSF session mechanism automatically switches to URLs with session
identifiers if the client browser doesn’t support cookies.

24.3  JavaBeans Components
A software component is an entity that encapsulates functionality and can be plugged
into a software system without programming. A managed bean is an example of a
software component. When we added the timeBean object to the web application, we
did not write Java code to construct the object or to call its methods.

Some programming languages have explicit support for components, but Java does
not. Instead, in Java, you use a programming convention to implement components.
A JavaBean is a Java class that follows this convention. A JavaBean exposes proper-
ties—values of the component that can be accessed without programming.

Just about any Java class can be a JavaBean—there are only two requirements:

•	 A JavaBean must have a constructor with no arguments.
•	 A JavaBean must have methods for accessing the component properties that

follow the get/set naming convention. For example, to get or set a property
named city, the methods must be called getCity and setCity.

In general, if the name of the property is propertyName, and its type is Type, then the
associated methods must be of the form

public Type getPropertyName()
public void setPropertyName(Type newValue)

Note that the name of a property starts with a lowercase letter (such as city), but the
corresponding methods have an uppercase letter (getCity). The only exception is that
property names can be all capitals, such as ID or URL, with corresponding methods
getID or setURL.

If a property has only a get method, then it is a read-only property. If it has only a
set method, then it is a write-only property.

A JavaBean can have additional methods, but they are not connected with
properties.

Here is a simple example of a bean class that formats the time for a given city,
which we will further develop in the next section:

public class TimeZoneBean
{
 // Instance variables
 . . .
 // Required constructor with no arguments
 public TimeZoneBean() { . . . }

Properties of a
software component
can be accessed
without having to
write Java code.

A JavaBean is a
class that exposes
properties through
its get and
set methods.

24.4 N avigation Between Pages   W1021

 // city property
 public String getCity() { . . . }
 public void setCity(String newValue) { . . . }

 // Read-only time property
 public String getTime() { . . . }

 // Other methods
 . . .
}

This bean has two properties: city and time.
You should not make any assumptions about the internal representation of prop-

erties in the bean class. The getter and setter methods may simply read or write an
instance variable. But they may also do other work. An example is the getTime method
from the TimeBean in the preceding section; it formats the current time.

When a property name is used in a value expression that is included in the JSF
page, then the get method is involved. For example, when the string

The current time is #{timeBean.time}

is rendered, the JSF container calls the getTime method of the session’s TimeBean
instance.

When a property name is used in an h:inputText tag (that, is the equivalent of an
HTML input field or a JTextField), the situation is more complex. Consider this
example:

<h:inputText value="#{timeZoneBean.city}"/>

When the JSF page is first displayed, the getCity method is called, and the current
value of the city property is displayed. But after the user submits the page, the set
City method is called. It sets the city property to the value that the user typed into the
input field.

6.	 Is the Scanner class a JavaBean?
7.	 What work does the setCity method of the TimeZoneBean do?

Practice It	 Now you can try these exercises at the end of the chapter: R24.5, R24.6, P24.2.

24.4  Navigation Between Pages
In most web applications, users will want to move between different pages. For
example, a shopping application might have a login page, a page to show products for
sale, and a checkout page that shows the shopping cart. In this section, you will learn
how to enable users to navigate from one page to another.

Consider a sample time zone program that displays the current time. If the time
computation uses the time zone at the server location, it will not be very useful when
the user is in another time zone. Therefore, the program will prompt for the city in
which the user is located. When the user clicks a submit button, the program moves
to the page next.xhtml and display the time in the user’s time zone (see Figure 7). How-
ever, if no time zone is available for the city, the program displays the page error.xhtml.

In the value
expression of an
output tag, only
the property getter
is called.

In the value
expression of an
input tag, the
property setter is
called when the page
is submitted.

S e l f C h e c k

W1022  Chapter 24  Web Applications

Figure 7  The timezone Application

A button yields an outcome, a string that determines the next page. Unless speci-
fied otherwise, the next page is the outcome string with the .xhtml extension added.
For example, if the outcome string is error, the next page is error.xhtml. (It is possible
to specify a different mapping from outcomes to pages, but there is no need to do so
for a simple application.)

In many situations, the next page depends on the result of some computation. In
our example, we need different outcomes depending on the city that the user entered.
To achieve this flexibility, you specify a method expression as the action attribute:

<h:commandButton value="Submit" action="#{timeZoneBean.checkCity}"/>

A method expression consists of the name of a bean and the name of a method. When
the form is submitted, the JSF container calls timeZoneBean.checkCity(). The checkCity
method returns the outcome string:

public class TimeZoneBean
{
 . . .
 public String checkCity()
 {
 zone = getTimeZone(city);
 if (zone == null) { return "error"; }
 return "next";
 }
}

The outcome string
of an action
determines the next
page that the JSF
container sends to
the browser.

A method expression
specifies a bean and
a method that should
be invoked on
the bean.

24.4 N avigation Between Pages   W1023

If the next page does not depend on a computation, then you set the action attribute
of the button to a fixed outcome string, like this:

<h:commandButton value="Back" action="index"/>

If a button has no action attribute, or if the action outcome is null, then the current
page is redisplayed.

We can now complete our time zone application. The Java library contains a con-
venient TimeZone class that knows about time zones across the world. A time zone is
identified by a string such as "America/Los_Angeles" or "Asia/Tokyo". The static method
getAvailableIDs returns a string array containing all IDs:

String[] ids = TimeZone.getAvailableIDs();

There are several hundred time zone IDs. (We are using time zones in this example
because the TimeZone class gives us an interesting data source with lots of data. Later in
this chapter, you will see how to access data from a database, but of course that’s more
complex.)

The static getTimeZone method returns a TimeZone object for a given ID string:
String id = "America/Los_Angeles";
TimeZone zone = TimeZone.getTimeZone(id);

Once you have a TimeZone object, you can use it in conjunction with a DateFormat object
to get a time string in that time zone.

DateFormat timeFormatter = DateFormat.getTimeInstance();
timeFormatter.setTimeZone(zone);
Date now = new Date();
// Suppose the server is in New York, and it’s noon there
System.out.println(timeFormatter.format(now));
// Prints 9:00:00 AM

Of course, we don’t expect the user to know about time zone ID strings, such as
"America/Los_Angeles". Instead, we assume that the user will simply enter the city
name. The time zone bean will check whether that string, with spaces replaced by
underscores, appears at the end of one of the valid time zone IDs.

Here is the code for the bean class:

section_4/timezone/WEB-INF/classes/bigjava/TimeZoneBean.java

1 package bigjava;
2
3 import java.text.DateFormat;
4 import java.util.Date;
5 import java.util.TimeZone;
6 import javax.faces.bean.ManagedBean;
7 import javax.faces.bean.SessionScoped;
8
9 /**

10 This bean formats the local time of day for a given city.
11 */
12 @ManagedBean
13 @SessionScoped
14 public class TimeZoneBean
15 {
16 private DateFormat timeFormatter;
17 private String city;
18 private TimeZone zone;
19
20 /**

W1024  Chapter 24  Web Applications

21 Initializes the formatter.
22 */
23 public TimeZoneBean()
24 {
25 timeFormatter = DateFormat.getTimeInstance();
26 }
27
28 /**
29 Setter for city property.
30 @param aCity the city for which to report the local time
31 */
32 public void setCity(String aCity)
33 {
34 city = aCity;
35 }
36
37 /**
38 Getter for city property.
39 @return the city for which to report the local time
40 */
41 public String getCity()
42 {
43 return city;
44 }
45
46 /**
47 Read-only time property.
48 @return the formatted time
49 */
50 public String getTime()
51 {
52 if (zone == null) { return "not available"; }
53 timeFormatter.setTimeZone(zone);
54 Date time = new Date();
55 String timeString = timeFormatter.format(time);
56 return timeString;
57 }
58
59 /**
60 Action for checking a city.
61 @return "next" if time zone information is available for the city,
62 "error" otherwise
63 */
64 public String checkCity()
65 {
66 zone = getTimeZone(city);
67 if (zone == null) { return "error"; }
68 return "next";
69 }
70
71 /**
72 Looks up the time zone for a city.
73 @param aCity the city for which to find the time zone
74 @return the time zone or null if no match is found
75 */
76 private static TimeZone getTimeZone(String aCity)
77 {
78 String[] ids = TimeZone.getAvailableIDs();
79 for (int i = 0; i < ids.length; i++)
80 {

24.4 N avigation Between Pages   W1025

81 if (timeZoneIDmatch(ids[i], aCity))
82 {
83 return TimeZone.getTimeZone(ids[i]);
84 }
85 }
86 return null;
87 }
88
89 /**
90 Checks whether a time zone ID matches a city.
91 @param id the time zone ID (e.g., "America/Los_Angeles")
92 @param aCity the city to match (e.g., "Los Angeles")
93 @return true if the ID and city match
94 */
95 private static boolean timeZoneIDmatch(String id, String aCity)
96 {
97 String idCity = id.substring(id.indexOf('/') + 1);
98 return idCity.replace('_', ' ').equals(aCity);
99 }

100 }

Following is the JSF page for setting the city. The h:inputText tag produces an input
field and the h:commandButton tag produces a button. (We discuss its action attribute in
the next section.) When the user clicks the button, the browser sends the form values
(that is, the contents of the input field) back to the web application. The web applica-
tion calls the setCity method on the bean because the input field has a #{timeZoneBean.
city} value expression.

section_4/timezone/index.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The timezone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 Set time zone:
11 <h:inputText value="#{timeZoneBean.city}"/>
12 </p>
13 <p>
14 <h:commandButton value="Submit"
15 action="#{timeZoneBean.checkCity}"/>
16 </p>
17 </h:form>
18 </h:body>
19 </html>

The next JSF page shows the result, using two value expressions that display the city
and time properties. These expressions invoke the getCity and getTime methods of the
bean class.

section_4/timezone/next.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"

W1026  Chapter 24  Web Applications

3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The timezone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 The current time in #{timeZoneBean.city} is #{timeZoneBean.time}
11 </p>
12 <p>
13 <h:commandButton value="Back" action="index"/>
14 </p>
15 </h:form>
16 </h:body>
17 </html>

section_4/timezone/error.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The timezone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 Sorry, no information is available for #{timeZoneBean.city}
11 </p>
12 <p>
13 <h:commandButton value="Back" action="index"/>
14 </p>
15 </h:form>
16 </h:body>
17 </html>

Figure 8 shows the directory structure of the timezone application.

8.	 What tag would you need to add to error.xhtml so that the user can click on a
button labeled “Help” and see help.xhtml?

9.	 Which page would be displayed if the checkCity method returned null instead of
“error”?

Practice It	 Now you can try these exercises at the end of the chapter: R24.10, P24.4, P24.5.

Figure 8 
The Directory Structure
of the timezone Application

S e l f C h e c k

24.4 N avigation Between Pages   W1027

Step 1	 Decide on the responsibility of the bean.

When designing a JSF application, it is tempting to stuff all code into a single bean class. Some
development environments even encourage this approach. However, from a software engi-
neering perspective, it is best to come up with different beans for different responsibilities. For
example, a shopping application might have a UserBean to describe the current user, a SiteBean
to describe how the user visits the shopping site, and a ShoppingCartBean that holds the items
that the user is purchasing.

Step 2	 Discover the properties that the bean should expose.

A property is an entity that you want to access or modify from your JSF pages. For example, a
UserBean might have properties firstName, lastName, and password.

Sometimes, you have to resort to a bit of trickery. For example, consider adding an item
to the shopping cart. You could use a property items, but it would be cumbersome to access
all items in a JSF page and then set items to a new collection that contains one additional ele-
ment. Instead, you can design a property addedItem. When that property is set, the setAddedItem
method of your bean adds its value to the collection of items.

Step 3	 Settle on the type and access permissions for each property.

Properties that are only used to generate output can be read-only. Properties that are used in
h:inputText and other input tags must have read-write access.

Step 4	 Define action methods for navigation.

Your action methods can carry out arbitrary tasks in order to react to the user inputs. The only
limitation is that they don’t have access to the form data. Everything that the user entered on
the form must have already been set as a bean property.

The action method’s return value is the name of the next page to be displayed, or null if you
want to redisplay the current page.

Step 5	 Implement the constructor with no arguments.

The constructor initializes any instance variables that are reused whenever the bean’s compu-
tation is executed. Examples are formatters, random number generators, and so on.

Step 6	 Implement the get and set methods for all properties.

Most get and set methods simply get or set an instance variable. However, you can carry out
arbitrary computations in these methods if it is convenient. For example, a get method may
retrieve information from a database instead of an instance variable.

How To 24.1	 Designing a Managed Bean

A managed bean is just a regular Java class, with these three special characteristics:
•	 The bean must have a constructor with no arguments.
•	 Methods of the form

Type getPropertyName()
void setPropertyName(Type x)

define properties that can be accessed from JSF pages.
•	 Methods of the form

String methodName()

can be used to specify command actions.
This How To provides step-by-step instructions for designing a managed bean class.

W1028  Chapter 24  Web Applications

Step 7	 Supply any needed helper methods.

Your bean can have methods that are not property getters and setters. For example, the Time
ZoneBean has helper methods to look up the time zone for a city.

24.5  JSF Components
In this section, you will see the most useful user-interface components that you can
place on a JSF form. Table 1 shows a summary. (For a comprehensive discussion of all
JSF components, see Core JavaServer Faces, 3rd ed., by David Geary and Cay Horst-
mann (Sun Microsystems Press/Prentice Hall, 2010)).

Each component has a value attribute that allows you to connect the component
value with a bean property, for example

<h:inputSecret value="#{user.password}"/>

The h:inputTextArea component has attributes to specify the rows of text and columns
of characters, such as

<h:inputTextArea value="#{user.comment}" rows="10" cols="40"/>

Table 1 Common JSF Components

Component JSF Tag
Common
Attributes

Example

Text Field h:inputText value

Password Field h:inputSecret value

Text Area h:inputTextArea value
rows
cols

Radio Button
Group

h:selectOneRadio value
layout

Checkbox h:selectOneCheckbox value

Checkbox
Group

h:selectManyCheckbox value
layout

Menu h:selectOneMenu
h:selectManyMenu

value

Image h:graphicImage value

Submit Button h:commandButton value
action

There are JSF
components for text
input, choices,
buttons, and images.

The value attribute of
an input component
denotes the value
that the user
supplies.

24.5  JSF Components   W1029

The radio button and checkbox groups allow you to specify horizontal or vertical
layout:

<h:selectOneRadio value="#{burger.topping}" layout="lineDirection">

In European languages, lineDirection means horizontal and pageDirection means ver-
tical. However, in some languages, lines are written top-to-bottom, and the meanings
are reversed.

Button groups and menus are more complex than the other user-interface compo-
nents. They require you to specify two properties:

•	 the collection of possible choices
•	 the actual choice

The value attribute of the component specifies the actual choice to be displayed. The
collection of possible choices is defined by a nested f:selectItems tag, like this:

<h:selectOneRadio value="#{creditCardBean.expirationMonth}"
 layout="pageDirection">
 <f:selectItems value="#{creditCardBean.monthChoices}"/>
</h:selectOneRadio>

When you use the f:selectItems tag, you need to add the namespace declaration

xmlns:f="http://java.sun.com/jsf/core"

to the html tag at the top of your JSF page.
The value of the f:selectItems tag must have a type that can describe a list of

choices. There are several types that you can use, but the easiest—and the only one
that we will discuss—is a Map. The keys of the map are the labels—the strings that are
displayed next to each choice. The corresponding map values are the label values—
the values that correspond to the selection. For example, a choice map for months
would map January to 1, February to 2, and so on:

public class CreditCardBean
{
 . . .
 public Map<String, Integer> getMonthChoices()
 {
 Map<String, Integer> choices = new LinkedHashMap<String, Integer>();
 choices.put("January", 1);
 choices.put("February", 2);
 . . .
 return choices;
 }
}

Here, we use a LinkedHashMap because we want to visit entries in the order in which
they are inserted. This is more useful than a HashMap, which would visit the labels in
random order or a TreeMap, which would visit them in alphabetical order (starting
with April!).

The type of the value property of the component enclosing the f:selectItems tag
must match the type of the map value. For example, creditCardBean.expirationMonth
must be an integer, not a string. If multiple selections are allowed, the type of the value
property must be a list or array of matching types. For example, if one could choose
multiple months, a selectManyRadio component would have a value property with a
type such as int[] or ArrayList<Integer>.

Use an f:selectItems
tag to specify all
choices for a
component that
allows selection from
a list of choices.

W1030  Chapter 24  Web Applications

10.	 Which JSF components can be used to give a user a choice between “AM/PM”
and “military” time?

11.	 How would you supply a set of choices for a credit card expiration year to a
h:selectOneMenu component?

Practice It	 Now you can try these exercises at the end of the chapter: R24.11, P24.3, P24.9.

24.6  A Three-Tier Application
In this chapter’s final JSF example, you will see a web application with a very com-
mon structure. In this example, we will use a database for information storage. We
will enhance the time zone example by storing additional cities that are not known to
the TimeZone class in a database. Such an application is called a three-tier application
because it consists of three separate layers or tiers (see Figure 9):

•	 The presentation tier: the web browser
•	 The “business logic” tier: the JSF container, the JSF pages, and the JavaBeans
•	 The storage tier: the database

Contrast the three-tier architecture with the more traditional client-server or two-
tier architecture that you saw in the database programs of Chapter 22. In that archi-
tecture, one of the tiers is the database server, which is accessed by multiple client
programs on desktops. Each client program has a presentation layer—usually with a
specially programmed graphical user interface—and business logic code. (See Figure
10.) When the business logic changes, a new client program must be distributed over
all desktops. In contrast, in a three-tier application, the business logic resides on a
server. When the logic changes, the server code is updated, but the presentation tier—
the browser—remains unchanged. That is much simpler to manage than updating
multiple desktops.

In our example, we will have a single database table, CityZone, with city and time
zone names (see Figure 11).

section_6/multizone/sql/CityZone.sql

1 CREATE TABLE CityZone (City VARCHAR(40), Zone VARCHAR(40))
2 INSERT INTO CityZone VALUES ('San Francisco', 'America/Los_Angeles')
3 INSERT INTO CityZone VALUES ('Hamburg', 'Europe/Rome')
4 SELECT * FROM CityZone

S e l f C h e c k

A three-tier
application has
separate tiers for
presentation,
business logic, and
data storage.

Figure 9  Three-Tier Architecture

Internet

Storage TierMiddle Tier
(Business Logic)

Presentation Tier
(Browser)

24.6 A Three-Tier Application   W1031

Figure 10  Two-Tier Client-Server Architecture

Local Area
Network

Server
(Database)

Client
(Presentation and

Business Logic)

If the TimeZoneBean can’t find the city among the standard time zone IDs, it makes a
database query:

SELECT Zone FROM CityZone WHERE City = the requested city

If there is a matching entry in the database, that time zone is returned.
To query the database, the bean needs a Connection object. In Chapter 22, we used

the static getConnection method of the DriverManager class to obtain a database connec-
tion. However, JSF containers have a better mechanism for configuring a database in
one central location so that multiple web applications can access it.

The GlassFish application server includes the Derby database. It has a predefined
data source with the resource name jdbc/__default. In your bean code, you declare an
instance variable of type DataSource and tag it with a @Resource annotation, like this:

@Resource(name="jdbc/__default")
private DataSource source;

You can use the administrative interface of GlassFish to define other data sources.
When the application server loads the web application, it automatically initializes

this instance variable. Whenever you need a database connection, call
Connection conn = source.getConnection();
try
{
 Use the connection.
}
finally
{
 conn.close();
}

The application server provides an additional service: it pools database connections.
When a pooled connection is closed, it is not physically terminated but instead

Figure 11  The CityZone Table

CityZone

City Zone

San Francisco America/Los_Angeles

Hamburg Europe/Rome

.

You define data
sources in the JSF
container and use
resource annotations
to initialize them.

W1032  Chapter 24  Web Applications

Figure 12  The multizone Application Shows a List of Cities

returned to a queue and given out again to another caller of the getConnection method.
Pooling avoids the overhead of creating new database connections. In a web applica-
tion, it would be particularly inefficient to connect to the database with every web
request. Connection pooling is completely automatic.

In order to make the application more interesting, we enhanced the TimeZoneBean so
that it manages a list of cities. You can add cities to the list and remove a selected city
(see Figure 12).

You will find the code for this web application below. Figure 13 shows the direc-
tory structure of the application.

You have now seen how to use the JavaServer Faces technology to build web applica-
tions. JSF takes care of low-level details so that you don’t have to think about HTML
forms and the HTTP protocol. Instead, you can focus on the presentation and busi-
ness logic of your application.

section_6/multizone/index.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The multizone application</title>
6 </h:head>
7 <h:body>

Figure 13 
The Directory Structure
of the multizone Application

24.6 A Three-Tier Application   W1033

8 <h:form>
9 <p>

10 Enter city:
11 <h:inputText value="#{timeZoneBean.cityToAdd}"/>
12 </p>
13 <p>
14 <h:commandButton value="Submit"
15 action="#{timeZoneBean.addCity}"/>
16 </p>
17 </h:form>
18 </h:body>
19 </html>

section_6/multizone/next.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:f="http://java.sun.com/jsf/core"
4 xmlns:h="http://java.sun.com/jsf/html">
5 <h:head>
6 <title>The multizone application</title>
7 </h:head>
8 <h:body>
9 <h:form>

10 <p>
11 <h:selectOneRadio value="#{timeZoneBean.cityToRemove}"
12 layout="pageDirection">
13 <f:selectItems value="#{timeZoneBean.citiesAndTimes}"/>
14 </h:selectOneRadio>
15 </p>
16 <p>
17 <h:commandButton value="Remove selected"
18 action="#{timeZoneBean.removeCity}"/>
19 <h:commandButton value="Add another" action="index"/>
20 </p>
21 </h:form>
22 </h:body>
23 </html>

section_6/multizone/error.xhtml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <html xmlns="http://www.w3.org/1999/xhtml"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <h:head>
5 <title>The multizone application</title>
6 </h:head>
7 <h:body>
8 <h:form>
9 <p>

10 Sorry, no information is available for #{timeZoneBean.cityToAdd}.
11 </p>
12 <p>
13 <h:commandButton value="Back" action="index"/>
14 </p>
15 </h:form>
16 </h:body>
17 </html>

W1034  Chapter 24  Web Applications

section_6/multizone/WEB-INF/classes/bigjava/TimeZoneBean.java

1 package bigjava;
2
3 import java.sql.Connection;
4 import java.sql.PreparedStatement;
5 import java.sql.ResultSet;
6 import java.sql.SQLException;
7 import java.text.DateFormat;
8 import java.util.ArrayList;
9 import java.util.Date;

10 import java.util.Map;
11 import java.util.TimeZone;
12 import java.util.TreeMap;
13 import java.util.logging.Logger;
14 import javax.annotation.Resource;
15 import javax.faces.bean.ManagedBean;
16 import javax.faces.bean.SessionScoped;
17 import javax.sql.DataSource;
18
19 /**
20 This bean formats the local time of day for a given date
21 and city.
22 */
23 @ManagedBean
24 @SessionScoped
25 public class TimeZoneBean
26 {
27 @Resource(name="jdbc/__default")
28 private DataSource source;
29
30 private DateFormat timeFormatter;
31 private ArrayList<String> cities;
32 private String cityToAdd;
33 private String cityToRemove;
34
35 /**
36 Initializes the formatter.
37 */
38 public TimeZoneBean()
39 {
40 timeFormatter = DateFormat.getTimeInstance();
41 cities = new ArrayList<String>();
42 }
43
44 /**
45 Setter for cityToAdd property.
46 @param city the city to add to the list of cities
47 */
48 public void setCityToAdd(String city)
49 {
50 cityToAdd = city;
51 }
52
53 /**
54 Getter for cityToAdd property.
55 @return the city to add to the list of cities
56 */
57 public String getCityToAdd()
58 {

24.6 A Three-Tier Application   W1035

59 return cityToAdd;
60 }
61
62 /**
63 Setter for the cityToRemove property.
64 @param city the city to remove from the list of cities
65 */
66 public void setCityToRemove(String city)
67 {
68 cityToRemove = city;
69 }
70
71 /**
72 Getter for the cityToRemove property.
73 @return the city to remove from the list of cities
74 */
75 public String getCityToRemove()
76 {
77 return cityToRemove;
78 }
79
80 /**
81 Read-only citiesAndTimes property.
82 @return a map containing the cities and formatted times
83 */
84 public Map<String, String> getCitiesAndTimes()
85 {
86 Date time = new Date();
87 Map<String, String> result = new TreeMap<String, String>();
88 for (int i = 0; i < cities.size(); i++)
89 {
90 String city = cities.get(i);
91 String label = city + ": ";
92 TimeZone zone = getTimeZone(city);
93 if (zone != null)
94 {
95 timeFormatter.setTimeZone(zone);
96 String timeString = timeFormatter.format(time);
97 label = label + timeString;
98 }
99 else

100 {
101 label = label + "unavailable";
102 }
103 result.put(label, city);
104 }
105
106 return result;
107 }
108
109 /**
110 Action for adding a city.
111 @return "next" if time zone information is available for the city,
112 "error" otherwise
113 */
114 public String addCity()
115 {
116 TimeZone zone = getTimeZone(cityToAdd);
117 if (zone == null) { return "error"; }
118 cities.add(cityToAdd);

W1036  Chapter 24  Web Applications

119 cityToRemove = cityToAdd;
120 cityToAdd = "";
121 return "next";
122 }
123
124 /**
125 Action for removing a city.
126 @return null if there are more cities to remove, "index" otherwise
127 */
128 public String removeCity()
129 {
130 cities.remove(cityToRemove);
131 if (cities.size() > 0) { return null; }
132 else return "index";
133 }
134
135 /**
136 Looks up the time zone for a city.
137 @param city the city for which to find the time zone
138 @return the time zone or null if no match is found
139 */
140 private TimeZone getTimeZone(String city)
141 {
142 String[] ids = TimeZone.getAvailableIDs();
143 for (int i = 0; i < ids.length; i++)
144 {
145 if (timeZoneIDmatch(ids[i], city))
146 {
147 return TimeZone.getTimeZone(ids[i]);
148 }
149 }
150 try
151 {
152 String id = getZoneNameFromDB(city);
153 if (id != null)
154 {
155 return TimeZone.getTimeZone(id);
156 }
157 }
158 catch (Exception ex)
159 {
160 Logger.global.info("Caught in TimeZone.getTimeZone: "
161 + ex);
162 }
163 return null;
164 }
165
166 private String getZoneNameFromDB(String city)
167 throws SQLException
168 {
169 if (source == null)
170 {
171 Logger.global.info("No database connection");
172 return null;
173 }
174 Connection conn = source.getConnection();
175 try
176 {

24.6 A Three-Tier Application   W1037

177 PreparedStatement stat = conn.prepareStatement(
178 "SELECT Zone FROM CityZone WHERE City=?");
179 stat.setString(1, city);
180 ResultSet result = stat.executeQuery();
181 if (result.next()) { return result.getString(1); }
182 else { return null; }
183 }
184 finally
185 {
186 conn.close();
187 }
188 }
189
190 /**
191 Checks whether a time zone ID matches a city.
192 @param id the time zone ID (e.g., "America/Los_Angeles")
193 @param city the city to match (e.g., "Los Angeles")
194 @return true if the ID and city match
195 */
196 private static boolean timeZoneIDmatch(String id, String city)
197 {
198 String idCity = id.substring(id.indexOf('/') + 1);
199 return idCity.replace('_', ' ').equals(city);
200 }
201 }

12.	 Why don’t we just keep a database connection as an instance variable in the
TimeZoneBean?

13.	 Why does the removeCity method of the TimeZoneBean return null or "index", de-
pending on the size of the cities instance variable?

Practice It	 Now you can try these exercises at the end of the chapter: R24.12, P24.6, P24.7.

AJAX

In Section 24.1, you learned that a web application receives an HTTP request from the browser
and then sends back an HTML form. The cycle repeats when the user submits the next form
data. Web application designers and users dislike the “page flip”—the visual discontinuity
between pages that is often accompanied by a significant delay, as the browser waits for the
new form tags.

The AJAX (Asynchronous JavaScript and XML) technology, invented in 2005, aims to
solve this problem. In an AJAX application, the browser does not merely display an HTML
page, but it also executes code written in the JavaScript language. The JavaScript code continu-
ously communicates with the server program and updates parts of the HTML page.

One example of an AJAX application is the Google Maps™ mapping service—see Fig-
ure 14. In a traditional map application, the user might click on a “move North” button and
then wait until the browser receives the new map image and displays it in a new page. The
Google Maps application uses AJAX to fetch only the needed tiles, and it fluidly rearranges
the tiles in the current page, without the dreaded page flip.

S e l f C h e c k

Special Topic 24.2

W1038  Chapter 24  Web Applications

AJAX applications are much more difficult to program than regular web applications.
Frameworks are being proposed to handle these additional challenges. JSF 2 supports AJAX,
giving the web application programmer the benefit of producing a pleasant user experience
without having to worry about the intricate details of the JavaScript communication chan-
nel. The book’s companion code contains a modification of the multizone application that uses
AJAX. When you click one of the buttons, the page is updated without a page flip.

Figure 14  A Google Maps Image with Partially-Fetched Tiles

O n l i n e Exa m p l e

The multizone
application code
using AJAX.

Chapter Summary  W1039

Describe the architecture of a web application.

•	 The user interface of a web application is displayed in a web browser.
•	 When a form is submitted, the names and values of the form elements are sent to

the web server.
•	 Upon receiving the form data, the web server sends a new web page to the browser.

Describe the architecture of a JSF application.

•	 A JavaServer Faces (JSF) page contains HTML and JSF tags.
•	 The JSF container converts a JSF page to an HTML page, replacing all JSF tags

with text and HTML tags.
•	 A managed bean is an object that is controlled by the JSF container.
•	 A bean with session scope is available for multiple requests by the same browser.
•	 The JSF technology enables the separation of presentation and business logic.

Explain how properties are defined in managed beans and accessed in value expressions.

•	 Properties of a software component can be accessed without having to write Java
code.

•	 A JavaBean is a class that exposes properties through its get and set methods.
•	 In the value expression of an output tag, only the property getter is called.
•	 In the value expression of an input tag, the property setter is called when the page

is submitted.

Implement navigation between pages.

•	 The outcome string of an action determines the next page that the JSF container
sends to the browser.

•	 A method expression specifies a bean and a method that should be invoked on the
bean.

Use common JSF components for designing a user interface.

•	 There are JSF components for text input, choices, buttons, and images.
•	 The value attribute of an input component denotes the value that the user

supplies.
•	 Use an f:selectItems tag to specify all choices for a component that allows selec

tion from a list of choices.

Develop applications that use JSF and a database.

•	 A three-tier application has separate tiers for presentation, business logic, and
data storage.

•	 You define data sources in the JSF container and use resource annotations to
initialize them.

C h a p t e r Summ a r y

W1040  Chapter 24  Web Applications

• R24.1	 Most web browsers have a command to “view the source” of a web page. Load
the page http://horstmann.com into your browser and view the source. What is the
“language” used for formatting the source? What images, links, bullets, and input
elements can you find?

• R24.2	 Have a closer look at the HTTP POST request on page W1012. Where is the data that
the user provided? What does login=Log%20in mean? (The code %20 denotes a space in
the “URL encoding” scheme.)

• R24.3	 What is the difference between a JSF page and a JSF container?

• R24.4	 What is a bean?

• R24.5	 What is a bean property?

• R24.6	 Is a JButton a bean? Why or why not?

• R24.7	 What is the software engineering purpose of using beans in conjunction with JSF
pages?

•• R24.8	 How are variables in the JSF expression language different from variables in Java
programs?

•• R24.9	 When is a bean constructed in a JSF application? Can you have two different
instances of a bean that are active at the same time?

•• R24.10	 How can you implement error checking in a JSF application? Explain, using a login
page as an example.

•• R24.11	 What input elements can you place on a JSF form? What are their Swing equivalents?

• R24.12	 What is the difference between a client-server application and a three-tier
application?

• P24.1	 Write a JSF application that reports the values of the following system properties of
the web server:

•	 The Java version (java.version)
•	 The operating system name (os.name)
•	 The operating system version (os.version)

Supply a bean that uses the getProperties method of the System class.

 java.text.DateFormat
 format
 getTimeInstance
 setTimeZone
java.util.LinkedHashMap

java.util.TimeZone
 getAvailableIDs
 getTimeZone
javax.sql.DataSource
 getConnection

S ta n d a r d L i b r a r y I t e m s I n t r o duc e d i n t h i s C h a p t e r

R e v i e w Ex e r c i s e s

P r o g r a mm i n g Ex e r c i s e s

Programming Exercises  W1041

• P24.2	 Write a JSF application that simulates two rolls of a die, producing an output such as
“Rolled a 4 and a 6”. When the user reloads the page, a new pair of values should be
displayed. Provide a bean that yields random numbers.

•• P24.3	 Enhance Exercise P24.2 by producing a web page that shows images of the rolled
dice. Find GIF images of dice with numbers 1 through 6 on the front, and generate
an HTML page that references the appropriate images. Hint: Use the tag <h:graphic
Image value=imageURL/> and take advantage of the fact that you can embed a value
expression into regular text, such as "/image#{expression}.gif".

• P24.4	 Write a web application that allows a user to specify six lottery numbers. Generate
your own combination on the server, and then print out the user’s and the server’s
combinations together with a count of matches.

•• P24.5	 Add error checking to Exercise P24.4. If the lottery numbers are not within the cor
rect range, or if there are duplicates, show an appropriate message and allow the user
to fix the error.

••• P24.6	 Personalize the time zone application of Section 24.3. Prompt the user to log in and
specify a city to be stored in a profile. The next time the user logs in, the time of their
favorite city is displayed automatically. Store users, passwords, and favorite cities in
a database. You need a logout button to switch users.

••• P24.7	 Extend Exercise P24.6 so that a user can choose multiple cities and all cities chosen
by the user are remembered on the next login.

••• P24.8	 Write a web version of the ExecSQL utility of Chapter 22. Allow users to type arbi
trary SQL queries into a text area. Then submit the query to the database and display
the result.

••• P24.9	 Produce a web front end for the ATM program in Worked Example 12.1.

••• P24.10	 Produce a web front end for the appointment calendar application of Exercise P12.9.

••• P24.11	 Produce a web front end for the airline reservation program of Exercise P12.18.

••• Business P24.12	 Write a shopping cart application. A database contains items that can be purchased
and their prices, descriptions, and available quantities. If the user wants to check out,
ask for the user account. If the user does not yet have an account, create one. The
user name and address should be stored with the account in the database. Display
an invoice as the last step in the check out process. When the user has confirmed the
purchase, update the quantities in the warehouse.

••• P24.13	 Write a web-based grade book application that your instructor might use to man-
age student grades in this course. Your application should have one account for the
instructor, and one account for each student. Instructors can enter and view grades
for all students. Students can only see their own grades and their ranking within the
course. Implement the features that your instructor uses for determining the course
grade (such as dropping the lowest quiz score, counting homework as 30 percent of
the total grade, and so on.) All information should be stored in a database.

W1042  Chapter 24  Web Applications

A n s w e r s t o S e l f - C h e c k Q u e s t i o n s

1.	 Each protocol has a specific purpose. HTML
describes the appearance of a page; it would be
useless for sending requests from a browser to
a server. HTTP describes a request; it cannot
describe the appearance of a page.

2.	 The data of the POST request contain a
portion username=the name supplied by the
user&password=the password supplied by the user.

3.	 Place an image file, say clock.gif, into the time
directory, and add a tag
to the index.xhtml file.

4.	 No—it is possible (and sadly common) for
programmers to place the business logic into
the frame and component classes of the user
interface.

5.	 The application server knows nothing about
the files on your computer. You need to hand
it the WAR file with all the application’s pages,
code, and configuration files so that it can
execute the application when it receives a web
request.

6.	 No. The Scanner class does not have a construc-
tor with no arguments.

7.	 There is no way of knowing without looking
at the source code. Perhaps it simply executes
a statement city = newValue, setting an instance
variable of the bean class. But the method may
also do other work, for example checking
whether the city name is valid or storing the
name in a database.

8.	 Add the tag <h:commandButton value="Help"
action="help"/> to error.xhtml.

9.	 The current page would be redisplayed.
10.	 h:selectOneRadio, h:selectOneMenu, or

h:selectOneCheckbox

11.	 You would need a bean with a property such as
the following:
public Map<String, Integer> getYearChoices()
{
 Map<String, Integer> choices =
 new TreeMap<String, Integer>();
 choices.put("2003", 2003);
 choices.put("2004", 2004);
 . . .
 return choices;
}

Then supply a tag <f:selectItems
value="#{creditCard.yearChoices}"/>.

12.	 Then the database connection would be kept
open for the entire session.

13.	 As long as there are cities, the same page (next.
xhtml) page is redisplayed. If all cities are
removed, it is pointless to display the next.
xhtml page, so the application navigates to the
index.xhtml page.

 AA P P E N D I X

861

The Basic Latin and Latin-1
Subsets of Unicode

This appendix lists the Unicode characters that are most commonly used for process-
ing Western European languages. A complete listing of Unicode characters can be
found at http://unicode.org.

Table 1 Selected Control Characters

Character Code Decimal Escape Sequence

Tab '\u0009' 9 '\t'

Newline '\u000A' 10 '\n'

Return '\u000D' 13 '\r'

Space '\u0020' 32

862  Appendix A  The Basic Latin and Latin-1 Subsets of Unicode

Table 2 The Basic Latin (ASCII) Subset of Unicode

Char. Code Dec. Char. Code Dec. Char. Code Dec.

@ '\u0040' 64 ` '\u0060' 96

! '\u0021' 33 A '\u0041' 65 a '\u0061' 97

" '\u0022' 34 B '\u0042' 66 b '\u0062' 98

'\u0023' 35 C '\u0043' 67 c '\u0063' 99

$ '\u0024' 36 D '\u0044' 68 d '\u0064' 100

% '\u0025' 37 E '\u0045' 69 e '\u0065' 101

& '\u0026' 38 F '\u0046' 70 f '\u0066' 102

' '\u0027' 39 G '\u0047' 71 g '\u0067' 103

('\u0028' 40 H '\u0048' 72 h '\u0068' 104

) '\u0029' 41 I '\u0049' 73 i '\u0069' 105

* '\u002A' 42 J '\u004A' 74 j '\u006A' 106

+ '\u002B' 43 K '\u004B' 75 k '\u006B' 107

, '\u002C' 44 L '\u004C' 76 l '\u006C' 108

- '\u002D' 45 M '\u004D' 77 m '\u006D' 109

. '\u002E' 46 N '\u004E' 78 n '\u006E' 110

/ '\u002F' 47 O '\u004F' 79 o '\u006F' 111

0 '\u0030' 48 P '\u0050' 80 p '\u0070' 112

1 '\u0031' 49 Q '\u0051' 81 q '\u0071' 113

2 '\u0032' 50 R '\u0052' 82 r '\u0072' 114

3 '\u0033' 51 S '\u0053' 83 s '\u0073' 115

4 '\u0034' 52 T '\u0054' 84 t '\u0074' 116

5 '\u0035' 53 U '\u0055' 85 u '\u0075' 117

6 '\u0036' 54 V '\u0056' 86 v '\u0076' 118

7 '\u0037' 55 W '\u0057' 87 w '\u0077' 119

8 '\u0038' 56 X '\u0058' 88 x '\u0078' 120

9 '\u0039' 57 Y '\u0059' 89 y '\u0079' 121

: '\u003A' 58 Z '\u005A' 90 z '\u007A' 122

; '\u003B' 59 ['\u005B' 91 { '\u007B' 123

< '\u003C' 60 \' '\u005C' 92 | '\u007C' 124

= '\u003D' 61] '\u005D' 93 } '\u007D' 125

> '\u003E' 62 ˆ '\u005E' 94 ~ '\u007E' 126

? '\u003F' 63 _ '\u005F' 95

Appendix A  The Basic Latin and Latin-1 Subsets of Unicode   863

Table 3 The Latin-1 Subset of Unicode

Char. Code Dec. Char. Code Dec. Char. Code Dec.

À '\u00C0' 192 à '\u00E0' 224

¡ '\u00A1' 161 Á '\u00C1' 193 á '\u00E1' 225

¢ '\u00A2' 162 Â '\u00C2' 194 â '\u00E2' 226

£ '\u00A3' 163 Ã '\u00C3' 195 ã '\u00E3' 227

¤ '\u00A4' 164 Ä '\u00C4' 196 ä '\u00E4' 228

¥ '\u00A5' 165 Å '\u00C5' 197 å '\u00E5' 229

¦ '\u00A6' 166 Æ '\u00C6' 198 æ '\u00E6' 230

§ '\u00A7' 167 Ç '\u00C7' 199 ç '\u00E7' 231

¨ '\u00A8' 168 È '\u00C8' 200 è '\u00E8' 232

© '\u00A9' 169 É '\u00C9' 201 é '\u00E9' 233

ª '\u00AA' 170 Ê '\u00CA' 202 ê '\u00EA' 234

« '\u00AB' 171 Ë '\u00CB' 203 ë '\u00EB' 235

¬ '\u00AC' 172 Ì '\u00CC' 204 ì '\u00EC' 236

- '\u00AD' 173 Í '\u00CD' 205 í '\u00ED' 237

® '\u00AE' 174 Î '\u00CE' 206 î '\u00EE' 238

¯ '\u00AF' 175 Ï '\u00CF' 207 ï '\u00EF' 239

° '\u00B0' 176 Ð '\u00D0' 208 ð '\u00F0' 240

± '\u00B1' 177 Ñ '\u00D1' 209 ñ '\u00F1' 241
2 '\u00B2' 178 Ò '\u00D2' 210 ò '\u00F2' 242
3 '\u00B3' 179 Ó '\u00D3' 211 ó '\u00F3' 243

´ '\u00B4' 180 Ô '\u00D4' 212 ô '\u00F4' 244

µ '\u00B5' 181 Õ '\u00D5' 213 õ '\u00F5' 245

¶ '\u00B6' 182 Ö '\u00D6' 214 ö '\u00F6' 246

· '\u00B7' 183 × '\u00D7' 215 ÷ '\u00F7' 247

¸ '\u00B8' 184 Ø '\u00D8' 216 ø '\u00F8' 248
1 '\u00B9' 185 Ù '\u00D9' 217 ù '\u00F9' 249

º '\u00BA' 186 Ú '\u00DA' 218 ú '\u00FA' 250

» '\u00BB' 187 Û '\u00DB' 219 û '\u00FB' 251

¼ '\u00BC' 188 Ü '\u00DC' 220 ü '\u00FC' 252

½ '\u00BD' 189 Ý '\u00DD' 221 ý '\u00FD' 253

¾ '\u00BE' 190 Þ '\u00DE' 222 þ '\u00FE' 254

¿ '\u00BF' 191 ß '\u00DF' 223 ÿ '\u00FF' 255

 BA P P E N D I X

865

Java Operator
Summary

The Java operators are listed in groups of decreasing precedence in the table below.
The horizontal lines in the table indicate a change in operator precedence. Opera-
tors with higher precedence bind more strongly than those with lower precedence.
For example, x + y * z means x + (y * z) because the * operator has higher precedence
than the + operator. Looking at the table below, you can tell that x && y || z means
(x && y) || z because the || operator has lower precedence.

The associativity of an operator indicates whether it groups left to right, or right
to left. For example, the - operator binds left to right. Therefore, x - y - z means
(x - y) - z. But the = operator binds right to left, and x = y = z means x = (y = z).

Operator Description Associativity

. Access class feature

Left to right[ ] Array subscript

() Function call

++ Increment

Right to left

-- Decrement

! Boolean not

~ Bitwise not

+ (unary) (Has no effect)

- (unary) Negative

(TypeName) Cast

new Object allocation

* Multiplication

Left to right/ Division or integer division

% Integer remainder

+ Addition, string concatenation
Left to right

- Subtraction

<< Shift left

Left to right>> Right shift with sign extension

>>> Right shift with zero extension

866  Appendix B  Java Operator Summary

Operator Description Associativity

< Less than

Left to right

<= Less than or equal

> Greater than

>= Greater than or equal

instanceof Tests whether an object’s type is a
given type or a subtype thereof

== Equal
Left to right

!= Not equal

& Bitwise and Left to right

^ Bitwise exclusive or Left to right

| Bitwise or Left to right

&& Boolean “short circuit” and Left to right

|| Boolean “short circuit” or Left to right

? : Conditional Right to left

= Assignment

Right to leftop= Assignment with binary operator (op is
one of +, -, *, /, &, |, ̂ , <<, >>, >>>)

 CA P P E N D I X

867

Java Reserved
Word Summary

Reserved Word Description

abstract An abstract class or method

assert An assertion that a condition is fulfilled

boolean The Boolean type

break Breaks out of the current loop or labeled statement

byte The 8-bit signed integer type

case A label in a switch statement

catch The handler for an exception in a try block

char The 16-bit Unicode character type

class Defines a class

const Not used

continue Skip the remainder of a loop body

default The default label in a switch statement

do A loop whose body is executed at least once

double The 64-bit double-precision floating-point type

else The alternative clause in an if statement

enum An enumeration type

extends Indicates that a class is a subclass of another class

final A value that cannot be changed after it has been initialized, a method that
cannot be overridden, or a class that cannot be extended

finally A clause of a try block that is always executed

float The 32-bit single-precision floating-point type

for A loop with initialization, condition, and update expressions

goto Not used

if A conditional branch statement

implements Indicates that a class realizes an interface

868  Appendix C  Java Reserved Word Summary

Reserved Word Description

import Allows the use of class names without the package name

instanceof Tests whether an object’s type is a given type or a subtype thereof

int The 32-bit integer type

interface An abstract type with only abstract methods and constants

long The 64-bit integer type

native A method implemented in non-Java code

new Allocates an object

package A collection of related classes

private A feature that is accessible only by methods of the same class

protected A feature that is accessible only by methods of the same class, a subclass,
or another class in the same package

public A feature that is accessible by all methods

return Returns from a method

short The 16-bit integer type

static A feature that is defined for a class, not for individual instances

strictfp Use strict rules for floating-point computations

super Invoke the superclass constructor or a superclass method

switch A selection statement

synchronized A block of code that is accessible to only one thread at a time

this The implicit parameter of a method; or invocation of another constructor
of the same class

throw Throws an exception

throws The exceptions that a method may throw

transient Instance variables that should not be serialized

try A block of code with exception handlers or a finally handler

void Tags a method that doesn’t return a value

volatile A variable that may be accessed by multiple threads without
synchronization

while A loop statement

 DA P P E N D I X

869

The Java L ibrary

This appendix lists all classes and methods from the standard Java library that are
used in this book.

In the following inheritance hierarchy, superclasses that are not used in this book are
shown in gray type. Some classes implement interfaces not covered in this book; they
are omitted. Classes are sorted first by package, then alphabetically within a package.

java.io.Serializable
java.lang.Object
 java.awt.BorderLayout implements Serializable
 java.awt.Color implements Serializable
 java.awt.Component implements Serializable
 java.awt.Container
 javax.swing.JComponent
 javax.swing.AbstractButton
 javax.swing.JButton
 javax.swing.JMenuItem
 javax.swing.JMenu
 javax.swing.JToggleButton
 javax.swing.JCheckBox
 javax.swing.JRadioButton
 javax.swing.JComboBox
 javax.swing.JFileChooser
 javax.swing.JLabel
 javax.swing.JMenuBar
 javax.swing.JPanel
 javax.swing.JOptionPane
 javax.swing.JScrollPane
 javax.swing.JSlider
 javax.swing.text.JTextComponent
 javax.swing.JTextArea
 javax.swing.JTextField
 java.awt.Window
 java.awt.Frame
 javax.swing.JFrame
 java.awt.Dimension2D
 java.awt.Dimension implements Serializable
 java.awt.FlowLayout implements Serializable
 java.awt.Font implements Serializable
 java.awt.Graphics
 java.awt.GridLayout implements Serializable
 java.awt.event.MouseAdapter implements MouseListener
 java.io.File implements Comparable<File>, Serializable
 java.io.InputStream
 java.io.FileInputStream
 java.io.ObjectInputStream
 java.io.OutputStream
 java.io.FileOutputStream
 java.io.FilterOutputStream
 java.io.PrintStream
 java.io.ObjectOutputStream

870  Appendix D  The Java Library

 java.io.RandomAccessFile
 java.io.Writer
 java.io.PrintWriter
 java.lang.Boolean implements Comparable<Boolean>, Serializable
 java.lang.Character implements Comparable<Character>, Serializable
 java.lang.Class implements Serializable
 java.lang.Math
 java.lang.Number implements Serializable
 java.math.BigDecimal implements Comparable<BigDecimal>
 java.math.BigInteger implements Comparable<BigInteger>
 java.lang.Double implements Comparable<Double>
 java.lang.Integer implements Comparable<Integer>
 java.lang.String implements Comparable<String>, Serializable
 java.lang.System
 java.lang.Thread implements Runnable
 java.lang.Throwable
 java.lang.Error
 java.lang.Exception
 java.lang.InterruptedException
 java.io.IOException
 java.io.EOFException
 java.io.FileNotFoundException
 java.lang.RuntimeException
 java.lang.IllegalArgumentException
 java.lang.NumberFormatException
 java.lang.IllegalStateException
 java.util.NoSuchElementException
 java.util.InputMismatchException
 java.lang.NullPointerException
 java.sql.SQLException
 javax.xml.xpath.XPathException
 javax.xml.xpath.XPathExpressionException
 java.net.ServerSocket
 java.net.Socket
 java.net.URL implements Serializable
 java.net.URLConnection
 java.net.HttpURLConnection
 java.sql.DriverManager
 java.text.Format implements Serializable
 java.text.DateFormat
 java.util.AbstractCollection<E>
 java.util.AbstractList<E>
 java.util.AbstractSequentialList<E>
 java.util.LinkedList<E> implements List<E>, Queue<E>, Serializable
 java.util.ArrayList<E> implements List<E>, Serializable
 java.util.AbstractQueue<E>
 java.util.PriorityQueue<E> implements Serializable
 java.util.AbstractSet<E>
 java.util.HashSet<E> implements Serializable, Set<E>
 java.util.TreeSet<E> implements Serializable, SortedSet<E>
 java.util.AbstractMap<K, V>
 java.util.HashMap<K, V> implements Map<K, V>, Serializable
 java.util.LinkedHashMap<K, V>
 java.util.TreeMap<K, V> implements Serializable, Map<K, V>
 java.util.Arrays
 java.util.Collections
 java.util.Calendar
 java.util.GregorianCalendar
 java.util.Date implements Serializable
 java.util.Dictionary<K, V>

Appendix D  The Java Library  871

 java.util.Hashtable<K, V>
 java.util.Properties implements Serializable
 java.util.EventObject implements Serializable
 java.awt.AWTEvent
 java.awt.event.ActionEvent
 java.awt.event.ComponentEvent
 java.awt.event.InputEvent
 java.awt.event.KeyEvent
 java.awt.event.MouseEvent
 javax.swing.event.ChangeEvent
 java.util.Random implements Serializable
 java.util.Scanner
 java.util.TimeZone implements Serializable
 java.util.concurrent.locks.ReentrantLock implements Lock, Serializable
 java.util.logging.Level implements Serializable
 java.util.logging.Logger
 javax.swing.ButtonGroup implements Serializable
 javax.swing.ImageIcon implements Serializable
 javax.swing.Keystroke implements Serializable
 javax.swing.Timer implements Serializable
 javax.swing.border.AbstractBorder implements Serializable
 javax.swing.border.EtchedBorder
 javax.swing.border.TitledBorder
 javax.xml.parsers.DocumentBuilder
 javax.xml.parsers.DocumentBuilderFactory
 javax.xml.xpath.XPathFactory
java.lang.Comparable<T>
java.lang.Runnable
java.sql.Connection
java.sql.ResultSet
java.sql.ResultSetMetaData
java.sql.Statement
 java.sql.PreparedStatement
java.util.Collection<E>
 java.util.List<E>
 java.util.Set<E>
 java.util.SortedSet<E>
java.util.Comparator<T>
java.util.EventListener
 java.awt.event.ActionListener
 java.awt.event.KeyListener
 java.awt.event.MouseListener
 javax.swing.event.ChangeListener
java.util.Iterator<E>
 java.util.ListIterator<E>
java.util.Map<K, V>
java.util.Queue<E> extends Collection<E>
java.util.concurrent.locks.Condition
java.util.concurrent.locks.Lock
javax.xml.xpath.XPath
org.w3c.dom.DOMConfiguration
org.w3c.dom.DOMImplementaton
org.w3c.dom.Node
 org.w3c.dom.CharacterData
 org.w3c.dom.Text
 org.w3c.dom.Document
 org.w3c.dom.Element
org.w3c.dom.ls.DOMImplementationLS
org.w3c.dom.ls.LSSerializer

872  Appendix D  The Java Library

In the following descriptions, the phrase “this object” (“this component”, “this con-
tainer”, and so forth) means the object (component, container, and so forth) on which
the method is invoked (the implicit parameter, this).

Package java.awt

Class java.awt.BorderLayout
•	 BorderLayout()

This constructs a border layout. A border layout has five regions for adding com-
ponents, called "North", "East", "South", "West", and "Center".

•	 static final int CENTER

This value identifies the center position of a border layout.
•	 static final int EAST

This value identifies the east position of a border layout.
•	 static final int NORTH

This value identifies the north position of a border layout.
•	 static final int SOUTH

This value identifies the south position of a border layout.
•	 static final int WEST

This value identifies the west position of a border layout.

Class java.awt.Color
•	 Color(int red, int green, int blue)

This creates a color with the specified red, green, and blue values between 0
and 255.
Parameters:	 red  The red component

green  The green component
blue  The blue component

Class java.awt.Component
•	 void addKeyListener(KeyListener listener)

This method adds a key listener to the component.
Parameters:	 listener  The key listener to be added

•	 void addMouseListener(MouseListener listener)

This method adds a mouse listener to the component.
Parameters:	 listener  The mouse listener to be added

•	 int getHeight()

This method gets the height of this component.
Returns:	 The height in pixels

P
a
ck

a
g

e
 j
a
v
a
.a

w
t

Appendix D  The Java Library  873

•	 int getWidth()

This method gets the width of this component.
Returns:	 The width in pixels

•	 void repaint()

This method repaints this component by scheduling a call to the paint method.
•	 void setFocusable(boolean focusable)

This method controls whether or not the component can receive input focus.
Parameters:	 focusable  true to have focus, or false to lose focus

•	 void setPreferredSize(Dimension preferredSize)

This method sets the preferred size of this component.
•	 void setSize(int width, int height)

This method sets the size of this component.
Parameters:	 width  the component width

height  the component height
•	 void setVisible(boolean visible)

This method shows or hides the component.
Parameters:	 visible  true to show the component, or false to hide it

Class java.awt.Container
•	 void add(Component c)

•	 void add(Component c, Object position)

These methods add a component to the end of this container. If a position is given,
the layout manager is called to position the component.
Parameters:	 c  The component to be added

position  An object expressing position information for the
layout manager

•	 void setLayout(LayoutManager manager)

This method sets the layout manager for this container.
Parameters:	 manager  A layout manager

Class java.awt.Dimension
•	 Dimension(int width, int height)

This constructs a Dimension object with the given width and height.
Parameters:	 width  The width

height  The height

Class java.awt.FlowLayout
•	 FlowLayout()

This constructs a new flow layout. A flow layout places as many components
as possible in a row, without changing their size, and starts new rows when
necessary.

P
a
ck

a
g

e
 ja

v
a
.a

w
t

874  Appendix D  The Java Library

Class java.awt.Font
•	 Font(String name, int style, int size)

This constructs a font object from the specified name, style, and point size.
Parameters:	 name  The font name, either a font face name or a logical font

name, which must be one of "Dialog", "DialogInput", "Monospaced",
"Serif", or "SansSerif"
style  One of Font.PLAIN, Font.ITALIC, Font.BOLD, or

Font.ITALIC+Font.BOLD

size  The point size of the font

Class java.awt.Frame
•	 void setTitle(String title)

This method sets the frame title.
Parameters:	 title  The title to be displayed in the border of the frame

Class java.awt.Graphics
•	 void drawLine(int x1, int y1, int x2, int y2)

Draws a line between two points
Parameters:	 x1, y1  The starting point

x2, y2 The endpoint
•	 void drawOval(int x, int y, int width, int height)

•	 void fillOval(int x, int y, int width, int height)

Parameters: 	 x1, y1  The top-left corner of the bounding rectangle
width, height  The width and height of the bounding rectangle

•	 void drawRect(int x, int y, int width, int height)

•	 void fillRect(int x, int y, int width, int height)

Parameters: 	 x1, y1  The top-left corner of the rectangle
width, height  The width and height of the rectangle

•	 void drawString(String s, int x, int y)

This method draws a string in the current font and color.
Parameters:	 s  The string to draw

x, y  The basepoint of the first character in the string
•	 void setColor(Color c)

This method sets the current color. After the method call, all graphics operations
use this color.
Parameters:	 c  The new drawing color

Class java.awt.GridLayout
•	 GridLayout(int rows, int cols)

This constructor creates a grid layout with the specified number of rows and col-
umns. The components in a grid layout are arranged in a grid with equal widths
and heights. One, but not both, of rows and cols can be zero, in which case any
number of objects can be placed in a row or in a column, respectively.
Parameters:	 rows  The number of rows in the grid

cols  The number of columns in the grid

P
a
ck

a
g

e
 j
a
v
a
.a

w
t

Appendix D  The Java Library  875

Class java.awt.Rectangle
•	 Rectangle()

This constructs a rectangle with a top-left corner at (0, 0) and width and height
set to 0.

•	 Rectangle(int x, int y, int width, int height)

This constructs a rectangle with given top-left corner and size.
Parameters:	 x, y  The top-left corner

width  The width
height  The height

•	 double getHeight()

•	 double getWidth()

These methods get the height and width of the rectangle.
•	 double getX()

•	 double getY()

These methods get the x- and y-coordinates of the top-left corner of the rectangle.
•	 void grow(int dw, int dh)

This method adjusts the width and height of this rectangle.
Parameters:	 dw  The amount to add to the width (can be negative)

dh  The amount to add to the height (can be negative)
•	 Rectangle intersection(Rectangle other)

This method computes the intersection of this rectangle with the specified
rectangle.
Parameters:	 other  A rectangle
Returns:	 The largest rectangle contained in both this and other

•	 void setLocation(int x, int y)

This method moves this rectangle to a new location.
Parameters:	 x, y  The new top-left corner

•	 void setSize(int width, int height)

This method sets the width and height of this rectangle to new values.
Parameters:	 width  The new width

height  The new height
•	 void translate(int dx, int dy)

This method moves this rectangle.
Parameters:	 dx  The distance to move along the x-axis

dy  The distance to move along the y-axis
•	 Rectangle union(Rectangle other)

This method computes the union of this rectangle with the specified rectangle.
This is not the set-theoretic union but the smallest rectangle that contains both
this and other.
Parameters:	 other  A rectangle
Returns:	 The smallest rectangle containing both this and other

P
a
ck

a
g

e
 ja

v
a
.a

w
t

876  Appendix D  The Java Library

Package java.awt.event

Interface java.awt.event.ActionListener
•	 void actionPerformed(ActionEvent e)

The event source calls this method when an action occurs.

Class java.awt.event.KeyEvent
This event is passed to the KeyListener methods. Use the KeyStroke class to obtain
the key information from the key event.

Interface java.awt.event.KeyListener
•	 void keyPressed(KeyEvent e)

•	 void keyReleased(KeyEvent e)

These methods are called when a key has been pressed or released.
•	 void keyTyped(KeyEvent e)

This method is called when a keystroke has been composed by pressing and
releasing one or more keys.

Class java.awt.event.MouseEvent
•	 int getX()

This method returns the horizontal position of the mouse as of the time the event
occurred.
Returns:	 The x-position of the mouse

•	 int getY()

This method returns the vertical position of the mouse as of the time the event
occurred.
Returns:	 The y-position of the mouse

Interface java.awt.event.MouseListener
•	 void mouseClicked(MouseEvent e)

This method is called when the mouse has been clicked (that is, pressed and
released in quick succession).

•	 void mouseEntered(MouseEvent e)

This method is called when the mouse has entered the component to which this
listener was added.

•	 void mouseExited(MouseEvent e)

This method is called when the mouse has exited the component to which this
listener was added.

•	 void mousePressed(MouseEvent e)

This method is called when a mouse button has been pressed.
•	 void mouseReleased(MouseEvent e)

This method is called when a mouse button has been released.

P
a
ck

a
g

e
 j
a
v
a
.a

w
t.

e
v
e
n

t

Appendix D  The Java Library  877

Package java.io

Class java.io.EOFException
•	 EOFException(String message)

This constructs an “end of file” exception object.
Parameters:	 message  The detail message

Class java.io.File
•	 File(String name)

This constructs a File object that describes a file (which may or may not exist)
with the given name.
Parameters:	 name  The name of the file

•	 static final String pathSeparator

The sytem-dependent separator between path names. A colon (:) in Linux or Mac
OS X; a semicolon (;) in Windows.

Class java.io.FileInputStream
•	 FileInputStream(File f)

This constructs a file input stream and opens the chosen file. If the file cannot be
opened for reading, a FileNotFoundException is thrown.
Parameters:	 f  The file to be opened for reading

•	 FileInputStream(String name)

This constructs a file input stream and opens the named file. If the file cannot be
opened for reading, a FileNotFoundException is thrown.
Parameters:	 name  The name of the file to be opened for reading

Class java.io.FileNotFoundException
This exception is thrown when a file could not be opened.

Class java.io.FileOutputStream
•	 FileOutputStream(File f)

This constructs a file output stream and opens the chosen file. If the file cannot be
opened for writing, a FileNotFoundException is thrown.
Parameters:	 f  The file to be opened for writing

•	 FileOutputStream(String name)

This constructs a file output stream and opens the named file. If the file cannot be
opened for writing, a FileNotFoundException is thrown.
Parameters:	 name  The name of the file to be opened for writing

Class java.io.InputStream
•	 void close()

This method closes this input stream (such as a FileInputStream) and releases any
system resources associated with the stream.

P
a
ck

a
g

e
 ja

v
a
.io

878  Appendix D  The Java Library

•	 int read()

This method reads the next byte of data from this input stream.
Returns:	 The next byte of data, or –1 if the end of the stream is reached

Class java.io.InputStreamReader
•	 InputStreamReader(InputStream in)

This constructs a reader from a specified input stream.
Parameters:	 in  The stream to read from

Class java.io.IOException
This type of exception is thrown when an input /output error is encountered.

Class java.io.ObjectInputStream
•	 ObjectInputStream(InputStream in)

This constructs an object input stream.
Parameters:	 in  The stream to read from

•	 Object readObject()

This method reads the next object from this object input stream.
Returns:	 The next object

Class java.io.ObjectOutputStream
•	 ObjectOutputStream(OutputStream out)

This constructs an object output stream.
Parameters:	 out  The stream to write to

•	 Object writeObject(Object obj)

This method writes the next object to this object output stream.
Parameters:	 obj  The object to write

Class java.io.OutputStream
•	 void close()

This method closes this output stream (such as a FileOutputStream) and releases any
system resources associated with this stream. A closed stream cannot perform
output operations and cannot be reopened.

•	 void write(int b)

This method writes the lowest byte of b to this output stream.
Parameters:	 b  The integer whose lowest byte is written

Class java.io.PrintStream / Class java.io.PrintWriter
•	 PrintStream(String name)

•	 PrintWriter(String name)

This constructs a PrintStream or PrintWriter and opens the named file. If the file
cannot be opened for writing, a FileNotFoundException is thrown.
Parameters:	 name  The name of the file to be opened for writing

P
a
ck

a
g

e
 j
a
v
a
.i

o

Appendix D  The Java Library  879

•	 void close()

This method closes this stream or writer and releases any associated system
resources.

•	 void print(int x)

•	 void print(double x)

•	 void print(Object x)

•	 void print(String x)

•	 void println()

•	 void println(int x)

•	 void println(double x)

•	 void println(Object x)

•	 void println(String x)

These methods print a value to this PrintStream or PrintWriter. The println methods
print a newline after the value. Objects are printed by converting them to strings
with their toString methods.
Parameters:	 x  The value to be printed

•	 PrintStream printf(String format, Object... values)

•	 Printwriter printf(String format, Object... values)

These methods print the format string to this PrintStream or PrintWriter, substitut-
ing the given values for placeholders that start with %.
Parameters:	 format  The format string

values  The values to be printed. You can supply any number of
values

Returns:	 The implicit parameter

Class java.io.RandomAccessFile
•	 RandomAccessFile(String name, String mode)

This method opens a named random access file for reading or read/write access.
Parameters:	 name  The file name

mode  "r" for reading or "rw" for read/write access
•	 long getFilePointer()

This method gets the current position in this file.
Returns:	 The current position for reading and writing

•	 long length()

This method gets the length of this file.
Returns:	 The file length

•	 char readChar()

•	 double readDouble()

•	 int readInt()

These methods read a value from the current position in this file.
Returns:	 The value that was read from the file

•	 void seek(long position)

This method sets the position for reading and writing in this file.
Parameters:	 position  The new position

P
a
ck

a
g

e
 ja

v
a
.io

880  Appendix D  The Java Library

•	 void writeChar(int x)

•	 void writeChars(String x)

•	 void writeDouble(double x)

•	 void writeInt(int x)

These methods write a value to the current position in this file.
Parameters:	 x  The value to be written

Interface java.io.Serializable
A class should implement this interface in order to enable serialization of objects.

Package java.lang

Class java.lang.Boolean
•	 Boolean(boolean value)

This constructs a wrapper object for a boolean value.
Parameters:	 value  The value to store in this object

•	 boolean booleanValue()

This method returns the value stored in this boolean object.
Returns:	 The Boolean value of this object

Class java.lang.Character
•	 static boolean isDigit(ch)

This method tests whether a given character is a Unicode digit.
Parameters:	 ch  The character to test
Returns:	 true if the character is a digit

•	 static boolean isLetter(ch)

This method tests whether a given character is a Unicode letter.
Parameters:	 ch  The character to test
Returns:	 true if the character is a letter

•	 static boolean isLowerCase(ch)

This method tests whether a given character is a lowercase Unicode letter.
Parameters:	 ch  The character to test
Returns:	 true if the character is a lowercase letter

•	 static boolean isUpperCase(ch)

This method tests whether a given character is an uppercase Unicode letter.
Parameters:	 ch  The character to test
Returns:	 true if the character is an uppercase letter

Class java.lang.Class
•	 static Class forName(String className)

This method loads a class with a given name. Loading a class initializes its static
variables.
Parameters:	 className  The name of the class to load
Returns:	 The type descriptor of the class

P
a
ck

a
g

e
 j
a
v
a
.i

o
P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g

Appendix D  The Java Library  881

Interface java.lang.Comparable<T>
•	 int compareTo(T other)

This method compares this object with the other object.
Parameters:	 other  The object to be compared
Returns:	 A negative integer if this object is less than the other, zero if they

are equal, or a positive integer otherwise

Class java.lang.Double
•	 Double(double value)

This constructs a wrapper object for a double-precision floating-point number.
Parameters:	 value  The value to store in this object

•	 double doubleValue()

This method returns the floating-point value stored in this Double wrapper object.
Returns:	 The value stored in the object

•	 static double parseDouble(String s)

This method returns the floating-point number that the string represents. If the
string cannot be interpreted as a number, a NumberFormatException is thrown.
Parameters:	 s  The string to be parsed
Returns:	 The value represented by the string argument

Class java.lang.Error
This is the superclass for all unchecked system errors.

Class java.lang.IllegalArgumentException
•	 IllegalArgumentException()

This constructs an IllegalArgumentException with no detail message.

Class java.lang.IllegalStateException
This exception is thrown if the state of an object indicates that a method cannot
currently be applied.

Class java.lang.Integer
•	 Integer(int value)

This constructs a wrapper object for an integer.
Parameters:	 value  The value to store in this object

•	 int intValue()

This method returns the integer value stored in this wrapper object.
Returns:	 The value stored in the object

•	 static int parseInt(String s)

This method returns the integer that the string represents. If the string cannot be
interpreted as an integer, a NumberFormatException is thrown.
Parameters:	 s  The string to be parsed
Returns:	 The value represented by the string argument

P
a
ck

a
g

e
 ja

v
a
.la

n
g

882  Appendix D  The Java Library

•	 static Integer parseInt(String s, int base)

This method returns the integer value that the string represents in a given number
system. If the string cannot be interpreted as an integer, a NumberFormatException is
thrown.
Parameters:	 s  The string to be parsed

base  The base of the number system (such as 2 or 16)
Returns:	 The value represented by the string argument

•	 static String toString(int i)

•	 static String toString(int i, int base)

This method creates a string representation of an integer in a given number sys-
tem. If no base is given, a decimal representation is created.
Parameters:	 i  An integer number

base  The base of the number system (such as 2 or 16)
Returns:	 A string representation of the argument in the specified number

system
•	 static final int MAX_VALUE

This constant is the largest value of type int.
•	 static final int MIN_VALUE

This constant is the smallest (negative) value of type int.

Class java.lang.InterruptedException
This exception is thrown to interrupt a thread, usually with the intention of
terminating it.

Class java.lang.Math
•	 static double abs(double x)

This method returns the absolute value | x |.
Parameters:	 x  A floating-point value
Returns:	 The absolute value of the argument

•	 static double acos(double x)

This method returns the angle with the given cosine, cos–1 x ∈ [0, π].
Parameters:	 x  A floating-point value between -1 and 1
Returns:	 The arc cosine of the argument, in radians

•	 static double asin(double x)

This method returns the angle with the given sine, sin–1 x ∈ [-π/2, π/2].
Parameters:	 x  A floating-point value between -1 and 1
Returns:	 The arc sine of the argument, in radians

•	 static double atan(double x)

This method returns the angle with the given tangent, tan–1 x (-π/2, π/2).
Parameters:	 x  A floating-point value
Returns:	 The arc tangent of the argument, in radians

P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g

Appendix D  The Java Library  883

•	 static double atan2(double y, double x)

This method returns the arc tangent, tan–1 (y/x) ∈ (-π, π). If x can equal zero, or if
it is necessary to distinguish “northwest” from “southeast” and “northeast” from
“southwest”, use this method instead of atan(y/x).
Parameters:	 y, x  Two floating-point values
Returns:	 The angle, in radians, between the points (0,0) and (x,y)

•	 static double ceil(double x)

This method returns the smallest integer ≥ x (as a double).
Parameters:	 x  A floating-point value
Returns:	 The smallest integer greater than or equal to the argument

•	 static double cos(double radians)

This method returns the cosine of an angle given in radians.
Parameters:	 radians  An angle, in radians
Returns:	 The cosine of the argument

•	 static double exp(double x)

This method returns the value ex, where e is the base of the natural logarithms.
Parameters:	 x  A floating-point value
Returns:	 ex

•	 static double floor(double x)

This method returns the largest integer ≤ x (as a double).
Parameters:	 x  A floating-point value
Returns:	 The largest integer less than or equal to the argument

•	 static double log(double x)

•	 static double log10(double x)

This method returns the natural (base e) or decimal (base 10) logarithm of x, ln x.
Parameters:	 x  A number greater than 0.0
Returns:	 The natural logarithm of the argument

•	 static int max(int x, int y)

•	 static double max(double x, double y)

These methods return the larger of the given arguments.
Parameters:	 x, y  Two integers or floating-point values
Returns:	 The maximum of the arguments

•	 static int min(int x, int y)

•	 static double min(double x, double y)

These methods return the smaller of the given arguments.
Parameters:	 x, y  Two integers or floating-point values
Returns:	 The minimum of the arguments

•	 static double pow(double x, double y)

This method returns the value xy (x > 0, or x = 0 and y > 0, or x < 0 and y is an
integer).
Parameters:	 x, y  Two floating-point values
Returns:	 The value of the first argument raised to the power of the second

argument

P
a
ck

a
g

e
 ja

v
a
.la

n
g

884  Appendix D  The Java Library

•	 static long round(double x)

This method returns the closest long integer to the argument.
Parameters:	 x  A floating-point value
Returns:	 The argument rounded to the nearest long value

•	 static double sin(double radians)

This method returns the sine of an angle given in radians.
Parameters:	 radians  An angle, in radians
Returns:	 The sine of the argument

•	 static double sqrt(double x)

This method returns the square root of x, x .
Parameters:	 x  A nonnegative floating-point value
Returns:	 The square root of the argument

•	 static double tan(double radians)

This method returns the tangent of an angle given in radians.
Parameters:	 radians  An angle, in radians
Returns:	 The tangent of the argument

•	 static double toDegrees(double radians)

This method converts radians to degrees.
Parameters:	 radians  An angle, in radians
Returns:	 The angle in degrees

•	 static double toRadians(double degrees)

This methods converts degrees to radians.
Parameters:	 degrees  An angle, in degrees
Returns:	 The angle in radians

•	 static final double E

This constant is the value of e, the base of the natural logarithms.
•	 static final double PI

This constant is the value of π.

Class java.lang.NullPointerException
This exception is thrown when a program tries to use an object through a null
reference.

Class java.lang.NumberFormatException
This exception is thrown when a program tries to parse the numerical value of a
string that is not a number.

Class java.lang.Object
•	 boolean equals(Object other)

This method tests whether this and the other object are equal. This method tests
only whether the object references are to the same object. Subclasses should rede-
fine this method to compare the instance variables.
Parameters:	 other  The object with which to compare
Returns:	 true if the objects are equal, false otherwise

P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g

Appendix D  The Java Library  885

•	 void notify()

This method notifies one of the threads that is currently on the wait list for the
lock of this object.

•	 void notifyAll()

This method notifies all of the threads that are currently on the wait list for the
lock of this object.

•	 String toString()

This method returns a string representation of this object. This method produces
only the class name and locations of the objects. Subclasses should redefine this
method to print the instance variables.
Returns:	 A string describing this object

•	 void wait()

This method blocks the currently executing thread and puts it on the wait list for
the lock of this object.

Interface java.lang.Runnable
•	 void run()

This method should be overridden to define the tasks to be carried out when this
runnable is executed.

Class java.lang.RuntimeException
This is the superclass for all unchecked exceptions.

Class java.lang.String
•	 int compareTo(String other)

This method compares this string and the other string lexicographically.
Parameters:	 other  The other string to be compared
Returns:	 A value less than 0 if this string is lexicographically less than

the other, 0 if the strings are equal, and a value greater than 0
otherwise

•	 boolean equals(String other)

•	 boolean equalsIgnoreCase(String other)

These methods test whether two strings are equal, or whether they are equal when
letter case is ignored.
Parameters:	 other  The other string to be compared
Returns:	 true if the strings are equal

•	 static String format(String format, Object... values)

This method formats the given string by substituting placeholders beginning with
% with the given values.
Parameters:	 format  The string with the placeholders

values  The values to be substituted for the placeholders
Returns:	 The formatted string, with the placeholders replaced by the given

values
•	 int length()

This method returns the length of this string.
Returns:	 The count of characters in this string

P
a
ck

a
g

e
 ja

v
a
.la

n
g

886  Appendix D  The Java Library

•	 String replace(String match, String replacement)

This method replaces matching substrings with a given replacement.
Parameters:	 match  The string whose matches are to be replaced

replacement  The string with which matching substrings are
replaced

Returns:	 A string that is identical to this string, with all matching sub-
strings replaced by the given replacement

•	 String substring(int begin)

•	 String substring(int begin, int pastEnd)

These methods return a new string that is a substring of this string, made up of
all characters starting at position begin and up to either position pastEnd - 1, if it is
given, or the end of the string.
Parameters:	 begin  The beginning index, inclusive

pastEnd  The ending index, exclusive
Returns:	 The specified substring

•	 String toLowerCase()

This method returns a new string that consists of all characters in this string con-
verted to lowercase.
Returns:	 A string with all characters in this string converted to lowercase

•	 String toUpperCase()

This method returns a new string that consists of all characters in this string con-
verted to uppercase.
Returns:	 A string with all characters in this string converted to uppercase

Class java.lang.System
•	 static long currentTimeMillis()

This method returns the difference, measured in milliseconds, between the cur-
rent time and midnight, Universal Time, January 1, 1970.
Returns:	 The current time in milliseconds since January 1, 1970.

•	 static void exit(int status)

This method terminates the program.
Parameters:	 status  Exit status. A nonzero status code indicates abnormal

termination
•	 static final InputStream in

This object is the “standard input” stream. Reading from this stream typically
reads keyboard input.

•	 static final PrintStream out

This object is the “standard output” stream. Printing to this stream typically
sends output to the console window.

P
a
ck

a
g

e
 j
a
v
a
.l

a
n

g

Appendix D  The Java Library  887

Class java.lang.Thread
•	 boolean interrupted()

This method tests whether another thread has called the interrupt method on the
current thread.
Returns:	 true if the thread has been interrupted

•	 static void sleep(int millis)

This method puts the calling thread to sleep.
Parameters:	 millis  The number of millseconds to sleep

•	 void start()

This method starts the thread and executes its run method.

Class java.lang.Throwable
This is the superclass of exceptions and errors.

•	 Throwable()

This constructs a Throwable with no detail message.
•	 String getMessage()

This method gets the message that describes the exception or error.
Returns:	 The message

•	 void printStackTrace()

This method prints a stack trace to the “standard error” stream. The stack trace
contains a printout of this object and of all calls that were pending at the time it
was created.

Package java.math

Class java.math.BigDecimal
•	 BigDecimal(String value)

This constructs an arbitrary-precision floating-point number from the digits in
the given string.
Parameters:	 value  A string representing the floating-point number

•	 BigDecimal add(BigDecimal other)

•	 BigDecimal multiply(BigDecimal other)

•	 BigDecimal subtract(BigDecimal other)

These methods return a BigDecimal whose value is the sum, difference, product, or
quotient of this number and the other.
Parameters:	 other  The other number
Returns:	 The result of the arithmetic operation

Class java.math.BigInteger
•	 BigInteger(String value)

This constructs an arbitrary-precision integer from the digits in the given string.
Parameters:	 value  A string representing an arbitrary-precision integer

P
a
ck

a
g

e
 ja

v
a
.la

n
g

P
a
ck

a
g

e
 ja

v
a
.m

a
th

888  Appendix D  The Java Library

•	 BigInteger add(BigInteger other)

•	 BigInteger divide(BigInteger other)

•	 BigInteger mod(BigInteger other)

•	 BigInteger multiply(BigInteger other)

•	 BigInteger subtract(BigInteger other)

These methods return a BigInteger whose value is the sum, quotient, remainder,
product, or difference of this number and the other.
Parameters:	 other  The other number
Returns:	 The result of the arithmetic operation

Package java.net

Class java.net.HttpURLConnection
•	 int getResponseCode()

This method gets the response status code from this connection. A value of
HTTP_OK indicates success.
Returns:	 The HTTP response code

•	 String getResponseMessage()

This method gets the response message of this connection’s HTTP request.
Returns:	 The message, such as "OK" or "File not found"

•	 static int HTTP_OK

This response code indicates a successful fulfillment of the request.

Class java.net.ServerSocket
•	 ServerSocket(int port)

This constructs a server socket that listens to the given port.
Parameters:	 port  The port number to listen to

•	 Socket accept()

This method waits for a client to connect to the port to which this server socket
listens. When a connection occurs, the method returns a socket through which the
server can communicate with the client.
Returns:	 The socket through which the server can communicate with

the client
•	 void close()

This method closes the server socket. Clients can no longer connect.

Class java.net.Socket
•	 Socket(String host, int port)

This constructs a socket that connects to a server.
Parameters:	 host  The host name

port  The port number to connect to

P
a
ck

a
g

e
 j
a
v
a
.m

a
th

P
a
ck

a
g

e
 j
a
v
a
.n

e
t

Appendix D  The Java Library  889

•	 void close()

This method closes the connection with the server.
•	 InputStream getInputStream()

This method gets the input stream through which the client can read the informa-
tion that the server sends.
Returns:	 The input stream associated with this socket

•	 OutputStream getOutputStream()

This method gets the output stream through which the client can send informa-
tion to the server.
Returns:	 The output stream associated with this socket

Class java.net.URL
•	 URL(String s)

This constructs a URL object from a string containing the URL.
Parameters:	 s  The URL string, such as "http://horstmann.com/index.html"

•	 InputStream openStream()

This method gets the input stream through which the client can read the informa-
tion that the server sends.
Returns:	 The input stream associated with this URL

Class java.net.URLConnection
•	 URLConnection(URL u)

This constructs a URLConnection object from a URL object.
Parameters:	 u  The resource to which you intend to connect

•	 int getContentLength()

This method gets the value of the content-length header of this URL connection.
Returns:	 The number of bytes in the content that the server is sending

•	 String getContentType()

This method gets the value of the content-type header of this URL connection.
Returns:	 The MIME type of the content that the server is sending, such as

"text/plain" or "image/gif"
•	 InputStream getInputStream()

This method gets the input stream through which the client can read the informa-
tion that the server sends.
Returns:	 The input stream associated with this URL

•	 void setIfModifiedSince(Date d)

This method instructs the connection to request that the server send data only if
the content has been modified since a given date.
Parameters:	 d  The modification date

P
a
ck

a
g

e
 ja

v
a
.n

e
t

890  Appendix D  The Java Library

Package java.sql

Interface java.sql.Connection
•	 void close()

This method closes the connection with the database.
•	 void commit()

This method commits all database changes since the last call to commit or rollback.
•	 Statement createStatement()

This method creates a statement object, which can be used to issue database
commands.
Returns:	 A statement object

•	 PreparedStatement prepareStatement(String command)

This method creates a prepared statement for a SQL command that is issued
repeatedly.
Parameters:	 command  The SQL command
Returns:	 The statement object for setting parameters and executing the call

•	 void rollback()

This method abandons all database changes since the last call to commit or rollback.
•	 void setAutoCommit(boolean b)

This method sets the auto commit mode. By default, it is true. If it is set to false,
then transactions are indicated with calls to commit or rollback.
Parameters:	 b  The desired auto commit mode

Class java.sql.DriverManager
•	 static Connection getConnection(String url, String username, String password)

This method obtains a connection to the database specified in the database URL.
Parameters:	 url  The database URL

username  The database user name
password  The password for the database user

Returns:	 A connection to the database

Interface java.sql.PreparedStatement
•	 boolean execute()

This method executes this prepared statement.
Returns:	 true if the execution yielded a result set

•	 ResultSet executeQuery()

This method executes this prepared query.
Returns:	 The query result

•	 int executeUpdate()

This method executes this prepared update command.
Returns:	 The number of records affected by the update

P
a
ck

a
g

e
 j
a
v
a
.s

q
l

Appendix D  The Java Library  891

•	 void setDouble(int index, double value)

This method sets a floating-point parameter for a call of this prepared statement.
Parameters:	 index  The parameter index (starting with 1)

value  The parameter value
•	 void setInt(int index, int value)

This method sets an integer parameter for a call of this prepared statement.
Parameters:	 index  The parameter index (starting with 1)

value  The parameter value
•	 void setString(int index, String value)

This method sets a string parameter for a call of this prepared statement.
Parameters:	 index  The parameter index (starting with 1)

value  The parameter value

Interface java.sql.ResultSet
•	 void close()

This method closes the result set.
•	 double getDouble(int column)

This method returns the floating-point value at the cursor row and the given
column.
Parameters:	 column  The column index (starting with 1)
Returns:	 The data value

•	 double getDouble(String columnName)

This method returns the floating-point value at the cursor row and the given
column name.
Parameters:	 columnName  The column name
Returns:	 The data value

•	 int getInt(int column)

This method returns the integer value at the cursor row and the given column.
Parameters:	 column  The column index (starting with 1)
Returns:	 The data value

•	 int getInt(String columnName)

This method returns the integer value at the cursor row and the given column
name.
Parameters:	 columnName  The column name
Returns:	 The data value

•	 ResultSetMetaData getMetaData()

This method returns the metadata associated with this result set.
Returns:	 The metadata

•	 String getString(int column)

This method returns the value at the cursor row and the given column.
Parameters:	 column  The column index (starting with 1)
Returns:	 The data value, as a string

P
a
ck

a
g

e
 ja

v
a
.s

q
l

892  Appendix D  The Java Library

•	 String getString(String columnName)

This method returns the value at the cursor row and the given column name.
Parameters:	 columnName  The column name
Returns:	 The data value, as a string

•	 boolean next()

This method positions the cursor to the next row. You must call next once before
calling any of the get methods to move the cursor to the first row.
Returns:	 true if the cursor has been positioned on a row, false at the end of

the result set

Interface java.sql.ResultSetMetaData
•	 int getColumnCount()

This method returns the number of columns of this result set.
Returns:	 The number of columns

•	 int getColumnDisplaySize(int column)

This method returns the number of characters that should be used to display the
specified column in this result set.
Parameters:	 column  The column index (starting with 1)
Returns:	 The number of characters that should be used to display this

column
•	 String getColumnLabel(int column)

This method returns the label for a column in this result set.
Parameters:	 column  The column index (starting with 1)
Returns:	 The column label

Class java.sql.SQLException
This exception is thrown when a database error occurs.

Interface java.sql.Statement
•	 void close()

This method closes this statement.
•	 boolean execute(String command)

This method executes a SQL command.
Parameters:	 command  The command to execute
Returns:	 true if the execution yielded a result set

•	 ResultSet executeQuery(String command)

This method executes a SQL query.
Parameters:	 command  The query command to execute
Returns:	 The query result

•	 int executeUpdate(String command)

This method executes a SQL update command.
Parameters:	 command  The update command to execute
Returns:	 The number of records affected by the update

P
a
ck

a
g

e
 j
a
v
a
.s

q
l

Appendix D  The Java Library  893

•	 ResultSet getResultSet()

This method gets the result of the last command.
Returns:	 The query result from the last command

•	 int getUpdateCount()

This method gets the update count of the last command.
Returns:	 The number of records affected by the last command

Package java.text

Class java.text.DateFormat
•	 String format(Date aDate)

This method formats a date.
Parameters:	 aDate  The date to format
Returns:	 A string containing the formatted date

•	 static DateFormat getTimeInstance()

This method returns a formatter that formats only the time portion of a date.
Returns:	 The formatter object

•	 void setTimeZone(TimeZone zone)

This method sets the time zone to be used when formatting dates.
Parameters:	 zone  The time zone to use

Package java.util

Class java.util.ArrayList<E>
•	 ArrayList()

This constructs an empty array list.
•	 boolean add(E element)

This method appends an element to the end of this array list.
Parameters:	 element  The element to add
Returns:	 true (This method returns a value because it overrides a method

in the List interface.)
•	 void add(int index, E element)

This method inserts an element into this array list at the given position.
Parameters:	 index  Insert position

element  The element to insert
•	 E get(int index)

This method gets the element at the specified position in this array list.
Parameters:	 index  Position of the element to return
Returns:	 The requested element

ja
v
a
.s

q
l

P
a
ck

a
g

e
 ja

v
a
.te

xt
P
a
ck

a
g

e
 ja

v
a
.u

til

894  Appendix D  The Java Library

•	 E remove(int index)

This method removes the element at the specified position in this array list and
returns it.
Parameters:	 index  Position of the element to remove
Returns:	 The removed element

•	 E set(int index, E element)

This method replaces the element at a specified position in this array list.
Parameters:	 index  Position of element to replace

element  Element to be stored at the specified position
Returns:	 The element previously at the specified position

•	 int size()

This method returns the number of elements in this array list.
Returns:	 The number of elements in this array list

Class java.util.Arrays
•	 static int binarySearch(Object[] a, Object key)

This method searches the specified array for the specified object using the binary
search algorithm. The array elements must implement the Comparable interface.
The array must be sorted in ascending order.
Parameters:	 a  The array to be searched

key  The value to be searched for
Returns:	 The position of the search key, if it is contained in the array;

otherwise, -index - 1, where index is the position where the
element may be inserted

•	 static T[] copyOf(T[] a, int newLength)

This method copies the elements of the array a, or the first newLength elements if
a.length > newLength, into an array of length newLength and returns that array. T can
be a primitive type, class, or interface type.
Parameters:	 a  The array to be copied

key  The value to be searched for
Returns:	 The position of the search key, if it is contained in the array;

otherwise, -index - 1, where index is the position where the
element may be inserted

•	 static void sort(Object[] a)

This method sorts the specified array of objects into ascending order. Its elements
must implement the Comparable interface.
Parameters:	 a  The array to be sorted

•	 static String toString(T[] a)

This method creates and returns a string containing the array elements. T can be a
primitive type, class, or interface type.
Parameters:	 a  An array
Returns:	 A string containing a comma-separated list of string representa-

tions of the array elements, surrounded by brackets.

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l

Appendix D  The Java Library  895

Class java.util.Calendar
•	 int get(int field)

This method returns the value of the given field.
Parameters:	 field  One of Calendar.YEAR, Calendar.MONTH,

Calendar.DAY_OF_MONTH, Calendar.HOUR, Calendar.MINUTE,
Calendar.SECOND, or Calendar.MILLISECOND 

Interface java.util.Collection<E>
•	 boolean add(E element)

This method adds an element to this collection.
Parameters:	 element  The element to add
Returns:	 true if adding the element changes the collection

•	 boolean contains(E element)

This method tests whether an element is present in this collection.
Parameters:	 element  The element to find
Returns:	 true if the element is contained in the collection

•	 Iterator iterator()

This method returns an iterator that can be used to traverse the elements of this
collection.
Returns:	 An object of a class implementing the Iterator interface

•	 boolean remove(E element)

This method removes an element from this collection.
Parameters:	 element  The element to remove
Returns:	 true if removing the element changes the collection

•	 int size()

This method returns the number of elements in this collection.
Returns:	 The number of elements in this collection

Class java.util.Collections
•	 static <T> int binarySearch(List<T> a, T key)

This method searches the specified list for the specified object using the binary
search algorithm. The list elements must implement the Comparable interface. The
list must be sorted in ascending order.
Parameters:	 a  The list to be searched

key  The value to be searched for
Returns:	 The position of the search key, if it is contained in the list;

otherwise, -index - 1, where index is the position where the
element may be inserted

•	 static <T> void sort(List<T> a)

This method sorts the specified list of objects into ascending order. Its elements
must implement the Comparable interface.
Parameters:	 a  The list to be sorted

P
a
ck

a
g

e
 ja

v
a
.u

til

896  Appendix D  The Java Library

Interface java.util.Comparator<T>
•	 int compare(T first, T second)

This method compares the given objects.
Parameters:	 first, second  The objects to be compared
Returns:	 A negative integer if the first object is less than the second, zero if

they are equal, or a positive integer otherwise

Class java.util.Date
•	 Date()

This constructs an object that represents the current date and time.

Class java.util.EventObject
•	 Object getSource()

This method returns a reference to the object on which this event initially
occurred.
Returns:	 The source of this event

Class java.util.GregorianCalendar
•	 GregorianCalendar()

This constructs a calendar object that represents the current date and time.
•	 GregorianCalendar(int year, int month, int day)

This constructs a calendar object that represents the start of the given date.
Parameters:	 year, month, day  The given date

Class java.util.HashMap<K, V>
•	 HashMap<K, V>()

This constructs an empty hash map.

Class java.util.HashSet<E>
•	 HashSet<E>()

This constructs an empty hash set.

Class java.util.InputMismatchException
This exception is thrown if the next available input item does not match the type
of the requested item.

Interface java.util.Iterator<E>
•	 boolean hasNext()

This method checks whether the iterator is past the end of the list.
Returns:	 true if the iterator is not yet past the end of the list

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l

Appendix D  The Java Library  897

•	 E next()

This method moves the iterator over the next element in the linked list. This
method throws an exception if the iterator is past the end of the list.
Returns:	 The object that was just skipped over

•	 void remove()

This method removes the element that was returned by the last call to next or
previous. This method throws an exception if there was an add or remove operation
after the last call to next or previous.

Class java.util.LinkedHashMap<K, V>
•	 LinkedHashMap<K, V>()

This constructs an empty linked hash map. The iterator of a linked hash map visits
the entries in the order in which they were added to the map.

Class java.util.LinkedList<E>
•	 void addFirst(E element)

•	 void addLast(E element)

These methods add an element before the first or after the last element in this list.
Parameters:	 element  The element to be added

•	 E getFirst()

•	 E getLast()

These methods return a reference to the specified element from this list.
Returns:	 The first or last element

•	 E removeFirst()

•	 E removeLast()

These methods remove the specified element from this list.
Returns:	 A reference to the removed element

Interface java.util.List<E>
•	 ListIterator<E> listIterator()

This method gets an iterator to visit the elements in this list.
Returns:	 An iterator that points before the first element in this list

Interface java.util.ListIterator<E>
Objects implementing this interface are created by the listIterator methods of list
classes.

•	 void add(E element)

This method adds an element after the iterator position and moves the iterator
after the new element.
Parameters:	 element  The element to be added

•	 boolean hasPrevious()

This method checks whether the iterator is before the first element of the list.
Returns:	 true if the iterator is not before the first element of the list

P
a
ck

a
g

e
 ja

v
a
.u

til

898  Appendix D  The Java Library

•	 E previous()

This method moves the iterator over the previous element in the linked list. This
method throws an exception if the iterator is before the first element of the list.
Returns:	 The object that was just skipped over

•	 void set(E element)

This method replaces the element that was returned by the last call to next or
previous. This method throws an exception if there was an add or remove operation
after the last call to next or previous.
Parameters:	 element  The element that replaces the old list element

Interface java.util.Map<K, V>
•	 V get(K key)

Gets the value associated with a key in this map.
Parameters:	 key  The key for which to find the associated value
Returns:	 The value associated with the key, or null if the key is not present

in the map
•	 Set<K> keySet()

This method returns all keys this map.
Returns:	 A set of all keys in this map

•	 V put(K key, V value)

This method associates a value with a key in this map.
Parameters:	 key  The lookup key

value  The value to associate with the key
Returns:	 The value previously associated with the key, or null if the key

was not present in the map
•	 V remove(K key)

This method removes a key and its associated value from this map.
Parameters:	 key  The lookup key
Returns:	 The value previously associated with the key, or null if the key

was not present in the map

Class java.util.NoSuchElementException
This exception is thrown if an attempt is made to retrieve a value that does not
exist.

Class java.util.PriorityQueue<E>
•	 PriorityQueue<E>()

This constructs an empty priority queue. The element type E must implement the
Comparable interface.

•	 E remove()

This method removes the smallest element in the priority queue.
Returns:	 The removed value

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l

Appendix D  The Java Library  899

Class java.util.Properties
•	 String getProperty(String key)

This method gets the value associated with a key in this properties map.
Parameters:	 key  The key for which to find the associated value
Returns:	 The value, or null if the key is not present in the map

•	 void load(InputStream in)

This method loads a set of key/value pairs into this properties map from a stream.
Parameters:	 in  The stream from which to read the key/value pairs (it must be

a sequence of lines of the form key=value)

Interface java.util.Queue<E>
•	 E peek()

Gets the element at the head of the queue without removing it.
Returns:	 The head element or null if the queue is empty

Class java.util.Random
•	 Random()

This constructs a new random number generator.
•	 double nextDouble()

This method returns the next pseudorandom, uniformly distributed floating-
point number between 0.0 (inclusive) and 1.0 (exclusive) from this random num-
ber generator’s sequence.
Returns:	 The next pseudorandom floating-point number

•	 int nextInt(int n)

This method returns the next pseudorandom, uniformly distributed integer
between 0 (inclusive) and the specified value (exclusive) drawn from this random
number generator’s sequence.
Parameters:	 n  Number of values to draw from
Returns:	 The next pseudorandom integer

Class java.util.Scanner
•	 Scanner(File in)

•	 Scanner(InputStream in)

•	 Scanner(Reader in)

These construct a scanner that reads from the given file, input stream, or reader.
Parameters:	 in  The file, input stream, or reader from which to read

•	 void close()

This method closes this scanner and releases any associated system resources.

P
a
ck

a
g

e
 ja

v
a
.u

til

900  Appendix D  The Java Library

•	 boolean hasNext()

•	 boolean hasNextDouble()

•	 boolean hasNextInt()

•	 boolean hasNextLine()

These methods test whether it is possible to read any non-empty string, a
floating-point value, an integer, or a line, as the next item.
Returns:	 true if it is possible to read an item of the requested type, false

otherwise (either because the end of the file has been reached,
or because a number type was tested and the next item is not a
number)

•	 String next()

•	 double nextDouble()

•	 int nextInt()

•	 String nextLine()

These methods read the next whitespace-delimited string, floating-point value,
integer, or line.
Returns:	 The value that was read

•	 Scanner useDelimiter(String pattern)

Sets the pattern for the delimiters between input tokens.
Parameters:	 pattern  A regular expression for the delimiter pattern
Returns:	 This scanner

Interface java.util.Set<E>
This interface describes a collection that contains no duplicate elements.

Class java.util.TimeZone
•	 static String[] getAvailableIDs()

This method gets the supported time zone IDs.
Returns:	 An array of ID strings

•	 static TimeZone getTimeZone(String id)

This method gets the time zone for a time zone ID.
Parameters:	 id  The time zone ID, such as "America/Los_Angeles"
Returns:	 The time zone object associated with the ID, or null if the ID is

not supported

Class java.util.TreeMap<K, V>
•	 TreeMap<K, V>()

This constructs an empty tree map. The iterator of a TreeMap visits the entries in
sorted order.

Class java.util.TreeSet<E>
•	 TreeSet<E>()

This constructs an empty tree set.

P
a
ck

a
g

e
 j
a
v
a
.u

ti
l

Appendix D  The Java Library  901

Package java.util.concurrent.locks

Interface java.util.concurrent.locks.Condition
•	 void await()

This method blocks the current thread until it is signalled or interrupted.
•	 void signal()

This method unblocks one thread that is waiting on this condition.
•	 void signalAll()

This method unblocks all threads that are waiting on this condition.

Interface java.util.concurrent.locks.Lock
•	 void lock()

This method causes the current thread to acquire this lock. The thread blocks if
the lock is not available.

•	 Condition newCondition()

This method creates a new condition object for this lock.
Returns:	 The condition object

•	 void unlock()

This method causes the current thread to relinquish this lock.

Class java.util.concurrent.locks.ReentrantLock
•	 ReentrantLock()

This constructs a new reentrant lock.

Package java.util.logging

Class java.util.logging.Level
•	 static final int INFO

This value indicates informational logging.
•	 static final int OFF

This value indicates logging of no messages.

Class java.util.logging.Logger
•	 static Logger getGlobal()

This method gets the global logger. For Java 5 and 6, use getLogger(“global”)
instead.
Returns:	 The global logger that, by default, displays messages with level

INFO or a higher severity on the console.

P
a
ck

a
g

e
 ja

v
a
.u

til.co
n

cu
rre

n
t.lo

ck
s

P
a
ck

a
g

e
 ja

v
a
.u

til.lo
g

g
in

g

902  Appendix D  The Java Library

•	 void info(String message)

This method logs an informational message.
Parameters:	 message  The message to log

•	 void setLevel(Level aLevel)

This method sets the logging level. Logging messages with a lesser severity than
the current level are ignored.
Parameters:	 aLevel  The minimum level for logging messages

Package javax.swing

Class javax.swing.AbstractButton
•	 void addActionListener(ActionListener listener)

This method adds an action listener to the button.
Parameters:	 listener  The action listener to be added

•	 boolean isSelected()

This method returns the selection state of the button.
Returns:	 true if the button is selected

•	 void setSelected(boolean state)

This method sets the selection state of the button. This method updates the but-
ton but does not trigger an action event.
Parameters:	 state  true to select, false to deselect

Class javax.swing.ButtonGroup
•	 void add(AbstractButton button)

This method adds the button to the group.
Parameters:	 button  The button to add

Class javax.swing.ImageIcon
•	 ImageIcon(String filename)

This constructs an image icon from the specified graphics file.
Parameters:	 filename  A string specifying a file name

Class javax.swing.JButton
•	 JButton(String label)

This constructs a button with the given label.
Parameters:	 label  The button label

ja
v
a
.u

ti
l.

lo
g

g
in

g
P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g

Appendix D  The Java Library  903

Class javax.swing.JCheckBox
•	 JCheckBox(String text)

This constructs a check box with the given text, which is initially deselected.
(Use the setSelected method to make the box selected; see the javax.swing.
AbstractButton class.)
Parameters:	 text  The text displayed next to the check box

Class javax.swing.JComboBox
•	 JComboBox()

This constructs a combo box with no items.
•	 void addItem(Object item)

This method adds an item to the item list of this combo box.
Parameters:	 item  The item to add

•	 Object getSelectedItem()

This method gets the currently selected item of this combo box.
Returns:	 The currently selected item

•	 boolean isEditable()

This method checks whether the combo box is editable. An editable combo box
allows the user to type into the text field of the combo box.
Returns:	 true if the combo box is editable

•	 void setEditable(boolean state)

This method is used to make the combo box editable or not.
Parameters:	 state  true to make editable, false to disable editing

•	 void setSelectedItem(Object item)

This method sets the item that is shown in the display area of the combo box as
selected.
Parameters:	 item  The item to be displayed as selected

Class javax.swing.JComponent
•	 protected void paintComponent(Graphics g)

Override this method to paint the surface of a component. Your method needs to
call super.paintComponent(g).
Parameters:	 g  The graphics context used for drawing

•	 void setBorder(Border b)

This method sets the border of this component.
Parameters:	 b  The border to surround this component

•	 void setFont(Font f)

Sets the font used for the text in this component.
Parameters:	 f  A font

P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g

904  Appendix D  The Java Library

Class javax.swing.JFileChooser
•	 JFileChooser()

This constructs a file chooser.
•	 File getSelectedFile()

This method gets the selected file from this file chooser.
Returns:	 The selected file

•	 int showOpenDialog(Component parent)

This method displays an “Open File” file chooser dialog box.
Parameters:	 parent  The parent component or null
Returns:	 The return state of this file chooser after it has been closed by

the user: either APPROVE_OPTION or CANCEL_OPTION. If APPROVE_OPTION is
returned, call getSelectedFile() on this file chooser to get the file

•	 int showSaveDialog(Component parent)

This method displays a “Save File” file chooser dialog box.
Parameters:	 parent  The parent component or null
Returns:	 The return state of the file chooser after it has been closed by the

user: either APPROVE_OPTION or CANCEL_OPTION

Class javax.swing.JFrame
•	 void setDefaultCloseOperation(int operation)

This method sets the default action for closing the frame.
Parameters:	 operation  The desired close operation. Choose among

DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE (the default), DISPOSE_ON_CLOSE,
or EXIT_ON_CLOSE

•	 void setJMenuBar(JMenuBar mb)

This method sets the menu bar for this frame.
Parameters:	 mb  The menu bar. If mb is null, then the current menu bar is

removed
•	 static final int EXIT_ON_CLOSE

This value indicates that when the user closes this frame, the application is to exit.

Class javax.swing.JLabel
•	 JLabel(String text)

•	 JLabel(String text, int alignment)

These containers create a JLabel instance with the specified text and horizontal
alignment.
Parameters:	 text  The label text to be displayed by the label

alignment  One of SwingConstants.LEFT, SwingConstants.CENTER, or
SwingConstants.RIGHT

Class javax.swing.JMenu
•	 JMenu()

This constructs a menu with no items.

P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g

Appendix D  The Java Library  905

•	 JMenuItem add(JMenuItem menuItem)

This method appends a menu item to the end of this menu.
Parameters:	 menuItem  The menu item to be added
Returns:	 The menu item that was added

Class javax.swing.JMenuBar
•	 JMenuBar()

This constructs a menu bar with no menus.
•	 JMenu add(JMenu menu)

This method appends a menu to the end of this menu bar.
Parameters:	 menu  The menu to be added
Returns:	 The menu that was added

Class javax.swing.JMenuItem
•	 JMenuItem(String text)

This constructs a menu item.
Parameters:	 text  The text to appear in the menu item

Class javax.swing.JOptionPane
•	 static String showInputDialog(Object prompt)

This method brings up a modal input dialog box, which displays a prompt and
waits for the user to enter an input in a text field, preventing the user from doing
anything else in this program.
Parameters:	 prompt  The prompt to display
Returns:	 The string that the user typed

•	 static void showMessageDialog(Component parent, Object message)

This method brings up a confirmation dialog box that displays a message and
waits for the user to confirm it.
Parameters:	 parent  The parent component or null

message  The message to display

Class javax.swing.JPanel
This class is a component without decorations. It can be used as an invisible con-
tainer for other components.

Class javax.swing.JRadioButton
•	 JRadioButton(String text)

This constructs a radio button having the given text that is initially deselected.
(Use the setSelected method to select it; see the javax.swing.AbstractButton class.)
Parameters:	 text  The string displayed next to the radio button

Class javax.swing.JScrollPane
•	 JScrollPane(Component c)

This constructs a scroll pane around the given component.
Parameters:	 c  The component that is decorated with scroll bars

P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g

906  Appendix D  The Java Library

Class javax.swing.JSlider
•	 JSlider(int min, int max, int value)

This constructor creates a horizontal slider using the specified minimum, maxi-
mum, and value.
Parameters:	 min  The smallest possible slider value

max  The largest possible slider value
value  The initial value of the slider

•	 void addChangeListener(ChangeListener listener)

This method adds a change listener to the slider.
Parameters:	 listener  The change listener to add

•	 int getValue()

This method returns the slider’s value.
Returns:	 The current value of the slider

Class javax.swing.JTextArea
•	 JTextArea()

This constructs an empty text area.
•	 JTextArea(int rows, int columns)

This constructs an empty text area with the specified number of rows and
columns.
Parameters:	 rows  The number of rows

columns  The number of columns
•	 void append(String text)

This method appends text to this text area.
Parameters:	 text  The text to append

Class javax.swing.JTextField
•	 JTextField()

This constructs an empty text field.
•	 JTextField(int columns)

This constructs an empty text field with the specified number of columns.
Parameters:	 columns  The number of columns

Class javax.swing.KeyStroke
•	 static KeyStroke getKeyStrokeForEvent(KeyEvent event)

Gets a KeyStroke object describing the key stroke that caused the event.
Parameters:	 event  The key event to be analyzed
Returns:	 A KeyStroke object. Call toString on this object to get a string

representation such as "pressed LEFT"

P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g

Appendix D  The Java Library  907

Class javax.swing.Timer
•	 Timer(int millis, ActionListener listener)

This constructs a timer that notifies an action listener whenever a time interval has
elapsed.
Parameters:	 millis  The number of milliseconds between timer notifications

listener  The object to be notified when the time interval has
elapsed

•	 void start()

This method starts the timer. Once the timer has started, it begins notifying its
listener.

•	 void stop()

This method stops the timer. Once the timer has stopped, it no longer notifies its
listener.

Package javax.swing.border

Class javax.swing.border.EtchedBorder
•	 EtchedBorder()

This constructor creates a lowered etched border.

Class javax.swing.border.TitledBorder
•	 TitledBorder(Border b, String title)

This constructor creates a titled border that adds a title to a given border.
Parameters:	 b  The border to which the title is added

title  The title the border should display

Package javax.swing.event

Class javax.swing.event.ChangeEvent
Components such as sliders emit change events when they are manipulated by
the user.

Interface javax.swing.event.ChangeListener
•	 void stateChanged(ChangeEvent e)

This event is called when the event source has changed its state.
Parameters:	 e  A change event

P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g
ja

v
a
x.s

w
in

g
.b

o
rd

e
r

P
a
ck

a
g

e
 ja

v
a
x.s

w
in

g
.e

v
e
n

t

908  Appendix D  The Java Library

Package javax.swing.text

Class javax.swing.text.JTextComponent
•	 String getText()

This method returns the text contained in this text component.
Returns:	 The text

•	 boolean isEditable()

This method checks whether this text component is editable.
Returns:	 true if the component is editable

•	 void setEditable(boolean state)

This method is used to make this text component editable or not.
Parameters:	 state  true to make editable, false to disable editing

•	 void setText(String text)

This method sets the text of this text component to the specified text. If the
argument is the empty string, the old text is deleted.
Parameters:	 text  The new text to be set

Package javax.xml.parsers

Class javax.xml.parsers.DocumentBuilder
•	 Document newDocument()

This constructs a new document object.
Returns:	 An empty document

•	 Document parse(File in)

This method parses an XML document in a file.
Parameters:	 in  The file containing the document
Returns:	 The parsed document

•	 Document parse(InputStream in)

This method parses an XML document in a stream.
Parameters:	 in  The stream containing the document
Returns:	 The parsed document

Class javax.xml.parsers.DocumentBuilderFactory
•	 DocumentBuilder newDocumentBuilder()

This method creates a new document builder object.
Returns:	 The document builder

P
a
ck

a
g

e
 j
a
v
a
x.

s
w

in
g

.t
e
xt

P
a
ck

a
g

e
 j
a
v
a
x.

xm
l.

p
a
rs

e
rs

Appendix D  The Java Library  909

•	 static DocumentBuilderFactory newInstance()

This method creates a new document builder factory object.
Returns:	 The document builder factory object

•	 void setIgnoringElementContentWhitespace(boolean b)

This method sets the parsing mode for ignoring white space in element content
for all document builders that are generated from this factory.
Parameters:	 b  true if white space should be ignored

•	 void setValidating(boolean b)

This method sets the validation mode for all document builders that are generated
from this factory.
Parameters:	 b  true if documents should be validated during parsing

Package javax.xml.xpath

Interface javax.xml.xpath.XPath
•	 String evaluate(String path, Object context)

This method evaluates the given path expression in the given context.
Parameters:	 path  An XPath expression

context  The starting context for the evaluation, such as a
document, node, or node list

Returns:	 The result of the evaluation

Class javax.xml.xpath.XPathExpressionException
This exception is thrown when an XPath expression cannot be evaluated.

Class javax.xml.xpath.XPathFactory
•	 static XPathFactory newInstance()

This method returns a factory instance that can be used to construct XPath
objects.
Returns:	 An XPathFactory instance

•	 XPath newXPath()

This method returns an XPath object that can be used to evaluate XPath
expressions.
Returns:	 An XPath object

P
a
ck

a
g

e
 ja

v
a
x.xm

l.p
a
rs

e
rs

P
a
ck

a
g

e
 ja

v
a
x.xm

l.xp
a
th

910  Appendix D  The Java Library

Package org.w3c.dom

Interface org.w3c.dom.Document
•	 Element createElement(String tagName)

This method creates a new document element with a given tag.
Parameters:	 tagName  The name of the XML tag
Returns:	 The created element

•	 Text createTextNode(String text)

This method creates a text node with the given text.
Parameters:	 text  The text for the text node
Returns:	 The created text node

•	 DOMImplementation getImplementation()

This method returns the DOMImplementation object associated with this document.

Interface org.w3c.dom.DOMConfiguration
•	 void setParameter(String name, Object value)

This method sets the value of a configuration parameter.
Parameters:	 name  The name of the parameter to set

value  The new value or null to unset the parameter

Interface org.w3c.dom.DOMImplementation
•	 Object getFeature(String feature, String version)

This method gets an object that implements a specialized API (such as loading
and saving of DOM trees).
Parameters:	 feature  The feature version (such as “LS”)

version  The version number (such as “3.0”)
Returns:	 The feature object

Interface org.w3c.dom.Element
•	 String getAttribute(String attributeName)

This method returns the value of a given attribute.
Parameters:	 attributeName  The name of the XML attribute
Returns:	 The attribute value, or the empty string "" if that attribute does

not exist for this element
•	 void setAttribute(String name, String value)

This method sets the value of a given attribute.
Parameters:	 name  The name of the XML attribute

value  The desired value of the XML attribute

Interface org.w3c.dom.Text
This interface describes a node that contains the textual content of an XML
element.

P
a
ck

a
g

e
 o

rg
.w

3
c.

d
o
m

Appendix D  The Java Library  911

Package org.w3c.dom.ls

Interface org.w3c.dom.ls.DOMImplementationLS
•	 LSSerializer createLSSerializer()

This method creates a serializer object that can be used to convert a DOM tree to
a string or stream.
Returns:	 The serializer object

Interface org.w3c.dom.ls.LSSerializer
•	 DOMConfiguration getDomConfig()

This method gets the configuration object that allows customization of the serial-
izer behavior.

•	 String writeToString(Node root)

This method converts the DOM tree starting at the given node to a string.
Parameters:	 node  The root node of the tree
Returns:	 The string representation of the tree

P
a
ck

a
g

e
 o

rg
.w

3
c.d

o
m

.ls

 EA P P E N D I X

913

Java Syntax
Summary

In this syntax summary, we use a monospaced font for actual Java reserved words and
tokens such as while. An italic font denotes language constructs such as condition or
variable. Items enclosed in brackets [] are optional. Items separated by vertical bars |
are alternatives. Do not include the brackets or vertical bars in your code!

The summary reflects the parts of the Java language that were covered in this book.
For a full overview of the Java syntax, see http://download.oracle.com/javase/7/docs/
api/.

Please be careful to distinguish an ellipsis . . . from the ... token. The latter appears
twice in this appendix in the “variable parameters” discussion in the “Methods”
section.

Types
A type is a primitive type or a reference type. The primitive types are

•	 The numeric types int, long, short, char, byte, float, double
•	 The boolean type

The reference types are

•	 Classes such as String or Employee
•	 Enumeration types such as enum Sex { FEMALE, MALE }
•	 Interfaces such as Comparable
•	 Array types such as Employee[] or int[][]

Variables
Local variable declarations have the form

[final] Type variableName [= initializer];

Examples:
int n;
double x = 0;
String harry = "Harry Handsome";
Rectangle box = new Rectangle(5, 10, 20, 30);
int[] a = { 1, 4, 9, 16, 25 };

The variable name consists only of letters, numbers, and underscores. It must begin
with a letter or underscore. Names are case-sensitive: totalscore, TOTALSCORE, and
totalScore are three different variables.

914  Appendix E  Java Syntax Summary

The scope of a local variable extends from the point of its definition to the end of
the enclosing block.

A variable that is declared as final can have its value set only once.
Instance variables will be discussed under “Classes”.

Expressions
An expression is a variable, a method call, or a combination of subexpressions joined
by operators. Examples are:

x
Math.sin(x)
x + Math.sin(x)
x * (1 + Math.sin(x))
x++
x == y
x == y && (z > 0 || w > 0)
p.x
e.getSalary()
v[i]

Operators can be unary, binary, or ternary. A unary operator acts on a single expres-
sion, such as x++. A binary operator combines two expressions, such as x + y. A ter-
nary operator combines three expressions. Java has one ternary operator, ? : (see
Special Topic 3.1).

Unary operators can be prefix or postfix. A prefix operator is written before the
expression on which it operates, as in -x. A postfix operator is written after the expres-
sion on which it operates, such as x++.

Operators are ranked by precedence levels. Operators with a higher precedence
bind more strongly than operators with a lower precedence. For example, * has a
higher precedence than +, so x + y * z is the same as x + (y * z), even though the +
comes first.

Most operators are left-associative. That is, operators of the same precedence are
evaluated from the left to the right. For example, x - y + z is interpreted as (x - y) + z,
not x - (y + z). The exceptions are the unary prefix operators and the assignment
operator which are right-associative. For example, z = y = Math.sin(x) means the same
as z = (y = Math.sin(x)).

Appendix B has a list of all Java operators.

Classes
The syntax for a class is

[public] [abstract|final] class ClassName
 [extends SuperClassName]
 [implements InterfaceName1, InterfaceName2, . . .]
{
 feature1
 feature2
 . . .
}

Appendix E  Java Syntax Summary   915

Each feature is either a declaration of the form
modifiers constructor|method| instance variable|class

or an initialization block
[static] { body }

See the section “Constructors” for more information about initialization blocks.
Potential modifiers include public, private, protected, static, and final.
An instance variable declaration has the form
Type variableName [= initializer];

A constructor has the form
ClassName(parameter1, parameter2, . . .)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

A method has the form
Type methodName(parameter1, parameter2, . . .)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

An abstract method has the form
abstract Type methodName(parameter1, parameter2, . . .);

Here is an example:
public class Point
{
 private double x; // Instance variable
 private double y;

 public Point() // Constructor with no arguments
 {
 x = 0; y = 0;
 }

 public Point(double xx, double yy) // Constructor
 {
 x = xx; y = yy;
 }

 public double getX() // Method
 {
 return x;
 }

 public double getY() // Method
 {
 return y;
 }
}

A class can have both instance variables and static variables. Each object of the class
has a separate copy of the instance variables. There is only a one per-class copy of the
static variables.

916  Appendix E  Java Syntax Summary

A class that is declared as abstract cannot be instantiated. That is, you cannot con-
struct objects of that class.

A class that is declared as final cannot be extended.

Interfaces
The syntax for an interface is

[public] interface InterfaceName
 [extends InterfaceName1, InterfaceName2, . . .]
{
 feature1
 feature2
 . . .
}

Each feature has the form
modifiers method |  instance variable

Potential modifiers are public, static, final. However, modifiers are never necessary
because methods are automatically public and instance variables are automatically
public static final.

An instance variable declaration has the form
Type variableName = initializer;

A method declaration has the form
Type methodName(parameter1, parameter2, . . .);

Here is an example:
public interface Measurable
{
 int CM_PER_INCH = 2.54;

 int getMeasure();
}

Enumeration Types
The syntax for an enumeration type is

[public] enum EnumerationTypeName
{
 constant1, constant2, . . .;
 feature1
 feature2
 . . .
}

Each constant is a constant name, followed by optional construction parameters.
constantName[(parameter1, parameter2, . . .)]

Appendix E  Java Syntax Summary   917

The semicolon after the constants is only required if the enumeration declares addi-
tional features. An enumeration can have the same features as a class. Each feature has
the form

modifiers method |  instance variable

Potential modifiers are public, static, final.
Here are two examples:
public enum Suit { HEARTS, DIAMONDS, SPADES, CLUBS };
public enum Card
{
 TWO(2), THREE(3), FOUR(4), FIVE(5), SIX(6),
 SEVEN(7), EIGHT(8), NINE(9), TEN(10),
 JACK(10), QUEEN(10), KING(10), ACE(11);
 private int value;

 public void Card(int aValue) { value = aValue; }
 public int getValue() { return value; }
}

Methods
A method definition has the form

modifiers Type methodName(parameter1, parameter2, . . ., parametern)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

The return type Type is any Java type, or the special type void to indicate that the
method returns no value.

Each parameter variable has the form
[final] Type parameterName

A method has variable parameters if the last parameter variable has the special form
Type... parameterName

Such a method can be called with a sequence of values of the given type of any length.
The parameter variable with the given name is an array of the given type that holds
the arguments. For example, the method

public static double sum(double... values)
{
 double s = 0;
 for (double v : values) { s = s + v; }
 return s;
}

can be called as
double result = sum(1, -2.5, 3.14);

In Java, all parameters are passed by value. Each parameter variable is a local variable
whose scope extends to the end of the method body. It is initialized with a copy of the
value supplied in the call. That value may be a primitive type or a reference type. If it

918  Appendix E  Java Syntax Summary

is a reference type, invoking a mutator on the reference will modify the object whose
reference has been passed to the method.

Changing the value of the parameter variable has no effect outside the method.
Tagging the parameter variable as final disallows such a change altogether. This is
commonly done to allow access to the parameter variable from an inner class declared
in the method.

Java distinguishes between instance methods and static methods. Instance meth-
ods have a special parameter, the implicit parameter, supplied in the method call with
the syntax

implicitParameterValue.methodName(parameterValue1, parameterValue2, . . .)

Example:
harry.setSalary(30000)

The type of the implicit parameter must be the same as the type of the class containing
the method definition. A static method does not have an implicit parameter.

In the method body, the this variable is initialized with a copy of the implicit
parameter value. Using an instance variable name without qualification means to
access the instance variable of the implicit parameter. For example,

public void setSalary(double s)
{
 salary = s; // i.e., this.salary = s
}

By default, Java uses dynamic method lookup. The virtual machine determines the
class to which the implicit parameter object belongs and invokes the method declared
in that class. However, if a method is invoked on the special variable super, then the
method declared in the superclass is invoked on this. For example,

public class MyPanel extends JPanel
{
 . . .
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 // Calls JPanel.paintComponent
 . . .
 }
 . . .
}

The return statement causes a method to exit immediately. If the method type is not
void, you must return a value. The syntax is

return [value];

For example,
public double getSalary()
{
 return salary;
}

A method can call itself. Such a method is called recursive:
public static int factorial(int n)
{
 if (n <= 1) { return 1; }
 return n * factorial(n - 1);
}

Appendix E  Java Syntax Summary   919

Constructors
A constructor definition has the form

modifiers ClassName(parameter1, parameter2, . . .)
 [throws ExceptionType1, ExceptionType2, . . .]
{
 body
}

You invoke a constructor to allocate and construct a new object with a new expression
new ClassName(parameterValue1, parameterValue2, . . .)

A constructor can call the body of another constructor of the same class with the
syntax

this(parameterValue1, parameterValue2, . . .)

For example,
public Employee()
{
 this("", 0);
}

It can call a constructor of its superclass with the syntax
super(parameterValue1, parameterValue2, . . .)

The call to this or super must be the first statement in the constructor.
Arrays are constructed with the syntax
new ArrayType [= { initializer1, initializer2, . . . }]

For example,
new int[] = { 1, 4, 9, 16, 25 }

When an object is constructed, the following actions take place:

•	 All instance variables are initialized with 0, false, or null.
•	 The initializers and initialization blocks are executed in the order in which they

are declared.
•	 The body of the constructor is invoked.

When a class is loaded, the following actions take place:

•	 All static variables are initialized with 0, false, or null.
•	 The initializers of static variables and static initialization blocks are executed in

the order in which they are declared.

Statements
A statement is one of the following:

•	 An expression followed by a semicolon
•	 A branch or loop statement
•	 A return statement

920  Appendix E  Java Syntax Summary

•	 A throw statement
•	 A block, that is, a group of variable declarations and statements enclosed in braces

{. . .}
•	 A try block

Java has two branch statements (if and switch), three loop statements (while, for, and
do), and two mechanisms for nonlinear control flow (break and continue).

The if statement has the form
if (condition) statement1 [else statement2]

If the condition is true, then the first statement is executed. Otherwise, the second
statement is executed.

The switch statement has the form
switch (expression)
{
 group1
 group2
 . . .
 [default:
 statement1
 statement2
 . . .]
}

Where each group has the form
case constant1:
case constant2:
. . .

 statement1
 statement2
 . . .

The expression must be an integer or an enumeration type. Depending on its value,
control is transferred to the first statement following the matching case label, or to the
first statement following the default label if none of the case labels match. Execution
continues with the next statement until a break or return statement is encountered, an
exception is thrown, or the end of the switch is reached. Execution skips over any case
labels.

The while loop has the form
while (condition) statement

The statement is executed while the condition is true.
The for loop has the form
for (initExpression|variableDeclaration;
 condition;
 updateExpression1, updateExpression2, . . .)
 statement

The initialization expression or the variable declaration are executed once. While the
condition remains true, the loop statement and the updateExpressions are executed.

Appendix E  Java Syntax Summary   921

Examples:
for (i = 0; i < 10; i++)
{
 sum = sum + i;
}

for (int i = 0, j = 9; i < 10; i++, j--)
{
 a[j] = b[i];
}

The enhanced for loop has the form
for (Type variable : array|iterableObject)
 statement

When this loop traverses an array, it is equivalent to
for (int i = 0; i < array.length; i++)
{
 Type variable = array[i];
 statement
}

Otherwise, the iterableObject must belong to a class that implements the Iterable
interface. Then the loop is equivalent to

Iterator i = iterableObject.iterator();
while (i.hasNext())
{
 Type variable = i.next();
 statement
}

The do loop has the form
do statement while (condition);

The statement is repeatedly executed until the condition is no longer true. In contrast
to a while loop, the statement of a do loop is executed at least once.

The break statement exits the innermost enclosing while, do, for, or switch statement
(not counting if or block statements).

Any statement (including if and block statements) can be tagged with a label:
label: statement

The labeled break statement
break label;

exits the labeled statement.
The continue statement skips past the end of the statement part of a while, do, or for

loop. In the case of the while or do loop, the loop condition is executed next. In the case
of the for loop, the updateExpressions are executed next.

The labeled continue statement
continue label;

skips past the end of the statement part of a while, do, or for loop with the matching
label.

922  Appendix E  Java Syntax Summary

Exceptions
The throw statement

throw expression;

abruptly terminates the current method and resumes control inside the innermost
matching catch clause of a surrounding try block. The expression must evaluate to a
reference to an object of a subclass of Throwable.

The try statement has the form
try tryBlock
[catch (ExceptionType1 exceptionVariable1) catchBlock1
catch (ExceptionType2 exceptionVariable2) catchBlock2
. . .]
[finally finallyBlock]

•	 The try statement must have at least one catch or finally clause.
•	 All blocks are block statements in the usual sense, that is, { . . . }-delimited

statement sequences.

The statements in the tryBlock are executed. If one of them throws an exception
object whose type is a subtype of one of the types in the catch clauses, then its catch-
Block is executed. As soon as the catch block is entered, that exception is handled.

If the tryBlock exits for any reason at all (because all of its statements executed
completely; because one of its statements was a break, continue, or return statement; or
because an exception was thrown), then the finallyBlock is executed.

If the finallyBlock was entered because an exception was thrown and it itself
throws another exception, then that exception masks the prior exception.

Packages
A class can be placed in a package by putting the package declaration

package packageName;

as the first non-import declaration of the source file.
A package name has the form
identifier1.identifier2. . . .

For example,
java.util
com.horstmann.bigjava

A fully qualified name of a class is
packageName.ClassName

Classes can always be referenced by their fully qualified class names. However, this
can be inconvenient. For that reason, you can reference imported classes by just their
ClassName. All classes in the package java.lang and in the package of the current
source file are always imported.

Appendix E  Java Syntax Summary   923

To import additional classes, use an import directive
import packageName.ClassName;

or
import packageName.*;

The second version imports all classes in the package.

Generic Types and Methods
A generic type is declared with one or more type parameters, placed after the type
name:

modifiers class|interface TypeName<typeParameter1, typeParameter2, . . .>

Similarly, a generic method is declared with one or more type parameters, placed
before the method’s return type:

modifiers <typeParameter1, typeParameter2, . . .> returnType methodName

Each type parameter has the form
typeParameterName [extends bound1 & bound2 & . . .]

For example,
public class BinarySearchTree<T extends Comparable>
public interface Comparator<T>
public <T extends Comparable & Cloneable> T cloneMin(T[] values)

Type parameters can be used in the definition of the generic type or method as if
they were regular types. They can be replaced with any types that match the bounds.
For example, the BinarySearchTree<String> type substitutes the String type for the type
parameter T.

Type parameters can also be replaced with wildcard types. A wildcard type has the
form

? [super|extends Type]

It denotes a specific type that is unknown at the time that it is declared. For example,
Comparable<? super Rectangle> is a type Comparable<S> for a specific type S, which can be
Rectangle or a supertype such as RectangularShape or Shape.

Comments
There are three kinds of comments:

/* comment */
// one-line-comment
/** documentationComment */

The one-line comment extends to the end of the line. The other comments can span
multiple lines and extend to the */ delimiter.

Documentation comments are further explained in Appendix H.

 FA P P E N D I X

925

HTML
Summary

A Brief Introduction to HTML
A web page is written in a language called HTML (Hypertext Markup Language).
Like Java code, HTML code is made up of text that follows certain strict rules. When
a browser reads a web page, the browser interprets the code and renders the page, dis-
playing characters, fonts, paragraphs, tables, and images.

HTML files are made up of text and tags that tell the browser how to render the
text. Nowadays, there are dozens of HTML tags—see Table 1 for a summary of the
most important tags. Fortunately, you need only a few to get started. Most HTML
tags come in pairs consisting of an opening tag and a closing tag, and each pair applies
to the text between the two tags. Here is a typical example of a tag pair:

Java is an <i>object-oriented</i> programming language.

The tag pair <i> </i> directs the browser to display the text inside the tags in italics:
Java is an object-oriented programming language.

The closing tag is just like the opening tag, but it is prefixed by a slash (/). For exam-
ple, bold-faced text is delimited by , and a paragraph is delimited by <p> </p>.

<p>Java is an <i>object-oriented</i> programming language.</p>

The result is the paragraph
Java is an object-oriented programming language.

Another common construct is a bulleted list. For example:
Java is

•	 object-oriented
•	 safe
•	 platform-independent

Here is the HTML code to display it:
<p>Java is</p>
object-oriented
safe
platform-independent

Each item in the list is delimited by (for “list item”), and the whole list is
surrounded by (for “unnumbered list”).

926  Appendix F  HTML Summary

Table 1 Selected HTML Tags

Tag Meaning Children Commonly Used Attributes

html HTML document head, body

head Head of an HTML document title

title Title of an HTML document

body Body of an HTML document

h1 . . . h6 Heading level 1 . . . 6

p Paragraph

ul Unnumbered list li

ol Ordered list li

dl Definition list dt, dd

li List item

dt Term to be defined

dd Definition data

table Table tr

tr Table row th, td

th Table header cell

td Table cell data

a Anchor href, name

img Image src, width, height

pre Preformatted text

hr Horizontal rule

br Line break

i or em Italic

b or strong Bold

tt or code Typewriter or code font

s or strike Strike through

u Underline

super Superscript

sub Subscript

form Form action, method

Appendix F  HTML Summary   927

Table 1 Selected HTML Tags

Tag Meaning Children Commonly Used Attributes

input Input field type, name, value, size, checked

select Combo box style selector option name

option Option for selection

textarea Multiline text area name, rows, cols

As in Java, you can freely use white space (spaces and line breaks) in HTML code
to make it easier to read. For example, you can lay out the code for a list as follows:

<p>Java is</p>

object-oriented
safe
platform-independent

The browser ignores the white space.
If you omit a tag (such as a), most browsers will try to guess the missing

tags—sometimes with differing results. It is always best to include all tags.
You can include images in your web pages with the img tag. In its simplest form, an

image tag has the form

This code tells the browser to load and display the image that is stored in the file
hamster.jpeg. This is a slightly different type of tag. Rather than text inside a tag pair
 , the img tag uses an attribute to specify a file name. Attributes have names
and values. For example, the src attribute has the value "hamster.jpeg". Table 2 con-
tains commonly used attributes.

Table 2 Selected HTML Attributes

Attribute Description Commonly Contained in

name Name of form element or anchor input, select, textarea, a

href Hyperlink reference a

src Source (as of an image) img

code Applet code applet

width, height Width, height of image or applet img, applet

rows, cols Rows, columns of text area textarea

type Type of input field, such as text, password,
checkbox, radio, submit, hidden

input

value Value of input field, or label of submit button input

928  Appendix F  HTML Summary

Table 2 Selected HTML Attributes

Attribute Description Commonly Contained in

size Size of text field input

checked Check radio button or checkbox input

action URL of form action form

method GET or POST form

It is considered polite to use several additional attributes with the img tag, namely
the image size and an alternate description:

<img src="hamster.jpeg" width="640" height="480"

alt="A photo of Harry, the Horrible Hamster"/>
These additional attributes help the browser lay out the page and display a temporary
description while gathering the data for the image (or if the browser cannot display
images, such as a voice browser for blind users). Users with slow network connec-
tions really appreciate this extra effort.

Because there is no closing tag, we put a slash / before the closing >. This is
not a requirement of HTML, but it is a requirement of the emerging XHTML stan-
dard, the XML-based successor to HTML. See www.w3c.org/TR/xhtml1 for more infor-
mation on XHTML.

The most important tag on a web page is the <a> tag pair, which makes the
enclosed text into a link to another file. The links between web pages are what makes
the Web into, well, a web. The browser displays a link in a special way (for example,
underlined text in blue color). Here is the code for a typical link:

Cay Horstmann is the author of this book.

When the viewer of the web page clicks on the words Cay Horstmann, the browser
loads the web page located at horstmann.com. (The value of the href attribute is a Uni-
versal Resource Locator (URL), which tells the browser where to go. The prefix
http:, for Hypertext Transfer Protocol, tells the browser to fetch the file as a web page.
Other protocols allow different actions, such as ftp: to download a file, mailto: to
send e‑mail to a user, and file: to view a local HTML file.)

Table 3 Selected HTML Entities

Entity Description Appearance

< Less than <

> Greater than >

& Ampersand &

" Quotation mark "

 Nonbreaking space

© Copyright symbol ©

Appendix F  HTML Summary   929

You have noticed that tags are enclosed in angle brackets (less-than and greater-
than signs). What if you want to show an angle bracket on a web page? HTML pro-
vides the notations < and > to produce the < and > symbols, respectively. Other
codes of this kind produce symbols such as accented letters. The & (ampersand)
symbol introduces these codes; to get that symbol itself, use &. See Table 3 for
a summary.

You may already have created web pages with a web editor that works like a word
processor, giving you a WYSIWYG (what you see is what you get) view of your web
page. But the tags are still there, and you can see them when you load the HTML file
into a text editor. If you are comfortable using a WYSIWYG web editor, you don’t
need to memorize HTML tags at all. But many programmers and professional web
designers prefer to work directly with the tags at least some of the time, because it
gives them more control over their pages.

 GA P P E N D I X

931

Tool
Summary

In this summary, we use a monospaced font for actual commands such as javac. An
italic font denotes descriptions of tool command components such as options. Items
enclosed in brackets [. . .] are optional. Items separated by vertical bars | are alterna-
tives. Do not include the brackets or vertical bars when typing the commands.

The Java Compiler
javac [options] sourceFile1|@fileList1 sourceFile2|@fileList2 . . .

A file list is a text file that contains one file name per line. For example,

Greeting.list

1 Greeting.java
2 GreetingTester.java

Then you can compile all files with the command
javac @Greeting.list

The Java compiler options are summarized in Table 1.

Table 1 Common Compiler Options

Option Description

-classpath locations
or
-cp locations

The compiler is to look for classes on this path, overriding the CLASSPATH environment
variable. If neither is specified, the current directory is used.
Each location is a directory, JAR file, or ZIP file. Locations are separated by a platform-
dependent separator (: on Unix, ; on Windows).

-sourcepath locations The compiler is to look for source files on this path. If not specified, source files are
searched in the class path.

-d directory The compiler places files into the specified directory.

-g Generate debugging information.

-verbose Include information about all classes that are being compiled (useful for troubleshooting).

-deprecation Give detailed information about the usage of deprecated messages.

-Xlint:errorType Carry out additional error checking. If you get warnings about unchecked conversions,
compile with the -Xlint:unchecked option.

932  Appendix G  Tool Summary

The Java Virtual Machine Launcher
The following command loads the given class and starts its main method, passing it an
array containing the provided command line arguments:

java [options] ClassName [argument1 argument2 . . .]

The following command loads the main class of the given JAR file and starts its main
method, passing it an array containing the provided command line arguments:

java [options] -jar jarFileName [argument1 argument2 . . .]

The Java virtual machine options are summarized in Table 2.

Table 2 Common Virtual Machine Launcher Options

Option Description

-classpath locations
or
-cp locations

Look for classes on this path, overriding the CLASSPATH environment variable. If
neither is specified, the current directory is used.
Each location is a directory, JAR file, or ZIP file. Locations are separated by a
platform-dependent separator (: on Unix, ; on Windows).

-verbose Trace class loading

-Dproperty=value Set a system property that you can retrieve with the System.getProperties method.

The JAR Tool
To combine one or more files into a JAR (Java Archive) file, use the command

jar cvf jarFile file1 file2 . . .

The resulting JAR file can be included in a class path.
To build a program that can be launched with java -jar, you must create a manifest

file, such as

myprog.mf

1 Main-Class: com/horstmann/MyProg

The manifest must specify the path name of the class file that launches the applica-
tion, but with the .class extension removed. Then build the JAR file as

jar cvfm jarFile manifestFile file1 file2 . . .

You can also use JAR as a replacement for a ZIP utility, simply to compress and bun-
dle a set of files for any purpose. Then you may want to suppress the generation of
the JAR manifest, with the command

jar cvfM jarFile file1 file2 . . .

To extract the contents of a JAR file into the current directory, use
jar xvf jarFile

To see the files contained in a JAR file without extracting the files, use

jar tvf jarFile

 HA P P E N D I X

933

javadoc
Summary

Documentation Comments
A documentation comment is delimited by /** and */. You can comment

•	 Classes
•	 Methods
•	 Instance variables

Each comment is placed immediately above the feature it documents.
Each /** . . . */ documentation comment contains introductory text followed

by tagged documentation. A tag starts with an @ character, such as @author or @param.
Tags are summarized in Table 1. The first sentence of the introductory text should be a
summary statement. The javadoc utility automatically generates summary pages that
extract these sentences.

You can use HTML tags such as em for emphasis, code for a monospaced font, img
for images, ul for bulleted lists, and so on.

Table 1 Common javadoc Tags

Tag Description

@param parameter explanation A parameter of a method. Use a separate tag for
each parameter.

@return explanation The return value of a method.

@throws exceptionType explanation An exception that a method may throw. Use a
separate tag for each exception.

@deprecated A feature that remains for compatibility but that
should not be used for new code.

@see packageName.ClassName
@see packageName.ClassName
 #methodName(Type1, Type2, . . .)
@see packageName.ClassName#variableName

A reference to a related documentation entry.

@author The author of a class or interface. Use a separate tag
for each author.

@version The version of a class or interface.

934  Appendix H  javadoc Summary

Here is a typical example. The summary sentence (in color) will be included with
the method summary.

/**
 Withdraws money from the bank account. Increments the
 transaction count.
 @param amount the amount to withdraw
 @return the balance after the withdrawal
 @throws IllegalArgumentException if the balance is not sufficient
*/
public double withdraw(double amount)
{
 if (balance - amount < minimumBalance)
 {
 throw new IllegalArgumentException();
 }
 balance = balance - amount;
 transactions++;
 return balance;
}

Generating Documentation from
Commented Source
To extract the comments, run the javadoc program:

javadoc [options] sourceFile1|  packageName1 | @fileList1
 sourceFile2 | packageName2 | @fileList2 . . .

See the documentation of the javac command in Appendix G for an explanation of
file lists. Commonly used options are summarized in Table 2.

To document all files in the current directory, use (all on one line)

javadoc -link http://download.oracle.com/javase/7/docs/api -d docdir *.java

Table 2 Common javadoc Command Line Options

Option Description

-link URL Link to another set of javadoc files. You should include a link to the standard library
documentation, either locally or at http://download.oracle.com/javase/7/docs/api.

-d directory Store the output in directory. This is a useful option, because it keeps your current
directory from being cluttered up with javadoc files.

-classpath locations Look for classes on the specified paths, overriding the CLASSPATH environment variable. If
neither is specified, the current directory is used. Each location is a directory, JAR file, or
ZIP file. Locations are separated by a platform-dependent separator (: Unix, ; Windows).

-sourcepath locations Look for source files on the specified paths. If not specified, source files are searched in
the class path.

-author, -version Include author, version information in the documentation. This information is omitted
by default.

 IA P P E N D I X

935

Number
Systems

Binary Numbers
Decimal notation represents numbers as powers of 10, for example

1729 1 10 7 10 2 10 9 103 2 1 0
decimal = × + × + × + ×

There is no particular reason for the choice of 10, except that several historical num­
ber systems were derived from people’s counting with their fingers. Other number
systems, using a base of 12, 20, or 60, have been used by various cultures throughout
human history. However, computers use a number system with base 2 because it is far
easier to build electronic components that work with two values, which can be rep­
resented by a current being either off or on, than it would be to represent 10 different
values of electrical signals. A number written in base 2 is also called a binary number.

For example,

1101 1 2 1 2 0 2 1 2 8 4 1 133 2 1 0
binary = × + × + × + × = + + =

For digits after the “decimal” point, use negative powers of 2.

1 101 1 2 1 2 0 2 1 2

1 1
2

1
8

0 1 2 3. binary = × + × + × + ×

= + +

=

− − −

11 0 5 0 125 1 625+ + =. . .
In general, to convert a binary number into its decimal equivalent, simply evaluate
the powers of 2 corresponding to digits with value 1, and add them up. Table 1 shows
the first powers of 2.

To convert a decimal integer into its binary equivalent, keep dividing the integer
by 2, keeping track of the remainders. Stop when the number is 0. Then write the
remainders as a binary number, starting with the last one. For example,

		 100 ÷ 2 = 50 remainder 0
		 50 ÷ 2 = 25 remainder 0
		 25 ÷ 2 = 12 remainder 1
		 12 ÷ 2 = 6 remainder 0
		 6 ÷ 2 = 3 remainder 0
		 3 ÷ 2 = 1 remainder 1
		 1 ÷ 2 = 0 remainder 1

Therefore, 100decimal = 1100100binary .

936  Appendix I  Number Systems

Conversely, to convert a fractional number less than 1 to its binary format, keep
multiplying by 2. If the result is greater than 1, subtract 1. Stop when the number is
0. Then use the digits before the decimal points as the binary digits of the fractional
part, starting with the first one. For example,

		 0.35 ⋅ 2 = 0.7
		 0.7 ⋅ 2 = 1.4
		 0.4 ⋅ 2 = 0.8
		 0.8 ⋅ 2 = 1.6
		 0.6 ⋅ 2 = 1.2
		 0.2 ⋅ 2 = 0.4

Here the pattern repeats. That is, the binary representation of 0.35 is 0.01 0110
0110 0110 . . .

To convert any floating-point number into binary, convert the whole part and the
fractional part separately.

Table 1 Powers of Two

Power Decimal Value

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1,024

211 2,048

212 4,096

213 8,192

214 16,384

215 32,768

216 65,536

Appendix I  Number Systems   937

Overflow and Roundoff Errors
In Java, an int value is an integer that is 32 bits long. When combining two such val­
ues, it is possible that the result does not fit into 32 bits. In that case, only the last 32
bits of the results are used, yielding an incorrect answer. For example,

int fiftyMillion = 50000000;
System.out.println(100 * fiftyMillion); // Expected: 5000000000

displays 705032704.
To see why this curious value is the result, one can carry out the long multiplica­

tion by hand:
1 1 0 0 1 0 0 * 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 0
 0
 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
 0
 0

1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

The result has 33 bits. However, you can’t fit a 33-bit result into a 32-bit int, and the
top bit is discarded. The last 32 bits are the binary representation of 705032704. (Note
that the top bit is 232 = 4294967296, and the two values add up to 5000000000, the
correct result.)

With floating-point numbers, you can encounter another type of error: roundoff
error. Consider this example:

double price = 4.35;
double quantity = 100;
double total = price * quantity; // Should be 100 * 4.35 = 435
System.out.println(total); // Prints 434.99999999999999

To see why the error occurs, carry out the long multiplication:
1 1 0 0 1 0 0 * 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0 . . .

1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0 . . .
 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 . . .
 0
 0
 1 0 0.0 1|0 1 1 0|0 1 1 0 . . .
 0
 0

1 1 0 1 1 0 0 1 0.1 1 1 1 1 1 1 1 . . .

That is, the result is 434, followed by an infinite number of 1s. The fractional part
of the product is the binary equivalent of an infinite decimal fraction 0.999999 . . . ,
which is equal to 1. But the CPU can store only a finite number of 1s, and it discards
some of them when converting the result to a decimal number.

938  Appendix I  Number Systems

Two’s Complement Integers
To represent negative integers, there are two common representations, called “signed
magnitude” and “two’s complement”. Signed magnitude notation is simple: use the
leftmost bit for the sign (0 = positive, 1 = negative). For example, when using 8-bit
numbers,

− =13 10001101signed magnitude

However, building circuitry for adding numbers gets a bit more complicated when
one has to take a sign bit into account. The two’s complement representation solves
this problem. To form the two’s complement of a number,

•	 Flip all bits.
•	 Then add 1.

For example, to compute –13 as an 8-bit value, first flip all bits of 00001101 to get
11110010. Then add 1:

− =13 11110011two s complement’

Now no special circuitry is required for adding two numbers. Simply follow the nor­
mal rule for addition, with a carry to the next position if the sum of the digits and the
prior carry is 2 or 3. For example,

+13 0000 1101
-13 1111 0011

 1 0000 0000

1 1 1 1 1 1 1 1

But only the last 8 bits count, so +13 and –13 add up to 0, as they should.
In particular, –1 has two’s complement representation 1111 . . . 1111, with all bits

set.
The leftmost bit of a two’s complement number is 0 if the number is positive or

zero, 1 if it is negative.
Two’s complement notation with a given number of bits can represent one more

negative number than positive numbers. For example, the 8-bit two’s complement
numbers range from –128 to +127.

This phenomenon is an occasional cause for a programming error. For example,
consider the following code:

short b = ...;
if (b < 0) { b = (byte) -b; }

This code does not guarantee that b is nonnegative afterwards. If b happens to be
-128, then computing its negative again yields -128. (Try it out—take 10000000, flip
all bits, and add 1.)

Appendix I  Number Systems   939

IEEE Floating-Point Numbers
The Institute for Electrical and Electronics Engineering (IEEE) defines standards for
floating-point representations in the IEEE-754 standard. Figure 1 shows how single-
precision (float) and double-precision (double) values are decomposed into

•	 A sign bit
•	 An exponent
•	 A mantissa

Floating-point numbers use scientific notation, in which a number is represented as

b b b b e
0 1 2 3 2. … ×

In this representation, e is the exponent, and the digits b b b b0 1 2 3. … form the man­
tissa. The normalized representation is the one where b0 0≠ . For example,

100 1100100 1 100100 26
decimal binary binary

= = ×.

In the binary number system, because the first bit of a normalized representation
must be 1, it is not actually stored in the mantissa. Therefore, you always need to add
it on to represent the actual value. For example, the mantissa 1.100100 is stored as
100100.

The exponent part of the IEEE representation uses neither signed magnitude nor
two’s complement representation. Instead, a bias is added to the actual exponent. The
bias is 127 for single-precision numbers and 1023 for double-precision numbers. For
example, the exponent e = 6 would be stored as 133 in a single-precision number.

Thus,

100decimal = 0 10000101 10010000000000000000000 single-precision IEEE

In addition, there are several special values. Among them are:

•	 Zero: biased exponent = 0, mantissa = 0.
•	 Infinity: biased exponent = 11. . .1, mantissa = ±0.
•	 NaN (not a number): biased exponent = 11 . . . 1, mantissa ≠ ±0.

Figure 1  IEEE Floating-Point Representation

1 bit

1 bit

sign

sign

biased exponent
e + 127

8 bit 23 bit

Single Precision

11 bit 52 bit

biased exponent
e + 1023

mantissa
(without leading 1)

mantissa
(without leading 1)

Double Precision

940  Appendix I  Number Systems

Hexadecimal Numbers
Because binary numbers can be hard to read for humans, programmers often use the
hexadecimal number system, with base 16. The digits are denoted as 0, 1, …, 9, A, B,
C, D, E, F. (See Table 2.)

Four binary digits correspond to one hexadecimal digit. That makes it easy to con­
vert between binary and hexadecimal values. For example,

11|1011|0001binary = 3B1hexadecimal

In Java, hexadecimal numbers are used for Unicode character values, such as \u03B1
(the Greek lowercase letter alpha). Hexadecimal integers are denoted with a 0x prefix,
such as 0x3B1.

Table 2 Hexadecimal Digits

Hexadecimal Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

 JA P P E N D I X

941

Bit and Shift
Operations

There are four bit operations in Java: the unary negation (~) and the binary and (&),
or (|), and exclusive or (^), often called xor.

Tables 1 and 2 show the truth tables for the bit operations in Java. When a bit op-
eration is applied to integer values, the operation is carried out on corresponding bits.

For example, suppose you want to compute 46 & 13. First convert both values to
binary. 46decimal = 101110 binary (actually 00000000000000000000000000101110 as a
32-bit integer), and 13decimal = 1101binary . Now combine corresponding bits:

 0.....0101110
& 0.....0001101

 0.....0001100

The answer is 1100binary = 12decimal.
You sometimes see the | operator being used to combine two bit patterns. For ex-

ample, the symbolic constant BOLD is the value 1, and the symbolic constant ITALIC is 2.
The binary or combination BOLD | ITALIC has both the bold and the italic bit set:

 0.....0000001
| 0.....0000010

 0.....0000011

Don’t confuse the & and | bit operators with the && and || operators. The latter work
only on boolean values, not on bits of numbers.

Table 1 The Unary Negation Operation

a ~a

0 1

1 0

Table 2 The Binary And, Or, and Xor Operations

a b a & b a | b a ̂ b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

942  Appendix J  Bit and Shift Operations

Besides the operations that work on individual bits, there are three shift operations
that take the bit pattern of a number and shift it to the left or right by a given number
of positions. There are three shift operations: left shift (<<), right shift with sign exten-
sion (>>), and right shift with zero extension (>>>).

The left shift moves all bits to the left, filling in zeroes in the least significant bits.
Shifting to the left by n bits yields the same result as multiplication by 2n. The right
shift with sign extension moves all bits to the right, propagating the sign bit. There-
fore, the result is the same as integer division by 2n, both for positive and negative
values. Finally, the right shift with zero extension moves all bits to the right, filling in
zeroes in the most significant bits. (See Figure 1.)

Note that the right-hand-side value of the shift operators is reduced modulo 32
(for int values) or 64 (for long values) to determine the actual number of bits to shift.

For example, 1 << 35 is the same as 1 << 3. Actually shifting 1 by 35 bits to the left
would make no sense—the result would be 0.

The expression
1 << n

yields a bit pattern in which the nth bit is set (where the 0 bit is the least significant
bit).

To set the nth bit of a number, carry out the operation
x = x | 1 << n

To check whether the nth bit is set, execute the test
if ((x & 1 << n) != 0) . . .

Note that the parentheses around the & are required—the & operator has a lower pre-
cedence than the relational operators.

Figure 1 
The Shift Operations

Left shift (<<)

Right shift with sign extension (>>)

Right shift with zero extension (>>>)

0 0

00

 KA P P E N D I X

943

UML
Summary

In this book, we use a very restricted subset of the UML notation. This appendix lists
the components of the subset.

CRC Cards
CRC cards are used to describe in an informal fashion the responsibilities and col-
laborators for a class. Figure 1 shows a typical CRC card.

UML Diagrams
Figure 2 shows the UML notation for classes and interfaces. You can optionally sup-
ply attributes and methods in a class diagram, as in Figure 3.

Figure 1  Typical CRC Card

compute amount due LineItem

Invoice

Class

Responsibilities Collaborators

Figure 2 
UML Symbols for Classes
and Interfaces

ClassName

‹‹interface››
InterfaceName

944  Appendix K  UML Summary

Figure 3 
Attributes and Methods
in a Class Diagram

Attributes

balance

deposit()
withdraw()

BankAccount

Methods

Customer

Class name

No attributes or
methods shown

Table 1 shows the arrows used to indicate relationships between classes. Multiplicity
can be indicated in a diagram, as in Figure 4.

Table 1 UML Relationship Symbols

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface
Implementation

Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

Dependencies between objects are described by a dependency diagram. Figure 5 is a
typical example.

Figure 4 
An Aggregation Relationship
with Multiplicities

Customer BankAccount
1..*

Figure 5 
UML Class Diagram for
the ATM Simulation

ATMFrame

Keypad

ATM

BankAccount

Customer

Bank
1

1

1 2

*

Appendix K  UML Summary   945

State diagrams are used when an object goes through a discrete set of states that af-
fects its behavior (see Figure 6).

For a complete discussion of the UML notation, see The Unified Modeling Lan-
guage User Guide, Grady Booch, James Rumbaugh, and Ivar Jacobson (Addison-
Wesley, 2005, 1999).

Figure 6  UML State Diagram for the ATM Class

START

PIN

Customer
not found

Customer found

Account selected

Customer number entered

Exit selected

Transaction
completed or
canceled

ACCOUNT

TRANSACT

 LA P P E N D I X

947

Java Language
Coding Guidelines

Introduction
This coding style guide is a simplified version of one that has been used with good
success both in industrial practice and for college courses.

A style guide is a set of mandatory requirements for layout and formatting. Uni-
form style makes it easier for you to read code from your instructor and classmates.
You will really appreciate that if you do a team project. It is also easier for your
instructor and your grader to grasp the essence of your programs quickly.

A style guide makes you a more productive programmer because it reduces gratu-
itous choice. If you don’t have to make choices about trivial matters, you can spend
your energy on the solution of real problems.

In these guidelines, several constructs are plainly outlawed. That doesn’t mean
that programmers using them are evil or incompetent. It does mean that the con-
structs are not essential and can be expressed just as well or even better with other
language constructs.

If you already have programming experience, in Java or another language, you
may be initially uncomfortable at giving up some fond habits. However, it is a sign
of professionalism to set aside personal preferences in minor matters and to compro-
mise for the benefit of your group.

These guidelines are necessarily somewhat dull. They also mention features that
you may not yet have seen in class. Here are the most important highlights:

•	 Tabs are set every three spaces.
•	 Variable and method names are lowercase, with occasional upperCase characters

in the middle.
•	 Class names start with an Uppercase letter.
•	 Constant names are UPPERCASE, with an occasional UNDER_SCORE.
•	 There are spaces after reserved words and surrounding binary operators.
•	 Braces must line up horizontally or vertically.
•	 No magic numbers may be used.
•	 Every method, except for main and overridden methods, must have a comment.
•	 At most 30 lines of code may be used per method.
•	 No continue or break is allowed.
•	 All non-final variables must be private.

Note to the instructor: Of course, many programmers and organizations have strong
feelings about coding style. If this style guide is incompatible with your own prefer-
ences or with local custom, please feel free to modify it. For that purpose, this coding
style guide is available in electronic form at www.wiley.com/college/horstmann and in the
WileyPLUS course for this book.

948  Appendix L  Java Language Coding Guidelines

Source Files
Each Java program is a collection of one or more source files. The executable program
is obtained by compiling these files. Organize the material in each file as follows:

•	 package statement, if appropriate
•	 import statements
•	 A comment explaining the purpose of this file
•	 A public class
•	 Other classes, if appropriate
The comment explaining the purpose of this file should be in the format recognized
by the javadoc utility. Start with a /**, and use the @author and @version tags:

/**
 Classes to manipulate widgets.
 Solves CS101 homework assignment #3
 COPYRIGHT (C) 2013 Harry Morgan. All Rights Reserved.
 @author Harry Morgan
 @version 1.01 2013-02-15
*/

Classes

Each class should be preceded by a class comment explaining the purpose of the class.
First list all public features, then all private features.
Within the public and private sections, use the following order:

1.	Instance variables
2.	Static variables
3.	Constructors
4.	Instance methods
5.	Static methods
6.	Inner classes

Leave a blank line after every method.
All non-final variables must be private. (However, instance variables of a private

inner class may be public.) Methods and final variables can be either public or private,
as appropriate.

All features must be tagged public or private. Do not use the default visibility (that
is, package visibility) or the protected attribute.

Avoid static variables (except final ones) whenever possible. In the rare instance
that you need static variables, you are permitted one static variable per class.

Appendix L  Java Language Coding Guidelines   949

Methods
Every method (except for main) starts with a comment in javadoc format.

/**
 Convert calendar date into Julian day.
 Note: This algorithm is from Press et al., Numerical Recipes
 in C, 2nd ed., Cambridge University Press, 1992.
 @param day day of the date to be converted
 @param month month of the date to be converted
 @param year year of the date to be converted
 @return the Julian day number that begins at noon of the
 given calendar date.
*/
public static int getJulianDayNumber(int day, int month, int year)
{
 . . .
}

Parameter variable names must be explicit, especially if they are integers or Boolean:
public Employee remove(int d, double s)
 // Huh?
public Employee remove(int department, double severancePay)
 // OK

Methods must have at most 30 lines of code. The method signature, comments, blank
lines, and lines containing only braces are not included in this count. This rule forces
you to break up complex computations into separate methods.

Variables and Constants
Do not define all variables at the beginning of a block:

{
 double xold; // Don’t
 double xnew;
 boolean done;
 . . .
}

Define each variable just before it is used for the first time:
{
 . . .
 double xold = Integer.parseInt(input);
 boolean done = false;
 while (!done)
 {
 double xnew = (xold + a / xold) / 2;
 . . .
 }
 . . .
}

950  Appendix L  Java Language Coding Guidelines

Do not define two variables on the same line:
int dimes = 0, nickels = 0; // Don’t

Instead, use two separate definitions:
int dimes = 0; // OK
int nickels = 0;

In Java, constants must be defined with the reserved word final. If the constant is
used by multiple methods, declare it as static final. It is a good idea to define static
final variables as private if no other class has an interest in them.

Do not use magic numbers! A magic number is a numeric constant embedded in
code, without a constant definition. Any number except -1, 0, 1, and 2 is considered
magic:

if (p.getX() < 300) // Don’t

Use final variables instead:
final double WINDOW_WIDTH = 300;
. . .
if (p.getX() < WINDOW_WIDTH) // OK

Even the most reasonable cosmic constant is going to change one day. You think there
are 365 days per year? Your customers on Mars are going to be pretty unhappy about
your silly prejudice. Make a constant

public static final int DAYS_PER_YEAR = 365;

so that you can easily produce a Martian version without trying to find all the 365s,
364s, 366s, 367s, and so on, in your code.

When declaring array variables, group the [] with the type, not the variable.
int[] values; // OK
int values[]; // Ugh—this is an ugly holdover from C

When using collections, use type parameters and not “raw” types.
ArrayList<String> names = new ArrayList<String>(); // OK
ArrayList names = new ArrayList(); // Not OK

Control Flow

Statement Bodies
Use braces to enclose the bodies of branch and loop statements, even if they contain
only a single statement. For example,

if (x < 0)
{
 x++;
}

and not
if (x < 0)
 x++; // Not OK--no braces

Appendix L  Java Language Coding Guidelines   951

The for Statement
Use for loops only when a variable runs from somewhere to somewhere with some
constant increment/decrement:

for (int i = 0; i < a.length; i++)
{
 System.out.println(a[i]);

}

Or, even better, use the enhanced for loop:
for (int e : a)
{
 System.out.println(e);
}

Do not use the for loop for weird constructs such as
for (a = a / 2; count < ITERATIONS; System.out.println(xnew)) // Don’t

Make such a loop into a while loop. That way, the sequence of instructions is much
clearer:

a = a / 2;
while (count < ITERATIONS) // OK
{
 . . .
 System.out.println(xnew);
}

Nonlinear Control Flow
Avoid the switch statement, because it is easy to fall through accidentally to an
unwanted case. Use if/else instead.

Avoid the break or continue statements. Use another boolean variable to control the
execution flow.

Exceptions
Do not tag a method with an overly general exception specification:

Widget readWidget(Reader in) throws Exception // Bad

Instead, specifically declare any checked exceptions that your method may throw:
Widget readWidget(Reader in)
 throws IOException, MalformedWidgetException // Good

Do not “squelch” exceptions:
try
{
 double price = in.readDouble();
}
catch (Exception e)
{ } // Bad

Beginners often make this mistake “to keep the compiler happy”. If the current
method is not appropriate for handling the exception, simply use a throws specifica-
tion and let one of its callers handle it.

952  Appendix L  Java Language Coding Guidelines

Lexical Issues

Naming Conventions
The following rules specify when to use upper- and lowercase letters in identifier
names:

•	 All variable and method names are in lowercase (maybe with an occasional
upperCase in the middle); for example, firstPlayer.

•	 All constants are in uppercase (maybe with an occasional UNDER_SCORE); for
example, CLOCK_RADIUS.

•	 All class and interface names start with uppercase and are followed by lowercase
letters (maybe with an occasional UpperCase letter); for example, BankTeller.

•	 Generic type variables are in uppercase, usually a single letter.

Names must be reasonably long and descriptive. Use firstPlayer instead of fp. No
drppng f vwls. Local variables that are fairly routine can be short (ch, i) as long as they
are really just boring holders for an input character, a loop counter, and so on. Also,
do not use ctr, c, cntr, cnt, c2 for variables in your method. Surely these variables all
have specific purposes and can be named to remind the reader of them (for example,
current, next, previous, result, . . .). However, it is customary to use single-letter names,
such as T or E for generic types.

Indentation and White Space
Use tab stops every three columns. That means you will need to change the tab stop
setting in your editor!

Use blank lines freely to separate parts of a method that are logically distinct.
Use a blank space around every binary operator:
x1 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);
// Good

x1=(-b-Math.sqrt(b*b-4*a*c))/(2*a);
// Bad

Leave a blank space after (and not before) each comma or semicolon. Do not leave a
space before or after a parenthesis or bracket in an expression. Leave spaces around
the (. . .) part of an if, while, for, or catch statement.

if (x == 0) { y = 0; }

f(a, b[i]);

Every line must fit in 80 columns. If you must break a statement, add an indentation
level for the continuation:

a[n] = ..
 +;

Start the indented line with an operator (if possible).

Appendix L  Java Language Coding Guidelines   953

Braces
Opening and closing braces must line up, either horizontally or vertically:

while (i < n) { System.out.println(a[i]); i++; }

while (i < n)
{
 System.out.println(a[i]);
 i++;
}

Some programmers don’t line up vertical braces but place the { behind the reserved
word:

while (i < n) { // DON’T
 System.out.println(a[i]);
 i++;
}

Doing so makes it hard to check that the braces match.

Unstable Layout
Some programmers take great pride in lining up certain columns in their code:

firstRecord = other.firstRecord;
lastRecord = other.lastRecord;
cutoff = other.cutoff;

This is undeniably neat, but the layout is not stable under change. A new variable
name that is longer than the preallotted number of columns requires that you move
all entries around:

firstRecord = other.firstRecord;
lastRecord = other.lastRecord;
cutoff = other.cutoff;
marginalFudgeFactor = other.marginalFudgeFactor;

This is just the kind of trap that makes you decide to use a short variable name like mff
instead. Use a simple layout that is easy to maintain as your programs change.

955

Glossary

Abstract class  A class that cannot be instantiated.

Abstract method  A method with a name, parameter variable types, and return type but
without an implementation.

Accessor method  A method that accesses an object but does not change it.

Aggregation  The has-a relationship between classes.

Algorithm  An unambiguous, executable, and terminating specification of a way to solve a
problem.

Anonymous class  A class that does not have a name.

Anonymous object  An object that is not stored in a named variable.

API (Application Programming Interface)  A code library for building programs.

API Documentation  Information about each class in the Java library.

Applet  A graphical Java program that executes inside a web browser or applet viewer.

Argument  A value supplied in a method call, or one of the values combined by an operator.

Array  A collection of values of the same type stored in contiguous memory locations, each
of which can be accessed by an integer index.

Array list  A Java class that implements a dynamically-growable array of objects.

Assignment  Placing a new value into a variable.

Association  A relationship between classes in which one can navigate from objects of one
class to objects of the other class, usually by following object references.

Asymmetric bounds  Bounds that include the starting index but not the ending index.

Attribute  A named property that an object is responsible for maintaining.

Auto-boxing  Automatically converting a primitive type value into a wrapper type object.

Balanced tree  A tree in which each subtree has the property that the number of descen-
dants to the left is approximately the same as the number of descendants to the right.

Big-Oh notation  The notation g(n) = O(f(n)), which denotes that the function g grows
at a rate that is bounded by the growth rate of the function f with respect to n. For example,
10n2 + 100n - 1000 = O(n2).

Binary file  A file in which values are stored in their binary representation and cannot be
read as text.

Binary operator  An operator that takes two arguments, for example + in x + y.

Binary search  A fast algorithm for finding a value in a sorted array. It narrows the search
down to half of the array in every step.

Binary search tree  A binary tree in which each subtree has the property that all left descen-
dants are smaller than the value stored in the root, and all right descendants are larger.

Binary tree  A tree in which each node has at most two child nodes.

Bit  Binary digit; the smallest unit of information, having two possible values: 0 and 1. A data
element consisting of n bits has 2n possible values.

956  Glossary

Black-box testing  Testing a method without knowing its implementation.

Block  A group of statements bracketed by {}.

Boolean operator  An operator that can be applied to Boolean values. Java has three Bool-
ean operators: &&, ||, and !.

Boolean type  A type with two possible values: true and false.

Border layout  A layout management scheme in which components are placed into the
center or one of the four borders of their container.

Boundary test case  A test case involving values that are at the outer boundary of the set of
legal values. For example, if a method is expected to work for all nonnegative integers, then 0
is a boundary test case.

Bounds error  Trying to access an array element that is outside the legal range.

break statement  A statement that terminates a loop or switch statement.

Buffer  A temporary storage location for holding values that have been produced (for exam-
ple, characters typed by the user) and are waiting to be consumed (for example, read a line at
a time).

Bug  A programming error.

Byte  A number made up of eight bits. Essentially all currently manufactured computers use
a byte as the smallest unit of storage in memory.

Bytecode  Instructions for the Java virtual machine.

Call stack  The ordered set of all methods that currently have been called but not yet termi-
nated, starting with the current method and ending with main.

Case sensitive  Distinguishing upper- and lowercase characters.

Cast  Explicitly converting a value from one type to a different type. For example, the cast
from a floating-point number x to an integer is expressed in Java by the cast notation (int) x.

catch clause  A part of a try block that is executed when a matching exception is thrown by
any statement in the try block.

Central processing unit (CPU)  The part of a computer that executes the machine
instructions.

Character  A single letter, digit, or symbol.

Check box  A user-interface component that can be used for a binary selection.

Checked exception  An exception that the compiler checks. All checked exceptions must
be declared or caught.

Class  A programmer-defined data type.

Client  A computer program or system that issues requests to a server and processes the
server responses.

Cohesion  A class is cohesive if its features support a single abstraction.

Collection  A data structure that provides a mechanism for adding, removing, and locating
elements.

Collaborator  A class on which another class depends.

Combo box  A user-interface component that combines a text field with a drop-down list of
selections.

 Glossary  957

Command line  The line the user types to start a program in DOS or UNIX or a command
window in Windows. It consists of the program name followed by any necessary arguments.

Comment  An explanation to help the human reader understand a section of a program;
ignored by the compiler.

Compiler  A program that translates code in a high-level language (such as Java) to machine
instructions (such as bytecode for the Java virtual machine).

Compile-time error  An error that is detected when a program is compiled.

Component  See User-interface component

Composition  An aggregation relationship where the aggregated objects do not have an
existence independent of the containing object.

Computer program  A sequence of instructions that is executed by a computer.

Concatenation  Placing one string after another to form a new string.

Concrete class  A class that can be instantiated.

Condition object  An object that manages threads that currently cannot proceed.

Console program  A Java program that does not have a graphical window. A console pro-
gram reads input from the keyboard and writes output to the terminal screen.

Constant  A value that cannot be changed by a program. In Java, constants are defined with
the reserved word final.

Constructor  A sequence of statements for initializing a newly instantiated object.

Container  A user-interface component that can hold other components and present them
together to the user. Also, a data structure, such as a list, that can hold a collection of objects
and present them individually to a program.

Content pane  The part of a Swing frame that holds the user-interface components of the
frame.

Coupling  The degree to which classes are related to each other by dependency.

CRC card  An index card representing a class that lists its responsibilities and collaborating
classes.

De Morgan’s Law  A law about logical operations that describes how to negate expressions
formed with and and or operations.

Deadlock  A state in which no thread can proceed because each thread is waiting for another
to do some work first.

Deadly embrace  A set of blocked threads, each of which could only be unblocked by the
action of other threads in the set.

Debugger  A program that lets a user run another program one or a few steps at a time, stop
execution, and inspect the variables in order to analyze it for bugs.

Dependency  The uses relationship between classes, in which one class needs services pro-
vided by another class.

Directory  A structure on a disk that can hold files or other directories; also called a folder.

Dot notation  The notation object.method(arguments) or object.variable used to invoke a
method or access a variable.

Doubly-linked list  A linked list in which each link has a reference to both its predecessor
and successor links.

958  Glossary

DTD (Document Type Definition)  A sequence of rules that describes the legal child ele-
ments and attributes for each element type in an SGML or XML document.

Dynamic method lookup  Selecting a method to be invoked at run time. In Java, dynamic
method lookup considers the class of the implicit parameter object to select the appropriate
method.

Editor  A program for writing and modifying text files.

Embedded system  The processor, software, and supporting circuitry that is included in a
device other than a computer.

Encapsulation  The hiding of implementation details.

Enumeration type  A type with a finite number of values, each of which has its own sym-
bolic name.

Escape character  A character in text that is not taken literally but has a special meaning
when combined with the character or characters that follow it. The \ character is an escape
character in Java strings.

Escape sequence  A sequence of characters that starts with an escape character, such as \n
or \".

Event  See User-interface event

Event class  A class that contains information about an event, such as its source.

Event adapter  A class that implements an event listener interface by defining all methods
to do nothing.

Event handler  A method that is executed when an event occurs.

Event listener  An object that is notified by an event source when an event occurs.

Event source  An object that can notify other classes of events.

Exception  A class that signals a condition that prevents the program from continuing nor-
mally. When such a condition occurs, an object of the exception class is thrown.

Exception handler  A sequence of statements that is given control when an exception of a
particular type has been thrown and caught.

Explicit parameter  A parameter of a method other than the object on which the method is
invoked.

Expression  A syntactical construct that is made up of constants, variables, method calls,
and the operators combining them.

Extension  The last part of a file name, which specifies the file type. For example, the
extension .java denotes a Java file.

Fibonacci numbers  The sequence of numbers 1, 1, 2, 3, 5, 8, 13, . . . , in which every term is
the sum of its two predecessors.

File  A sequence of bytes that is stored on disk.

File pointer  The position within a random-access file of the next byte to be read or written.
It can be moved so as to access any byte in the file.

finally clause  A part of a try block that is executed no matter how the try block is exited.

Flag  See Boolean type

Floating-point number  A number that can have a fractional part.

Flow layout  A layout management scheme in which components are laid out left to right.

 Glossary  959

Flushing a stream  Sending all characters that are still held in a buffer to their destination.

Folder  See Directory

Font  A set of character shapes in a particular style and size.

Foreign key  A reference to a primary key in a linked table.

Frame  A window with a border and a title bar.

Garbage collection  Automatic reclamation of memory occupied by objects that are no
longer referenced.

Generic class  A class with one or more type parameters.

Generic method  A method with one or more type parameters.

Generic programming  Providing program components that can be reused in a wide vari-
ety of situations.

Grammar  A set of rules that specifies which sequences of tokens are legal for a particular
document set.

Graphics context  A class through which a programmer can cause shapes to appear on a
window or off-screen bitmap.

grep  The “global regular expression print” search program, useful for finding all strings
matching a pattern in a set of files.

Grid layout  A layout management scheme in which components are placed into a two-
dimensional grid.

GUI (Graphical User Interface)  A user interface in which the user supplies inputs through
graphical components such as buttons, menus, and text fields.

Hard disk  A device that stores information on rotating platters with magnetic coating.

Hardware  The physical equipment for a computer or another device.

Hash code  A value that is computed by a hash function.

Hash collision  Two different objects for which a hash function computes identical values.

Hash function  A function that computes an integer value from an object in such a way that
different objects are likely to yield different values.

Hash table  A data structure in which elements are mapped to array positions according to
their hash function values.

Hashing  Applying a hash function to a set of objects.

Heap  A balanced binary tree that is used for implementing sorting algorithms and priority
queues.

Heapsort algorithm  A sorting algorithm that inserts the values to be sorted into a heap.

High-level programming language  A programming language that provides an abstract
view of a computer and allows programmers to focus on their problem domain.

HTML (Hypertext Markup Language)  The language in which web pages are described.

HTTP (Hypertext Transfer Protocol)  The protocol that defines communication between
web browsers and web servers.

IDE (Integrated Development Environment)  A programming environment that includes
an editor, compiler, and debugger. 

960  Glossary

Implementing an interface  Implementing a class that defines all methods specified in the
interface.

Implicit parameter  The object on which a method is invoked. For example, in the call
x.f(y), the object x is the implicit parameter of the method f.

Importing a class or package  Indicating the intention of referring to a class, or all classes
in a package, by the simple name rather than the qualified name.

Inheritance  The is-a relationship between a more general superclass and a more specialized
subclass.

Initialization  Setting a variable to a well-defined value when it is created.

Inner class  A class that is defined inside another class.

Instance method  A method with an implicit parameter; that is, a method that is invoked
on an instance of a class.

Instance of a class  An object whose type is that class.

Instance variable  A variable defined in a class for which every object of the class has its
own value.

Instantiation of a class  Construction of an object of that class.

Integer  A number that cannot have a fractional part.

Integer division  Taking the quotient of two integers and discarding the remainder. In Java
the / symbol denotes integer division if both arguments are integers. For example, 11/4 is 2,
not 2.75.

Interface  A type with no instance variables, only abstract methods and constants.

Internet  A worldwide collection of networks, routing equipment, and computers using a
common set of protocols that define how participants interact with each other.

Iterator  An object that can inspect all elements in a container such as a linked list.

JavaBean  A class with a no-argument constructor that exposes properties through its get
and set methods.

javadoc  The documentation generator in the Java SDK. It extracts documentation com-
ments from Java source files and produces a set of linked HTML files.

JavaServer Faces (JSF)  A framework for developing web applications that aids in the sep-
aration of user interface and program logic.

JDBC (Java Database Connectivity)  The technology that enables a Java program to inter
act with relational databases.

JDK  The Java software development kit that contains the Java compiler and related develop-
ment tools.

Join  A database query that involves multiple tables.

JSF container  A program that executes JSF applications.

JVM  The Java Virtual Machine.

Layout manager  A class that arranges user-interface components inside a container.

Lazy evaluation  Deferring the computation of a value until it is needed, thereby avoiding
the computation if the value is never needed.

Lexicographic ordering  Ordering strings in the same order as in a dictionary, by skipping
all matching characters and comparing the first non-matching characters of both strings. For

 Glossary  961

example, “orbit” comes before “orchid” in lexicographic ordering. Note that in Java, unlike a
dictionary, the ordering is case sensitive: Z comes before a.

Library  A set of precompiled classes that can be included in programs.

Linear search  Searching a container (such as an array or list) for an object by inspecting
each element in turn.

Linked list  A data structure that can hold an arbitrary number of objects, each of which is
stored in a link object, which contains a pointer to the next link.

Literal  A constant value in a program that is explicitly written as a number, such as –2 or
6.02214115E23, or as a character sequence, such as "Harry".

Local variable  A variable whose scope is a block.

Lock  A data structure to regulate the scheduling of multiple threads. Once a thread has
acquired a lock, other threads that also wish to acquire it must wait until the first thread relin-
quishes it.

Lock object  An object that allows a single thread to execute a section of a program.

Logging  Sending messages that trace the progress of a program to a file or window.

Logical operator  See Boolean operator.

Logic error  An error in a syntactically correct program that causes it to act differently from
its specification. (A form of run-time error.)

Loop  A sequence of instructions that is executed repeatedly.

Loop and a half  A loop whose termination decision is neither at the beginning nor at the
end.

Machine code  Instructions that can be executed directly by the CPU.

Magic number  A number that appears in a program without explanation.

main method  The method that is first called when a Java application executes.

Managed bean  A JavaBean that is managed by a JSF container.

Map  A data structure that keeps associations between key and value objects.

Markup  Information about data that is added as humanly readable instructions. An exam-
ple is the tagging of HTML documents with elements such as <h1> or .

Memory location  A value that specifies the location of data in computer memory.

Merge sort  A sorting algorithm that first sorts two halves of a data structure and then
merges the sorted subarrays together.

Metadata  Data that describe properties of a data set.

Method  A sequence of statements that has a name, may have parameter variables, and may
return a value. A method can be invoked any number of times, with different values for its
parameter variables.

Method expression  In JSF, an expression describing a bean and a method that is to be
applied to the bean at a later time.

Mixed content  In XML, a markup element that contains both text and other elements.

Modifier  A reserved word that indicates the accessibility of a feature, such as private or
public.

Modulus  The % operator that computes the remainder of an integer division.

962  Glossary

Mutator method  A method that changes the state of an object.

Mutual recursion  Cooperating methods that call each other.

Name clash  Accidentally using the same name to denote two program features in a way
that cannot be resolved by the compiler.

Navigation rule  In JSF, a rule that describes when to move from one web page to another.

Nested loop  A loop that is contained in another loop.

Networks  An interconnected system of computers and other devices.

new operator  An operator that allocates new objects.

Newline  The '\n' character, which indicates the end of a line.

Null reference  A reference that does not refer to any object.

Number literal  A constant value in a program this is explicitly written as a number, such as
–2 or 6.02214115E23.

Object  A value of a class type.

Object-oriented programming  Designing a program by discovering objects, their
properties, and their relationships.

Object reference  A value that denotes the location of an object in memory. In Java, a
variable whose type is a class contains a reference to an object of that class.

Off-by-one error  A common programming error in which a value is one larger or smaller
than it should be.

Opening a file  Preparing a file for reading or writing.

Operating system  The software that launches application programs and provides services
(such as a file system) for those programs.

Operator  A symbol denoting a mathematical or logical operation, such as + or &&.

Operator associativity  The rule that governs in which order operators of the same
precedence are executed. For example, in Java the - operator is left-associative because
a - b - c is interpreted as (a - b) - c, and = is right-associative because a = b = c is interpreted
as a = (b = c).

Operator precedence  The rule that governs which operator is evaluated first. For exam-
ple, in Java the && operator has a higher precedence than the || operator. Hence a || b && c is
interpreted as a || (b && c). (See Appendix B.)

Overloading  Giving more than one meaning to a method name.

Overriding  Redefining a method in a subclass.

Package  A collection of related classes. The import statement is used to access one or more
classes in a package.

Panel  A user-interface component with no visual appearance. It can be used to group other
components.

Parallel arrays  Arrays of the same length, in which corresponding elements are logically
related.

Parameter  An item of information that is specified to a method when the method is called.
For example, in the call System.out.println(“Hello, World!”), the parameters are the implicit
parameter System.out and the explicit parameter “Hello, World!”.

Parameter passing  Specifying expressions to be arguments for a method when it is called.

 Glossary  963

Parameter variable  A variable of a method that is initialized with a value when the method
is called.

Parse tree  A tree structure that shows how a string conforms to the rules of a grammar.

Parser  A program that reads a document, checks whether it is syntactically correct, and
takes some action as it processes the document.

Partially filled array  An array that is not filled to capacity, together with a companion
variable that indicates the number of elements actually stored.

Permutation  A rearrangement of a set of values.

Polymorphism  Selecting a method among several methods that have the same name on the
basis of the actual types of the implicit parameters.

Postfix operator  A unary operator that is written after its argument.

Prefix operator  A unary operator that is written before its argument.

Prepared statement  A SQL statement with a precomputed query strategy.

Primary key  A column (or combination of columns) whose value uniquely specifies a table
record.

Primitive type  In Java, a number type or boolean.

Priority queue  An abstract data type that enables efficient insertion of elements and effi-
cient removal of the smallest element.

Programming  The act of designing and implementing computer programs.

Project  A collection of source files and their dependencies.

Prompt  A string that tells the user to provide input.

Property  A named value that is managed by a component.

Pseudocode  A high-level description of the actions of a program or algorithm, using a mix-
ture of English and informal programming language syntax.

Pseudorandom number  A number that appears to be random but is generated by a math-
ematical formula.

Public interface  The features (methods, variables, and nested types) of a class that are
accessible to all clients.

Queue  A collection of items with “first in, first out” retrieval.

Quicksort  A generally fast sorting algorithm that picks an element, called the pivot, parti-
tions the sequence into the elements smaller than the pivot and those larger than the pivot, and
then recursively sorts the subsequences.

Race condition  A condition in which the effect of multiple threads on shared data depends
on the order in which the threads are scheduled.

Radio button  A user-interface component that can be used for selecting one of several
options.

RAM (random-access memory)  Electronic circuits in a computer that can store code and
data of running programs.

Random access  The ability to access any value directly without having to read the values
preceding it.

Reader  In the Java input/output library, a class from which to read characters.

964  Glossary

Recursion  A method for computing a result by decomposing the inputs into simpler values
and applying the same method to them.

Recursive method  A method that can call itself with simpler values. It must handle the
simplest values without calling itself.

Red-black tree  A kind of binary search tree that rebalances itself after each insertion and
removal.

Redirection  Linking the input or output of a program to a file instead of the keyboard or
display.

Reference  See Object reference

Regular expression  A string that defines a set of matching strings according to their con-
tent. Each part of a regular expression can be a specific required character; one of a set of per-
mitted characters such as [abc], which can be a range such as [a-z]; any character not in a set
of forbidden characters, such as [^0-9]; a repetition of one or more matches, such as [0-9]+, or
zero or more, such as [ACGT]; one of a set of alternatives, such as and|et|und; or various other
possibilities. For example, “[A-Za-z][0-9]+” matches “Cloud9” or “007” but not “Jack”.

Relational database  A data repository that stores information in tables and retrieves data
as the result of queries that are formulated in terms of table relationships.

Relational operator  An operator that compares two values, yielding a Boolean result.

Reserved word  A word that has a special meaning in a programming language and there-
fore cannot be used as a name by the programmer.

Return value  The value returned by a method through a return statement.

Reverse Polish notation  A style of writing expressions in which the operators are written
following the operands, such as 2 3 4 * + for 2 + 3 * 4.

Roundoff error  An error introduced by the fact that the computer can store only a finite
number of digits of a floating-point number.

Runnable thread  A thread that can proceed provided it is given a time slice to do work.

Run-time error  An error in a syntactically correct program that causes it to act differently
from its specification.

Run-time stack  The data structure that stores the local variables of all called methods as a
program runs.

Scope  The part of a program in which a variable is defined.

Secondary storage  Storage that persists without electricity, e.g., a hard disk.

Selection sort  A sorting algorithm in which the smallest element is repeatedly found and
removed until no elements remain.

Sentinel  A value in input that is not to be used as an actual input value but to signal the end
of input.

Sequential access  Accessing values one after another without skipping over any of them.

Sequential search  See Linear search

Serialization  The process of saving an object, and all the objects that it references, to a
stream.

Set  An unordered collection that allows efficient addition, location, and removal of elements.

Shadowing  Hiding a variable by defining another one with the same name.

 Glossary  965

Shell script  A file that contains commands for running programs and manipulating files.
Typing the name of the shell script file on the command line causes those commands to be
executed.

Shell window  A window for interacting with an operating system through textual
commands.

Short-circuit evaluation  Evaluating only a part of an expression if the remainder cannot
change the result.

Sign bit  The bit of a binary number that indicates whether the number is positive or negative.

Socket  An object that encapsulates a TCP/IP connection. To communicate with the other
endpoint of the connection, you use the input and output streams attached to the socket.

Software  The intangible instructions and data that are necessary for operating a computer
or another device.

Source code  Instructions in a programming language that need to be translated before exe-
cution on a computer.

Source file  A file containing instructions in a programming language such as Java.

SQL (Structured Query Language)  A command language for interacting with a database.

Stack  A data structure with “last-in, first-out” retrieval. Elements can be added and
removed only at one position, called the top of the stack.

Stack trace  A printout of the call stack, listing all currently pending method calls.

State  The current value of an object, which is determined by the cumulative action of all
methods that were invoked on it.

State diagram  A diagram that depicts state transitions and their causes.

Statement  A syntactical unit in a program. In Java a statement is either a simple statement,
a compound statement, or a block.

Static method  A method with no implicit parameter.

Static variable  A variable defined in a class that has only one value for the whole class, and
which can be accessed and changed by any method of that class.

Stepwise refinement  The process of solving a problem that starts out with a subdivision
into steps, then continues by further subdividing those steps.

Stored procedure  A database procedure that is executed in the database kernel.

Stream  An abstraction for a sequence of bytes from which data can be read or to which data
can be written.

String  A sequence of characters.

Stub  A method with no or minimal functionality.

Subclass  A class that inherits variables and methods from a superclass but adds instance
variables, adds methods, or redefines methods.

Substitution principle  The principle that a subclass object can be used in place of any
superclass object.

Superclass  A general class from which a more specialized class (a subclass) inherits.

Swing  A Java toolkit for implementing graphical user interfaces.

Symmetric bounds  Bounds that include the starting index and the ending index.

966  Glossary

Synchronized block  A block of code that is controlled by a lock. To start execution, a
thread must acquire the lock. Upon completion, it relinquishes the lock.

Synchronized method  A method that is controlled by a lock. In order to execute the
method, the calling thread must acquire the lock.

Syntax  Rules that define how to form instructions in a particular programming language.

Syntax diagram  A graphical representation of grammar rules.

Syntax error  An instruction that does not follow the programming language rules and is
rejected by the compiler. (A form of compile-time error.)

Tab character  The '\t' character, which advances the next character on the line to the next
one of a set of fixed positions known as tab stops.

TCP/IP (Transmission Control Protocol/Internet Protocol)  The pair of communica-
tion protocols that is used to establish reliable transmission of data between two computers on
the Internet.

Ternary operator  An operator with three arguments. Java has one ternary operator,
a ? b : c.

Text field  A user-interface component that allows a user to provide text input.

Text file  A file in which values are stored in their text representation.

Thread  A program unit that is executed independently of other parts of the program.

Three-tier application  An application that is composed of separate tiers for presentation
logic, business logic, and data storage.

Throwing an exception  Indicating an abnormal condition by terminating the normal con-
trol flow of a program and transferring control to a matching catch clause.

throws specifier  Indicates the types of the checked exceptions that a method may throw.

Time slice  A small amount of time used when scheduling threads. Each thread is given a
small amount of time (a slice) in which to do its work, then control is given to another thread.

Token  A sequence of consecutive characters from an input source that belongs together for
the purpose of analyzing the input. For example, a token can be a sequence of characters other
than white space.

Trace message  A message that is printed during a program run for debugging purposes.

Transaction  A set of database operations that should either succeed in their entirety, or not
happen at all.

Tree  A data structure consisting of nodes, each of which has a list of child nodes, and one of
which is distinguished as the root node.

try block  A block of statements that contains exception processing clauses. A try block
contains at least one catch or finally clause.

Turing machine  A very simple model of computation that is used in theoretical computer
science to explore computability of problems.

Two-dimensional array  A tabular arrangement of elements in which an element is speci-
fied by a row and a column index.

Type  A named set of values and the operations that can be carried out with them.

Type parameter  A parameter in a generic class or method that can be replaced with an
actual type.

 Glossary  967

Type variable  A variable in the declaration of a generic type that can be instantiated with
a type.

Unary operator  An operator with one argument.

Unchecked exception  An exception that the compiler doesn’t check.

Unicode  A standard code that assigns code values consisting of two bytes to characters used
in scripts around the world. Java stores all characters as their Unicode values.

Unified Modeling Language (UML)  A notation for specifying, visualizing, constructing,
and documenting the artifacts of software systems.

Uninitialized variable  A variable that has not been set to a particular value. In Java, using
an uninitialized local variable is a syntax error.

Unit test  A test of a method by itself, isolated from the remainder of the program.

URL (Uniform Resource Locator)  A pointer to an information resource (such as a web
page or an image) on the World Wide Web.

User-interface component  A building block for a graphical user interface, such as a but-
ton or a text field. User-interface components are used to present information to the user and
allow the user to enter information to the program.

User-interface event  A notification to a program that a user action such as a key press,
mouse move, or menu selection has occurred.

Value expression  In JSF, an expression describing a bean and a property that is to be
accessed at a later time.

Variable  A symbol in a program that identifies a storage location that can hold different
values.

Virtual machine  A program that simulates a CPU that can be implemented efficiently on
a variety of actual machines. A given program in Java bytecode can be executed by any Java
virtual machine, regardless of which CPU is used to run the virtual machine itself.

void  A reserved word indicating no type or an unknown type.

Walkthrough  A step-by-step manual simulation of a computer program.

Web application  An application that executes on a web server and whose user interface is
displayed in a web browser.

White space  Any sequence of only space, tab, and newline characters.

Wrapper class  A class that contains a primitive type value, such as Integer.

Writer  In the Java input/output library, a class to which characters are to be sent.

XML (Extensible Markup Language)  A simple format for structured data in which the
structure is indicated by markup instructions.

969

Index

Symbols
& (ampersand), binary and, 941
&& (ampersands), and operator

definition, 111
flowchart, 112
negating, 115–116
vs. or operator, 114
short-circuit evaluation, 114–115

* (asterisk), multiplication operator, 41
\ (backslash)

escape character, 60, 321
in string literals, 321

{ } (braces)
coding guidelines, 953
layout, 86
matching, 86
readability, 86

^ (caret)
convert letters to uppercase, 328t
exclusive or, 941
XOR, 941

: (colon), path separator, 877
, (comma)

separating arguments, 13
show decimal separators, 328

$ (dollar sign), in variable names, 33
" (double quote), String character

delimiter, 61
= (equal sign)

assignment statement, 34
vs. equal signs (==), 89

== (equal signs)
comparing strings, 90, 92
equal operator, 88–89
vs. equal sign (=), 89

! (exclamation point), not operator, 112
!= (exclamation point, equal), not equal

operator, 88–89
> (greater than), comparison operator, 88–89
>= (greater than, equal), comparison

operator, 88–89
- (hyphen), indicating program options, 330
<< (left angle brackets), left shift, 941

((left paren), enclose negative numbers in
parentheses, 328

< (less than), comparison operator, 88–89
<= (less than, equal), comparison

operator, 88–89
- (minus sign)

left alignment, 328
subtraction operator, 41

-- (minus signs), decrement operator, 41
() (parentheses)

balancing, 693
enclosing arguments, 13
in expressions, unbalanced, 46–47

% (percent sign)
in format specifiers, 329
modulus operator, description, 42
modulus operator, online example, 45

+ (plus sign)
addition operator, 41
concatenation operator, 59–60
for positive numbers, 328

++ (plus signs), increment operator, 41
? (question mark), conditional operator, 87

See also if statements
>> (right angle brackets), right shift with sign

extension, 941
>>> (right angle brackets), right shift with

zero extension, 941
; (semicolon)

after an if condition, 86–87
ending Java statements, 12–13
omitting, 14
path separator, 877

' (single quote), character literal
delimiter, 61

/ (slash), division operator, 41, 42
/**...*/ (slash asterisks...), documentation

comment delimiter, 36, 207, 923,
933–934

/*...*/ (slash asterisk...), long comment
delimiter, 36, 923

// (slashes), short comment delimiter,
35–36, 923

970  Index

~ (tilde), unary negation, 941
_ (underscore), in variable names, 33
| (vertical line), binary or, 941
|| (vertical lines), or operator

definition, 111
flowchart, 112
negating, 115–116
vs. and operator, 114
short-circuit evaluation, 114–115

2D arrays. See arrays, two-dimensional

A

abs method, Math class, 44t, 882
absolute values, computing, 44t, 882
abstract classes, 434–435
AbstractButton class, 902
accept method, ServerSocket class, 888
accessor methods

data representation, 371–372
definition, 369

accounting fraud detection, video
example, 352

acos method, Math class, 882
action listeners. See event listeners
ActionListener interface, 471, 876
actionPerformed method, ActionListener

interface, 471–475, 876
actions, creating classes from, 551
actual parameters. See arguments
add method

ArrayList<E> class, 291, 893
with big number objects, 40
BigDecimal class, 887
BigInteger class, 888
ButtonGroup class, 511, 902
Collection<E> interface, 680–681, 895
Container class, 873
JMenu class, 522, 905
JMenuBar class, 522, 905
ListIterator<E> interface, 676, 681,

720, 897
Queue<E> interface, 691

addActionListener method, AbstractButton
class, 481, 902

addChangeListener method,
JSlider class, 530, 906

addFirst method, LinkedList<E> class, 674,
715–716, 896

addItem method, JComboBox class, 903
addKeyListener method, Component class,

540, 872
addLast method, LinkedList<E> class, 674,

722, 896
addMouseListener method

Component class, 872
MouseListener interface, 536

Address.java class, 573
Adleman, Leonard, 336
aggregation relationships, 556, 560. See also

dependency relationships
algebraic expressions, with queues or stacks,

695–698
algorithms

for array lists, 295. See also arrays,
common algorithms

for arrays. See arrays,
common algorithms

definition, 19
encryption, 336
for loops. See loops, common algorithms

algorithms, designing
executable steps, 19
overview, 16–18
pseudocode, 18, 20–21
terminating steps, 19
unambiguous steps, 19

algorithms, examples
comparison shopping for cars, 20–21
dividing household expenses (video

example), 21
investment problem, 17–18

aligning lines of code, 953
aligning text with

format specifiers, 328
tabs, 87

alphabets, international, 66
Altair 8800 computer kit, 232
ampersand (&), binary and, 941
ampersands (&&), and operator

definition, 111
flowchart, 112
negating, 115–116
vs. or operator, 114
short-circuit evaluation, 114–115

Analytical Engine, 650
ancestors, 761

 Index  971

animations
sample program, 534–535
user-interface, 533–535

anonymous inner classes, 480–481
ANSI (American National Standards

Institute), 678
API (application programming interface),

definition, 53
API documentation, 53
append method, JTextArea class, 484, 906
appending

array list elements, 893
text to text areas, 484, 906

Apple II computer, 232
Apple Macintosh computer, 233
applets. See programs
application programmers, 53
application programming interface (API),

definition, 53
applications. See programs
Arabic characters, 66
arc cosine, computing, 882
arc sine, computing, 882
arc tangent, computing, 882–883
archive files, 932
args parameter, 331
arguments, methods

definition, 203
modifying, 209–210

arguments, passing to methods
from the command line, 330–333
overview, 207–209
syntax, 13

Ariane rocket incident, 347
arithmetic. See also numbers

combining with assignment
statements, 47

expressions. See expressions
arithmetic operations

* (asterisk), multiplication operator, 41
-- (minus signs), decrement operator, 41
% (percent sign), modulus, 42
++ (plus signs), increment operator, 41
/ (slash), division operator, 41, 42
abs method, 44t
cos method, 43t
exp method, 43t
log method, 43t

log10 method, 44t
max method, 44t
min method, 44t
PI method, 45t
pow method, 43t
round method, 44t
sin method, 43t
sqrt method, 43t
tan method, 43t
toDegrees method, 43t
toRadians method, 43t

array lists. See also arrays; collections
algorithms, 295. See also arrays,

common algorithms
vs. arrays, 296–297
auto-boxing, 294
constructors, 290–291
copying, 293
creating, 290–292, 893
definition, 289
diamond syntax, 299
efficiency, 732t
inserting primitive type values, 293–294
maximum value, finding, 295
as method arguments and return

values, 293
online example, 732
overview, 290–292
storing input values, 295
syntax, 290
type parameter, repeating, 299
wrapper classes, 293–294

array lists, buffer
definition, 728
growing, 731–733

array lists, elements
adding/removing, 295–296, 730–731
appending, 893
counting, 299, 894
current number, 729
getting, 893
getting and setting, 728–730
inserting, 893
removing, 893
replacing, 893

array references
copying, 253, 263–264
definition, 253

ArrayIndexOutOfBoundsException class, 275
ArrayList<E> class

declaring and using array lists, 290–292
description, 893
set method, 729–730

972  Index

arrays. See also array lists; collections
vs. array lists, 296–297
averaging values, 259
common algorithms, 258–266
companion variables, 254–255
converting to strings, 894
copying, 263–264, 894
declaring, 250–253
elements of, 251
filling, 257–258
maximum/minimum value, finding, 259
multidimensional, 289. See also arrays,

two-dimensional
of objects, converting from parallel

arrays, 561–562
online example, 254
overview, 250–253
parallel, converting to arrays of

objects, 561–562
partially filled, 254–255
reading input, 264–267
slot numbers. See indexes
stacks as, 735
storing heap nodes in, 796
summing values, 259
syntax, 251
traversing, 257–258
uses for, 256

arrays, common algorithms. See also array
lists, algorithms

adapting to new purposes, 272–274
animation, 261
averaging values, 259
copying array references, 263–264
copying arrays, 263–264
element separators, 259–260
increasing size of, 263–264
inserting elements, 261, 279
linear search, 260
maximum/minimum value, finding, 259
online example, 281
reading input, 264–267
removing elements, 260–261, 279
simulating with physical objects,

279–282
sorting by swapping elements, 262
summing values, 259
swapping elements, 262, 279–281

arrays, elements
accessing, 251, 253
animation, 261
counting, 299
definition, 251
inserting, 261, 279

multiplying by a given factor, 268–271
removing, 260–261, 279
removing duplicates (video example), 282
reversing, 270–271
separators, 259–260
swapping, 262, 279–281

arrays, examples
counting medal winners, 286–287
quiz scores, 275–278
rolling dice, 278

arrays, indexes
bounds errors, 252–253, 255, 275
definition, 251
starting number, 252

arrays, initializing
default values, 250–251
uninitialized arrays, 255
with zeroes, 257–258

arrays, length
definition, 250
increasing, 263–264
size requirements, estimating, 267

arrays, searching
binary search, 267–268, 894
linear search, 260, 646–647

arrays, sorting
with the Arrays.sort method, 267, 894
by swapping elements, 262

arrays, two-dimensional. See also
multidimensional arrays

accessing elements, 283–284
animation, 285
declaring, 283
definition, 282
locating neighboring elements, 284
passing as argument to a

method, 286–287
syntax, 283
totaling rows and columns, 285
tracing a nested loop (animation), 285

arrays, with methods
passing as arguments to methods,

268–269, 286–287
returning values from methods, 270
sample program, 270–271

Arrays class, 656–658, 894
ArrayUtil.java class, 630–631
artificial intelligence, 119
asin method, Math class, 882
assignment statements

assigning values to variables, 34

 Index  973

combining with arithmetic, 47
sample program, 36

association relationships, 560–561
asterisk (*), multiplication operator, 41
asymmetric bounds, 155
atan method, Math class, 882
atan2 method, Math class, 883
ATM, Worked Example, 573, 944
attributes

HTML, 927–928
UML, 559, 943–945

Augusta, Ada, 650
average method, 450–451
averages, calculating, 259, 449–454
await method, Condition interface, 901

B

Babbage, Charles, 650
baby naming

example, 337
backing up files, 11
backtracking, 612–618, 698–700
balanced trees, 766–767
bank account worked example, 385, 576,

847–850
BankAccount.java class, online example, 576
BankAccountTester.java class, online

example, 576
BankData.java class, 849–850
Bank.java class, 852
BankSimulator.java class, 848
bar charts

drawing on user-interface components,
487–489

visualizing investment growth, 492–496
Worked Examples, 500, 541

base directory, Java library packages,
576–577

BigDecimal class, 40, 887
BigInteger class, 40, 887–888
big-Oh notation, 635–637
binary data, reading/writing, 322–323,

841–842. See also Scanner
class; streams

binary format, definition, 840
binary input/output, 841–845

binary numbers
hexadecimal numbers, 940, 940t
IEEE floating-point numbers, 939
overflow errors, 937
overview, 935–936
powers of two, 936t
representing negative integers, 938
roundoff errors, 937
two’s complement integers, 938

binary operators, 914
binary search, arrays, 267–268
binary search trees. See also binary trees;

red-black trees; trees
definition, 769
efficiency, 774, 774t
finding nodes, 772
generic (Worked Example), 833
vs. heaps, 791
inserting nodes, 770–772
properties, 769–770
removing nodes, 772–774
sample program, 774–777
sets, 679–680

binary trees. See also binary search
trees; trees

balanced trees, 766–767
decision trees, 764
definition, 764
examples, 764–765
height, 766–767
Huffman trees, 765, 768
implementing, 767–768
online example, 768
showing evaluation order in

expressions, 765
Worked Example, 768

binarySearch method
Arrays class, 656–657, 894
Collections class, 656–657, 895

BinarySearcher.java class, 648–649
BinarySearchTree.java class, 774–777
bit operations, 941
black boxes, methods as, 202–203
Booch, Grady, 555
books and publications

Core Java 2...Fundamentals, 509
The Unified Modeling Language User

Guide, 563
Boole, George, 111
Boolean class, 294, 880

974  Index

Boolean variables and operators
controlling loops, 159–160
De Morgan’s Law, 115–116
inverting conditions, 112, 115–116
online example, 112
overview, 111–116. See also specific

variable and operator
truth tables, 111

booleanValue method, Boolean class, 880
BorderLayout class, 872
borders, user-interface components

adding titles, 512
BorderLayout class, 872
EtchedBorder class, 907
layout, 508
panel borders, 511–512
TitledBorder class, 907

boundary conditions, testing, 108
bounding boxes, drawing on user-interface

components, 489
bounds errors, 252–253, 255, 275
bounds for loops, choosing, 155
boxString method

online example, 214
printing a string in a box, 214–215

braces ({ })
coding guidelines, 953
layout, 86
matching, 86
readability, 86

branching, if statements
animation, 96, 100
code duplication, 88
multiple alternatives, 96–99
nesting branches, 100–102, 104

branching, switch statements, 99
breadth-first tree traversal, 781–783
break statements

in loops, 160–161
in switch statements, 99
syntax, 920–921

buffer, array lists
definition, 728
growing, 731–733

buffer overrun attack, 256
bugs, first actual case, 146. See

also debugging
ButtonFrame1.java class, 472–473
ButtonFrame2.java class, 474–475

ButtonGroup class
adding radio buttons, 511
definition, 902

buttons
creating, 468, 902
detecting. See events
grouping, 468, 902
labels, 468, 902

ButtonViewer1.java class, 473
by-hand computations. See tracing code
Byte class, 294
byte type, 40t
bytes

converting to characters, 841, 845
definition, 322, 840
negative values, 845

C

CaesarCipher.java class, 331–333, 842–844
CaesarEncryptor.java class, 844
Caesar’s cipher, 331–333, 842–845
Calculator.java class, 694–695
calculators, sample programs

income tax, 101–102
reverse Polish notation, 694–695
Worked Example, 521

Calendar class, 895. See also
GregorianCalendar class

calendars, 895–896
calling methods. See methods, calling
camel case, 33
capital letters. See case sensitivity
car shopping, example, 20–21
caret (^)

convert letters to uppercase, 328
exclusive or, 941
XOR, 941

cars, self-driving, 119
case sensitivity

definition, 9
Java programming language, 9
misspelling words, 16
variables, 33

cash register simulation, 367–369
CashRegister.java class

online examples, 372, 387, 554
sample program, 368–369, 377–378

CashRegisterTester.java class, 381–382

 Index  975

cast operator
converting double to int, 44–45
syntax, 44

casting data types, 444–446
catch clause, 339–341, 346
catching exceptions, 339–344, 345
“The Cathedral and the Bazaar,” 402
ceil method, Math class, 883
ceiling value, computing, 883
cell phone plans, evaluating (video

example), 161
CENTER position, user-interface

components, 508
central processing unit (CPU), 3
ChangeEvent class, 530, 907
ChangeListener interface

description, 907
stateChanged method, 530

char type
characters, 59
description, 40t

Character class, 294, 324, 880
character literals, delimiting, 61
characters. See also strings

Arabic, 66
char type, 59
Chinese, 66
classifying, 324
converting to, 841
definition, 59, 840
Egyptian hieroglyphics, 66
encoding, determining, 841
German, 66
Greek, 66
Hebrew, 66
international alphabets, 66
Korean, 66
reading from a string, 326
reading text files, 324
returning from strings, 61. See also

substrings
Russian, 66
sorting, 93
Thai, 66
Unicode, 66

charAt method, 61
ChartComponent2.java class, 491–492
ChartComponent.java class, 488, 494
ChartViewer2.java class, 492

ChartViewer.java class, 488–489
check boxes

creating, 511, 903
detecting box selection, 512
event listeners, 513

checked exceptions, 341–343
child nodes, 760–761
Chinese characters, 66
ChoiceQuestion.java class, 426–427
CircularArrayQueue.java class, 737–738
Class class, 880
class diagrams, UML, 555, 943–945
class files, definition, 9
class relationships

aggregation, 556, 560. See also
dependency relationships

association, 560–561
composition, 560–561
coupling, 555
dependency, 554–555. See also

aggregation relationships
has-a. See aggregation relationships
inheritance, 557–558
is-a. See inheritance, class relationships
knows-about. See dependency

relationships
multiplicities, 560
visualizing. See UML (Unified Modeling

Language)
classes. See also specific classes

abstract, 434–435
from actions, 551
API documentation, 53
bank account worked example, 385
coding guidelines, 948
cohesion, 553–554
collaborators, 552–553. See also

CRC cards
common mistakes, 551–552
concrete, 435
consistency, 561–562
creating methods for, 552–553
declaring, 12
definition, 12, 362
final, 435, 916
fully qualified names, 922
generic. See generic classes
identifying, 550–552
implementing, How To, 382–385
importing from packages, 49, 575,

922–923
vs. interface types, 449

976  Index

classes (continued)
listener, 473–475
loading, 880
locating in Java library packages, 576–577
main methods, 380
naming conventions, 33, 551
nouns as, 550
organizing into packages, 574–575
private implementation, 367–369
public. See public classes
static, 728
syntax, 914–916
tester, 380–382
testing, 380–382
unit testing, 380–382

classes, inner
anonymous, 480–481
declaring inside a method, 479–480
definition, 474
as event listeners, 473–475
local, 479–480

classes, online examples
CashRegister, 554
Coin, 554
Question, 556
Quiz, 556

classes, public interface
definition, 363
hiding implementation details.

See encapsulation
implementing, 364–367
specifying, 367–369

ClickListener.java class, 471–472
close method

automatic invocation, 346
closing a file, 319, 842
Connection class, 890
InputStream class, 877
OutputStream class, 842, 879
PrintStream class, 879
PrintWriter class, 318, 879
ResultSet interface, 891
Scanner class, 899
ServerSocket class, 888
Socket class, 889
Statement interface, 892

code duplication
branching if statements, 88
eliminating, 215–217

coding programs. See software development
cohesion, classes, 553–554
Coin class, 554

collaborators, 552–553. See also CRC cards
collecting values, instance variables for,

389–390
collection framework, definition, 670
Collection interface, 670, 672
Collection<E> interface

add method, 680–681
contains method, 680–681
description, 895
remove method, 680–681
size method, 670

collections. See also array lists; arrays;
linked lists

adding/removing elements. See queues
associations between keys and values.

See maps
choosing, 686–687
definition, 670
duplicate elements, 900
online example, 672
remembering element order. See stacks
searching, 895
sorting, 895
unordered. See sets
Worked Example, 687

collections, elements
adding, 895
counting, 895
no duplicates, 900
removing, 895
testing for, 895
traversing, 895

Collections class, 656–658, 895
collisions, 688–689, 739–740, 747–748
colon (:), path separator, 877
color

predefined palette, 490t
specifying with sliders, 528–533
user-interface components, 489–492,

872, 874
Color class, 491–492, 872
color slider, sample program, 531–533
ColorFrame.java class, 531–533
ColorViewer.java class, 531
combo boxes, 512–513, 903
comma (,)

separating arguments, 13
show decimal separators, 328

command line arguments, 330–333

 Index  977

comments
/*...*/ (slash asterisk...), long comment

delimiter, 36, 923
/**...*/ (slash asterisks...),

documentation comment delimiter,
36, 207, 923, 933–934

// (slashes), short comment delimiter,
35–36, 923

definition, 35
generating documentation from,

370–371, 933–934
methods, 207
purpose of, 35–37
syntax, 923

commit method, Connection class, 890
companion variables, 254–255
Comparable<T> interface, 452, 657–659, 881
Comparator<T> interface, 659, 896
compare method, Comparator<T> interface,

659, 896
compareTo method

Comparable<T> interface, 881
lexicographic ordering of strings, 92–93
return values, 658
String class, 885

comparison shopping for cars, example,
20–21

comparisons
floating-point numbers, 91–92
lexicographic (dictionary) order of

strings, 92–93, 885
methods in the Java library, 657
numbers, 88–92
objects, 452, 881, 884, 896
online example, 90
precedence, 90
strings, 88–92, 885
syntax, 89
testing if results are close enough, 91–92

comparisons, relational operators
combining, 113–114
overview, 88
summary of, 89t. See also

specific operators
compilers, 5. See also Java compiler
compile-time errors, 15
compiling programs

animation, 10
compilation process (animation), 10
identifying text strings, 13

in an integrated development
environment, 9

source code, 9
video example, 11

Component class, 872–873
composition relationships, 560–561
computations, by hand. See tracing code
computer programs. See programs
computers

Altair 8800 kit, 232
Apple II, 232
Apple Macintosh, 233
ENIAC (electronic numerical integrator

and computer), 5
human beings as, 5
IBM Personal Computer, 232–233
Macintosh, 233
personal computers, history of, 232–233

computers, components of
CPU (central processing unit), 3
hard disks, 3
input, 4
networks, 4
output, 4
primary storage, 3
secondary storage, 3
storage, 3. See also specific devices
transistors, 3

concatenating strings, 59–60
concrete classes, 435
Condition interface, 901
conditional operator (?), 87
confirmation dialog boxes, 905
Connection class, 890
consistency, classes, 561–562
console window

in an integrated development
environment, 8

writing to, 886
constants. See also variables

coding guidelines, 949–950
declaring, 35
definition, 35
distinguishing from variables, 35
interface types, 453
magic numbers, 39
named, 35
sample program, 36

constraining generic types, 825–826

978  Index

constructors
array lists, 290–291
clearing objects, 379
default values, 376
definition, 375
multiple per class, 375
naming, 375
new reserved word, 379
returning values, 375
with superclass initializer, 430
syntax, 376, 919
uninitialized, 376
void reserved word, 379

constructors, calling
to clear objects, 379
with new reserved word, 375
one from another, 399–400
for superclasses, 429–430

consuming white space, 323–324, 327
Container class, 873
containers

adding user-interface components, 873
layout manager, setting, 873
user-interface, 508

contains method, Collection<E> interface,
680–681, 895

continue statements, 920–921
control flow, coding guidelines, 950–951
converting number types. See cast operator
copy protection schemes, 182
copying

array lists, 293
array references, 263–264
arrays, 263–264
object references, 396

copyOf method, Arrays class, 263–264, 894
Core Java 2...Fundamentals, 509
Cornell, Gary, 509
cos method, Math class, 43t, 883
cosine, computing, 43t, 883
cost of stamps, example, 56
count-controlled loops. See for loops
Counter.java class

example, 365–367
online example, 366
syntax, 365

counters
hardware, example, 364–367
software, in loops. See loops, counters

CounterTester program, online example, 366
counting

array list elements, 299, 894
collection elements, 895
events, instance variables for, 389
medal winners, example, 286–287

coupling
classes, 555
UML, 555

course grade calculation example, 225
coverage, testing, 108
CPU (central processing unit), 3
CRC cards. See also UML (Unified

Modeling Language)
creating methods, 552–553, 558–559
description, 552–553
in object-oriented design, 563–566
in program design, How To, 558–559
summary of, 943

createElement method, Document
interface, 910

createLSSerializer method,
DOMImplementationLS interface, 911

createStatement method, Connection
class, 890

createTextNode method, Document
interface, 910

credit card processing, example, 172
crossword puzzles (video example), 500
Cubes.java class, 206
current time, in milliseconds, 886
currentTimeMillis method, System class,

632–634, 886
CYC project, 119

D

dangling else problem, 104
DARPA urban challenge, 119
data sets, estimating size, 267–268
data types

numbers, summary of, 40t. See also
specific types

primitive, 64
testing, 444–446

DataAnalyzer.java class, 347–351
date and time

calendars, 895–896
current time, in milliseconds, 886

 Index  979

formatting, 893
Gregorian calendar, 896
time zone, setting, 893

Date class, 896
DateFormat class, 893
De Morgan’s Law, 115–116
debugging

backtracking, 612–618
bugs, first actual case, 146
finding partial solutions, 612–618
overriding toString method, 442–443
separating array elements, 260
string representation of objects, 442–443
video example, 228

decision trees, 764
decisions. See Boolean variables and

operators; comparisons; conditional
operator; if statements

declaring
array lists, 290–292
arrays, 250–253
classes, 12
constants, 35
loop counters, 152–153
main method, 12
two-dimensional arrays, 283
variables, 30–32

decrementing/incrementing loop
counters, 152

decrypting encrypted data, 842
default package, 574–575
definite loops. See for loops
degrees, converting to radians, 884
Denver airport luggage handling system, 95
dependency relationships, 554–555. See also

aggregation relationships
depth-first tree traversal, 781–783
descendants, 761
Deutsch, Peter L., 601
dialog boxes

choosing file names from a list, 321–322
confirmation, 905
input, 905
for input/output, 65
online example, 65, 322
Open File, 904
Save File, 904

diamond syntax, 299
Dice.java class, 177

dictionary (lexicographic) order of strings,
92–93, 885

die tosses, simulating, 177
Difference Engine, 650
digits, testing for, 324t
digitSum method

online example, 233
summing the digits of an integer, 231–233

Dimension class, 494, 873
directories, definition, 10. See also folders
directory trees, example, 762
discount price calculation

online example, 95
sample program, 93–95

discussion board, video example, 441
distance computations, video example, 65
divide method, BigInteger class, 888
dividing household expenses, video

example, 21
division, floating-point numbers, 46

division, integer (percent sign),
modulus, 42

/ (slash), division operator, 41, 42
accidental, 46
remainders, 42
video example, 47

do loops. See also loops
input validation, 156–157
online example, 156
overview, 156–157

do statements, syntax, 920–921
Document interface, 910
documentation

generating from code comments. See
javadoc utility

online example, 368
DocumentBuilder class, 908
DocumentBuilderFactory class, 908–909
dollar sign ($), in variable names, 33
DOMConfiguration interface, 910
DOMImplementation interface, 910
DOMImplementationLS interface, 911
dongles, 182
do-nothing methods, 540
DOS (disk operating system), 233
dot notation, 64
double black violations, 788–789

980  Index

Double class, 294, 881
double quote ("), String character

delimiter, 61
double red violations, 786–787, 789
double type. See also floating-point numbers

assigning to an integer, 44
converting to int, 44–45
description, 40t

DoubleInvestment.java class, 143
doubleValue method, Double class, 881
doubly-linked lists, 728
dragging and dropping user-interface

components, 520
draw method, 179
drawing

geometric shapes (video example), 455
overview, 179–180
sample program, 180–181
spirals (video example), 181
squares, 180–181

drawing, on user-interface components
bar charts, 487–489, 492–496, 500
bounding boxes, 489
color, 489–492
default width and height, 497
graphical shapes, How To, 497–500
lines, 180, 489–492, 874
online example, 500
ovals, 180, 489–492, 874
rectangles, 180, 874, 874
repainting changes, 493–496
strings, 180, 874
text, 489–492

drawLine method, Graphics class, 180,
489–492, 874

drawOval method, Graphics class, 180,
489–492, 874

drawRect method, Graphics class, 180,
489–492, 874

drawString method, Graphics class, 180,
490–492, 874

DriverManager class, 890
duplicate variable names, 226–227
dynamic method lookup, 431, 433–434, 918

E

E constant, 884
earthquakes, 96–98

EAST position, user-interface
components, 508

Eckert, J. Presper, 5
ECMA (European Computer

Manufacturers Association), 678
editors, in an integrated development

environment, 8
Egyptian hieroglyphics, 66
eight queens problem, 613–618
EightQueens.java class, 617–618
electronic voting machines, 394
Element interface, 910
elevator simulator, 84–85, 116–118
ElevatorSimulation2.java class, 117–118
ElevatorSimulation.java class, 84–85
else statements, dangling else problem, 104
empty strings, 59
empty trees, 763
EmptyFrameViewer.java class, 467
encapsulation, definition, 363
encryption

algorithms, 336
Caesar’s cipher, 331–333, 842–845
decrypting, 842
Enigma machine, 318
keys, 842
PGP (Pretty Good Privacy), 337
private keys, 336
public keys, 336
RSA encryption, 336
sample program, 331–333

end-of-file exception, 877
enhanced for loops

traversing array lists, 292
traversing arrays, 257–258

ENIAC (electronic numerical integrator
and computer), 5

Enigma encryption machine, 318
entities, HTML, 928–929
enumeration types, 105, 916–917
EOFException class, 877
“equal exit cost” rule, 785
equal sign (=)

assignment statement, 34
vs. equal signs (==), 89

equal signs (==)
comparing strings, 90, 92

 Index  981

equal operator, 88–89
vs. equal sign (=), 89

equals method
Object class, 443–444, 447, 884. See also

instanceof operator
String class, 885–886
testing strings for equality, 90

equalsIgnoreCase method, String class, 885
Error class, 341, 881
errors. See also exceptions

compile-time, 15
detecting, 337
handling. See exception handling
misspelled words, 16
run-time, 15
stack trace printout, 887

escape sequences, 60–61
EtchedBorder class, 512, 906
European Computer Manufacturers

Association (ECMA), 678
evaluate method, XPath interface, 909
Evaluator.java class, 609–610
event handlers, user-interface layout

management, 520
event handling, 472. See also events
event listeners

action listeners, 471–472, 876, 902
check boxes, 513
combo boxes, 513
frames as, 478–479
for horizontal sliders, 906–907
inner classes as, 473–475
keystrokes, 539–540, 541, 872, 876
menu items, 522
mouse actions, 541, 872, 876
mouse position, 876
omitting, 478
online example, 540
overview, 471–473
radio buttons, 513

event sources, 471–473
event-controlled loops. See while loops
EventObject class, 896
events. See also event handling;

java.awt.event package
listening to, 471–473
source object, getting, 896
user-interface, 470–471

exception handlers, 338–341

exception handling. See also
specific exceptions
animation, 340

catch clause, 339–341, 346
catching exceptions, 339–344, 345
checked exceptions, 341–343
definition, 337
end of file, 877
finally clause, 343–344, 346
flowchart, 339
input errors, sample program, 347–351
online example, 343
squelching exceptions, 345
superclass. See Error class
syntax, 338, 341
throwing exceptions, 338–339, 345
throws clause, 342–343
unchecked exceptions, 341–343

exception reports
error messages, 275
reading and interpreting, 274–275

exceptions. See also errors
array index out of bounds, 275
coding guidelines, 951
definition, 15
end of file, 877
file not found, 319–320, 340, 877
illegal argument, 338, 881
illegal state, 881
input mismatch, 349, 896
input/output, 321
interrupting a thread, 882
no such element, 340, 898
null pointer, 884
number format, 340, 884
run-time, 341, 885
syntax, 922
throwing, 338–339, 345, 887

exclamation point, equal (!=), not equal
operator, 88–89

exclamation point (!), not operator, 112
executable steps, 19
execute method

PreparedStatement interface, 890
Statement interface, 892

executeQuery method
PreparedStatement interface, 890
Statement interface, 892

executeUpdate method
PreparedStatement interface, 890
Statement interface, 892

exit method, System class, 886

982  Index

exp method, Math class, 43t, 883
expert systems, 119
explicit parameters, 374
exponential floating-point, formatting, 329
exponentiation, 43t, 883
ExpressionCalculator.java class, 611–612
expressions

binary operators, 914
definition, 41, 914
left association, 914
order of operations, 41
postfix operators, 914
precedence levels, 914
prefix operators, 914
spaces in, 47
syntax, 914
ternary operators, 914
unary operators, 914
unbalanced parentheses, 46–47

ExpressionTokenizer.java class, 610–611

F

family trees, example, 760
federal tax rate schedule, 100t
Fibonacci sequences, computing, 596–601
FIFO (first in, first out) order, 691
Fifth-Generation Project, 119
file chooser, 321–322, 904
File class, 318, 877
file names

backslashes, as string literals, 321
choosing from a list, 321

file pointer position, 846
FileInputStream class, 841–845, 877
FileNotFoundException class, 319–320,

340, 877
FileOutputStream class, 322–323, 841–845
files. See also folders

binary format, 840
definition, 10
finding with recursion (Worked

Example), 594
format, choosing, 854–855
making backup copies, 11
text format, 840

FilledFrame program, online example, 469
FilledFrameViewer.java class, 468
filling arrays, 254–255, 257–258

filling graphic images
ovals, 180, 489–492, 874
rectangles, 180, 874

fillOval method, Graphics class, 180,
489–492, 874

fillRect method, Graphics class, 180, 874
final classes, 435, 916
final reserved word, omitting, 453
final variables, 35
finally clause, 343–344, 346
first in, first out (FIFO) order, 691
fixed floating-point, formatting, 329
flags. See Boolean variables and operators
Float class, 294
float type

description, 40t
vs. double, 39

floating-point bug, Pentium computers, 48
floating-point numbers, 939.

See also double type
assigning to an integer, 44
comparing, roundoff errors, 91
comparisons, 91–92
converting to integer, 44–45. See also cast

operator
definition, 32
division, 46
float type, 39
formatting, 329
mixing with integers, 41
reading, 50
rounding, 45

floor method, Math class, 883
floor value, computing, 883
flowcharts. See also storyboards

elements of, 105–106
overview, 106–108
spaghetti code, 106

FlowLayout class, 873
folders, 10. See also files
Font class, 874
font objects, constructing, 874
font viewer, sample program, 513–517,

523–527
FontFrame.java class, 514–517
fonts, user-interface components, 903
FontViewer2.java class, 523–527
FontViewer.java class, 513–514

 Index  983

for loops. See also loops
animation, 151
overview, 150–151
sample program, 153–154
syntax, 152

for loops, enhanced
traversing array lists, 292
traversing arrays, 257–258

for statements
coding guidelines, 951
syntax, 920–921

formal parameters. See parameter variables
format flags, 328–329
format method

DateFormat class, 893
String class, 885

format specifiers, 328–329
formatting date and time, 893
formatting output

, (comma), show decimal separators, 328
^ (caret), convert letters to uppercase, 328
((left paren), enclose negative numbers

in parentheses, 328
- (minus sign), left alignment, 328
+ (plus sign), for positive numbers, 328
decimal integers, 329
exponential floating-point, 329
fixed floating-point, 329
format types, 329
general floating-point, 329
online example, 329
show leading zeroes, 328
string, 329
writing text files, 328–329

forName method, Class class, 880
Frame class, 874
frames

closing, default action, 467, 904
customizing with inheritance, 469–470
displaying, 466–467
as event listeners, 478–479
extending with main method, 470
grouping components, 468
menu bar, 905
panels, 468
size, setting, 469
titling, 874
user-interface components, 467–468, 904

fraud detection, video example, 352
free software, 402
fully qualified class names, 922

function objects, 454
functions, growth rate, 635–637

G

Game of Life (video example), 299
general floating-point, formatting, 329
General Public License (GPL), 402
generic classes

declaring, 818, 820
definition, 818
implementing, 819–823
inheritance, 827–828
instantiating, 818–819
online examples, 819, 829, 831
sample program, 821–822
syntax, 820
wildcard types, 828–829

generic methods, 823–825, 923
generic programming, 818
generic types

constraining, 825–826
implementing, 819–823
inheritance, 827–828
online examples, 826, 829
reflection, 832–833
in static context, 832
syntax, 923
type erasure, 829–831
wildcards, 828–829

genetic code (video example), 118
geometric shapes, drawing. See drawing
German characters, 66
get method

ArrayList<E> class, 291, 729–730, 893
Calendar class, 895
Map<K, V> interface, 684–686, 898

getAttribute method, Element interface, 910
getAvailable method, TimeZone class, 900
getColumnCount method, ResultSetMetaData

interface, 892
getColumnDisplaySize method,

ResultSetMetaData interface, 892
getColumnLabel method, ResultSetMetaData

interface, 892
getConnection method, DriverManager

class, 890
getContentLength method, URLConnection

class, 889

984  Index

getContentType method, URLConnection
class, 889

getDomConfig method, LSSerializer
interface, 911

getDouble method, ResultSet interface, 891
getFilePointer method, RandomAccessFile

class, 879
getFirst method, LinkedList<E> class,

674, 897
getGlobal method, Level class, 901
getHeight method

Component class, 872
Rectangle class, 875

getImplementation method, Document
interface, 910

getInputStream method
Socket class, 889
URLConnection class, 889

getInt method, ResultSet interface, 891
getKeystrokeForEvent method, KeyStroke

class, 906
getLast method, LinkedList<E> class, 674, 897
getMessage method, Throwable class, 341, 887
getMetaData method, ResultSet interface, 891
getOutputStream method, Socket class, 889
getProperty method, Properties class, 899
getResponseCode method, HttpURLConnection

class, 888
getResponseMessage method,

HttpURLConnection class, 888
getResultSet method, Statement

interface, 893
getSelectedFile method, JFileChooser class,

322, 904
getSelectedItem method, JComboBox class,

513, 903
getSource method, EventObject class, 896
getString method, ResultSet interface,

891–892
getter methods, instance variables for,

390–391
getText method, JTextComponent class,

482–483, 908
getTimeInstance method, DateFormat

class, 893
getTimeZone method, TimeZone class, 900

getUpdateCount method, Statement
interface, 893

getValue method, JSlider class, 530, 906
getWidth method, 492–496

Component class, 873
Rectangle class, 875

getX method
MouseEvent class, 876
Rectangle class, 875

getY method
MouseEvent class, 876
Rectangle class, 875

Gosling, James, 5–6
GPL (General Public License), 402
graphical shapes, drawing. See drawing
graphical user-interface. See also drawing;

user-interface
reaction to user actions, 470–471. See also

event handling; events
text processing. See reading, text files

Graphics class, 180, 874
Graphics objects, drawing on user-interface

components, 487–489
greater than, equal (>=), comparison

operator, 88–89
greater than (>), comparison operator, 88–89
Greek characters, 66
Gregorian calendar, 896
GregorianCalendar class, 896. See also

Calendar class
grep command, 330
grid layout, user-interface, 509, 874
GridLayout class, 874
grouping frame components, 468
GroupLayout layout manager, 520
grow method, Rectangle class, 875
GUI (Graphical User Interface). See

user interface

H

halting problem, 604–605
Hamblin, Charles, 701
hand-tracing. See also tracing code

animation, 149
loops, 147–150
overview, 103–104

hard disks, illustration, 3

 Index  985

hardware, definition, 2
has-a relationships. See aggregation

relationships
hash codes

collisions, 688–689
duplicates, 688–689
implementing hash tables, 739
online example, 689
overview, 688–689

hash functions, 688–689
hash maps, creating, 896
hash sets, creating, 896
hash tables

adding/removing elements, 741–742
collisions, 739–740, 747–748
definition, 739–740
efficiency, 743t
finding elements, 741
hash codes, 739
iterating over, 742–743
linear probing, 747–748
open addressing, 740, 747–748
probing sequence, 747–748
separate chaining, 740
sets, 679–680
skipping empty buckets, 742–743

hashCode method, 679–680
HashMap class, 684–686

HashMap<K, V> class, 896
HashSet class, 679–680, 683

HashSet<E> class, 896
HashSetDemo.java class, 746–747
HashSet.java class, 743–746
hasNext method, 675

Iterator<E> interface, 896
Scanner class, 900

hasNextDouble method, Scanner class,
116–118, 900

hasNextInt method, Scanner class,
116–118, 900

hasNextLine method, Scanner class,
325–326, 900

hasPrevious method, ListIterator<E>
interface, 676, 897

HeapDemo.java class, 800–801
heaps. See also priority queues; trees

vs. binary search trees, 791
definition, 791
fixing the heap, 794–795, 802–806

inserting nodes, 792–793
removing nodes, 794–795
sample program, 796–801
storing nodes in an array, 796

HeapSorter.java class, 804–806
Hebrew characters, 66
height

red-black trees, 786
trees, 761, 766–767

“Hello, World!” sample program, 8–9,
12–14

hexadecimal numbers, 940, 940t
high-level programming languages, 5. See

also Java programming language
Hoff, Marcian E., 232
horizontal sliders, 906–907
Horstmann, Cay S., 509
household expense division, video

example, 21
HTML (hypertext markup language)

attributes, 927–928
entities, 928–929
overview, 925
tags, 926–927

HttpURLConnection class, 888
Huffman trees, 765, 768
hyphen (-), indicating program options, 330

I

IBM Personal Computer, 232–233
IEEE floating-point numbers, 939
IETF (Internet Engineering Task

Force), 678
if statements. See also switch statements

? (question mark), conditional
operator, 87

combining. See nesting, if statements
dangling else problem, 104
flowchart, 83
implementing, How To, 93–95
input validation, 116–118
nesting, 96–102, 104
overview, 82
sample program, 84–85
syntax, 84, 920–921

if statements, branching
animation, 96, 100
code duplication, 88
multiple alternatives, 96–99

986  Index

if statements, branching (continued)
nesting branches, 100–102, 104

IllegalArgumentException class, 338, 881
IllegalStateException class, 881
image icons, 902
image pixel manipulation, example, 175
ImageIcon class, 902
immutable variables, 35
implements reserved word, 450–451
implicit parameters

dynamic method lookup, 433–434
overview, 373–374
this reference, 397–399

import statement, 575, 923
importing classes from packages, 49, 575,

922–923
income tax

calculating, sample program, 100–102
federal tax rate schedule, 100t

incrementing/decrementing loop
counters, 152

indentation
coding guidelines, 952
nesting statements with tabs, 87

indexes, arrays
bounds errors, 252–253, 255, 275
definition, 251
starting number, 252

infinite loops, 145
infinite recursion, 590
info method, Level class, 902
inheritance. See also subclasses; superclasses

animation, 425
class relationships, 557–558
customizing frames, 469–470
definition, 397–399
equals method, 447
generic classes, 827–828
generic types, 827–828
hierarchies, 416, 484
overview, 416–417
purpose of, 420
sample programs, 418–419
substitution principle, 416
toString method, 446–447

inheritance hierarchies, developing
How To, 436–441
payroll processing example, 441

inheritance trees, example, 762
initializing

instance variables. See constructors
variables, 31, 34

initializing, arrays
default values, 250–251
uninitialized arrays, 255
with zeroes, 257–258

Initials.java class, 62–63
inner classes

anonymous, 480–481
declaring inside a method, 479–480
definition, 474
as event listeners, 473–475
local, 479–480

inorder tree traversal, 778–779
input. See also java.io package; reading

definition, 4
redirecting, 161

input dialog boxes, 65, 321, 905
input errors, sample program, 347–351
input mismatch exception, 326, 896
input statements, syntax, 49
input validation

with do loops, 156–157
with if statements, 116–118

InputMismatchException class, 349, 896
InputStream class, 322–323, 841, 877–878
InputStream in object, 886
InputStreamReader class, 878
inserting

elements into heaps, 792–793
trace messages, 597

insertion sort, 637–638, 659
instance methods, 64
instance variables. See also variables

accidental changes, 475
declaring, 365
definition, 365
initializing. See constructors
modifiers, 365
name, 365
online example, 372
overview, 365–367
private, 366
public vs. private, 374
syntax, 365
type, 365
uninitialized, 378–379

 Index  987

instance variables, common patterns
collecting values, 389–390
counting events, 389
describing object position, 392–393
getter methods, 390–391
managing object properties, 390–391
modeling objects with distinct states,

391–392
running totals, 388–389
setter methods, 390–391

instance variables, in superclasses
protecting, 436
replicating, 423–424

instanceof operator, Object class, 444–445.
See also equals method

instantiating generic classes, 818–819
int type. See also integers

converting from double, 44–45
definition, 31–32
description, 40t
maximum value, 38
overflow, 38

Integer class, 294, 881–882
IntegerName.java class, 221–223
integers. See also int type

assigning floating-point numbers to, 44
converting from floating-point, 44–45.

See also cast operator
converting from strings, 881–882
definition, 31
formatting, 329
mixing with floating-point, 41
reading, 49–50
summing the digits of, 231–233
% (percent sign), modulus, 42
/ (slash), division operator, 41, 42
accidental, 46
remainders, 42
video example, 47

integrated development environment, 8
interface types

vs. classes, 449
Comparable interface, 452
comparing two objects, 452
constants, 453
defining an interface, 448–450
definition, 449
final reserved word, omitting, 453
function objects, 454
implementing an interface, 450–451
online example, 454
public reserved word, omitting, 453

static reserved word, omitting, 453
syntax, 449

interfaces, syntax, 916
interior nodes, 761
international alphabets, 66
International Organization for

Standardization (ISO), 678
Internet Engineering Task Force

(IETF), 678
interrupted method, Thread class, 887
InterruptedException class, 882
intersection method, Rectangle class, 875
intersections of rectangles, computing, 874
intValue method, Integer class, 881
inverting conditions, 112, 115–116
investment problems, examples

designing an algorithm for, 17–18
doubling your investment, 140–143
printing annual balances, 153–154
showing growth, 475–477, 482–483,

485–486, 492–496
InvestmentFrame.java class, 476–477
InvestmentFrame2.java class, 482–483
InvestmentFrame3.java class, 485–486
InvestmentFrame4.java class, 494–496
InvestmentTable.java class, 153–154
InvestmentViewer.java class, 477
Invoice.java class, 570–571
InvoicePrinter.java class, 570
invoices, printing. See printing an invoice
IOException class, 321
is-a relationships. See inheritance, class

relationships
isDigit method, Character class,

324t–325, 880
isEditable method

JComboBox class, 903
JTextComponent class, 908

isLetter method, Character class, 324t, 880
isLowerCase method, Character class,

324t, 880
ISO (International Organization for

Standardization), 678
isSelected method, AbstractButton class, 902

description, 902
detecting button selection, 511
detecting check box selection, 512

988  Index

isUpperCase method, Character class,
324t, 880

isWhiteSpace method, 324t–325
iteration. See also traversing

end of list, testing for, 896
hash tables, 742–743
Iterator<E> interface, 896
listIterator method, LinkedList<E> class,

674–677
listIterator method, List<E>

interface, 897
removing elements, 897
traversing lists, 674–676, 896–897
tree traversal, 783–784

iteration, linked lists
advancing an iterator, 717–718
iterator class, 716–717
LinkedListIterator class, 716–717
list iterators, 674–676
ListIterator interface, 716–717

iteration, ListIterator<E> interface
add method, 676, 681
hasPrevious method, ListIterator<E>

interface, 676, 897
iterator method, Collection<E>

interface, 895
Iterator<E> interface, 896–897
remove method, 718
set method, 721

iterator method, Collection<E>
interface, 895

Iterator<E> interface, 896–897

J

Jacobson, Ivar, 555
JAR (Java Archive) tool, 932
Java compiler, 931
Java language coding guidelines

{ } (braces), 953
classes, 948
constants, 949–950
control flow, 950–951
exceptions, 951
indentation, 952
methods, 949
naming conventions, 952
overview, 947
source files, 948
for statements, 951
switch statements, 951
unstable layout, 953
variables, 949–950

white space, 952
Java library

description, 6–7
inheritance hierarchy, 869–871

Java library packages. See also
specific packages

Abstract Windowing Toolkit. See
java.awt package

base directory, 576–577
database access. See java.sql package
default package, 574–575
definition, 7
DOM for XML documents. See

org.w3c.dom package
important packages, summary of, 574t
importing, 575
importing classes from, 49
input/output. See java.io package
Java library, 7
language support. See java.lang package
locating classes in, 576–577
name clashes, 575–576
naming conventions, 575–576
networking. See java.net package
online example, 576–577
organizing classes into, 574–575
SQL (Structured Query Language). See

java.sql package
Swing user-interface. See

javax.swing package
utilities. See java.util package

Java programming environment
class files, 9
compilation process (animation), 10
console window, 8
directories, 10
editors, 8
files, 10
folders, 10
integrated development environment, 8
organizing your work, 10
overview, 8–10
source code, 9

Java programming language. See also
programming languages

case sensitivity, 9
creators of, 5–6
“Hello, World!” sample program, 8–9,

12–14
portability, 6
safety features, 6
versions, 7t

Java virtual machine (JVM), 6–7

 Index  989

Java virtual machine launcher, 932
java.awt package. See also user-interface

components
BorderLayout class, 872
Color class, 490, 872
Component class, 872–873
Container class, 873
Dimension class, 873
FlowLayout class, 873
Font class, 874
Frame class, 874
Graphics class, 874
GridLayout class, 874
Rectangle class, 875

java.awt.event package. See also events
ActionListener interface, 472, 876
KeyEvent class, 876
KeyListener interface, 539–540, 876
MouseEvent class, 536–540, 876
MouseListener interface, 536–540, 876

javadoc utility, 370–371, 933–934
java.io package. See also input; output

EOFException class, 877
File class, 877
FileInputStream class, 877
FileNotFoundException class, 877
FileOutputStream class, 877
InputStream class, 877–878
InputStreamReader class, 878
IOException class, 878
ObjectInputStream class, 878
ObjectOutputStream class, 878
OutputStream class, 878
PrintStream class, 878–879
PrintWriter class, 878–879
RandomAccessFile class, 879–880
Serializable interface, 880

java.lang package
Boolean class, 880
Character class, 880
Class class, 880
Comparable<T> interface, 881
Double class, 881
Error class, 881
IllegalArgumentException class, 881
IllegalStateException class, 881
Integer class, 881–882
InterruptedException class, 882
Math class, 882–884
NullPointerException class, 884
NumberFormatException class, 884
Object class, 884–885
Runnable interface, 885

RuntimeException class, 885
String class, 885–886
System class, 886
Thread class, 887
Throwable class, 887

java.math package
BigDecimal class, 887
BigInteger class, 887–888

java.net package
HttpURLConnection class, 888
ServerSocket class, 888
Socket class, 888–889
URL class, 889
URLConnection class, 889

java.sql package
Connection class, 890
DriverManager class, 890
PreparedStatement interface, 890–891
ResultSet interface, 891–892
ResultSetMetaData interface, 892
SQLException class, 892
Statement interface, 892–893

java.text package, 893
DataFormat class, 893

java.util package
ArrayList<E> class, 893–894
Arrays class, 894
Calendar class, 894
Collection<E> interface, 894–895
Collections class, 895
Comparator<T> interface, 895
Date class, 896
EventObject class, 895
GregorianCalendar class, 896
HashMap<K, V> class, 896
HashSet<E> class, 896
InputMismatchException class, 896
Iterator<E> interface, 896
LinkedHashMap<K, V> class, 897
LinkedList<E> class, 896–897
List<E> interface, 897
ListIterator<E> interface, 897
Map<K, V> interface, 897–898
NoSuchElementException class, 898
PriorityQueue<E> class, 898
Properties class, 898
Queue<E> interface, 898
Random class, 898–899
Scanner class, 899
Set<E> interface, 899
TimeZone class, 900
TreeMap<K, V> class, 899
TreeSet<E> class, 900

990  Index

java.util.concurrent.locks package
Condition interface, 901
Lock interface, 901
ReentrantLock class, 901

java.util.logging package, 901
javax.swing package. See also user-

interface components
AbstractButton class, 902
ButtonGroup class, 902
ImageIcon class, 902
JButton class, 468, 902
JCheckBox class, 903
JComboBox class, 903
JComponent class, 903
JFileChooser class, 904
JFrame class, 904
JLabel class, 904
JMenu class, 904–905
JMenuBar class, 905
JMenuItem class, 905
JOptionPane class, 905
JPanel class, 905
JRadioButton class, 905
JScrollPane class, 905
JSlider class, 906
JTextArea class, 906
JTextField class, 906
KeyStroke class, 906
Timer class, 907

javax.swing.border package
EtchedBorder class, 907
TitledBorder class, 907

javax.swing.event package
ChangeEvent class, 907
ChangeListener interface, 907

javax.swing.text package, 908
javax.xml.parsers package

DocumentBuilder class, 908
DocumentBuilderFactory class, 908–909

javax.xml.xpath package
XPath interface, 909
XPathExpressionException class, 909
XPathFactory class, 909

JButton class, 468, 902
JCheckBox class

creating check boxes, 512
description, 903

JComboBox class, 513, 903
JComponent class, 487, 903
JFileChooser class, 321–322, 904
JFrame class, 466–467, 904

JLabel class, 481–483, 904
JMenu class, 904–905
JMenuBar class

adding menu bars to frames, 521
description, 905

JMenuItem class, 522–523, 905
JOptionPane class, 65, 905
JPanel class, 468, 905
JRadioButton class, 511, 905
JScrollPane class, 905
JSlider class

constructors, 530
creating sliders, 529–533
description, 906

JTextArea class, 483–486, 906
JTextComponent class, 908
JTextField class, 481–483, 906
justifying text (video example), 233
JVM (Java virtual machine), 6–7

K

key press, detecting, 539–540
key release, detecting, 539–540
key words. See reserved words
keyboard, reading from, 49, 886
KeyEvent class, 876
KeyListener interface

description, 876
listening for keyboard events, 539–540

keyPressed method, KeyListener interface
description, 876
detecting a key press, 539–540

keyReleased method, KeyListener interface
description, 876
detecting key release, 539–540

keySet method, Map<K, V> interface, 685–686,
898

KeyStroke class
description, 906
getKeyStrokeForEvent method, 539–540
listening for keyboard events, 539–540

keystrokes
detecting. See events
event listeners, 539–540, 541, 872, 876

keyTyped method, KeyListener interface
description, 876
detecting key typed, 539–540

 Index  991

killing a hanging program, 145
knows-about relationships. See

dependency relationships
Korean characters, 66

L

labels
text fields, 481–483
user-interface components, 904

languages, translating, 119
largest value, computing, 882. See also

maximum/minimum value, finding
LargestInArray.java class, 265–266, 297–298
last in, first out (LIFO) order, 690
Latin/Latin-1 subsets of Unicode

characters, 861t–863t
layout managers, 508
leading zeroes, showing, 328
leaves, 760–761
left angle brackets (<<), left shift, 941
left paren ((), enclose negative numbers

in parentheses, 328
Lenat, Douglas, 119
length method

RandomAccessFile class, 846, 879
String class, 59, 885

less than, equal (<=), comparison
operator, 88–89

less than (<), comparison operator, 88–89
letters. See also characters; strings

case. See lowercase; uppercase
testing for, 324t

Level class, 901
lexicographic (dictionary) order of strings,

92–93, 885
LIFO (last in, first out) order, 690
limits of computation, 604–605
line breaks, strings, 60–61
linear probing, 747–748
linear search, arrays, 260
linear time, 651–652
LinearSearchDemo.java class, 647
LinearSearcher.java class, 646–647
LineItem.java class, 571–572
lines, drawing, 489–492, 874
lines of text, reading text files, 325–327

lining up. See aligning
linked lists. See also collections

definition, 672
efficiency, 732t
iterator interface, 716–717
LinkedListIterator class, 716–717
ListIterator interface, 716–717
Node class, 714–715
nodes, 673–674
online example, 727
sample program, 677, 724–727
stacks as, 733–734
structure of, 673–674

linked lists, accessing elements
adding/removing elements, 715–716,

718–723
advancing an iterator, 717–718
beginning/end of list, 674
doubly-linked lists, 676, 728
efficiency, 721–723, 723t
list iterators, 674–676
random access, 674
sequential access, 674
setting element values, 721
traversing all elements, 674–676

linked lists, elements
adding, 897
first, testing for, 897
getting first/last, 897
removing, 897
replacing, 897
traversing, 897

LinkedHashMap<K, V> class, 897
LinkedList<E> class, 674, 897
LinkedListIterator class, 716–717
LinkedList.java class, 724–726
LinkedListStack.java class, 734
List interface, 670

List<E> interface, 897
list iterators

animation, 675
definition, 674
linked lists, 674–676
overview, 675–676

ListDemo.java class, 677
listeners. See event listeners
ListIterator interface, 716–717
listIterator method, 675–677
listIterator method, LinkedList<E> class,

674–675

992  Index

listIterator method, List<E> interface, 897
ListIterator<E> interface

add method, 676, 681
description, 897
listIterator method, 675–677
remove method, 718
set method, 721

ListIterator.java class, 726
lists

definition, 670
elements, 897

literals
backslashes in file names, 321
character, delimiting, 61
numbers, 32–33
reserved characters, 60–61
string, 59–61

load method, Properties class, 899
loan, paying off (video example), 386
local inner classes, 479–480
local variables, 225
Lock interface, 901
lock method, Lock interface, 901
locking, 901
log method, Math class, 43t, 883
log10 method, Math class, 44t, 883
logarithmic time, 654–656
logarithms, 43t, 44t, 883
Logger class, 110
logging messages, 110, 901–902
logic errors. See run-time errors
Loma Prieta earthquake, 96–98
Long class, 294
long type, 40t
loop-and-a-half problem, 160–161
LoopFib.java class, 599–601
LoopPalindromes class, 600–601
loops. See also specific loops

asymmetric bounds, 155
bounds, choosing, 155
break statement, 160–161
controlling with Boolean variables,

159–160
counting iterations, 156
definition, 140
do loop, 156–157
enhanced for loop, 257–258, 292
flowcharts, 157

for loop, 150–152
hand-tracing, 147–150
How To write, 169–172
indefinite. See while loops
infinite, 145
loop-and-a-half problem, 160–161
nesting, 172–175
off-by-one errors, 145–146
post-test. See do loops
pre-test. See for loops; while loops
processing a sequence of values, 158–161
vs. recursive methods, 600–601
sentinel values, 158–161
symmetric bounds, 155
terminating with a target value, 144
traversing characters in a string, 154
while loop, 140–143

loops, common algorithms
averages, 165
comparing adjacent values, 168–169
counting matches, 165–166
finding first match, 166
maximum/minimum computations, 167
online example, 168
powers of x, calculating, 172–175
printing a table, 172–175
prompting for a match, 167
running totals, 165
summing numbers, 165

loops, counters
counting loop iterations, 156
counting matches, 165–166
declaring, 152–153
incrementing/decrementing, 152
infinite loops, 145
off-by-one errors, 145–146
updating inside a for loop, 155
using outside the loop, 153

loops, terminating
count-controlled. See for loops
definite. See for loops
event-controlled. See while loops
with sentinel values, 158–161

lowercase letters, testing for, 324t. See also
case sensitivity

lowercase strings, sorting, 93
LSSerializer interface, 911
luggage handling, Denver airport, 95
Lukasiewicz, Jan, 701

M

Macintosh computer, 233

 Index  993

magic numbers, 39
main method

in classes, 380
declaring, 12
definition, 12
extending frame classes, 470
statements, 12

map keys, 898
MapDemo.java class, 685–686
Map<K, V> interface, 898

get method, 684–686
keySet method, 685–686
put method, 684–686
remove method, 684–686

maps
animation, 684
definition, 671
mapping names to colors, sample

program, 685–686
overview, 684–686

math. See arithmetic; java.math package; Math
class; numbers; specific operations

Math class, 882–884
matrices. See arrays, two-dimensional
Mauchly, John, 5
max method, Math class, 44t, 883
maximum/minimum value, finding

algorithm for, 259
in arrays, 295
ceil method, Math class, 883
floor method, Math class, 883
max method, Math class, 44t, 883
MAX_VALUE constant, 882
min method, Math class, 44t, 883
MIN_VALUE constant, 882

MAX_VALUE constant, 882
MeasurableDemo.java class, 451
medal winners, example, 286–287
Medals.java class, 286–287
menu bars

frames, 521–527, 904
user-interface components, 905

Menu class, online example, 385
menu items

creating, 521–527, 905
event listeners, 522

menus, 521–527, 904–905
MenuTester class, online example, 385
merge sort

overview, 639–641
performance, 642–644

MergeSortDemo.java class, 641
MergeSorter.java class, 639–641
messages, logging, 110
methods. See also recursive methods;

specific methods
abstract, 434–435
API documentation, 53
as black boxes, 202–203
brevity, 223
coding guidelines, 949
collaborators, 552–553. See also

CRC cards
comments, 207
definition, 202
documentation, 567–569
dot notation, 64
duplicate names. See

overloading methods
dynamic lookup, 918
execution flowchart, 202
final, 435
generic, 823–825
identifying, 550
implementing, How To, 212–213
inputs, 203
instance, 64
main. See main method
mutator, 369
outputs, 203
overriding. See overriding methods
passing values to. See methods,

arguments; methods,
parameter variables

public vs. private, 374
recursive, 228–232
responsibilities, 552–553. See also

CRC cards
reusing, 215–217
sample program, 206
static, 64–65, 205, 400–402
stepwise refinement, 218–219
stubs, 224–225
syntax, 205, 917–918
temporary placeholders for, 224–225
type parameters, 823–826
UML, 559
UML diagrams, 943–945
verbs as, 550, 552

methods, accessor
data representation, 371–372
definition, 369

994  Index

methods, arguments. See also methods,
parameter variables

array lists as, 293
definition, 203
modifying, 209–210
passing, 207–209

methods, calling
instance methods vs. static, 64–65
on numbers, 64
on objects, 64
other methods, 13, 202
recursively, 228–232

methods, creating
for classes, 552–553
with CRC cards, 552–553, 558–559

methods, instance
description, 372
example, 372–373
explicit parameters, 374
implicit parameters, 373–374
syntax, 372

methods, parameter variables.
See also methods, arguments;
methods, variables

animation, 208
modifying, 209
passing, 207–209
passing with two-dimensional arrays,

286–287
variable number of, 272

methods, return values
array lists as, 293
definition, 203
missing, 212
multiple, 211, 821–823
omitting, 214–215
online example, 211
specifying, 210–211

methods, tracing
animation, 220
example, 223–224

methods, variables. See also methods,
parameter variables

duplicate names, 226–227
local, 225
scope, 225–228

microprocessors, history of, 232
min method, Math class, 44t, 883
MinHeap.java class, 796–800
min-heaps. See heaps

minimum/maximum value, finding
algorithm for, 259
in arrays, 295
max method, Math class, 44t, 883
MAX_VALUE constant, 882
min method, Math class, 44t, 883
MIN_VALUE constant, 882

minus sign (-)
left alignment, 328
subtraction operator, 41

minus signs (--), decrement operator, 41
MIN_VALUE constant, 882
misspelling words, 16
mod method, BigInteger class, 888
modifiers, instance variables, 365
Monte Carlo method, 178–179
MonteCarlo.java class, 178–179
Morris, Robert, 256
mouse

actions, event listeners, 541, 872, 876
clicks, detecting. See events
position, event listeners, 876

MouseAdapter class, 540
mouseClicked method, MouseListener

interface, 536–539, 876
mouseEntered method, MouseListener

interface, 536–539, 876
MouseEvent class, 876
mouseExited method, MouseListener interface,

536–539, 876
MouseListener interface

adding events to user-interface
components, 536–539

description, 876
do-nothing methods, 540

mousePressed method, MouseListener
interface, 536–539, 876

mouseReleased method, MouseListener
interface, 536–539, 876

multidimensional arrays, 289. See also
arrays, two-dimensional

multiplicities, 560
multiply method

BigDecimal class, 40, 887
BigInteger class, 40, 888

mutator methods, 369
mutual recursion, 606–612

 Index  995

N

\n (backslash n), newline character, 60–61
name clashes, Java library packages, 575–576
named constants, 35
naming

classes, 33
constants, 35
constructors, 375
instance variables, 365
public classes, 12
variables, 33, 38

naming conventions
classes, 551
coding guidelines, 952
Java library packages, 575–576

Naughton, Patrick, 5
negating conditions, 112, 115–116
negative integers, representing with binary

numbers, 938
negative-red nodes, 788
nested loops, tracing (animation), 285
nested statements, indenting, 87
nesting

if statement branches, 100–102, 104
if statements, 96–102, 104
loops, 172–175
user-interface panels, 509

network connection
server socket, getting, 888
socket, creating, 888
URL, constructing, 889

networks, definition, 4
newCondition method, Lock interface, 901
newDocumentBuilder method,

DocumentBuilderFactory class, 908
newInstance method

DocumentBuilderFactory class, 909
XPathFactory class, 909

newXPath method, XPathFactory class, 909
next method

consuming white space, 327
Iterator<E> interface, 897
reading strings from the console, 60
ResultSet interface, 892
Scanner class, 900
traversing linked lists, 675

nextDouble method
consuming white space, 327

Random class, 899
reading floating-point numbers, 50
Scanner class, 900

nextInt method
consuming white space, 327
Random class, 899
reading integers, 49–50, 116–118
Scanner class, 900

nextLine method, Scanner class, 325–326, 900
Nicely, Thomas, 48
“no double reds” rule, 786
Node class, 714–715
nodes

linked lists, 673–674
trees, 760–761

NORTH position, user-interface
components, 508

NoSuchElementException class, 340, 898
notify method, Object class, 885
notifyAll method, Object class, 885
nouns as classes, 550
nth triangle number, 586
null pointer exception, 884
null reference

default for objects, 379
definition, 397
testing for, 397
uninitialized instance variables, 378–379

null root node, 763
NullPointerException class, 884
number format exception, 884
number types, summary of, 40. See also

specific types
NumberFormatException class, 340, 884
numbers. See also arithmetic

comparisons, 88–92
converting from strings, 326
converting to words, 219–223
as literals, 32–33
overflow, 38
range errors, 38
reading text files, 327
sorting, 93
very large, 40
whole, no fractions. See integers
whole, with fractions. See floating-point

numbers

996  Index

O

Object class. See also superclasses
available online, 441
data type, testing, 444–446
definition, 441
description, 884–885
object equality, testing for, 443–444, 447
online example, 445
string representation of objects,

442–443, 446
object diagrams, UML, 555
object references

animation, 396
copying, 396
definition, 395
null, 397
shared, 395–397
this, 397–399

object streams, 851–854
ObjectInputStream class, 851–855
object-oriented design, development

process
Address.java class, 573
ATM, Worked Example, 573
CRC cards, 563–566
implementing classes, 569–573
Invoice.java class, 570–571
InvoicePrinter.java class, 570
LineItem.java class, 571–572
method documentation, 567–569
process overview, 562–563
Product.java class, 572
requirements, 563
UML diagrams, 566

ObjectOutputStream class, 851–855
objects

belonging to same class, testing for, 447
changing. See mutator methods
clearing with constructors, 379
comparisons, 881, 884–885, 896
describing position, instance variables

for, 392–393
equality, testing for, 443–444
examples of, 64
managing properties, instance variables

for, 390–391
memory location. See object references
modeling with distinct states, instance

variables for, 391–392
querying. See accessor methods
storing data. See instance variables

off-by-one errors, 145–146

omega notation, 636–637
OOP (object-oriented programming), 362.

See also classes; methods; objects
open addressing, 740, 747–748
Open File dialog boxes, 904
open source software, 402
openStream method, URL class, 889
operators. See also specific operators

associativity, 865
precedence, 865
summary of, 865t–866t

org.w3c.dom package
Document interface, 910
DOMConfiguration interface, 910
DOMImplementation interface, 910
Element interface, 910
Text interface, 910

org.w3c.dom.ls package
DOMImplementationLS interface, 911
LSSerializer interface, 911

output. See also java.io package
definition, 4
redirecting, 161

output, formatting. See also printf method
currency, 50
format specifiers, 50

output, writing
closing a file, 319, 877
closing the stream, 877
to the console window, 886
to dialog boxes, 65
opening a file, 318, 877
output error, 878
write operation, 878

OutputStream class, 841, 878
ovals

drawing, 180, 489–492, 874
filling, 180, 489–492, 874

overflow errors, 937
overloading methods

accidentally, 428
overview, 380

overriding methods
abstract methods, 434–435
accidental overloading, 428
forcing, 434–435
overview, 424–428
preventing, 435

 Index  997

P

packages, 922–923. See also Java
library packages

paintComponent method, JComponent class,
487–489, 493–496, 903

painting user-interface components
paintComponent method, 487–489,

493–496, 903
repaint method, 493–496, 873

PairDemo.java class, 822
Pair.java class, 821–822
palindromes, identifying, 590–595, 600–601
Palindromes class, online examples, 593, 595
panel borders, 511–512
panels. See also frames

definition, 468
grouping frame components, 468
user-interface components, 905

parallel arrays, converting to arrays of
objects, 561–562

parameter variables, methods. See
also variables

animation, 208
explicit, 374
implicit, 373–374
modifying, 209
passing, 207–209

parent nodes, 761
parentheses (())

balancing, 693
enclosing arguments, 13
in expressions, unbalanced, 46–47

parse method, DocumentBuilder class, 908
parseDouble method, Double class, 326, 881
parseInt method, Integer class, 326, 881
partially filled arrays, 254–255
PartialSolution.java class, 615–616
passing arguments to methods

with arrays, 268–269, 286–287
from the command line, 330–333
syntax, 13

passing parameters to methods
overview, 207–209
parameter variables to methods, 207–209
parameters to methods, 286–287

passwords, generating randomly, 213
patents, definition, 336
paths, trees, 761

pathSeparator method, File class, 877
paying off a loan (video example), 386
payroll processing example, 441
PCs. See personal computers
peek method

Queue<E> interface, 691
Stack<E> class, 690

peek method, Queue<E> interface, 899
peeking at queues, 899
Pentium floating-point bug, 48
percent sign (%)

in format specifiers, 329
modulus operator, description, 42
modulus operator, online example, 45

permutations, 601–604. See also recursive
methods

Permutations.java class, 602–603
personal computers, history of, 232–233
PGP (Pretty Good Privacy), 337
PI constant, 45t, 884
pictures, drawing. See drawing
piracy, software, 182
pixel manipulation, example, 175
plural words, counting (video example), 105
plus sign (+)

addition operator, 41
concatenation operator, 59–60
for positive numbers, 328

plus signs (++), increment operator, 41
polymorphism

animation, 431
dynamic method lookup, 431, 433–434
overview, 430–431
sample program, 432–433

pop method, Stack<E> class, 690, 733–734, 735
portability, Java programming language, 6
postfix operator, 914
postorder tree traversal, 779–780
post-test loops. See do loops
pow method, Math class, 43t, 883
powers of two, 936t
PowerTable.java class, 173
precedence levels, expressions, 914
prefix operator, 914
preorder tree traversal, 779–780, 783
PreparedStatement interface, 890–891

998  Index

prepareStatement method, Connection
class, 890

pre-test loops. See for loops; while loops
previous method, ListIterator<E> interface,

676, 898
primary storage, 3
primitive data types, 64
primitive types, syntax, 913
print commands demonstration program

(online example), 14
print method

PrintStream class, 879
PrintWriter class, 318, 879

printf method
formatting output, 50–51
newline character, 61
overview, 318–320
printing multiple values, 51
PrintStream class, 879
PrintWriter class, 318, 879

printing
numerical values, 13–14
print method, 318–320
printf method, 318-320
println method, 318-320
printStack method, 887
PrintStream class, 878–879
PrintStream out object, 886
with/without line breaks, 14

printing, PrintWriter class
closing automatically, 346
description, 878–879
reading text files, 318–320

printing an invoice, sample object-
oriented design

Address.java class, 573
CRC cards, 563–566
implementing classes, 569–573
Invoice.java class, 570–571
InvoicePrinter.java class, 570
LineItem.java class, 571–572
method documentation, 567–569
process overview, 562–563
Product.java class, 572
requirements, 563
UML diagrams, 566

println method
overview, 318–320
printing with line breaks, 51–52
PrintStream class, 879
PrintWriter class, 879

printStackTrace method, 340
printStackTrace method, Throwable class, 887
PrintStream out object, 886
printTriangle method, online example, 230
priority queues, 898. See also heaps; queues

definition, 691
online example, 692
overview, 691–692

PriorityQueue<E> class, 692, 898
private class implementation, 367–369
private instance variables, 366, 374
private keys, 336
probing sequence, 747–748
problem solving. See debugging
Product.java class, 572
programmers

application, 53
first in history, 650
system, 53

programming environment. See Java
programming environment

programming languages, 5. See also Java
programming language

programs
basic syntax, 13
compiling. See compiling programs
definition, 2
“Hello, World!” sample program, 8–9,

12–14
running. See running programs
terminating, 886
writing. See software development

prompts, reading from, 49
properties, getting, 899
Properties class, 899
pseudocode

algorithm design, 18, 20–21
writing, How To, 54–56

public classes, 12
public instance variables, 374
public keys, 336
public reserved word, omitting, 453
pull-down menus, 521
push method, Stack<E> class, 690,

733–734, 735
put method, Map<K, V> interface,

684–686, 898

 Index  999

pyramid volume calculation example,
212–213

Q

quadratic time, 652–653
Queen.java class, 616–617
Question class, 556
question mark (?), conditional

 operator, 87. See also if statements
QuestionDemo1.java class, 419
QuestionDemo2.java class, 425–426
QuestionDemo3.java class, 432–433
Question.java class, 418–419
queue applications

algebraic expressions, 695–698
backtracking, 698–700
balancing parentheses, 693
reverse Polish notation, 694–695
waiting customers, Worked

Example, 700
queue applications, online examples

algebraic expressions, 698
backtracking, 700
balancing parentheses, 693

Queue<E> interface
add method, 691
description, 899
peek method, 691
remove method, 691

queues
as circular arrays, 736–738
definition, 671
FIFO (first in, first out) order, 691
as linked lists, 735–736
online example, 692
overview, 691
peeking at first element, 899
priority, 691–692, 899

quicksort, 644–645
Quiz class, 556
quiz scores, example, 275–278
quiz-taking program, 417–419, 424–427,

432–433

R

radians, converting to degrees, 884
radio buttons

creating, 511, 905
default, setting, 511

detecting button selection, 511
event listeners, 513
overview, 510–512
testing, 511

random access
file pointer position, 846
fixed record sizes, 847
linked lists, 674
open mode, 846
overview, 845–847
sample program, 847–849

Random class, 899
random number generators

definition, 176
finding approximate solutions, 178–179
generating random numbers,

176–177, 899
generating random passwords, 213,

249–253
Monte Carlo method, 178–179
sample program, 176
simulating die tosses, 177

RandomAccessFile class, 846–850, 879–880
Raymond, Eric, 402
read method, InputStream class, 841–845, 878
readability, computing (video example), 330
readChar method, RandomAccessFile class, 879
readDouble method, RandomAccessFile class,

846, 879
Reader class, 840–841
readInBetween method, 216–217
reading. See also java.io package

binary data, 322–323
web pages, online example, 321

reading, input. See also Scanner class
from arrays, 264–267
closing a file, 319, 877
from dialog boxes, 65, 321
end of file, 877
file not found, 348, 350, 877
floating-point numbers, 50
input error, 878
integers, 49–50
from the keyboard, 49, 886
opening a file, 318, 877
prompts, 49
read operation, 878
readers, constructing, 878
strings, from the console, 50. See also

next method

1000  Index

reading, text files. See also Scanner class
abnormal input, 326–327
characters, 324
consuming white space, 323–324, 327
converting strings to numbers, 326
How To, 333–336
input mismatch exceptions, 326–327
lines, 325–327
mixing numbers, words, and lines, 327
multiple lines, 483–486
no such element exceptions, 327
numbers, 327
overview, 318–320
single lines, 481–483
text areas, 483–486
text fields, 481–483
words, 323–324, 327

readInt method, RandomAccessFile class,
847, 879

readObject method, ObjectInputStream class,
851–855, 878

Rectangle class, 875
RectangleComponent.java class, 534
RectangleComponent2.java class, 537–538
RectangleFrame.java class, 535
RectangleFrame2.java class, 538–539
rectangles

drawing, 874, 874
filling, 180, 874
height/width, getting, 875
intersections, computing, 875
moving, 875, 875
size, adjusting, 875, 875
union, computing, 875
x - y coordinates, getting, 875

RectangleViewer2.java class, 538
recursive helper methods, 594–596
recursive methods. See also permutations

backtracking, 612–618
efficiency, 596–601
infinite recursion, 590
vs. loops, 600–601
mutual recursion, 606–612
nth triangle number, 586
overview, 228–232
syntax, 918

recursive methods, examples
computing Fibonacci sequences, 596–601
computing the area of a triangle, 586–589
eight queens problem, 613–618
finding files, Worked Example, 594

identifying a palindrome, 590–595,
600–601

printing a triangle, 229–232
Towers of Hanoi, Worked Example, 618

recursive methods, tracing
animation, 588
inserting trace messages, 597–599

RecursiveFib.java class, 596–597
RecursiveFibTracer.java class, 597–599
red-black trees. See also binary search trees

black height, 786
converting black nodes to red, 788
definition, 784
double black violations, 788–789
double red violations, 786–787, 789
efficiency, 790t
“equal exit cost” rule, 785
height, 786
inserting nodes, 786–787
negative-red nodes, 788
“no double reds” rule, 786
properties, 784–786
removing nodes, 787–790
Worked Example, 790

ReentrantLock class, 901
reference types, syntax, 913
reflection, generic types, 832–833
regular expressions, 330
relational operators

combining, 113–114
overview, 88
summary of, 89t. See also specific

operators
relationship symbols, UML, 558
remainders, 42
remove method

ArrayList<E> class, 292, 295–296, 893
Collection<E> interface, 680–681, 895
Iterator<E> interface, 897
ListIterator<E> interface, 676, 718
Map<K, V> interface, 684–686, 898
PriorityQueue<E> class, 898
Queue<E> interface, 691

removeFirst method, LinkedList<E> class, 674,
718, 897

removeLast method, LinkedList<E> class,
674, 897

removing
array list elements, 292, 295–296, 893
collection elements, 895

 Index  1001

elements from linked lists, 897
elements from priority queues, 898
keys from maps, 898

repaint method, Component class,
493–496, 873

repainting user-interface components,
493–496, 873

replace method, String class, 886
requirements gathering, 563
requirements specifications, definition, 550
reserved characters, in string literals, 60–61
reserved words. See also specific words

summary of, 867t–868t
in variables, 33

responsibilities, 552–553. See also
CRC cards

ResultSet interface, 891–892
ResultSetMetaData interface, 892
return statement, 210–211, 918
return values, constructors, 375
return values, methods

definition, 203
missing, 212
multiple, 211
omitting, 214–215
online example, 211
specifying, 210–211

reusing methods, 215–217
reverse Polish notation (RPN),

694–695, 701
Reverse.java class, 270–271
Richter scale, 96t
right angle brackets (>>), right shift with sign

extension, 941
right angle brackets (>>>), right shift with

zero extension, 941
Rivest, Ron, 336
robot escaping from a maze (video

example), 393
robot travel time computation, example, 58
rocket explosion, 347
rollback method, Connection class, 890
rolling dice, example, 278
root nodes, 760–761
round method, Math class, 44t, 884

rounding
floating-point numbers, 45
online example, 45
Pentium floating-point bug, 48
round method, 44t, 884

roundoff errors
binary numbers, 937
comparing floating-point numbers, 91
overview, 38–39

RPN (reverse Polish notation),
694–695, 701

RSA encryption, 336
Rumbaugh, James, 555
run method, Runnable interface, 885
Runnable interface, 885
running programs

in an integrated development
environment, 8

video example, 11
running time, measuring

linear time, 651–652
logarithmic time, 654–656
online example, 655
quadratic time, 652–653
sort algorithms, 631–634
triangle pattern, 653–654

running totals, instance variables for,
388–389

run-time errors, definition, 15
run-time exception, 885
run-time stacks, 690
RuntimeException class, 341, 885
Russian characters, 66

S

safety features, Java programming
language, 6

sales tax computation, example, 387
Save File dialog boxes, 904
saving objects to streams, 851–854
Scanner class. See also reading, text files

closing automatically, 346
constructing with a string, 321
description, 899–900
vs. Reader class, 841
reading characters from a string, 326
reading numeric values, 49–50
reading text files, 318–320
sample program, 51–52

1002  Index

scope, variables in methods, 225–228
Scores.java class

with array lists (online example), 296
with arrays, 277–278
sample code, 277–278

scroll panes, 905
scrollbars, adding to text areas, 484–485
searching

arrays, 260, 267–268, 894
collections, 895
online example, 657
sequential. See linear search

searching, binary
arrays, 267–268
binarySearch method, Arrays class, 894
binarySearch method, Collections

lass, 895
methods in the Java library, 656–657
overview, 647–650

searching, linear
arrays, 260, 646–647
overview, 646–647

secondary storage, 3
security

buffer overrun attack, 256
worms, 256

seek method, RandomAccessFile class,
846, 879

selection sort
counting operations, 634–636
measuring running time, 631–634
overview, 628–631
performance, 631–636

SelectionSortDemo.java class, 630
SelectionSorter.java class, 629–630
SelectionSortTimer.java class, 633
semicolon (;)

after an if condition, 86–87
ending Java statements, 12–13
omitting, 14
path separator, 877

sentinel values, 158–161
SentinelDemo.java class, 158–160
separate chaining, 740
sequential access

definition, 847
linked lists, 674

SerialDemo.java class, 853–854
Serializable interface, 851–853, 880

serialization, 852, 911
server sockets, getting, 888
ServerSocket class, 888
set method

ArrayList<E> class, 291, 729–730, 893
ListIterator<E> interface, 897

setAttribute method, Element interface, 910
setAutoCommit method, Connection class, 890
setBorder method, JComponent class

borders for user-interface
components, 512

description, 903
setColor method, Graphics class, 180, 874
setDefaultCloseOperation method, JFrame

class, 467, 904
setDouble method, PreparedStatement

interface, 891
Set<E> interface, 900
setEditable method

JComboBox class, 513, 903
JTextComponent class, 484, 908

setFocusable method, Component class,
540, 873

setFont method, JComponent class, 903
setIfModifiedSince method, URLConnection

class, 889
setIgnoringElementContentWhiteSpace

method, DocumentBuilderFactory
class, 909

setInt method, PreparedStatement
interface, 891

setJMenuBar method, JFrame class, 904
setLayout method, Container class, 873
setLevel method, Level class, 902
setLocation method, Rectangle class, 875
setParameter method, DOMConfiguration

interface, 910
setPreferredSize method, Component class,

494, 873
sets

adding/removing elements, 680–681
binary search trees, 679–680
definition, 671
hash tables, 679–680
implementing, 679–680
listing elements, 680–681
sample program, 682–683
searching for specific elements, 680–681

 Index  1003

traversing, 680–681
setSelected method, AbstractButton

class, 902
setSelectedItem method, JComboBox class

description, 903
setting combo box selections, 513

setSize method
Component class, 873
Rectangle class, 875

setString method, PreparedStatement
interface, 891

setter methods, instance variables for,
390–391

setText method, JTextComponent class, 908
setTimeZone method, DateFormat class, 893
setTitle method, Frame class, 874
setValidating method,

DocumentBuilderFactory class, 909
setVisible method, Component class, 873
Shamir, Adi, 336
shapes, drawing. See drawing
shared object references, 395–397
shift operations, 942
shipping cost computations

online example, 108
sample flowchart, 106–108

shopping for cars, example, 20–21
Short class, 294
short type, 40t
short-circuit evaluation, 114–115
showInputDialog method, JOptionPane class,

65, 905
showMessageDialog method, JOptionPane class,

905
showOpenDialog method, JFileChooser class,

322, 904
showSaveDialog method, JFileChooser class,

322, 904
sibling nodes, 761
signal method, Condition class, 901
signalAll method, Condition class, 901
simulation programs, 176
sin method, Math class, 43t, 884
sine, computing, 43t, 884
single quote ('), character literal

delimiter, 61

size, arrays
getting, 291
increasing, 263–264
requirements, estimating, 267

size method
ArrayList<E> class, 291, 894
Collection<E> interface, 670, 895

slash (/), division operator, 41, 42
slash asterisk... (/*...*/), long comment

delimiter, 36, 923
slash asterisks... (/**...*/)

documentation comment delimiter, 923,
933–934

explanatory comment delimiter, 36
method comment delimiter, 207

slashes (//), short comment delimiter,
35–36, 923

sleep method, Thread class, 887
sliders, 528–533
smallest value, computing, 882–883. See also

minimum/maximum value, finding
Socket class, 888–889
sockets, creating, 888
software. See also programs

definition, 2
piracy, 182

software development, object-
oriented design

Address.java class, 573
CRC cards, 563–566
implementing classes, 569–573
Invoice.java class, 570–571
InvoicePrinter.java class, 570
LineItem.java class, 571–572
method documentation, 567–569
process overview, 562–563
Product.java class, 572
requirements, 563
UML diagrams, 566

software development, printing an invoice
Address.java class, 573
CRC cards, 563–566
implementing classes, 569–573
Invoice.java class, 570–571
InvoicePrinter.java class, 570
LineItem.java class, 571–572
method documentation, 567–569
process overview, 562–563
Product.java class, 572
requirements, 563
UML diagrams, 566

1004  Index

software development, schedules, 109–110
sort method

Arrays class, 656, 895
Collections class, 895

sorting
collections, 895
lexicographic (dictionary) order of

strings, 92–93
methods in the Java library, 656
numbers and letters, 93
space characters, 93
uppercase vs. lowercase strings, 93

sorting, arrays
with the Java library, 267
by swapping elements, 262

sorting algorithms
definition, 628
heapsort, 802–806
insertion sort, 637–638, 659
merge sort, 639–641
quicksort, 644–645
selection sort, 628–630
Worked Example, 659

sorting algorithms, merge sort
overview, 639–641
performance, 642–644

sorting algorithms, online examples
insertion sort, 638
merge sort, 644
methods in the Java library, 657
quicksort, 645

sorting algorithms, selection sort
counting operations, 634–636
measuring running time, 631–634
overview, 628–631
performance, 631–636

source code, 9
source files, coding guidelines, 948
SOUTH position, user-interface

components, 508
space characters, sorting, 93
spaces. See also white space

after method names, 47
around operators, 47
in expressions, 47
vs. tabs, 87
in variable names, 33

spaghetti code, 106
spell checker, sample program, 682–683
SpellCheck.java class, 682–683

spirals, drawing (video example), 181
spreadsheets, VisiCalc, 232–233
SQL (Structured Query Language)

database connection, 890
exceptions, 892
prepared statements, 890–891
result set metadata, 892
result sets, 891–892
statements, 892–893

SQLException class, 892
sqrt method, Math class, 43t, 884
square roots, 43t, 884
squares, drawing, 180–181
squelching exceptions, 345
stack applications

algebraic expressions, 695–698
backtracking, 698–700
balancing parentheses, 693
reverse Polish notation, 694–695

stack applications, online examples
algebraic expressions, 698
backtracking, 700
balancing parentheses, 693

stack trace, printing, 887
Stack<E> class

peek method, 690
pop method, 690, 733–734, 735
push method, 690, 733–734, 735

stacks
as arrays, 735
definition, 671
LIFO (last in, first out) order, 690
as linked lists, 733–734
overview, 690
run-time, 690

Stallman, Richard, 402
stamp cost computation, example, 56
standards, 678
start method

Thread class, 887
Timer class, 533–535, 907

stateChanged event, 907
Statement interface, 892–893
statements, syntax, 919–921. See also

specific statements
static methods, 64–65, 205, 400–402
static reserved word, 400–402, 453
static variables, 400–402

 Index  1005

stealing software, 182
stepwise refinement, 218–223
stop method, Timer class, 533–535, 907
StopWatch.java class, 631–633
storage, primary vs. secondary, 3
storage devices. See specific devices
storyboards, 162–164. See also flowcharts
streams

binary input/output, 841–845
object streams, 851–854
overview, 840–841
saving objects to, 851–854
serialization, 852

String class, 885–886
string literals

definition, 59
escape sequences, 60–61
including reserved characters, 60–61

string variables, definition, 59
strings. See also characters

case conversion, 886
comparisons, 88–92, 885–886
concatenating, 59–60
converting from arrays, 895
converting to, 442–443. See also

toString method
converting to numbers, 326, 881
definition, 13, 59
drawing, 874
empty, 59
enclosing in quotation marks ("..."), 13
formatting, 329, 885
length, computing, 59, 885
line breaks, 60–61
positions, counting, 61
printing in a box, 214–215
reading from the console, 50
replacing, 886
returning characters from, 61. See

also substrings
traversing with loops, 154

Structured Query Language (SQL). See
SQL (Structured Query Language)

stubs, 224–225
subclasses. See also inheritance

accessing private instance variables,
423–424

definition, 416
implementing, 420–424
online example, 423
substitution principle, 416

vs. superclasses, 424
syntax, 422

submenus, 521–527
substitution principle, 416
substring method, String class, 61–62, 886
substrings. See also strings

extracting from strings, 61–62, 95, 886
length, computing, 62
sample program, 62–63

subtract method
BigDecimal class, 40, 887
BigInteger class, 40, 888

subtrees, 761
summing array values, 259
super reserved word

calling a superclass method, 425
calling the superclass constructor, 429
omitting, 429

superclasses. See also inheritance;
Object class

constructors, calling, 429–430
definition, 416
vs. subclasses, 424
substitution principle, 416

superclasses, instance variables
protecting, 436
replicating, 423–424

swapping array elements, 262, 279–281
Swing documentation, 528–533
switch statements. See also if statements

branch on floating-point values, 99
break instructions, 99
coding guidelines, 951
overview, 99
syntax, 920–921
terminating, 99

symmetric bounds, 155
syntax diagrams, mutual recursion, 606
syntax errors. See compile-time errors
syntax summary

break statements, 920–921
classes, 914–916
comments, 923
constructors, 919
continue statements, 920–921
do statements, 920–921
enumeration types, 916–917
exceptions, 922
expressions, 914
generic methods, 923

1006  Index

syntax summary (continued)
generic types, 923
if statements, 920–921
interfaces, 916
methods, 917–918
packages, 922–923
primitive types, 913
reference types, 913
statements, 919–921
for statements, 920–921
switch statements, 920–921
throw statements, 922
types, 913
variables, 913–914
while statements, 920–921

System class, 886
system programmers, 53
System.out.print method, 14
System.out.println method, 14

T

table of contents, building (video
example), 701

tabs
aligning text, 87
indenting nested statements, 87
vs. spaces, 87

tags, HTML, 926–927
tally counter, example, 364–367
tan method, Math class, 43t, 884
tangent, computing, 43t, 884
TaxCalculator.java class, 101–102
taxes. See income tax
terminating steps, 19
ternary operators, 914
test cases

boundary conditions, 108
coverage, 108
overview, 108–109

tester classes, 380–382
testing

classes, 380–382
collection elements, 895
data types, 444–446
digits, 324t
letters, 324t
lowercase letters, 324t
null reference, 397
strings for equality, 90
unit testing, 380–382

uppercase letters, 324t
white space, 324t

text
aligning with tabs, 87
drawing on user-interface components,

489–492
justifying (video example), 233
reading. See reading, text files
writing. See writing, output to text files

text areas
appending text to, 906
creating, 483–486, 906
definition, 483–486
scrollbars, 484–485
setting to read-only, 484

Text class, 910
text fields

creating, 481–483, 906
definition, 481
labeling, 481–483

text files, reading. See reading, text files
text format, definition, 840
text strings, identifying to the compiler, 13
Thai characters, 66
theta notation, 636–637
this reference, 397–399
threads

blocking, 885, 901
interrupting, 887
notification, 885
putting to sleep, 887
starting, 887

threads, interrupting with exceptions, 882
throw statement, 338, 922
Throwable class, 887
throwing exceptions, 338–339, 345, 887
throws clause, 342–343
Thrun, Sebastian, 119
tilde (~), unary negation, 941
tile layout, 57–58
time. See date and time
time zone

getting, 900
setting, 893

Timer class
animations, 533–535
description, 907
sample program, 534–535

 Index  1007

timers
animations, 533–535
creating, 907
StopWatch.java class, 631–633

TimeZone class, 900
TitledBorder class, 512, 907
titles, frames, 874
toDegrees method, Math class, 43t, 884
toLowerCase method, String class, 886
toRadians method, Math class, 43t, 884
toString method

Arrays class, 259, 895
Integer class, 882
Object class, 442–443, 446–447, 885

Total.java class, 319–320
toUpperCase method, String class, 886
Towers of Hanoi, Worked Example, 618
tracing code. See also hand-tracing

instance variables, 386–388
logging messages, 110
nested loops (animation), 285
recursions (animation), 230
tile layout, 57–58

tracing code, methods
animation, 220
examples, 223–224, 386–388

tracing code, recursive methods
animation, 588
inserting trace messages, 597–599

transistors, in computers, 3
translate method, Rectangle class, 875
translating languages, 119
travel time computation, example, 58
traversing. See also iteration

array lists, 292
arrays, 257–258
collection elements, 895
linked lists, 674–676, 897
lists, 896–897
sets, 680–681

traversing, trees
breadth first, 781–783
depth first, 781–783
inorder traversal, 778–779
online example, 783
postorder traversal, 779–780
preorder traversal, 779–780, 783
tree iterators, 783–784
visitor pattern, 780–781

Tree class, 762–763
tree iterators, 783–784
tree maps, 900
tree sets, 900
TreeMap class, 684–686
TreeMap<K, V> class, 900
trees. See also binary search trees; binary

trees; heaps
ancestors, 761
child nodes, 760–761
definition, 760
descendants, 761
directory, example, 762
empty, 763
family, example, 760
height, 761
inheritance, example, 762
interior nodes, 761
leaves, 760–761
nodes, 760–761
null root, 763
online example, 763
overview, 760–764
parent nodes, 761
paths, 761
root nodes, 760–761
sibling nodes, 761
subtrees, 761
terminology, 761t

trees, red-black. See also binary search trees
black height, 786
converting black nodes to red, 788
definition, 784
double black violations, 788–789
double red violations, 786–787, 789
efficiency, 790t
“equal exit cost” rule, 785
height, 786
inserting nodes, 786–787
negative-red nodes, 788
“no double reds” rule, 786
properties, 784–786
removing nodes, 787–790
Worked Example, 790

trees, traversing
breadth first, 781–783
depth first, 781–783
inorder traversal, 778–779
online example, 783
postorder traversal, 779–780
preorder traversal, 779–780, 783
tree iterators, 783–784

1008  Index

trees, traversing (continued)
visitor pattern, 780–781

TreeSet class, 679–680, 683
TreeSet<E> class, 900
triangle pattern, running time, 653–654
Triangle.java class, 588–589
TrianglePrinter program, online

example, 230
triangles

computing the area of, 586–589
printing, 229–232

TriangleTester.java class, 589
troubleshooting. See debugging
truth tables, 111
Turing, Alan, 604–605
Turing machine, 604–605
two-dimensional arrays. See arrays,

two-dimensional
TwoRowsOfSquares.java class, 181
two’s complement integers, 938
type erasure, 829–831
types, syntax, 913

U

UML (Unified Modeling Language). See
also CRC cards

attributes, 559, 943–945
class diagrams, 555, 943–945
coupling, 555
definition, 554–555
methods, 559, 943–945
object diagrams, 555
in object-oriented design, 566
in program design, How To, 558–559
relationship symbols, 558
summary of, 943–945

unambiguous steps, 19
unary operators, 914
unchecked exceptions, 341–343
undeclared variables, 36–37
underscore (_), in variable names, 33
Unicode characters

Latin/Latin-1 subsets, 861t–863t
overview, 66
testing for, 880

The Unified Modeling Language User
Guide, 563

uninitialized
constructors, 376
instance variables, 378–379
variables, 36–37

union method, Rectangle class, 875
union of rectangles, computing, 875
unlock method, Lock interface, 901
uppercase letters. See also case sensitivity

camel case, 33
constant names, 35
in the middle of words, 33
testing for, 324t

uppercase strings, sorting, 93
URL class, 889
URLConnection class, 889
useDelimiter method, Scanner class, 324,

330, 900
user events. See events
user interface

animations, 533–535
border layout, 508
containers, 508
flow layout, 508
grid bag layout, 509
grid layout, 509
nesting panels, 509
online example, 510
Swing documentation, 528–533

user interface, definition, 233. See also
graphical user interface

user interface, layout management
customizing components, 520
dragging and dropping components, 520
event handlers, 520
How To, 518–520
overview, 508–510
user-interface builders, 520

user-interface components. See also java.awt
package; javax.swing package

adding to containers, 873
border titles, 512
borders, 872, 903, 907
button groups, 902
button labels, 902
buttons, 467, 902
CENTER position, 508
check boxes, 512, 903
coloring, 490, 872, 874
combo boxes, 512–513, 903
confirmation dialog boxes, 905
detecting user actions. See event listeners

 Index  1009

dragging and dropping, 520
EAST position, 508
file chooser, 904
fonts, 903
in frames, 467–468, 904
grid layout, 509, 874
grouping, 468
height, getting, 872
horizontal sliders, 528–530, 906
image icons, 902
input dialog boxes, 65, 905
labels, 904
menu bars, 521–527, 905
menu items, 521–527, 905
menus, 521–527, 904–905
NORTH position, 508
painting, 903
panel borders, 511–512
panels, 905
position, specifying, 508
preferred size, setting, 873
pull-down menus, 521
radio buttons, 510–512, 905
receiving input focus, 873
repainting, 873
scroll panes, 905
showing/hiding, 873
size, setting, 873
sliders, 528–533
SOUTH position, 508
submenus, 521–527
WEST position, 508
width, getting, 873

user-interface components,
sample programs

animations, 534–535
baby naming, 541
calculator (Worked Example), 521
color slider, 531–533
font viewer, 513–517, 523–527
mouse events, 536–539

user-interface components, text
editable, 908
returning, 908
setting, 908
text areas, 906
text fields, 906

V

variable types
numbers, 32–33. See also floating-point

numbers; integers
specifying, 31

variables. See also Boolean variables
and operators; constants; instance
variables; parameter variables

assignment statements, 34
case sensitivity, 33
coding guidelines, 949–950
declaring, 30–32
definition, 30
distinguishing from constants, 35
final, 35, 914
immutable, 35
initializing, 31, 34
limiting to a set of values. See

enumeration types
naming conventions, 33, 38, 913
reserved words, 33
sample program, 36
scope, 225–227,914
static, 400–402
syntax, 31, 913–914
undeclared, 36–37
uninitialized, 36–37

variables, methods
duplicate names, 226–227
local, 225
scope, 225–228

vending machine example, 54–56
VendingMachine.java class, 56
verbs as methods, 550
versions, Java programming language, 7t
vertical line (|), binary or, 941
vertical lines (||), or operator

definition, 111
flowchart, 112
negating, 115–116
vs. and operator, 114
short-circuit evaluation, 114–115

virtual machine launcher, 932
VisiCalc program, 232–233
visit method, 781, 783
visitor pattern, tree traversal, 780–781
void reserved word

in methods without return values, 214
in constructors, 379

Volume1.java class, 36
voting machines, 394

W

W3C (World Wide Web Consortium), 678
wait method, Object class, 885

1010  Index

waiting customers, Worked Example, 700
web pages, reading (online example), 321
WEST position, user-interface

components, 508
while loops. See also loops

body of, 141
overview, 140–141
sample program, 142–143
syntax, 141

while statements, syntax, 920–921
white space. See also spaces

coding guidelines, 952
consuming, 323–324, 327
testing for, 324t

wildcard types, 828–829, 923
Wilkes, Maurice, 146
word frequency, Worked Example, 687
words, reading text files, 323–324, 327
WorkOrder.java class, 800
wrapper classes

array lists, 293–294
Boolean, 294
Byte, 294
Character, 294, 880
Double, 294, 881
Float, 294
Integer, 294, 881–882
Long, 294
overview, 293–294. See also specific classes
Short, 294

write method, OutputStream class,
842–845, 878

writeChar method, RandomAccessFile
class, 880

writeChars method, RandomAccessFile
class, 880

writeDouble method, RandomAccessFile class,
846, 880

writeInt method, RandomAccessFile class,
846, 880

writeObject method, ObjectOutputStream
class, 878

Writer class, 840–841
writeToString method, LSSerializer

interface, 911
writing, output. See also java.io package

binary data, 322–323
closing a file, 877
closing the stream, 877
format flags, 328–329
format specifiers, 328–329
formatting output, 328–329
How To, 333–336
to the console window, 886
to dialog boxes, 65
opening a file, 877
output error, 878
overview, 318–320
write operation, 878

writing programs. See
software development

X

x - y coordinates for rectangles, getting, 875
XML documents, 910–911
XML parsers, 908–909
XPath interface, 909
XPathExpressionException class, 909
XPathFactory class, 909

Z

zeroes, leading, 328t

1011

Preface
Page v: © Terraxplorer/iStockphoto.

Chapter 1
Page 1, 2: © JanPietruszka/iStockphoto.
Page 3, 22 (left): © Amorphis/iStockphoto.
Page 3 (right): PhotoDisc, Inc./Getty Images.
Page 5 (top): © UPPA/Photoshot.
Page 5 (bottom): James Sullivan/Getty Images.
Page 11, 22: © Tatiana Popova/iStockphoto.
Page 12, 22: © Amanda Rohde/iStockphoto
Page 15, 23: © CarlssonInc/iStockphoto.
Page 17: © mammamaart/iStockphoto.
Page 19, 23: © Claudiad/iStockphoto.
Page 20: © dlewis33/iStockphoto.
Page 21 (top): © rban/iStockphoto.
Page 21 (bottom): © YinYang/iStockphoto.

Chapter 2
Page 29, 30: © Eyeidea/iStockphoto.
Page 30 (middle): © blackred/iStockphoto; © travis manley/iStockphoto.
Page 30 (bottom), 66: Javier Larrea/Age Fotostock.
Page 31, 66: © Ingenui/iStockphoto.
Page 33, 66: © GlobalP/iStockphoto.
Page 37, 67: © jgroup/iStockphoto.
Page 39: © FinnBrandt/iStockphoto.
Page 41: © arakonyunus/iStockphoto.
Page 42, 67: © Michael Flippo/iStockphoto.
Page 46: © Croko/iStockphoto.
Page 47: © Maxfocus/iStockphoto.
Page 48: Courtesy of Larry Hoyle, Institute for Policy & Social Research,

University of Kansas.
Page 49, 67: © Media Bakery.
Page 51, 67: © Koele/iStockphoto.
Page 55: Photos.com/Jupiter Images.
Page 58: Courtesy NASA/JPL-Caltech.
Page 59, 67: © essxboy/iStockphoto.
Page 61, 67: © slpix/iStockphoto.
Page 62, 67: © Rich Legg/iStockphoto.
Page 65: © janrysavy/iStockphoto.
Page 66 (left): © pvachier/iStockphoto.
Page 66 (center): © jcarillet/iStockphoto.
Page 66 (right): © Saipg/iStockphoto.
Page 70: © Media Bakery.
Page 72: © asiseeit/iStockphoto.

Illustration Credits

1012  Illustration Credits

Page 74: © José Luis Gutiérrez/iStockphoto.
Page 75: © Captainflash/iStockphoto.
Page 77: © TebNad/iStockphoto.

Chapter 3
Page 81, 82: © zennie/iStockphoto.
Page 82: © DrGrounds/iStockphoto.
Page 83, 120: © Media Bakery.
Page 86: © TACrafts/iStockphoto.
Page 87: Photo by Vincent LaRussa/John Wiley & Sons, Inc.
Page 88, 120: © arturbo/iStockphoto.
Page 91: © caracterdesign/iStockphoto.
Page 92, 120: Corbis Digital Stock.
Page 93: © MikePanic/iStockphoto.
Page 95: Bob Daemmrich/Getty Images.
Page 96, 120: © kevinruss/iStockphoto.
Page 99: © travelpixpro/iStockphoto.
Page 100, 120: © ericsphotography/iStockphoto.
Page 103: © thomasd007/iStockphoto.
Page 105: © mikie11/iStockphoto.
Page 108: © Ekspansio/iStockphoto.
Page 110: Bananastock/Media Bakery.
Page 111, 121: Cusp/SuperStock.
Page 112: © toos/iStockphoto.
Page 115: © YouraPechkin/iStockphoto.
Page 116, 121: Tetra Images/Media Bakery.
Page 118 (top): © jeanma85/iStockphoto.
Page 118 (bottom): © benjaminalbiach/iStockphoto.
Page 119: Vaughn Youtz/Zuma Press.
Page 128 (top): © rotofrank/iStockphoto.
Page 1298 (bottom): © lillisphotography/iStockphoto.
Page 130: © Straitshooter/iStockphoto.
Page 131: © Mark Evans/iStockphoto.
Page 132: © drxy/iStockphoto.
Page 133 (top): © nano/iStockphoto
Page 133 (bottom): © Photobuff/iStockphoto.
Page 134: © rotofrank/iStockphoto.
Page 135: Courtesy NASA/JPL-Caltech.

Chapter 4
Page 139, 140 (top): © photo75/iStockphoto.
Page 140 (middle): © AlterYourReality/iStockphoto.
Page 140 (bottom), 182: © mmac72/iStockphoto.
Page 144: © MsSponge/iStockphoto.
Page 145: © ohiophoto/iStockphoto.
Page 146: Courtesy of the Naval Surface Warfare Center, Dahlgren, VA., 1988. NHHC

Collection.
Pages 147–149 (paperclip): © Yvan Dubé/iStockphoto.
Page 151, 183: © Enrico Fianchini/iStockphoto.
Page 156: © akaplummer/iStockphoto.

 Illustration Credits  1013

Page 158, 183: © Rhoberazzi/iStockphoto.
Page 161: © Michal_edo/iStockphoto.
Page 162: Courtesy of Martin Hardee.
Page 166 (top): © Hiob/iStockphoto.
Page 166 (bottom): © drflet/iStockphoto.
Page 167: © CEFutcher/iStockphoto.
Page 168: © tingberg/iStockphoto.
Page 169: © Stevegeer/iStockphoto.
Page 172 (top): © MorePixels/iStockphoto.
Page 172 (bottom), 183: © davejkahn/iStockphoto.
Page 175: Cay Horstmann.
Page 177, 183: © ktsimage/iStockphoto.
Page 178: © timstarkey/iStockphoto.
Page 181: © Rpsycho/iStockphoto.
Page 182 (top): © RapidEye/iStockphoto.
Page 182 (bottom): © thomasd007/iStockphoto.
Page 189: © Anthony Rosenberg/iStockphoto.
Page 191: © GlobalP/iStockphoto.
Page 194: © hatman12/iStockphoto.
Page 195 (top): © Charles Gibson/iStockphoto.
Page 195 (bottom): © MOF/iStockphoto.
Page 196 (top): Introduction to Engineering Programming: Solving Problems with

Algorithms, James P. Holloway (John Wiley & Sons, Inc., 2004) Reprinted with
permission of John Wiley & Sons, Inc.

Page 196 (middle): © Snowleopard1/iStockphoto.
Page 196 (bottom): © zig4photo/iStockphoto.

Chapter 5
Page 201, 202: © attator/iStockphoto.
Page 203, 234: © yenwen/iStockphoto.
Page 204: © studioaraminta/iStockphoto.
Page 205, 234: © princessdlaf/iStockphoto.
Page 207 (collage), 234: © christine balderas/iStockphoto (cherry pie);

© inhauscreative/iStockphoto (apple pie); © RedHelga/iStockphoto (cherries);
© ZoneCreative/iStockphoto (apples).

Page 210, 234: © Tashka/iStockphoto.
Page 212: © holgs/iStockphoto.
Page 214, 234: © jgroup/iStockphoto.
Page 217: © Lawrence Sawyer/iStockphoto.
Page 218, 234: © AdShooter/iStockphoto.
Page 219: © YinYang/iStockphoto.
Page 224: © lillisphotography/iStockphoto.
Page 225: © pkline/iStockphoto.
Page 226 (collage): © jchamp/iStockphoto (Railway and Main) (also 235);

© StevenCarrieJohnson/iStockphoto (Main and N. Putnam);
© jsmith/iStockphoto (Main and South St.).

Page 228: © Janice Richard/iStockphoto.
Page 230, 235: © nicodemos/iStockphoto.
Page 233 (top): © Kenneth C. Zirkel/iStockphoto.

1014  Illustration Credits

Page 233 (bottom): Reprint Courtesy of International Business Machine
Corporation, copyright © International Business Machines Corporation.

Page 236: © stacey_newman/iStockphoto.
Page 240: © mbbirdy/iStockphoto.
Page 241: © Straitshooter/iStockphoto.
Page 243: © MichaelJay/iStockphoto.
Page 245: © alacatr/iStockphoto.

Chapter 6
Page 249, 250: © traveler1116/iStockphoto.
Page 252, 300: © Luckie8/iStockphoto.
Page 254, 300: © AlterYourReality/iStockphoto.
Page 257: © nullplus/iStockphoto.
Page 259 (top): © CEFutcher/iStockphoto.
Page 259 (bottom): © trutenka/iStockphoto.
Page 260, 300: © yekorzh/iStockphoto.
Page 267: © ProstoVova/iStockphoto.
Page 275 : Thierry Dosogne/The Image Bank/Getty Images, Inc.
Page 278: © ktsimage/iStockphoto.
Page 279 (top), 300: © JenCon/iStockphoto.
Page 279–280 (coins), 315: © jamesbenet/iStockphoto; JordiDelgado/iStockphoto.
Page 282 (top): © claudio.arnese/iStockphoto.
Page 282 (middle), 301: © Trub/iStockphoto.
Page 282 (bottom): © technotr/iStockphoto.
Page 289, 301: © digital94086/iStockphoto.
Page 291, 301: © Danijelm/iStockphoto.
Page 294, 301: © sandoclr/iStockphoto.
Page 299: © Henrik5000/iStockphoto.
Page 311 (top): © lepas2004/iStockphoto.
Page 311 (bottom): © KathyMuller/iStockphoto.
Page 312: © joshblake/iStockphoto.
Page 313 (top): © GordonHeeley/iStockphoto.
Page 313 (bottom): © nicolamargaret/iStockphoto.

 Worked Example 6.1 (top): © ktsimage/iStockphoto.
 Worked Example 6.1 (bottom): © hallopino/iStockphoto.

Chapter 7
Page 317, 318 (top): James King-Holmes/Bletchley ParkTrust/Photo Researchers, Inc.
Page 330: © Ozgur Donmaz/iStockphoto.
Page 331, 352: © xyno/iStockphoto.
Page 333: © Oksana Perkins/iStockphoto.
Page 337 (top): © Nancy Ross/iStockphoto.
Page 337 (bottom): © Anna Khomulo/iStockphoto.
Page 338, 352: © Lisa F. Young/iStockphoto.
Page 340, 352: © Andraz Cerar/iStockphoto.
Page 342, 353: © tillsonburg/iStockphoto.
Page 343, 353: © archives/iStockphoto.
Page 347: © AP/Wide World Photos.
Page 352: © Norebbo/iStockphoto.
Page 354: © Chris Price/iStockphoto.

 Illustration Credits  1015

Page 358: © Chris Dascher/iStockphoto.

Chapter 8
Page 361, 362 (top): © Stephanie Strathdee/iStockphoto.
Page 362 (bottom), 403: Media Bakery.
Page 363, 403: © Damir Cudic/iStockphoto.
Page 364 (top): © Christian Waadt/iStockphoto.
Page 364 (bottom): © Jasmin Awad/iStockphoto.
Page 367, 403: © Mark Evans/iStockphoto.
Page 368, 403: Glow Images.
Page 371, 403: © migin/iStockphoto.
Page 374, 403: © James Richey/iStockphoto.
Page 376, 403: © Ann Marie Kurtz/iStockphoto.
Page 380, 404: © Chris Fertnig/iStockphoto.
Page 382: © Mark Evans/iStockphoto.
Page 386: © Pavel Mitrofanov/iStockphoto.
Page 388: © Hunteerwagstaff/Dreamstime.com.
Page 390, 404: © paul prescott/iStockphoto.
Page 391, 404: © John Alexander/iStockphoto.
Page 393: © Llya Terentyev/iStockphoto.
Page 394 (left): © Peter Nguyen/iStockphoto.
Page 394 (center): © Lisa F. Young/iStockphoto.
Page 395, 404: © Jacob Wackerhausen/iStockphoto.
Page 400, 404: © Diane Diederich/iStockphoto.
Page 402: Courtesy of Richard Stallman.
Page 406: © Miklos Voros/iStockphoto.
Page 407: © pixhook/iStockphoto.
Page 410: © ThreeJays/iStockphoto.
Page 411: © Maria Toutoudaki/iStockphoto.

Chapter 9
Page 415, 416: © Lisa Thornberg/iStockphoto.
Page 416, 455: © Richard Stouffer/iStockphoto (vehicles);

© Ed Hidden/iStockphoto (motorcycle); © YinYang/iStockphoto (car);
© Robert Pernell/iStockphoto (truck); © nicholas belton/iStockphoto (sedan);
Cezary Wojtkowski/Age Fotostock America (SUV).

Page 417: © paul kline/iStockphoto.
Page 421, 455: Media Bakery.
Page 432, 455: © Alpophoto/iStockphoto.
Page 441 (top): © Sean Locke/iStockphoto.
Page 441 (bottom): © vm/iStockphoto.
Page 444: © granata1111/Shutterstock.
Page 448, 455: © gregory horler/iStockphoto.
Page 452: © Janis Dreosti/iStockphoto.
Page 455: Courtesy of John Reid.
Page 460: © Pali Rao/iStockphoto.

Chapter 10
Page 465, 466: © Trout55/iStockphoto.
Page 466: © Mark Goddard/iStockphoto.

1016  Illustration Credits

Page 467, 500: © Eduardo Jose Bernardino/iStockphoto.
Page 469: © TommL/iStockphoto.
Page 471, 500: © Seriy Tryapitsyn/iStockphoto.
Page 473, 500: © maureenpr/iStockphoto.
Page 483, 500: © Kyoungil Jeon/iStockphoto.
Page 487, 501: © Alexey Avdeev/iStockphoto.
Page 497: Punchstock.
Page 500 (Video Example): © paul jantz/iStockphoto.
Page 506: © Juanmonino/iStockphoto.

Chapter 11
Page 507, 508: © Carlos Santa Maria/iStockphoto.
Page 508, 541: © Felix Mockel/iStockphoto.
Page 510, 541: © Michele Cornelius/iStockphoto.
Page 522, 541: © lillisphotography/iStockphoto.
Page 528: © René Mansi/iStockphoto.
Page 533, 542: © jeff giniewicz/iStockphoto.
Page 536, 542: © james Brey/iStockphoto.
Page 540: © Dmitry Shironosov/iStockphoto.
Page 541: © Nancy Ross/iStockphoto.
Page 545: © Kathy Muller/iStockphoto.

Chapter 12
Page 549, 550: © Petrea Alexandru/iStockphoto.
Page 551, 577: © Oleg Prikhodko/iStockphoto.
Page 556, 577: © bojan fatur/iStockphoto.
Page 563: © Scott Cramer/iStockphoto.
Page 573: © Mark Evans/iStockphoto.
Page 575, 577: © Don Wilkie/iStockphoto.

Chapter 13
Page 585, 586: © Nicolae Popovici/iStockphoto.
Page 586, 618: © Davis Mantel/iStockphoto.
Page 590, 618: © Nikada/iStockphoto.
Page 594, 618: © gerenme/iStockphoto.
Page 596, 619: © Christina Richards/iStockphoto.
Page 601, 619: © Jeanine Groenwald/iStockphoto.
Page 604: Science Photo Library/Photo Researchers, Inc.
Page 612, 619: © Lanica Klein/iStockphoto.

Chapter 14
Page 627, 628: © Volkan Ersoy/iStockphoto.
Page 628, 660: © Zone Creative/iStockphoto.
Page 638, 660: © Kirby Hamilton/iStockphoto.
Page 639, 660: © Rich Legg/iStockphoto.
Page 645: © Christopher Futcher/iStockphoto.
Page 650: Topham/The Image Works.
Page 651–655, 660, 667 (on/off lightbulb):

© Kraska/Shutterstock.

 Illustration Credits  1017

Chapter 15
Page 669, 670: © nicholas belton/iStockphoto.
Page 671 (top left): © Filip Fuxa/iStockphoto.
Page 671 (top center), 702: © parema/iStockphoto.
Page 671 (top right): © Vladimir Trenin/iStockphoto.
Page 671 (bottom), 702: © david franklin/iStockphoto.
Page 673, 701: © andrea laurita/iStockphoto.
Page 678: © Denis Vorob’yev/iStockphoto.
Page 679, 702: © Alfredo Ragazzoni/iStockphoto.
Page 680, 702: © Volkan Ersoy/iStockphoto.
Page 686, 701: © Tom Hahn/iStockphoto.
Page 688, 702: © one clear vision/iStockphoto.
Page 690 (top), 702: © John Madden/iStockphoto.
Page 690 (left): © budgetstockphoto/iStockphoto.
Page 691, 700, 702: Photodisc/Punchstock.
Page 692: © paul kline/iStockphoto.
Page 695, 702: © Jorge Delgado/iStockphoto.
Page 698: © Skip ODonnell/iStockphoto.
Page 701 (top): Courtesy of Nigel Tout.
Page 701 (middle): © Ermin Gutenberger/iStockphoto.
Page 706: © martin mcelligott/iStockphoto.
Page 708: © Luis Carlos Torres/iStockphoto.

Chapter 16
Page 713, 714: © andrea laurita/iStockphoto.
Page 722, 748: © Kris Hanke/iStockphoto.
Page 731, 749: © Craig Dingle/iStockphoto.
Page 736, 749: © ihsanyildizli/iStockphoto.
Page 740, 749: © Neil Kurtzman/iStockphoto.
Page 751: © Philip Dyer/iStockphoto.

Chapter 17
Page 759, 760: © DNY59/iStockphoto.
Page 760, 806: Courtesy of takato marui.
Page 763: © Yvette Harris/iStockphoto.
Page 764 (right), 806: © kali9/iStockphoto.
Page 764 (left): © AlbanyPictures/iStockphoto.
Page 766: © Emrah Turudu/iStockphoto.
Page 768: Charlotte and Emily Horstmann.
Page 779, 807: © Pawel Gaul/iStockphoto.
Page 781: © David Jones/iStockphoto.
Page 785, 807: © Virginia N/iStockphoto.
Page 791, 807: © Lisa Marzano/iStockphoto.

Chapter 18
Page 817, 818: © Don Bayley/iStockphoto.
Page 825, 834: © Mike Clark/iStockphoto.
Page 829, 834: © VikramRaghuvanshi/iStockphoto.

1018  Illustration Credits

Chapter 19
Page 839, 840: © Claude Dagenais/iStockphoto.

Icons
Common Error icon: © Scott Harms/iStockphoto.
How To icon: © Steve Simzer/iStockphoto.
Paperclip: © Yvan Dubé/iStockphoto.
Programming Tip icon: Macdaddy/Dreamstime.com.
Random Fact icon: Mishella/Dreamstime.com.
Self Check icon: © Nicholas Homrich/iStockphoto.
Special Topic icon: © nathan winter/iStockphoto.
Worked Example icon: © Tom Horyn/iStockphoto.

Chapters Available on the Web

Chapter 20
Page W861, W862: © Rubén Hidalgo/iStockphoto.
Page W877, W894: Creatas/Punchstock.
Page W893: Courtesy of Professor Naehyuck Chang, Computer Systems Lab,

Department of Computer Engineering, Seoul National University.

Chapter 21
Page W901, W902: © Felix Alim/iStockphoto.

Chapter 22
Page W927, W928: © Jason Allen/iStockphoto.
Page W942: © Greg Nicholas/iStockphoto.

Chapter 23
Page W971, W972: © Krzysztof Zmij/iStockphoto.

Chapter 24
Page W1011, W1012: © Philip Toy/iStockphoto.
Page W1038: Google Earth™ mapping services screenshot © Google, Inc.

Reprinted with permission.

	Cover

	Title Page

	Copyright
	Preface
	Acknowledgments
	CONTENTS
	Special Features
	Chapter 1 Introduction
	1.1 Computer Programs
	1.2 The Anatomy of a Computer
	1.3 The Java Programming Language
	1.4 Becoming Familiar with Your Programming Environment
	1.5 Analyzing Your First Program
	1.6 Errors
	1.7 Problem Solving: Algorithm Design

	Chapter 2 Fundamental Data Types
	2.1 Variables
	2.2 Arithmetic
	2.3 Input and Output
	2.4 Problem Solving: First Do It By Hand
	2.5 Strings

	Chapter 3 Decisions
	3.1 The if Statement
	3.2 Comparing Numbers and Strings
	3.3 Multiple Alternatives
	3.4 Nested Branches
	3.5 Problem Solving: Flowcharts
	3.6 Problem Solving: Test Cases
	3.7 Boolean Variables and Operators
	3.8 Application: Input Validation

	Chapter 4 Loops
	4.1 The while Loop
	4.2 Problem Solving: Hand-Tracing
	4.3 The for Loop
	4.4 The do Loop
	4.5 Application: Processing Sentinel Values
	4.6 Problem Solving: Storyboards
	4.7 Common Loop Algorithms
	4.8 Nested Loops
	4.9 Application: Random Numbersand Simulations

	Chapter 5 Methods
	5.1 Methods as Black Boxes
	5.2 Implementing Methods
	5.3 Parameter Passing
	5.4 Return Values
	5.5 Methods Without Return Values
	5.6 Problem Solving: Reusable Methods
	5.7 Problem Solving: Stepwise Refinement
	5.8 Variable Scope
	5.9 Recursive Methods (Optional)

	Chapter 6 Arrays and Array Lists
	6.1 Arrays
	6.2 The Enhanced for Loop
	6.3 Common Array Algorithms
	6.4 Using Arrays with Methods
	6.5 Problem Solving: Adapting Algorithms
	6.6 Problem Solving: Discovering Algorithms by Manipulating Physical Objects
	6.7 Two-Dimensional Arrays
	6.8 Array Lists

	Chapter 7 Input/Output and Exception Handling
	7.1 Reading and Writing Text Files
	7.2 Text Input and Output
	7.3 Command Line Arguments
	7.4 Exception Handling
	7.5 Application: Handling Input Errors

	Chapter 8 Objects and Classes
	8.1 Object-Oriented Programming
	8.2 Implementing a Simple Class
	8.3 Specifying the Public Interface of a Class
	8.4 Designing the Data Representation
	8.5 Implementing Instance Methods
	8.6 Constructors
	8.7 Testing a Class
	8.8 Problem Solving: Tracing Objects
	8.9 Problem Solving: Patterns for Object Data
	8.10 Object References
	8.11 Static Variables and Methods

	Chapter 9 Inheritance and Interfaces
	9.1 Inheritance Hierarchies
	9.2 Implementing Subclasses
	9.3 Overriding Methods
	9.4 Polymorphism
	9.5 Object: The Cosmic Superclass
	9.6 Interface Types

	Chapter 10 Graphical User Interfaces
	10.1 Frame Windows
	10.2 Events and Event Handling
	10.3 Processing Text Input
	10.4 Creating Drawings

	Chapter 11 Advanced User Interfaces
	11.1 Layout Management
	11.2 Choices
	11.3 Menus
	11.4 Exploring the Swing Documentation
	11.5 Using Timer Events for Animations
	11.6 Mouse Events

	Chapter 12 Object-Oriented Design
	12.1 Classes and Their Responsibilities
	12.2 Relationships Between Classes
	12.3 Application: Printing an Invoice
	12.4 Packages

	Chapter 13 Recursion
	13.1 Triangle Numbers Revisited
	13.2 Problem Solving: Thinking Recursively
	13.3 Recursive Helper Methods
	13.4 The Efficiency of Recursion
	13.5 Permutations
	13.6 Mutual Recursion
	13.7 Backtracking

	Chapter 14 Sorting and Searching
	14.1 Selection Sort
	14.2 Profiling the Selection Sort Algorithm
	14.3 Analyzing the Performance of the Selection Sort Algorithm
	14.4 Merge Sort
	14.5 Analyzing the Merge Sort Algorithm
	14.6 Searching
	14.7 Problem Solving: Estimating the Running Time of an Algorithm
	14.8 Sorting and Searching in the Java Library

	Chapter 15 The Java Collections Framework
	15.1 An Overview of the Collections Framework
	15.2 Linked Lists
	15.3 Sets
	15.4 Maps
	15.5 Stacks, Queues, and Priority Queues
	15.6 Stack and Queue Applications

	Chapter 16 Basic Data Structures
	16.1 Implementing Linked Lists
	16.2 Implementing Array Lists
	16.3 Implementing Stacks and Queues
	16.4 Implementing a Hash Table

	Chapter 17 Tree Structures
	17.1 Basic Tree Concepts
	17.2 Binary Trees
	17.3 Binary Search Trees
	17.4 Tree Traversal
	17.5 Red-Black Trees
	17.6 Heaps
	17.7 The Heapsort Algorithm

	Chapter 18 Generic Classes
	18.1 Generic Classes and Type Parameters
	18.2 Implementing Generic Types
	18.3 Generic Methods
	18.4 Constraining Type Parameters
	18.5 Type Erasure

	Chapter 19 Streams and Binary Input/Output
	19.1 Readers, Writers, and Streams
	19.2 Binary Input and Output
	19.3 Random Access
	19.4 Object Streams

	Chapter 20 Multithreading
	20.1 Running Threads
	20.2 Terminating Threads
	20.3 Race Conditions
	20.4 Synchronizing Object Access
	20.5 Avoiding Deadlocks
	20.6 Application: Algorithm Animation

	Chapter 21 Internet Networking
	21.1 The Internet Protocol
	21.2 Application Level Protocols
	21.3 A Client Program
	21.4 A Server Program
	21.5 URL Connections

	Chapter 22 Relational Databases
	22.1 Organizing Database Information
	22.2 Queries
	22.3 Installing a Database
	22.4 Database Programming in Java
	22.5 Application: Entering an Invoice

	Chapter 23 XML
	23.1 XML Tags and Documents
	23.2 Parsing XML Documents
	23.3 Creating XML Documents
	23.4 Validating XML Documents

	Chapter 24 Web Applications
	24.1 The Architecture of a Web Application
	24.2 The Architecture of a JSF Application
	24.3 JavaBeans Components
	24.4 Navigation Between Pages
	24.5 JSF Components
	24.6 A Three-Tier Application

	Appendices
	Appendix A The Basic Latin and Latin-1 Subsets of Unicode
	Appendix B Java Operator Summary
	Appendix C Java Reserved Word Summary
	Appendix D The Java Library
	Appendix E Java Syntax Summary
	Appendix F HTML Summary
	Appendix G Tool Summary
	Appendix H javadoc Summary
	Appendix I Number Systems
	Appendix J Bit and Shift Operations
	Appendix K UML Summary
	Appendix L Java Language Coding Guidelines

	Glossary
	Index
	Illustration Credits

BiE A

Late Objects

