CAY HORSTMANN

B A

Late ’ ‘

o
PLUS

www.wileyplus.com

WileyPLUS is a research-based online environment
for effective teaching and learning.

WileyPLUS builds students’ confidence because it takes the guesswork
out of studying by providing students with a clear roadmap:

e what to do
e how to do it
e if they did it right

It offers interactive resources along with a complete digital textbook that help
students learn more. With WileyPLUS, students take more initiative so you’ll have
greater impact on their achievement in the classroom and beyond.

s e IVIVELO!

------ - | COLLEGE ALGEBRA

L -
= . 2D
Instrucio } - 1) ressTEns
a“. {
LENRY s D Y QMUNE
BROWSE e i -

PIRANCIAL AGCOUNTING

For more information, visit www.wileyplus.com

-

e
PLUS

www.wileyplus.com

T

0000000
NP0 000000000000000008
. .:000000000000000000
..::::ooooooooooooo
®oee . 000000000000

ALL THE HELP, RESOURCES, AND PERSONAL
SUPPORT YOU AND YOUR STUDENTS NEED!
www.wileyplus.com/resources

=

2-Minute Tutorials and all
of the resources you and your
students need to get started

Pre-loaded, ready-to-use
assignments and presentations
created by subject matter experts

WILEY

student Partner Program

|

Collaborate with your colleagues,
find a mentor, attend virtual and live
events, and view resources
www.WhereFacultyConnect.com

Student support from an
experienced student user

Technical Support 24/7
FAQs, online chat,
and phone support
www.wileyplus.com/support

Your WileyPLUS Account Manager,
providing personal training
and support

Bl JAVA

& oy
v h- Y
R | ¥ K7 s t
i b - " [b, | e
- \“ ‘*-‘; ! }\
i - ;; . : F ;

HORSTMANN

San Jose State University

WILEY
John Wiley & Sons, Inc.

VICE PRESIDENT AND EXECUTIVE PUBLISHER Don Fowley

EXECUTIVE EDITOR Beth Lang Golub
CONTENT MANAGER Kevin Holm
SENIOR PRODUCTION EDITOR John Curley
EXECUTIVE MARKETING MANAGER Christopher Ruel
CREATIVE DIRECTOR Harry Nolan
SENIOR DESIGNER Madelyn Lesure
SENIOR PHOTO EDITOR Lisa Gee
PRODUCT DESIGNER Thomas Kulesa
CONTENT EDITOR Wendy Ashenberg
EDITORIAL PROGRAM ASSISTANT Elizabeth Mills
MEDIA SPECIALIST Lisa Sabatini
PRODUCTION SERVICES Cindy Johnson
COVER PHOTOS © Robbie Taylor/Alamy;

© FLPA/John Holmes/Age Fotostock;
© frans lemmens/Alamy

This book was set in Stempel Garamond by Publishing Services, and printed and bound by R.R. Donnelley &
Sons Company. The cover was printed by R.R. Donnelley & Sons, Jefferson City.

This book is printed on acid-free paper. ©

Copyright © 2013, 2010 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774,
(201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the
United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data:
Horstmann, Cay S., 1959-
Big Java: late objects / Cay Horstmann.
p.cm.
Includes index.
ISBN 978-1-118-08788-6 (pbk. : acid-free paper)
1. Java (Computer program language) L. Title.
QA76.73.J38H67 2012
005.2'762--dc23
2011043315

ISBN 978-1-118-08788-6 (Main Book)
ISBN 978-1-118-12942-5 (Binder-Ready Version)

Printed in the United States of America

10987654321

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

-7
PREFACE

This book is an introduction to Java and computer programming that focuses on the
essentials—and on effective learning. The book is designed to serve a wide range of
student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed. Here are the key features of this book:

Present fundamentals first.

The book takes a traditional route, first stressing control structures, methods, pro-
cedural decomposition, and arrays. Objects are used when appropriate in the early
chapters. Students start designing and implementing their own classes in Chapter 8.

Guidance and worked examples help students succeed.

Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is 1mmensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Additional Worked Examples are available online.

Practice makes perfect.

Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains
a substantial number of self-check questions at the end of each section. “Practice It”
pointers suggest exercises to try after each section. And additional practice opportu-
nities, including code completion questions, guided lab exercises, and skill-oriented
multiple-choice questions are available online.

A visual approach motivates the reader and eases navigation.

Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and spec1a1 cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being “
technically accurate. Visual features help the reader
An encyclopedic coverage is not helpful for a begin- with navigation.

ning programmer, but neither is the opposite—

reducing the material to a list of simplistic bullet points. In this book, the essentials
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information.
You will not find artificial over-simplifications that give an illusion of knowledge.

vi Preface

A Tour of the Book

This book is intended for a two-semester introduction to programming that may also
include algorithms, data structures, and/or applications.

The first seven chapters follow a traditional approach to basic programming
concepts. Students learn about control structures, stepwise refinement, and arrays.
Objects are used only for input/output and string processing. Input/output is cov-
ered in Chapter 7, but Sections 7.1 and 7.2 can be covered with Chapter 4; in that way,
students can practice writing loops that process text files. Chapter 4 also provides an

Fundamentals

Object-Oriented Design

Graphical User Interfaces ¢
Data Structures & Algorithms

1. Introduction

2. Fundamental

Applied Topics Data Types
@ Web / WileyPLUS |
3. Decisions
4. Loops
¢ A gentle
introduction to recursion
5 Methods is optional.
Sections 7.1 and 7.2 ¢
(text file processing) can be 6. Arrays
covered with Chapter 4. and Array Lists

7. Input/Oquut 8. Objects and 13, Remmsty

and Exception Classes

Handling
I
19. Streams and 21. Internet 22. Database 9. Inheritance 15. The Java 14. Sorting
Binary 1/0 Networking Programming and Interfaces Collections and Searching
¢ o Framework
24. Web
Programming o
20. 23, XML 10. Graphical 12. Object- 16. Basic
Multithreading ’ User Interfaces Oriented Design Data Structures
Figure 1 11. Advanced I l v
Chapter User Interfaces 18. Generic 17. Tree

Programming Structures

Dependencies

Preface wvii

optional introduction to programming drawings that consist of lines, rectangles, and
ovals, with an emphasis on reinforcing loops.

After students have gained a solid foundation, they are ready to tackle the imple-
mentation of classes in Chapter 8. Chapter 9 covers inheritance and interfaces. A
simple methodology for object-oriented design is presented in Chapter 12. Object-
oriented design may also be covered immediately after Chapter 9 by omitting the
GUI versions of the sample programs. By the end of these chapters, students will be
able to implement programs with multiple interacting classes.

Graphical user interfaces are presented in Chapters 10 and 11. The first of these
chapters enables students to write programs with buttons, text components, and sim-
ple drawings. If you want to go deeper, you will find layout management and addi-
tional user-interface components in the second chapter.

Chapters 13-18 cover algorithms and data structures at a level suitable for begin-
ning students. Recursion, in Chapter 13, starts with simple examples and progresses
to meaningful applications that would be difficult to implement iteratively. Chapter
14 covers quadratic sorting algorithms as well as merge sort, with an informal intro-
duction to big-Oh notation. In Chapter 15, the Java Collections Framework is pre-
sented from the perspective of a library user, without revealing the implementations
of lists and maps. You can cover this chapter anytime after Chapter 8. In Chapters 16
and 17, students learn how to implement linear and tree-based data structures, and
how to analyze the efficiency of operations on these data structures. Finally, Chapter
18 covers programming with Java generics.

Chapters 19-24 feature applied topics: binary input/output, concurrent program-
ming, networking, database programming, XML processing, and the development of
web applications. Chapters 20-24 are available in electronic form on the Web and in
WileyPLUS.

Any subset of these chapters can be incorporated into a custom print version of
this text; ask your Wiley sales representative for details.

Problem Solving Strategies

This book provides practical, step-by-step illustrations of techniques that can help
students devise and evaluate solutions to programming problems. Introduced where
they are most relevant, these strategies address barriers to success for many students.
Strategies included are:

e Algorithm Design (with pseudocode) Adapting Algorithms

e First Do It By Hand (doing sample

Discovering Algorithms by

calculations by hand) Manipulating Physical Objects
e Flowcharts * Tracing Objects (identifying state and
e Test Cases behavior)
e Hand-Tracing e Patterns for Object Data
e Storyboards * Thinking Recursively
¢ Reusable Methods * Estimating the Running Time of an
Algorithm

* Stepwise Refinement

Optional Science and Business Exercises

End-of-chapter exercises include problems from scientific and business domains.
Designed to engage students, the exercises illustrate the value of programming in

applied fields.

viii Preface
Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix L conflicts with instructor sentiment or local
customs, however, it is available in electronic form so that it can be modified.
A. The Basic Latin and Latin-1 Subsets of Unicode
B. Java Operator Summary
C. Java Reserved Word Summary
D. The Java Library
E. Java Syntax Summary
F. HTML Summary
GC. Tool Summary
H. Javadoc Summary
I. Number Systems
J. Bitand Shift Operations
K. UML Summary
L. Java Language Coding Guidelines
Web Resources
This book is complemented by a complete suite of online resources and a robust
WileyPLUS course. Go to ww.wiTey.com/college/horstmann to visit the online compan-
ion sites, which include
* Source code for all example programs in the book and in online examples.
* Worked Examples that apply the problem-solving steps in the book to other
realistic examples.
* Video Examples in which the author explains the steps he is taking and shows his
work as he solves a programming problem.
e Lab exercises that apply chapter concepts (with solutions for instructors only).
e Lecture presentation slides (in PowerPoint format).
e Solutions to all review and programming exercises (for instructors only).
* A test bank that focuses on skills, not just terminology (for instructors only).
WileyPLUS
WileyPLUS is an online teaching and learning environment that integrates the digital
textbook with instructor and student resources. See pages xiii—xiv for details.
N Drawing a Spiral — .
In this Video Example, you will see how to develop a program Y
Pointers in the book PLUs e %A
describe what students :

will find on the Web.

Aprogram using
common loop
algorithms.

Walkthrough ix

A Walkthrough of the Learning Aids

The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

4.2 The for Loop 135

4.2 The for Loop

It often happens that you want to execute a sequence of statements a given number
of times. You can use awhile loop that is controlled by a counter, as in the following
example:

Throughout each chapter,

margin notes show where

new concepts are introduced

and provide an outline of key ideas.

The for loop is
used when a
value runs from a
starting point to an
ending point with a int counter = 1; // Initialize the counter
constant increment while (counter <= 10) // Check the counter
or decrement. {

System.out.printin(counter);

counter++; // Update the counter

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 4.2).

for (int counter = 1; counter <= 10; counter++)
Additional online example code systen.out.printInCcaunter);
provides complete programs for

students to run and modify.

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance
reaches the target. Another commonly used term
for a count-controlled loop is definite. You know
from the outset that the loop body will be executed
a definite number of times; ten times in our exam-
ple. In contrast, you do not know how many itera-

ONLINE EXAMPLE
l—» @ Aprogram using

common loop

algorithms.

Annotated syntax boxes

provide a quick, visual overview

of new language constructs.

> Syntax 4.2

tions it takes to accumulate a target balance. Such a
loop is called indefinite.

for Statement

You can visualize the for loop as
an orderly sequence of steps.

r \

Syntax for (initialization; condition; update)
{

statements

These three
expressions should be related.
_‘\ See page 163,
Annotations explain required

. This initializati The condition i Thi i
components and point to more e dekntos oastafr
in formation on common errors before the loop starts. each iteration. each iteration.

= for (int i = 5; i <= 10; i++)

or best practices associated !

i The variable i is sum = sum + i; This loop executes 6 times.
Wlth the SyntaX. defined only in this for loop. } _“-‘&uwuzlﬂ.
See page 161.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

x Walkthrough

Memorable photos reinforce
analogies and help students
remember the concepts.

Problem So

using pencil

that most of

techniques for generating ideas and
evaluating proposed solutions, often
and paper or Other Now how does that help us with our problem, switching the first and the second
artifacts. These sections emphasize

solving that makes students successful
happens away from the computer.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

pielfruit) I pielfruit) E
oy -
AN
‘ L)

Iving sections teach

half of the array?

the planning and problem

J

6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 277

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Qoee e L 0@

Next, we swap the coins in positions 1 and 5:

@cce egod

4)

HOW TO 1.1

Step 1

Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce- =
dures for carrying out important tasks in developing computer programs.
Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English.
For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car for
ten years. Assume a price of $4 per gallon of gas and usage of

15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal?

Determine the inputs and outputs.

In our sample problem, we have these inputs:

© purchase price] and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
 purchase priceZ and fuel efficiencyZ, the price and fuel efficiency of the second car

We simply want to know which car is the better buy. That is the desired output.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do | do?” and
integrate key concepts into a
problem-solving sequence.

-

Worked Examples and
Video Examples apply the

WORK

ED EXAMPLE 1.1

o

Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors.

steps in the How To to a
different example, showing
how they can be used to
plan, implement, and test
a solution to another

int total = cans +

O botttes - 1;

O int bottles = "107;

int bottles;

int cans, bottles;

programming problem.

.

> o 4
Table 1 Variable Declarations in Java
Variable Name Comment
int cans = 6; Declares an integer variable and initializes it with 6. ~—

bottles; The initial value need not be a constant. (Of course, cans and bottTes
must have been previously declared.)

Error: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable—see Section 2.1.4.

Error: You cannot initialize a number with a string.

Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 37.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Declares two integer variables in a single statement. In this book, we
will declare each variable in a separate statement.

Walkthrough xi

Figure 3 i) . .
sxfeocrutl:g‘pm(o Initialize counter ;or (@int (ounter': 1; counter <= 10; counter++) Prog reSSIve flgures trace Code
e = y TP RIEETE segments to help students visualize
the program flow. Color is used
© Check condition :or (int counter = 1; counter <= 10; counter++) ConSiStently to make variables and
e = g SO R, other elements easily recognizable.
© Exccute loop body for (int counter = 1; counter <= 10; counter++) 1
p— , System.out.println(counter) ; © Mehodaal reauten

double resultl = cubeVolume(2);

© Updare counter for (int counter = 1; counter <= 10; counter++) sidelength =

e = B3 S @ Initilizing method parameter variable resultl -

double resultl = cubeVolume(2);

© Check condition again for (int counter = 1; counter <= 10; counter++) sidelength = 2

System.out.printin(counter);

ounters] 2 5 © Aboutto reurn to the caller resultl =

double volume = sidelength * sidelength * sideLength; Sidebenathil] 2
return volume;
volume = g
O After method call resultl = 8§
double resultl = cubeVolume(2);

Figure 3 Parameter Passing
Students can view animations
of key concepts on the Web.

© The parameter variable sideLength of the cubeVolume method is created when the
method is called.

The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2.

Pwamzrler Passing e The method computes the expression sideLength * sideLength * sideLength, which
has the value 8. That value is stored in the variable volune. €

| The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubevolume method. The caller

™\ puts the return value in the result1 variable.

Self-check exercises at the ®
end Of eaCh SectIOI’l are deSIgned SELF CHECK 6. Write the for loop of the InvestmentTable. java program as a while loop.

7. How many numbers does this loop print?

to make students think through for Gint n = 10; n >= 05 n-
g {
the new material—and can , Syt printin(o;
S pal’k d iscussion in Iectu &, 8. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
) 9. Write a for loop that computes the sum of the integers from 1 to n.
10. How would you modify the for loop of the InvestmentTable. java program to
| print all balances until the investment has doubled?
(0] pt ional science and business =x Science P6.32 Sounds can be represented by an array of “sample
- . values” that describe the intensity of the sound ata
exercises en g ag e stu d ents wit h point in time. The program ch06/sound/SoundEffect.
I .. I . N f java reads a sound file (in WAV format), calls a
realistic applications of Java. method process for processing the sample values, and
saves the sound file. Your task is to implement the
process method by introducing an echo. For each
== Business P9.21 Implement a superclass Appointment and sub-
N . classes Onetime, Daily, and Monthly. An appoint-
section_1/Doublelnvestment.java ment has a description (for example, “see the
LA . . X dentist”) and a date and time. Write a method
g This program computes the time required to double an investment. occursOn(int year, int month, int day) that checks
2 public class DoubleTnvestment whether the appointment occurs on that date.
5 { For example, for a monthly appointment, you
6 public static void main(String[] args) must check whether the day of the month
7 . matches. Then fill an array of Appointment objects
g 2 :;} gg:s;: ’;‘:‘EI:L EAANCE = 10000; with a mixture of appointments. Have the user enter a date and print out all appoint-
10 Final double TARGET = 2 * INITIAL_BALANCE; ments that occur on that date.
11
12 double balance = INITIAL_BALANCE;
13 int year = 0;
14
15 // Count the years required for the investment to double -
16 Program listings are carefully
17 while (balance < TARGET) B ——— . .
18 { designed for easy reading,
19 year++; . .
20 double interest = balance * RATE / 100;
21 balance = balance + interest; gOIng We!l beyond Slmple
= color coding. Methods are set
24 System.out.printIn("The inves doubled after " A
= Ystel;\eg:ipl‘j;zar:i ”)? investment doubled after Off by a subtle Outllne.
26)
27 3

Walkthrough

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Length and Size

Common Error 6.4

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax

Data Type Number of Elements
Array a.length

Array list a.sizeQ
String a.length()

for every data type.

Programming Tip 3.5

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the tax program with the data
fromtheprogram runonpage 102. Inlines 15and 16, tax1and

| =

Hand-tracing helps you
understand whether a
program works correctly.

tax2 are initialized to 0.

8 public static void main(String[] args)
9

12 final double RATEL SINGLE LIMIT = 32000;
13 final double RATEI MARRTED_LIMIT = 64000;
14

15 double tax;

16 double tax;

17

In lines 22 and 25, income and maritalStatus are
initialized by input statements.

20 Scanner in = new Scanner(Systen. in);

21 Systen.out.print(*Please enter your incone:

22 double incone = in.nextbouble();

23

24 System.out.print("Please enter s for single, m for married:);
25 String maritalStatus = in.nextO;

Final double RATEL = 0.10;
final double RATE2 = 0.25;

Special Topic 7.2

Special Topics present optional
topics and provide additional
explanation of others. New
features of Java 7 are also
covered in these notes.

ONLINE EXAMPLE

& Aprogram that
demonstrates how to
use a file chooser.

Call with
showOpenDialog

File Dialog Boxes

Ina program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the figure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The FileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showopendialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ingafile is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpendialog and showSavedialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFiTeChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();

Scanner in = null;

if (chooser.showOpenDialog(nul1) == JFileChooser.APPROVE_OPTION)

File selectedFile = chooser.getSelectedFile();
in = new Scanner(selectedFile);

Loak Jn: | apl

LRENEENENEAES

Emun-mu [aliciasses-noframe.itmi [overvisw- summ;

method

Cliava (] esmml [
Y javax [deprecated-listhunt [} package-list
o [metp-dochumi [serialized-form

3 resounces [indexnum [sytesheercss

[I

Random Facts provide historical and
social information on computing—for
interest and to fulfill the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

Random Fact 4.1 The First Bug

According to legend,
the first bug was
found in the Mark I, a huge electrome-
chanical computer at Harvard Univer-
sity. It really was caused by a bug—a
moth was trapped in a relay switch.
Actually, from the note that the
operator left in the log book next to
the moth (see the figure), it appears as
if the term “bug” had already been in
active use at the time.

The First Bug

The pioneering computer scientist
Maurice Wilkes wrote, “Somehow, at
the Moore School and afterwards, one
had always assumed there would be
no particular difficulty in getting pro-

grams right. | can remember the exact
instant in time at which it dawned on
me that a great part of my future life
would be spent finding mistakes in
my own programs.”

-

(Sina chest)

\

Walkthrough xiii

WileyPLUS

WileyPLUS is an online environment that supports students and instructors. This
book’s WileyPLUS course can complement the printed text or replace it altogether.

For Students

Different learning styles, different levels of proficiency, different levels of prepara-
tion— each student is unique. WileyPLUS empowers all students to take advantage
of their individual strengths.

Integrated, multi-media resources—including audio and visual exhibits and demon-
stration problems—encourage active learning and provide multiple study paths to
fit each student’s learning preferences.

e Worked Examples apply the problem-solving steps in the book to another realis-
tic example.

* Video Examples present the author explaining the steps he is taking and showing
his work as he solves a programming problem.

e Animations of key concepts allow students to replay dynamic explanations that
instructors usually provide on a whiteboard.

Self-assessments are linked to relevant portions of the text. Students can take control
of their own learning and practice until they master the material.

* Practice quizzes can reveal areas where students need to focus.

e “Learn by doing” lab exercises can be assigned for self-study or for use in the lab.

¢ “Code completion” questions enable students to practice programming skills by
filling in small code snippets and getting immediate feedback.

For Instructors

WileyPLUS includes all of the instructor resources found on the companion site,
and more.

WileyPLUS gives you tools for identifying those students who are falling behind,
allowing you to intervene accordingly, without having to wait for them to come to
office hours.

* Practice quizzes for pre-reading assessment, self-quizzing, or additional practice
can be used as-is or modified for your course needs.

* Multi-step laboratory exercises can be used in lab or assigned for extra student
practice.

WileyPLUS simplifies and automates student performance assessment, making
assignments, and scoring student work.

* An extensive set of multiple-choice questions for quizzing and testing have been
developed to focus on skills, not just terminology.
e “Code completion” questions can also be added to online quizzes.

* Solutions to all review and programming exercises are provided.

To order Big Java, Late Objects, with its WileyPLUS course for your students, use ISBN 978-1-118-28906-8.

xiv Walkthrough

With WileyPLUS ...

Wil PLUS.

Wy FLUIS: Bl | Gombect U | Bagart Combent Srree | Lowest

Students can read the book online
and take advantage of searching

and cross-linking.

Instructors can assign drill-and-practice
questions to check that students did
their reading and grasp basic concepts.

|

L

Test Bank (Web) 7.107 What is the Error in this Array Code Fragment?

What is the error in this code fragment?

Out-of-beunds error

Java For Everyone, 1/e

FLUs ®
Ll L

retiscees T rrovier corics T Back | he:]

v
higheasvalue = naxcvalue;
higheatienth = cuzzensHenth

]

]
Systes.cut. printlalhighessienth)

SELF CHECK

ata not initialized

A two-dimensional array Is required

A cast is required

Question Attempts: 0 of L used [EXTEINNENT

Ve

'
e
Smtarnar .1 et 21 Whattoeal i comp ided in the alporithm in Section 4.5.17)
Fiyri 22 How do you compute the totalof all posiive inpuss? —
Reven tarmaet
23 What an alses o Found in the algocithen in S66500 4,537 Fmmaar)
wes Cortart r
24 What is weong with the following loop foe finding the fiew lowercase chaeacter in a aring? — u
* Sawrce Code
* Aimations wan found = fales
r {9!’ IJM W‘ltl&n ﬂl teund &6 position < str. 1‘mhlll Mltlw‘l
(=
nnn Animation: Tracing a Loop
Program Code Local variables
i 5
int 1 = 1;
int 5 = 0
while (i <= 10)
5 =5+ 1;
R

Students can practice programming
by filling in small code snippets
and getting immediate feedback.

™
cumcmll of code and the current

e R o B e T

“Nexr” bation antil Iiu—lwn

Tracing a Loap

e ol iy ey weables nm‘nhnm)

L6 66

lleyPlus LabRat

Canfigure Java

View d Ldit Cod
Developmant Kit e o

pubhc cdass Numbers
Submit To Gradebook
Finigh

.
Computes a sum of even integers
@param a the lower bound (may be odd or even)
@param a the lower bound (may be odd or even)
@return the sumn of even mtegers between & and b [incdusive),
.

public int evenSumlint a, int b

i your work here

Students can play and replay
dynamic explanations of
concepts and program flow.

| ch04.flv

Drawing a Spiral

Instructions Displayed below is the partial code required for this problem. Complets the code to make a fully functicning
Viow Problom pragram that will solve this problem by editing directly in the text bex belom. When you are finished, yeu may dick
T T | ez and LabRat will comee and run your code and genseate 4 praliminary grade repert. rn 18
Check Your Wark -
View Report

Star(with this

Wirite & program that draws a spiral. ke this:

- 1 Od,\jﬁ

sweti v, Yo vay s e harrm o st onmvsaind. Thva el

(=2)

class. Do not look at the nain method—it contains code to show a window. Place your code in

]uqﬂ.uma wisl, 71, =

a1, yl):

Students can watch and listen as the author
solves a problem step-by-step.

N

[

draws a e from (1, x2) 1o (y1, y2).

StorLat (aL, y1) = (100, 100). Time first Lve lime segemmersts stwulud b v giaets Karg, Dy o 40 seprrmensis.

00:00:28

— : |

Acknowledgments xv

Acknowledgments

Many thanks to Beth Lang Golub, Don Fowley, Elizabeth Mills, Thomas Kulesa,
Wendy Ashenberg, Lisa Gee, Andre Legaspi, Kevin Holm, and John Curley at John
Wiley & Sons, and Vickie Piercey at Publishing Services for their help with this proj-
ect. An especially deep acknowledgment and thanks goes to Cindy Johnson for her
hard work, sound judgment, and amazing attention to detail.

I am grateful to Jose Cordova, University of Louisiana, Monroe, Rick Giles, Aca-
dia University, Amitava Karmaker, University of Wisconsin, Stout, Khaled Mansour,
Washtenaw Community College, Patricia McDermott-Wells, Florida International
University, Brent Seales, University of Kentucky, Donald Smith, Columbia College,
and David Woolbright, Columbus State University, for their excellent work on the
supplemental material. Thank you also to Jose-Arturo Mora-Soto, Jesica Rivero-
Espinosa, and Julio-Angel Cano-Romero of the University of Madrid for their con-
tribution of business exercises.

Many thanks to the individuals who provided feedback, reviewed the manuscript,
made valuable suggestions, and brought errors and omissions to my attention. They

include:

Lynn Aaron, SUNY Rockland
Community College

Karen Arlien, Bismarck State College

Jay Asundi, University of Texas, Dallas

Eugene Backlin, DePaul University

William C. Barge, Trine University

Bruce]J. Barton, Suffolk County
Community College

Sanjiv K. Bhatia, University of Missouri,
St. Lowis

Anna Bieszczad, California State
University, Channel Islands

Jackie Bird, Northwestern University

Eric Bishop, Northland Pioneer College

Paul Bladek, Edmonds Community
College

Paul Logasa Bogen I, Texas A& M
University

Irene Bruno, George Mason University

Paolo Bucci, Obio State University

Joe Burgin, College of Southern
Maryland

Robert P. Burton, Brigham Young
University

Leonello Calabresi, University of
Maryland University College

Martine Ceberio, University of Texas,
El Paso

Uday Chakraborty, University of
Missourt, St. Louis

Suchindran Chatterjee, Arizona State
University

Xuemin Chen, Texas Southern
University

Haiyan Cheng, Willamette University

Chakib Chraibi, Barry University

Ta-Tao Chuang, Gonzaga University

Vincent Cicirello, Richard Stockton
College

Mark Clement, Brigham Young
University

Gerald Cohen, St. Joseph’s College

Ralph Conrad, San Antonio College

Dave Cook, Stephen F. Austin State
University

Rebecca Crellin, Communiry College
of Allegheny County

Leslie Damon, Vermont Technical
College

Geoffrey D. Decker, Northern Illinois
University

Khaled Deeb, Barry University, School
of Adult and Continuing Education

Akshaye Dhawan, Ursinus College

Julius Dichter, University of Bridgeport

Mike Domaratzki, University of
Manitoba

Acknowledgments

Philip Dorin, Loyola Marymount
University

Anthony J. Dos Reis, SUNY New Paltz

Elizabeth Drake, Santa Fe College

Tom Duffy, Norwalk Community
College

Michael Eckmann, Skidmore College

Sander Eller, California State
Polytechnic University, Pomona

Amita Engineer, Valencia Community
College

Dave Evans, Pasadena Community
College

James Factor, Alverno College

Chris Fietkiewicz, Case Western
Reserve University

Terrell Foty, Portland Community
College

Valerie Frear, Daytona State College

Ryan Garlick, University of North Texas

Aaron Garrett, Jacksonville State
University

Stephen Gilbert, Orange Coast College

Peter van der Goes, Rose State College

Billie Goldstein, Temple University

Michael Gourley, University of Central
Oklahoma

Grigoriy Grinberg, Montgomery
College

Linwu Gu, Indiana University

Sylvain Guinepain, University of
Oklabhoma, Norman

Bruce Haft, Glendale Communiry
College

Nancy Harris, James Madison
University

Allan M. Hart, Minnesota State
University, Mankato

Ric Heishman, George Mason
University

Guy Helmer, Jowa State University

Katherin Herbert, Montclair State
University

Rodney Hoffman, Occidental College

May Hou, Norfolk State University

John Houlihan, Loyola University

Andree Jacobson, University of New
Mexico

Eric Jiang, University of San Diego

Christopher M. Johnson, Guilford
College

Jonathan Kapleau, New Jersey Institute
of Technology

Amitava Karmaker, University of
Wisconsin, Stout

Rajkumar Kempaiah, College of Mount
Saint Vincent

Mugdha Khaladkar, New Jersey
Institute of Technology

Richard Kick, Newbury Park High
School

Julie King, Sullivan University,
Lexington

Samuel Kohn, Touro College

April Kontostathis, Ursinus College

Ron Krawitz, DeVry University

Nat Kumaresan, Georgia Perimeter
College

Debbie Lamprecht, Texas Tech
University

Jian Lin, Eastern Connecticut State
University

Hunter Lloyd, Montana State
University

Cheng Luo, Coppin State University

Kelvin Lwin, University of California,
Merced

Frank Malinowski, Dalton College

John S. Mallozzi, Jona College

Khaled Mansour, Washtenaw
Community College

Kenneth Martin, University of North
Florida

Deborah Mathews, /. Sargeant
Reynolds Community College

Louis Mazzucco, State University of
New York at Cobleskill and
Excelsior College

Drew McDermott, Yale University

Hugh McGuire, Grand Valley State
University

Michael L. Mick, Purdue University,
Calumet

Jeanne Milostan, University of
California, Merced

Sandeep Mitra, SUNY Brockport

Michel Mitri, James Madison University

Kenrick Mock, University of Alaska
Anchorage

Namdar Mogharreban, Southern
Ilinois University

Shamsi Moussavi, Massbay Community
College

Nannette Napier, Georgia Gwinnett
College

Tony Tuan Nguyen, De Anza College

Michael Ondrasek, Wright State
University

K. Palaniappan, University of Missouri

James Papademas, Oakron Community
College

Gary Parker, Connecticut College

Jody Paul, Metropolitan State College
of Denver

Mark Pendergast, Florida Gulf Coast
University

James T. Pepe, Bentley University

Jeff Pittges, Radford University

Tom Plunkett, Virginia Tech

Linda L. Preece, Southern Illinois
University

Vijay Ramachandran, Colgate
University

Craig Reinhart, California Lutheran
University

Jonathan Robinson, Touro College

Chaman Lal Sabharwal, Missouri
University of Science & Technology

Katherine Salch, //linois Central
College

Namita Sarawagi, Rhode Island College

Ben Schafer, University of Northern
lTowa

Walter Schilling, Milwankee School of
Engineering

Jetfrey Paul Scott, Blackhawk Technical
College

Amon Seagull, NOVA Southeastern
University

Linda Seiter, John Carroll University

Acknowledgments xvii

Kevin Seppi, Brigham Young University

Ricky J. Sethi, UCLA, USC ISI, and
DeVry University

Ali Shaykhian, Florida Institute of
Technology

Lal Shimpi, Saint Augustine’s College

Victor Shtern, Boston University

Rahul Simha, George Washington
University

Jeft Six, University of Delaware

Donald W. Smith, Columbia College

Derek Snow, University of Southern
Alabama

Peter Spoerri, Fairfield University

David R. Stampf, Suffolk County
Community College

Peter Stanchev, Kettering University

Ryan Stansifer, Florida Institute of
Technology

Stu Steiner, Eastern Washington
University

Robert Strader, Stephen E. Austin
State University

David Stucki, Otterbein University

Ashok Subramanian, University of
Missourt, St Louzis

Jeremy Suing, University of Nebraska,
Lincoln

Dave Sullivan, Boston University

Vaidy Sunderam, Emory University

Hong Sung, University of Central
Oklahoma

Monica Sweat, Georgia Tech University

Joseph Szurek, University of Pittsburgh,
Greensburg

Jack Tan, University of Wisconsin

Cynthia Tanner, West Virginia
University

Russell Tessier, University of
Massachusetts, Amberst

Krishnaprasad Thirunarayan, Wright
State University

Megan Thomas, California State
University, Stanislaus

Timothy Urness, Drake University

Eliana Valenzuela-Andrade, University
of Puerto Rico at Arecibo

xviii Acknowledgments

Tammy VanDeGrift, University of Chen Ye, University of Illinois, Chicago
Portland Wook-Sung Yoo, Fairfield University
Philip Ventura, Broward College Steve Zale, Middlesex County College
David R. Vineyard, Kettering Bahram Zartoshty, California State
University University, Northridge
Qi Wang, Northwest Vista College Frank Zeng, Indiana Wesleyan
Jonathan Weissman, Finger Lakes University
Community College Hairong Zhao, Purdue University
Reginald White, Black Hawk Calumet
Community College Stephen Zilora, Rochester Institute of
Ying Xie, Kennesaw State University Technology
Arthur Yanushka, Christian Brothers
University

And a special thank you to our class testers:

Eugene Backlin and the students of DePaul University, Loop

Debra M. Duke and the students of J. Sargeant Reynolds Community College
Gerald Gordon and the students of DePaul University, Loop

Mike Gourley and the students of the University of Central Oklahoma
Mohammad Morovati and the students of the College of DuPage
Mutsumi Nakamura and the students of Arizona State University
George Novacky and the students of the University of Pittsburgh

Darrin Rothe and the students of the Milwaukee School of Engineering
Paige Rutner and the students of Georgia Southern University
Narasimha Shashidhar and the students of Sam Houston State University
Mark Sherriff and the students of the University of Virginia

Frank Zeng and the students of Indiana Wesleyan University

CONTENTS

PREFACE v
SPECIAL FEATURES xxvi

CHAPTER 1 INTRODUCTION 1

1
1
1
1.
1
1
1

o ununhrxwin =

Computer Programs 2

The Anatomy of a Computer 3

The Java Programming Language 5

Becoming Familiar with Your Programming Environment
Analyzing Your First Program 12

Errors 15

Problem Solving: Algorithm Design 16

CHAPTER 2 FUNDAMENTAL DATATYPES 29

2.1
2.2
2.3
2.4
2.5

Variables 30

Arithmetic 41

Input and Output 48

Problem Solving: First Do It By Hand 57
Strings 59

CHAPTER 3 DECISIONS 81

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

The if Statement 82

Comparing Numbers and Strings 88
Multiple Alternatives 96

Nested Branches 100

Problem Solving: Flowcharts 105
Problem Solving: Test Cases 108
Boolean Variables and Operators 111
Application: Input Validation 116

CHAPTER 4 LOOPS 139

4.1
4.2
4.3
4.4
4.5

The while Loop 140

Problem Solving: Hand-Tracing 147

The for Loop 150

The do Loop 156

Application: Processing Sentinel Values 158

xx Contents

4.6
4.7
4.8
4.9

Problem Solving: Storyboards 162

Common Loop Algorithms 165

Nested Loops 172

Application: Random Numbers and Simulations 176

CHAPTER 5 METHODS 201

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Methods as Black Boxes 202

Implementing Methods 204

Parameter Passing 207

Return Values 210

Methods Without Return Values 214
Problem Solving: Reusable Methods 215
Problem Solving: Stepwise Refinement 218
Variable Scope 225

Recursive Methods (Optional) 228

CHAPTER 6 ARRAYS AND ARRAY LISTS 249

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8

Arrays 250

The Enhanced for Loop 257

Common Array Algorithms 258

Using Arrays with Methods 268

Problem Solving: Adapting Algorithms 272

Problem Solving: Discovering Algorithms by Manipulating
Physical Objects 279

Two-Dimensional Arrays 282

Array Lists 289

CHAPTER 7 INPUT/OUTPUT AND EXCEPTION HANDLING

7.1
7.2
7.3
7.4
7.5

Reading and Writing Text Files 318
Text Input and Output 323

Command Line Arguments 330
Exception Handling 337

Application: Handling Input Errors 347

CHAPTER 8 OBJECTS AND CLASSES 361

8.1
8.2
8.3
8.4

Object-Oriented Programming 362
Implementing a Simple Class 364

Specifying the Public Interface of a Class 367
Designing the Data Representation 371

317

8.5
8.6
8.7
8.8
8.9
8.10
8.11

Implementing Instance Methods 372
Constructors 375

Testing a Class 380

Problem Solving: Tracing Objects 386
Problem Solving: Patterns for Object Data 388
Object References 395

Static Variables and Methods 400

CHAPTER 9 INHERITANCE AND INTERFACES 415

9.1
9.2
9.3
9.4
9.5
9.6

Inheritance Hierarchies 416
Implementing Subclasses 420
Overriding Methods 424
Polymorphism 430

Object: The Cosmic Superclass 441
Interface Types 448

cHAPTER 10 GRAPHICAL USER INTERFACES 465

10.1
10.2
10.3
10.4

Frame Windows 466

Events and Event Handling 470
Processing Text Input 481
Creating Drawings 487

cHAPTER 11 ADVANCED USER INTERFACES 507

11.1
11.2
11.3
11.4
11.5
11.6

Layout Management 508

Choices 510

Menus 521

Exploring the Swing Documentation 528
Using Timer Events for Animations 533
Mouse Events 536

CHAPTER 12 OBJECT-ORIENTED DESIGN 549

12.1
12.2
12.3
12.4

Classes and Their Responsibilities 550
Relationships Between Classes 554
Application: Printing an Invoice 562
Packages 574

Contents xxi

xxii

Contents

cuapTer13 2 RECURSION 585

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Triangle Numbers Revisited 586

Problem Solving: Thinking Recursively 590
Recursive Helper Methods 594

The Efficiency of Recursion 596
Permutations 601

Mutual Recursion 606

Backtracking 612

CHAPTER 14 SORTING AND SEARCHING 627

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Selection Sort 628

Profiling the Selection Sort Algorithm 631

Analyzing the Performance of the Selection Sort Algorithm 634
Merge Sort 639

Analyzing the Merge Sort Algorithm 642

Searching 646

Problem Solving: Estimating the Running Time of an Algorithm 651
Sorting and Searching in the Java Library 656

CHAPTER 15 THE JAVA COLLECTIONS FRAMEWORK 669

15.1
15.2
15.3
15.4
15.5
15.6

An Overview of the Collections Framework 670
Linked Lists 672

Sets 679

Maps 684

Stacks, Queues, and Priority Queues 690

Stack and Queue Applications 693

CHAPTER 16 = BASIC DATA STRUCTURES 713

16.1
16.2
16.3
16.4

Implementing Linked Lists 714
Implementing Array Lists 728
Implementing Stacks and Queues 733
Implementing a Hash Table 739

CHAPTER 17 TREE STRUCTURES 759

17.1
17.2
17.3

Basic Tree Concepts 760
Binary Trees 764
Binary Search Trees 769

17.4 Tree Traversal 778

17.5 Red-Black Trees 784

17.6 Heaps 791

17.7 The Heapsort Algorithm 802

cHAPTER 18 GENERIC CLASSES 817

18.1 Generic Classes and Type Parameters
18.2 Implementing Generic Types 819
18.3 Generic Methods 823

18.4 Constraining Type Parameters 825

18.5 Type Erasure 829

Contents

818

CcHAPTER 19 STREAMS AND BINARY INPUT/OUTPUT 839

19.1 Readers, Writers, and Streams 840

19.2 Binary Input and Output 841
19.3 Random Access 845
19.4 Object Streams 851

MULTITHREADING (WEBONLY) &

20.1 Running Threads

20.2 Terminating Threads

20.3 Race Conditions

20.4 Synchronizing Object Access
20.5 Avoiding Deadlocks

20.6 Application: Algorithm Animation

INTERNET NETWORKING

21.1 The Internet Protocol

21.2 Application Level Protocols
21.3 AClient Program

21.4 AServer Program

21.5 URL Connections

RELATIONAL DATABASES

22.1 Organizing Database Information
22.2 Queries
22.3 Installing a Database

(WEB ONLY) ©

(WEB ONLY) &

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

XXiii

xxiv Contents

22.4 Database Programming inJava
22.5 Application: Entering an Invoice

23.1

XML (WEBONLY) ©

XML Tags and Documents

23.2 Parsing XML Documents
23.3 Creating XML Documents
23.4 Validating XML Documents

24.1

WEB APPLICATIONS (WEBONLY) ©

The Architecture of a Web Application

24.2 The Architecture of a JSF Application
24.3 JavaBeans Components

24.4 Navigation Between Pages

24.5 JSF Components

24.6 AThree-Tier Application

APPENDICES

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX |

APPENDIX J

APPENDIX K
APPENDIX L

GLOSSARY
INDEX
CREDITS

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

THE BASIC LATIN AND LATIN-1 SUBSETS OF UNICODE
JAVA OPERATOR SUMMARY 865
JAVA RESERVED WORD SUMMARY
THE JAVA LIBRARY 869

JAVA SYNTAX SUMMARY 913
HTML SUMMARY 925

TOOL SUMMARY 931

JAVADOC SUMMARY 933
NUMBER SYSTEMS 935

BIT AND SHIFT OPERATIONS 941
UML SUMMARY 943

JAVA LANGUAGE CODING GUIDELINES 947

867

955

9269
1011

861

Contents

ALPHABETICAL LISTOF SYNTAX BOXES

Arrays 251
Array Lists 290
Assignment 34

Cast 44
Catching Exceptions 341
Comparisons 89

Constant Declaration 35
Constructor with Superclass Initializer
Constructors 376

Declaring a Generic Class 820
Declaring a Generic Method 824

for Statement 152

if Statement 84

Input Statement 49

Instance Methods 373

Instance Variable Declaration 365
Interface Types 449

Java Program 13

Static Method Declaration 205
Subclass Declaration 422

The Enhanced for Loop 258
The finally Clause 344

The instanceof Operator 445
The throws Clause 343
Throwing an Exception 338
Two-Dimensional Array Declaration

while Statement 141

Variable Declaration 31

430

283

XXV

Special Features

CHAPTER

1 Introduction

2 Fundamental
Data Types

3 Decisions

4 Loops

5 Methods

Omitting Semicolons 14
Misspelling Words 16

Using Undeclared or

Uninitialized Variables 37
Overflow 38
Roundoff Errors 38
Unintended Integer Division 46
Unbalanced Parentheses 46

A Semicolon After the

if Condition 86
Exact Comparison of
Floating-Point Numbers 91

Using == to Compare Strings 92
The Dangling else Problem 104
Combining Multiple

Relational Operators 113
Confusing & and | |
Conditions 114

Don’t Think “Are We

There Yet?” 144
Infinite Loops 145
Off-by-One Errors 145

Trying to Modify Arguments 209
Missing Return Value 212

How Tos
and

Worked Examples ;

Describing an Algorithm

with Pseudocode 20
Compiling and Running

a Program 4]
Writing an Algorithm for

Tiling a Floor 4]

Dividing Household Expenses &

Using Integer Division +]
Carrying out Computations 54

Computing the Cost
of Stamps 4]

Computing Travel Time o
Computing Distances on Earth &

Implementing an
if Statement

Extracting the Middle

Computing the Plural of
an English Word

The Genetic Code

OO0 OO

Evaluating a Cell Phone Plan &

Writing a Loop 169
Credit Card Processing 4]
Manipulating the Pixels

in an Image 4]
Drawing a Spiral o
Implementing a Method 212
Generating Random

Passwords (+]
Calculating a Course Grade (4]
Debugging o
Thinking Recursively 231
Fully Justified Text 4

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

Special Features xxvii

(‘\ Programming

Special Topics

. Tips
Backup Copies 11 The ENIAC and the Dawn
of Computing 5
Choose Descriptive Variable Numeric Types in Java 39 The Pentium
Names 38 Big Numbers 40 Floating-Point Bug 48
Do Not Use Magic Numbers 39 Combining Assignment International Alphabets
Spaces in Expressions 47 and Arithmetic 47 andUnicode 66
Use the APl Documentation 53 Instance Methods and
Static Methods 64
Using Dialog Boxes for Input
and Output 65
Brace Layout 86 The Conditional Operator 87 The Denver Airport
Always Use Braces 86 Lexicographic Ordering Luggage Handling System 95
Tabs 87 of Strings 92 Artificial Intelligence 119
Avoid Duplication in Branches 88 The switch Statement 99
Hand-Tracing 103 Enumeration Types 105
Make a Schedule and Make Logging 110
Time for Unexpected Short-Circuit Evaluation
Problems 109 of Boolean Operators 114
De Morgan’s Law 115
Use for Loops for Their The Loop-and-a-Half Problem The First Bug 146
Intended Purpose Only 155 and the break Statement 160 Software Piracy 182
Choose Loop Bounds That Redirection of Input
Match Your Task 155 and Output 161
Count lterations 156 Drawing Graphical Shapes 179
Method Comments 207 The Explosive Growth of
Do Not Modify Parameter Personal Computers 232
Variables 209
Keep Methods Short 223
Tracing Methods 223
Stubs 224

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

Special Features

CHAPTER

6 Arrays and Array Lists

7 Input/Output and
Exception Handling

8 Objects and Classes

9 Inheritance and
Interfaces

Bounds Errors 255
Uninitialized Arrays 255
Underestimating the Size

of a Data Set 267
Length and Size 299

Backslashes in File Names 321

Constructing a Scanner with
a String 321

Forgetting to Initialize
Object References
in a Constructor 378

Trying to Call a Constructor 379

Declaring a Constructor
as void 379

Replicating Instance Variables

from the Superclass 423
Confusing Super- and

Subclasses 424
Accidental Overloading 428

Forgetting to Use super
When Invoking a

Superclass Method 429
Don’t Use Type Tests 446
Forgetting to Declare Implement-

ing Methods as Public 453

How Tos
and

Worked Examples ;

Working with Arrays 2
Rolling the Dice

Removing Duplicates from
an Array

A World Population Table
Game of Life

OO0 O

Computing a Document’s

Readability o
Processing Text Files 333
Analyzing Baby Names 4]

Detecting Accounting Fraud @

Implementing a Class 382

Implementing a
Bank Account Class

4]
Paying Off a Loan o

Modeling a Robot Escaping
from a Maze

Developing an
Inheritance Hierarchy 436

Implementing an
Employee Hierarchy for
Payroll Processing o

Building a Discussion Board @
Drawing Geometric Shapes (4]

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

(‘\ Programming

0 hips

Special Topics

Special Features xxix

Use Arrays for Sequences

of Related Items 256
Reading Exception Reports 274
Throw Early, Catch Late 345
Do Not Squelch Exceptions 345

Do Not Use catch and finally
in the Same try Statement 346

All Data Variables Should
Be Private; Most Methods

Should Be Public 374

Use a Single Class for Variation
in Values, Inheritance for

Variation in Behavior 420

Sorting with the Java Library 267

Binary Search 267
Methods with a Variable
Number of Parameters 272

Two-Dimensional Arrays with

Variable Row Lengths 288
Multidimensional Arrays 289
The Diamond Syntax in

Java 7 299
Reading Web Pages 321
File Dialog Boxes 321
Reading and Writing

Binary Data 322
Regular Expressions 330
Automatic Resource

Management in Java 7 346
The javadoc Utility 370
Overloading 380
Calling One Constructor

from Another 399
Calling the Superclass

Constructor 429

Dynamic Method Lookup and

the Implicit Parameter 433
Abstract Classes 434
Final Methods and Classes 435
Protected Access 436
Inheritance and the

toString Method 446
Inheritance and the

equals Method 447
Constants in Interfaces 453
Function Objects 454

An Early Internet Worm 256
Encryption Algorithms 336
The Ariane Rocket Incident 347
Electronic Voting Machines 394
Open Source and

Free Software 402

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

Special Features

CHAPTER

10 Graphical User

11

12

13

14

15

Interfaces

Advanced User
Interfaces

Object-Oriented Design

Recursion

Sorting and Searching

The Java Collections
Framework

Modifying Parameter Types
in the Implementing

Method 478
Forgetting to Attach

a Listener 478
Forgetting to Repaint 496

By Default, Components Have

Zero Width and Height 497
Infinite Recursion 590
The compareTo Method Can

Return Any Integer,

Not Just -1, 0, and 1 658

How Tos
and

Worked Examples ;

Drawing Graphical Shapes 497
Coding a Bar Chart Creator o
Solving Crossword Puzzles &

Laying Out a User Interface 518
Programming a Working

Calculator
Adding Mouse and

Keyboard Support to the

Bar Chart Creator (+]
Designing a Baby

Naming Program (+]
Using CRC Cards and

UML Diagrams in

Program Design 558
Simulating an Automatic

Teller Machine 4+
Finding Files 4]
Towers of Hanoi o
Enhancing the Insertion Sort

Algorithm (4]
Choosing a Collection 686
Word Frequency (4
Simulating a Queue of

Waiting Customers 4]

Building a Table of Contents @

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

(‘\ Programming

. Tips

Special Topics

Special Features xxxi

Don’t Use a Frame

Adding the main Method to the

as a Listener 478 Frame Class 470
Local Inner Classes 479
Anonymous Inner Classes 480
Use a GUI Builder 520 Keyboard Events 539
Event Adapters 540
Make Parallel Arrays into Attributes and Methods in
Arrays of Objects 561 UML Diagrams 559
Consistency 562 Multiplicities 560
Aggregation, Association,
and Composition 560
The Limits of Computation 604
Oh, Omega, and Theta 636 The First Programmer 650
Insertion Sort 637
The Quicksort Algorithm 644
The Parameterized
Comparable Interface 658
The Comparator Interface 659
Use Interface References to Hash Functions 688 Standardization 678
Manipulate Data Structures 683 Reverse Polish Notation 701

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

16

17

18

19

20

21

22

23

24

Special Features

CHAPTER

Basic Data Structures

Tree Structures

Generic Classes

Streams and Binary
Input/Output

Multithreading
(WEB ONLY) &

Internet Networking
(WEB ONLY) &

Relational Databases
(WEB ONLY) &

XML
(WEB ONLY) &
Web Applications

(WEB ONLY) @

Genericity and Inheritance
The Array Store Exception

Using Generic Types in a
Static Context

Negative byte Values

Calling await Without
Calling signalAll

Calling signalAl1 Without
Locking the Object

Joining Tables Without

Specifying a Link Condition
Constructing Queries from

Arbitrary Strings

XML Elements Describe
Objects, Not Classes

827
827

832

845

)

Worked Ex

Implementing a
Doubly-Linked List

Building a Huffman Tree

Implementing a
Red-Black Tree

Making a Generic Binary
Search Tree Class

Choosing a File Format

Designing Client/Server
Programs

Programming a Bank
Database

Designing an XML
Document Format

Writing an XML Document
Writing a DTD

Designing a Managed Bean

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

amples = '«

854

O OO0

(‘\ Programming

Special Topics

Special Features xxxiii

. Tips
Static Classes 728
Open Addressing 747
Wildcard Types 828
Reflection 832
Use the RunnabTe Interface @ Thread Pools @ Embedded Systems
Check for Thread Interruptions Object Locks and
in the run Method Synchronized Methods (4]
of a Thread © The Java Memory Model]
Use High-Level Libraries (]
Stick with the Standard @ Primary Keys and Indexes @ Databases and Privacy
Avoid Unnecessary Data Transactions 4]
Replication © Object-Relational Mapping @
Don’t Replicate Columns
in a Table 4]
Don’t Hardwire Database
Connection Parameters
into Your Program 4]
Let the Database Do the Work &
Prefer XML Elements over Schema Languages @ Word Processing and
Attributes (4] Other XML Technologies [+ Typesetting Systems
Avoid Children with Mixed Grammars, Parsers, and
Elements and Text (4] Compilers
Session State and Cookies 4]
AJAX 4

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

CHAPTER]

INTRODUCTION

CHAPTER GOALS

To learn about computers
and programming

To compile and run your first Java program
To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

CHAPTER CONTENTS

1.1 COMPUTER PROGRAMS 2

1.2 THE ANATOMY OF A COMPUTER 3

Random Fact 1.1: The ENIAC and the Dawn of
Computing 5

1.3 THE JAVA PROGRAMMING
LANGUAGE 5

1.4 BECOMING FAMILIAR WITH YOUR
PROGRAMMING ENVIRONMENT 8

Programming Tip 1.1: Backup Copies 11

Video Example 1.1: Compiling and Running
aProgram &

1.5 ANALYZING YOUR FIRST
PROGRAM 12

Syntax 1.1: Java Program 13
Common Error 1.1: Omitting Semicolons 14

1.6 ERRORS 15
Common Error 1.2: Misspelling Words 16

1.7 PROBLEM SOLVING:
ALGORITHM DESIGN 16

How To 1.1: Describing an Algorithm with
Pseudocode 20

Worked Example 1.1: Writing an Algorithm for
Tiling a Floor &

Video Example 1.2: Dividing Household
Expenses 4]

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Java program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1 Computer Programs

Computers execute
very basic
instructions in
rapid succession.

A computer program
is a sequence

of instructions

and decisions.

Programming is the
act of designing and
implementing
computer programs.

You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much narrower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and peripheral devices are collectively
called the hardware. The programs the computer executes are called the software.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

e Putared dotata given screen position.
e Addup two numbers.

e If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer— that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophisticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in simple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

1.2 The Anatomy of a Computer 3

make small changes ina program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1. What is required to play music on a computer?
2. Why is a CD player less flexible than a computer?

3. What does a computer user need to know about programming in order to play a
video game?

1.2 The Anatomy of a Computer

The central
processing unit (CPU)
performs program
control and

data processing.

Storage devices
include memory and
secondary storage.

To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure
1). The inside wiring of the CPU is enormously complicated. For example, the Intel
Core processor (a popular CPU for personal computers at the time of this writing) is
composed of several hundred million structural elements, called transistors.

The CPU performs program control and data processing. That is, the CPU locates
and executes the program instructions; it carries out arithmetic operations such as
addition, subtraction, multiplication, and division; it fetches data from external mem-
ory or devices and places processed data into storage.

There are two kinds of storage. Primary storage is made from memory chips:
electronic circuits that can store data, provided they are supplied with electric power.
Secondary storage, usually a hard disk (see Figure 2), provides slower and less
expensive storage that persists without electricity. A hard disk consists of rotating
platters, which are coated with a magnetic material, and read/write heads, which can
detect and change the magnetic flux on the platters.

The computer stores both data and programs. They are located in secondary stor-
age and loaded into memory when the program starts. The program then updates the
data in memory and writes the modified data back to secondary storage.

Figure 1 Central Processing Unit Figure 2 A Hard Disk

4 Chapter 1 Introduction

o

Printer o
-
@> Hard disk
Mouse 0 Dk
<—’_'> Ports Controller 4—\—> g
Keyboard CD/DVD drive
CPU Graphics u
card
Monitor
Memory S:;,r:id oo
Speakers
Network
- > Internet
card

Figure 3 Schematic Design of a Personal Computer

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits information (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) are stored on
the hard disk, on a compact disk (or DVD), or elsewhere on the network. When a
program is started, it is brought into memory, where the CPU can read it. The CPU
reads the program one instruction at a time. As directed by these instructions, the
CPU reads data, modifies it, and writes it back to memory or the hard disk. Some pro-
gram instructions will cause the CPU to place dots on the display screen or printer or
to vibrate the speaker. As these actions happen many times over and at great speed,
the human user will perceive images and sound. Some program instructions read user
input from the keyboard or mouse. The program analyzes the nature of these inputs
and then executes the next appropriate instruction.

AANMAAILD 4. Whereis a program stored when it is not currently running?

5. Which part of the computer carries out arithmetic operations, such as addition
and multiplication?

Practice It Now you can try these exercises at the end of the chapter: R1.2, R1.3.

1.3 TheJava Programming Language 5

Random Fact 1.1 The ENIAC and the Dawn of Computing

The ENIAC (electronic one must find the numerical solu- of work, and until the 1950s the word
numerical integrator tions of certain differential equations; “computer” referred to these people.
and computer) was hence the name “numerical integra- The ENIAC was later used for peace-
the first usable electronic computer. It tor”. Before machines like the ENIAC ful purposes, such as the tabulation of
was designed by J. Presper Eckert and were developed, humans did this kind U.S. Census data.

John Mauchly at the University of Penn-
sylvania and was completed in 1946—
two years before transistors were
invented. The computer was housed in
a large room and consisted of many
cabinets containing about 18,000 vac-
uum tubes (see Figure 4). Vacuum
tubes burned out at the rate of several
tubes per day. An attendant with a
shopping cart full of tubes constantly
made the rounds and replaced defec-
tive ones. The computer was pro-
grammed by connecting wires on pan-
els. Each wiring configuration would
set up the computer for a particular
problem. To have the computer work
on a different problem, the wires had to
be replugged.

Work on the ENIAC was supported
by the U.S. Navy, which was interested
in computations of ballistic tables that
would give the trajectory of a projec-
tile, depending on the wind resistance,
initial velocity, and atmospheric con-
ditions. To compute the trajectories, Figure4 The ENIAC

~=airm B e

1.3 The Java Programming Language

In order to write a computer program, you need
to provide a sequence of instructions that the CPU
can execute. A computer program consists of a large
number of simple CPU instructions, and it is tedious
and error-prone to specify them one by one. For that
reason, high-level programming languages have
been created. In a high-level language, you specify
the actions that your program should carry out. A
compiler translates the high-level instructions into
the more detailed instructions required by the CPU.
Many different programming languages have been
designed for different purposes.

In 1991, a group led by James Gosling and Patrick
Naughton at Sun Microsystems designed a program-
ming language, code-named “Green”, for use in James Gosling

6 Chapter 1

Java was originally
designed for
programming
consumer devices,
but it was first
successfully used
to write Internet
applets.

Java was designed to
be safe and portable,
benefiting both
Internet users

and students.

Introduction

consumer devices, such as intelligent television “set-top” boxes. The language was
designed to be simple, secure, and usable for many different processor types. No cus-
tomer was ever found for this technology.

Gosling recounts that in 1994 the team realized, “We could write a really cool
browser. It was one of the few things in the client/server mainstream that needed
some of the weird things we’d done: architecture neutral, real-time, reliable, secure.”
Java was introduced to an enthusiastic crowd at the SunWorld exhibition in 1995,
together with a browser that ran applets —Java code that can be located anywhere on
the Internet. Figure 5 shows a typical example of an applet.

Since then, Java has grown at a phenomenal rate. Programmers have embraced the
language because it is easier to use than its closest rival, C++. In addition, Java has a
rich library that makes it possible to write portable programs that can bypass pro-
prietary operating systems—a feature that was eagerly sought by those who wanted
to be independent of those proprietary systems and was bitterly fought by their ven-
dors. A “micro edition” and an “enterprise edition” of the Java library allow Java
programmers to target hardware ranging from smart cards and cell phones to the
largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for beginners: safety and portability.

The safety features of the Java language make it possible to run Java programs in
a browser without fear that they might attack your computer. As an added benefit,
these features also help you to learn the language faster. When you make an error that
results in unsafe behavior, you receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine,

(53 [Jmal Applet - Mozilla

. Eile Edit Wiew Go Bookmarks Tool: Window Help

OO \J 0 ;3 I'?\-. hitp:#jmol sourceforge. netapplet!

I

»

rewind | prev | nesl |

play | revplay |

4

[| ID
W of [) B - e

Figure 5 An Applet for Visualizing Molecules Running in
a Browser Window (http://jmol.sourceforge.net/)

Java programs are
distributed as
instructions for a
virtual machine,
making them
platform-
independent.

Java has a very large
library. Focus on
learning those parts
of the library that
you need for your
programming
projects.

1.3 The Java Programming Language 7

a program that simulates a real CPU. Portability is another benefit for the beginning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose programming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given
to making it really simple to write basic programs. A certain amount of technical
machinery is necessary in Java to write even the simplest programs. This is not a prob-
lem for professional programmers, but it can be a nuisance for beginning students. As
you learn how to program in Java, there will be times when you will be asked to be
satisfied with a preliminary explanation and wait for more complete detail in a later
chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 5 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required
to write useful programs. There are packages for graphics, user-interface design,
cryptography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

Table 1 Java Versions

Version Year Important New Features

1.0 1996

1.1 1997 Inner classes

1.2 1998 Swing, Collections framework

1.3 2000 Performance enhancements

1.4 2002 Assertions, XML support
5 2004 Generic classes, enhanced for loop, auto-boxing, enumerations, annotations
6 2006 Library improvements
7 2011 Small language changes and library improvements

Practice It

6. What are the two most important benefits of the Java language?
7. How long does it take to learn the entire Java library?

Now you can try this exercise at the end of the chapter: R1.5.

8 Chapter 1 Introduction

1.4 Becoming Familiar with Your
Programming Environment

Set aside some time
to become familiar
with the
programming
environment that
you will use for your
class work.

An editor is a
program for entering
and modifying text,
such as a

Java program.

J

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a
tour.

Step 1 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
puter sy greatly in this reg y comp
grated development environment in which you can write and test your programs.
On other computers you first launch an editor, a program that functions like a word
P y progi

processor, in which you can enter your Java instructions; you then open a console
window and type commands to execute your program. You need to find out how to
get started with your environment.

Step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that displays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” program in Java:

public class HelloPrinter

{
public static void main(String[] args)
{
System.out.printin("Hello, World!™);
3
}

We will examine this program in the next section.

No matter which programming environment you use, you begin your activity by
typing the program statements into an editor window.

Create a new file and call it HelloPrinter. java, using the steps that are appropriate
for your environment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

[[Terminal _[Oox
Eile Edit Yiew Terminal Help

~/JavaForEveryone$ cd ch@l/hello/

~/JavaForEveryone/ch@l/hello$ javac HelloPrinter.java
~/JavaForEveryone/ch@l/hello$ java HelloPrinter

Hello, WorldD
—/Javaroreveryone/ch@1/hellos |

Figure 6 Running the HelloPrinter Program in a Console Window

Figure 7
Running the
HelloPrinter
Program in an
Integrated
Development
Environment

Java is case sensitive.

You must be careful
about distinguishing
between upper- and
lowercase letters.

The Java compiler
translates source
code into class files
that contain
instructions for the
Java virtual machine.

Editor

1.4 Becoming Familiar with Your Programming Environment

[E])ava - hello/src/HelloPrinter.java - Eclipse Platform [_[Olx]

Eile Edit Refactor Source Navigate Search Project Prolog Run Window Help
& [§lva %

& | E@ |3 04 |8 ¥ @ (& £

Plge a5
[Package E %2 e Hierarchy) = O || [1) HelloPrinter.java 32 = (=
B & ~ public class HelloPrinter
{
< & hello = public static void main(String[] args)
- [@src { 3
~ i (default package) system.out.println(“Hello, world!"); |
¥
b =i JRE System Library [jdk1.6.0 1 }
[«] m |
[£. Problems | @ Javadoc [, Declaration | B Console 32 =']
<terminated> HelloPrinte x %| B 5 EE‘ = Elv v

Hello, World!

] Ly [>]

L Writable Smart Insert 7:3

As you write this program, pay careful attention to the various symbols, and keep
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not
careful, you will run into problems —see Common Error 1.2 on page 16.

Step 3 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 6 and 7).

In order to run your program, the Java compiler translates your source code (that
is, the statements that you wrote) into class files. (A class file contains instructions for
the Java virtual machine.) After the compiler has translated your program into virtual
machine instructions, the virtual machine executes them. Figure 8 summarizes the
process of creating and running a Java program. In some programming environments,

. AN /
Compiler Vlrtu.al - -
Machine P N
E— Class files
Running
Source File Program

Figure 8 From Source Code to Running Program

10 Chapter 1 Introduction

T h
ANIMATION
Compilation Process

[

the compiler and virtual machine are essentially invisible to the programmer—they
are automatically executed whenever you ask to run a Java program. In other envi-
ronments, you need to launch the compiler and virtual machine explicitly.

Step4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files are stored in folders or directories. A folder can contain
files as well as other folders, which themselves can contain more files and folders (see
Figure 9). This hierarchy can be quite large, and you need not be concerned with all
of its branches. However, you should create folders for organizing your work. It is
a good idea to make a separate folder for your programming class. Inside that folder,
make a separate folder for each program.

Some programming environments place your programs into a default location if
you don’t specify a folder yourself. In that case, you need to find out where those files
are located.

Be sure that you understand where your files are located in the folder hierarchy.
This information is essential when you submit files for grading, and for making
backup copies (see Programming Tip 1.1).

(& cho1
v ﬁ section_4
j HelloPrinter.java
v ﬁ section_5
2 PrintTester.java
v ﬁ section_6
") Errorl.java
2 Error2.java
j Error3.java
(& cho2
™ how_to_1
E VendingMachine.java
¥ (& section_1
E Volumel.java
¥ (& section_2
" Price.java
Y (& section_3
E Volume2.java
v ﬁ section_4
E Tiles.java
v ﬁ section_5
j Initials.java

Figure 9 A Folder Hierarchy

Practice It

Programming Tip 1.1

1.4 Becoming Familiar with Your Programming Environment 11

8. Where is the Hel1oPrinter. java file stored on your computer?

9. What do you do to protect yourself from data loss when you work on program-
ming projects?

Now you can try this exercise at the end of the chapter: R1.6.

Backup Copies

You will spend many hours creating and improving Java pro-

grams. It is easy to delete a file by accident, and occasionally files
are lost because of a computer malfunction. Retyping the contents
of lost files is frustrating and time-consuming. It is therefore cru-
cially important that you learn how to safeguard files and get in

&

the habit of doing so before disaster strikes. Backing up files on a
memory stick is an easy and convenient storage method for many m
people. Another increasingly popular form of backup is Internet i

file storage. Here are a few pointers to keep in mind:

Back up often. Backing up a file takes only a few seconds, and you will hate yourself if you
have to spend many hours recreating work that you could have saved easily. I recommend
that you back up your work once every thirty minutes.

Rotate backups. Use more than one directory for backups, and Develop a strategy
rotate them. That s, first back up onto the first directory. Then for keeping backup
back up onto the second directory. Then use the third, and then copies of your

go back to the first. That way you always have three recent work befare
backups. If your recent changes made matters worse, you can disaster strikes.
then go back to the older version.

Pay attention to the backup direction. Backing up involves copying files from one place to
another. It is important that you do this right—that is, copy from your work location to
the backup location. If you do it the wrong way, you will overwrite a newer file with an
older version.

Check your backups once in a while. Double-check that your backups are where you think
they are. There is nothing more frustrating than to find out that the backups are not there
when you need them.

Relax, then restore. When you lose a file and need to restore it from a backup, you are
likely to be in an unhappy, nervous state. Take a deep breath and think through the
recovery process before you start. It is not uncommon for an agitated computer user to
wipe out the last backup when trying to restore a damaged file.

VIDEO EXAMPLE 1.1 Compiling and Running a Program ——

PLUS

This Video Example shows how to compile and run a simple Java =
program.

12 Chapter 1

Introduction

1.5 Analyzing Your First Program

Classes are the
fundamental
building blocks of
Java programs.

Every Java
application contains
a class with amain
method. When the
application starts,
the instructions in
the main method

are executed.

Each class contains
declarations of
methods. Each
method contains

a sequence

of instructions.

In this section, we will analyze the first Java program in detail. Here again is the
source code:

section_5/HelloPrinter.java

1 public class HelloPrinter
2 {
3 public static void main(String[] args)
4 {
5 System.out.printIin("Hello, World!™);
6 }
7 1}
The line

public class HelloPrinter

indicates the declaration of a class called HelloPrinter.

Every Java program consists of one or more classes. Classes are the fundamental
building blocks of Java programs. You will have to wait until Chapter 8 for a full
explanation of classes.

The word public denotes that the class is usable by the “public”. You will later
encounter private features.

In Java, every source file can contain at most one public class, and the name of the
public class must match the name of the file containing the class. For example, the
class HelloPrinter must be contained in a file named HelloPrinter. java.

The construction

public static void main(String[] args)

{
}

declares a method called main. A method contains a collection of programming
instructions that describe how to carry out a particular task. Every Java application
must have a main method. Most Java programs contain other methods besides main,
and you will see in Chapter 5 how to write other methods.

The term static is explained in more detail in Chapter 8, and the meaning of
String[] args is covered in Chapter 7. At this time, simply consider

public class ClassName

{
public static void main(String[] args)
{
}

}

as a part of the “plumbing” that is required to create a Java program. Our first pro-
gram has all instructions inside the main method of the class.

The main method contains one or more instructions called statements. Each state-
ment ends in a semicolon (;). When a program runs, the statements in the main method
are executed one by one.

Syntax 1.1

1.5 Analyzing Your First Program 13

Java Program

Every Java program

contains a main wethod {
with this header. public static void main(String[] args)
{
System.out.printin("Hello, World!"); Replace this
The statements inside the /} statewent when you
main wethod are executed } write your own
when the program runs. Each statewment prograws.

Every prograwm contains at least one class.
Choose a class name that describes
the program action.

pubTic class HelloPrinter

ends in a sewicolon,

?“:T\See page 14.

Be sure to match the
opening and closing braces.

A method is called
by specifying the
method and

its arguments.

A string is a sequence
of characters
enclosed in
quotation marks.

In our example program, the main method has a single statement:
System.out.printin("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. In this statement, we call
a method which, for reasons that we will not explain here, is specified by the rather
Iong name System.out.printlin.

We do not have to implement this method —the programmers who wrote the Java
library already did that for us. We simply want the method to perform its intended
task, namely to print a value.

Whenever you call a method in Java, you need to specify

1. The method you want to use (in this case, System.out.println).

2. Any values the method needs to carry out its task (in this case, "He11o0, World!").
The technical term for such a value is an argument. Arguments are enclosed in
parentheses. Multiple arguments are separated by commas.

A sequence of characters enclosed in quotation marks
"Hello, World!"

is called a string. You must enclose the contents of the string inside quotation marks
so that the compiler knows you literally mean "Hello, World!". There is a reason for
this requirement. Suppose you need to print the word main. By enclosing it in quota-
tion marks, "main", the compiler knows you mean the sequence of charactersm a i n,
not the method named main. The rule is simply that you must enclose all text strings
in quotation marks, so that the compiler considers them plain text and does not try to
interpret them as program instructions.
You can also print numerical values. For example, the statement

System.out.printIn(3 + 4);

evaluates the expression 3 + 4 and displays the number 7.

14 Chapter 1 Introduction

ONLINE EXAMPLE

&» Aprogram to
demonstrate print
commands.

Practice It

Common Error 1.1

¥

The System.out.printin method prints a string or a number and then starts a new
line. For example, the sequence of statements

System.out.printin("Hello");
System.out.printin("World!™);

prints two lines of text:

Hello
World!

There is a second method, System.out.print, that you can use to print an item without
starting a new line. For example, the output of the two statements

System.out.print("00");
System.out.printin(3 + 4);

is the single line
007

10. How do you modify the Hel1loPrinter program to greet you instead?

11. How would you modify the HelloPrinter program to print the word “Hello”
vertically?

12. Would the program continue to work if you replaced line 5 with this statement?
System.out.printin(Hello);

13. What does the following set of statements print?

System.out.print("My Tucky number is");
System.out.printin(3 + 4 + 5);
14. What do the following statements print?

System.out.printin("Hello");
System.out.printin("");
System.out.printin("World");

Now you can try these exercises at the end of the chapter: R1.7,R1.8, P1.5, P1.7.

Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a common
error. It confuses the compiler, because the compiler uses the semicolon to find where one
statement ends and the next one starts. The compiler does not use line breaks or closing braces
to recognize the end of statements. For example, the compiler considers

System.out.printin("Hello")
System.out.printin("World!™);

a single statement, as if you had written
System.out.printin("Hello") System.out.printin("World!");

Then it doesn’t understand that statement, because it does not expect the word System follow-
ing the closing parenthesis after "Hello".

The remedy is simple. Scan every statement for a terminating semicolon, just as you would
check that every English sentence ends in a period.

1.6 Errors 15

1.6 Errors

A compile-time error
is a violation of

the programming
language rules that
is detected by

the compiler.

A run-time error
causes a program to
take an action that
the programmer did
not intend.

ONLINE EXAMPLE

@ Three programs to
illustrate errors.

Experiment a little with the HelloPrinter program.
What happens if you make a typing error such as

System.ou.printin("Hello, World!");
System.out.printIin("Hello, Word!");

In the first case, the compiler will complain. It will
say that it has no clue what you mean by ou. The
exact wording of the error message is dependent
on your development environment, but it might
be something like “Cannot find symbol ou”.
This is a compile-time error. Something is wrong Programmers spend a fair amount
according to the rules of the language and the com- of time fixing compile-time and run-
piler finds it. For this reason, compile-time errors time errors.

are often called syntax errors. When the compiler

finds one or more errors, it refuses to translate the program into Java virtual machine
instructions, and as a consequence you have no program that you can run. You must
fix the error and compile again. In fact, the compiler is quite picky, and it is common
to go through several rounds of fixing compile-time errors before compilation suc-
ceeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once.

Sometimes, an error throws the compiler off track. Suppose, for example, you
forget the quotation marks around a string: System.out.printin(Hello, World!). The
compiler will not complain about the missing quotation marks. Instead, it will report
“Cannot find symbol Hello”. Unfortunately, the compiler is not very smart and it
does not realize that you meant to use a string. It is up to you to realize that you need
to enclose strings in quotation marks.

The error in the second line above is of a different kind. The program will compile
and run, but its output will be wrong. It will print

Hello, Word!

This is a run-time error. The program is syntactically correct and does something,
but it doesn’t do what it is supposed to do. Because run-time errors are caused by
logical flaws in the program, they are often called logic errors.

This particular run-time error did not include an error message. It simply pro-
duced the wrong output. Some kinds of run-time errors are so severe that they gen-
erate an exception: an error message from the Java virtual machine. For example, if
your program includes the statement

System.out.printin(l / 0);

you will get a run-time error message “Division by zero”.

During program development, errors are unavoidable. Once a program is longer
than a few lines, it would require superhuman concentration to enter it correctly
without slipping up once. You will find yourself omitting semicolons or quotation
marks more often than you would like, but the compiler will track down these prob-
lems for you.

Run-time errors are more troublesome. The compiler will not find them —in fact,
the compiler will cheerfully translate any program as long as its syntax is correct—

16 Chapter 1 Introduction

Practice It

Common Error 1.2

but the resulting program will do something wrong. It is the responsibility of the
program author to test the program and find any run-time errors.

15. Suppose you omit the "" characters around Hello, World! from the HelloPrinter.
java program. Is this a compile-time error or a run-time error?

16. Suppose you change printinto printline in the HelloPrinter.java program. Is this
a compile-time error or a run-time error?

17. Suppose you change main to hello in the HelloPrinter. java program. Is this a
compile-time error or a run-time error?

18. When you used your computer, you may have experienced a program that
“crashed” (quit spontaneously) or “hung” (falled to respond to your input). Is
that behavior a compile-time error or a run-time error?

19. Why can’t you test a program for run-time errors when it has compiler errors?

Now you can try these exercises at the end of the chapter: R1.9, R1.10, R1.11.

Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not always be
completely obvious from the error messages what went wrong. Here is a good example of how
simple spelling errors can cause trouble:

pubTic class HelloPrinter

{
public static void Main(String[] args)
{
System.out.printIn("Hello, World!");
}
}

This class declares a method called Main. The compiler will not consider this to be the same as
the main method, because Main starts with an uppercase letter and the Java language is case sen-
sitive. Upper- and lowercase letters are considered to be completely different from each other,
and to the compiler Main is no better match for main than rain. The compiler will cheerfully
compile your Main method, but when the Java virtual machine reads the compiled file, it will
complain about the missing main method and refuse to run the program. Of course, the mes-
sage “missing main method” should give you a clue where to look for the error.

If you get an error message that seems to indicate that the compiler or virtual machine is on
the wrong track, it is a good idea to check for spelling and capitalization. If you misspell the
name of a symbol (for example, ou instead of out), the compiler will produce a message such as
“cannot find symbol ou”. That error message is usually a good clue that you made a spelling
error.

1.7 Problem Solving: Algorithm Design

You will soon learn how to program calculations and decision making in Java. But
before we look at the mechanics of implementing computations in the next chapter,
let’s consider how you can describe the steps that are necessary for finding the solu-
tion for a problem.

1.7 Problem Solving: Algorithm Design 17

You may have run across advertisements that encourage you to pay for a comput-
erized service that matches you up with a love partner. Think how this might work.
You fill out a form and send it in. Others do the same. The data are processed by a
computer program. Is it reasonable to assume that
the computer can perform the task of finding the best
match for you? Suppose your younger brother, not
the computer, had all the forms on his desk. What
instructions could you give him? You can’t say, “Find
the best-looking person who likes inline skating and
browsing the Internet”. There is no objective stan-
dard for good looks, and your brother’s opinion (or
that of a computer program analyzing the digitized
photo) will likely be different from yours. If you
can’t give written instructions for someone to solve
the problem, there is no way the computer can magi- ;.. g the perfect partner
cally find the right solution. The computer can only s not a problem that a
do what you tell it to do. It just does it faster, without computer can solve.
getting bored or exhausted.

For that reason, a computerized match-making service cannot guarantee to find
the optimal match for you. Instead, you may be presented with a set of potential part-
ners who share common interests with you. That is a task that a computer program
can solve.

Now consider the following investment problem:

You put $10,000 into a bank account that earns 5 percent interest per year. How many
years does it take for the account balance to be double the original?

Could you solve this problem by hand? Sure, you could. You figure out the balance
as follows:

year inferest balance
0 10000
1 10000.00 x 0.05 = 500.00 10000.00 + 500.00 = 10500.00
z 10500.00 x 0.05 = 525.00 10500.00 + 525.00 = 11025.00
3 11025.00 x 0.05 = 591.25 11025.00 + 551.25 = 11576.25
4 11576.25 x 0.05 = 578.81 11576.29 + 578.81 = 12155.06

You keep going until the balance is at least $20,000. Then the last number in the year
column is the answer.

Of course, carrying out this computation is intensely boring to you or your
younger brother. But computers are very good at carrying out repetitive calcula-
tions quickly and flawlessly. What is important to the computer is a description of the
steps for finding the solution. Each step must be clear and unambiguous, requiring no
guesswork. Here is such a description:

Start with a year value of 0, a column for the interest, and a balance of ¢10,000.

balance
10000

18 Chapter 1

Pseudocode is an
informal description
of a sequence of
steps for solving

a problem.

Introduction

Repeat the following steps while the balance is less than ¢20,000
Add 1 to the year value.
Compute the interest as balance x 0.09 (i.e., percent interest).
Add the interest to the balance.

year interest balance
0 10000
1 500.00 10500.00

14 | 942827 | 19799.32
1% | 989.96 | 20789.28

Report the final year value as the answer.

Of course, these steps are not yet in a language that a computer can understand, but
you will soon learn how to formulate them in Java. This informal description is called
pseudocode.

There are no strict requirements for pseudocode because it is read by human read-
ers, not a computer program. Here are the kinds of pseudocode statements that we
will use in this book:

* Use statements such as the following to describe how a value is set or changed:

total cost = purchase price *+ operating cost
Multiply the balance value by 1.05.
Rewove the first and last character from the word.

* You can describe decisions and repetitions as follows:

If total cost 1 < total cost Z
While the balance is less than ¢20,000
For each picture in the sequence

Use indentation to indicate which statements should be selected or repeated:

For each car
operating cost = 10 x annval fuel cost
total cost = purchase price + operating cost

Here, the indentation indicates that both statements should be executed for
each car.

e Indicate results with statements such as:

Choose car 1.
Report the final year value as the answer.

The exact wording is not important. What is important is that pseudocode describes
a sequence of steps that is

e Unambiguous

* Executable

* Terminating

An algorithm for
solving a problem is
a sequence of steps
that is unambiguous,
executable, and
terminating.

Understand
the problem

Develop and
describe an
algorithm

Test the
algorithm with
simple inputs

Translate
the algorithm
into Java

Compile and test
your program

1.7 Problem Solving: Algorithm Design

The step sequence is unambignous when there are
precise instructions for what to do at each step and
where to go next. There is no room for guesswork
or personal opinion. A step is executable when it
can be carried out in practice. Had we said to use
the actual interest rate that will be charged in years
to come, and not a fixed rate of 5 percent per year,
that step would not have been executable, because
there is no way for anyone to know what that
interest rate will be. A sequence of steps is termi-
nating if it will eventually come to an end. In our
example, it requires a bit of thought to see that the k
sequence will not go on forever: With every step, an algorithm is a recipe for
the balance goes up by at least $500, so eventually finding a solution.

it must reach $20,000.

19

A sequence of steps that is unambiguous, executable, and terminating is called an
algorithm. We have found an algorithm to solve our investment problem, and thus
we can find the solution by programming a computer. The existence of an algorithm
is an essential prerequisite for programming a task. You need to first discover and
describe an algorithm for the task that you want to solve before you start program-

ming (see Figure 10).

Figure 10 The Software Development Process

20. Suppose the interest rate was 20 percent. How long would it take for the invest-

ment to double?
21. Suppose your cell phone carrier charges you $29.95 for up to 300 minutes of

calls, and $0.45 for each additional minute, plus 12.5 percent taxes and fees. Give
an algorithm to compute the monthly charge from a given number of minutes.

22. Consider the following pseudocode for finding the most attractive photo from a

sequence of photos:

Pick the first photo and call it “the best so far",
For each photo in the sequence
If it is wmore attractive than the "best so far"
Discard "the best so far".
Call this photo “the best so far".
The photo called "the best so far" is the most atiractive photo in the sequence.

Is this an algorithm that will find the most attractive photo?

20 Chapter 1 Introduction

23. Suppose each photo in Self Check 22 had a price tag. Give an algorithm for find-
ing the most expensive photo.

24. Suppose you have a random sequence of black and white marbles and want to
rearrange it so that the black and white marbles are grouped together. Consider
this algorithm:

Repeat until sorted
Locate the first black wmarble that is preceded by a white marble, and switch them.

What does the algorithm do with the sequence O@O@®? Spell out the steps
until the algorithm stops.

25. Suppose you have a random sequence of colored marbles. Consider this pseudo-
code:

Repeat until sorted
Locate the first marble that is preceded by a marble of a different color, and switch thew.

Why is this not an algorithm?

Practice It Now you can try these exercises at the end of the chapter: R1.15,R1.17, P1.4.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code: a sequence of precise steps formulated in English.

For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car
for ten years. Assume a price of $4 per gallon of gas and usage
of 15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal?

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
* purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
* purchase priceZ and fuel efficieneyZ, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.
Step 2 Break down the problem into smaller tasks.

For each car, we need to know the total cost of driving it. Let’s do this computation separately
for each car. Once we have the total cost for each car, we can decide which car is the better deal.

The total cost for each car is purchase price + operating cost.

We assume a constant usage and gas price for ten years, so the operating cost depends on the
cost of driving the car for one year.

The operating cost is 10 x annval fuel cost.
The annual fuel cost is price per gallon x annual fuel consumed.

1.7 Problem Solving: Algorithm Design 21

The annual fuel consumed is annval miles driven / fuel efficiency. For example, if you drive the car
for 15,000 miles and the fuel efficiency is 15 miles/gallon, the car consumes 1,000 gallons.

Step 3 Describe each subtask in pseudocode.

In your description, arrange the steps so that any intermediate values are computed before
they are needed in other computations. For example, list the step

total cost = purchase price + operating cost

after you have computed operating cost.
Here is the algorithm for deciding which car to buy:

For each car, compute the total cost as follows:
annval fuel consumed = annval wiles driven / fuel efficiency
annval fuel cost = price per gallon x annual fuel consumed
operating cost = 10 x annval fuel cost
total cost = purchase price + operating cost

If total cost1 < total costZ
Choose car1.

Else
Choose carZ.

Step 4 Test your pseudocode by working a problem.
We will use these sample values:

Car 1: $25,000, 50 miles/gallon
Car 2: $20,000, 30 miles/gallon

Here is the calculation for the cost of the first car:

annval fuel consumed = annval wiles driven / fuel efficiency = 15000 / 50 = 300
annval fuel cost = price per gallon x annval fuel consumed = 4 x 300 = 1200
operating cost = 10 x annval fuel cost = 10 x 1200 = 12000

total cost = purchase price + operating cost = 25000 + 12000 = 37000

Similarly, the total cost for the second car is $40,000. Therefore, the output of the algorithm is
to choose car 1.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

c} This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors.

VIDEO EXAMPLE 1.2 Dividing Household Expenses creon SRR)

This Video Example shows how to develop an algorithm for
P” L U S dividing household expenses among roommates.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

22 Chapter 1 Introduction

CHAPTER SUMMARY

Define “computer program” and programming.

e Computers execute very basic instructions in rapid succession.
e A computer program is a sequence of instructions and decisions.
® Programming is the act of designing and implementing computer programs.

Describe the components of a computer.

® The central processing unit (CPU) performs program control and data
processing.

e Storage devices include memory and secondary storage.

Describe the process of translating high-level languages to machine code.

® Java was originally designed for programming consumer devices, but it was first
successfully used to write Internet applets.

* Javawas designed to be safe and portable, benefiting both Internet users and
students.

® Java programs are distributed as instructions for a virtual machine, making them
platform-independent.

e Javahas avery large library. Focus on learning those parts of the library that you
need for your programming projects.

Become familiar with your Java programming environment.

* Setaside some time to become familiar with the programming environment that
you will use for your class work.

* Aneditor is a program for entering and modifying text, such as a Java program.

* Javais case sensitive. You must be careful about distinguishing between upper-
and lowercase letters.

* The Java compiler translates source code into class files that contain instructions
for the Java virtual machine.

e Develop a strategy for keeping backup copies of your
work before disaster strikes.

Describe the building blocks of a simple program.

 Classes are the fundamental building blocks of Java programs.

* Every Java application contains a class with a main method. When the application
starts, the instructions in the main method are executed.

e Each class contains declarations of methods. Each method contains a sequence of
instructions.

e A method is called by specifying the method and its arguments.

* A stringis a sequence of characters enclosed in quotation marks.

Review Exercises 23

Classify program errors as compile-time and run-time errors.

* A compile-time error is a violation of the programming language rules that is
detected by the compiler.

* A run-time error causes a program to take an action that the programmer did not
intend.

Write pseudocode for simple algorithms.

* Pseudocode is an informal description of a sequence of steps
for solving a problem.

* Analgorithm for solving a problem is a sequence of steps that
is unambiguous, executable, and terminating.

STANDARD LIBRARY ITEMS INTRODUCED IN THIS CHAPTER

java.io.PrintStream java.lang.System
print out
printin

REVIEW EXERCISES

= R1.1

= R1.2
= R1.3

=nn R1.4

= R1.5
== R1.6

sn R1.7

Explain the difference between using a computer program and programming a
computer.

Which parts of a computer can store program code? Which can store user data?

Which parts of a computer serve to give information to the user? Which parts take
user input?

A toaster is a single-function device, but a computer can be programmed to carry out
different tasks. Is your cell phone a single-function device, or is it a programmable
computer? (Your answer will depend on your cell phone model.)

Explain two benefits of using Java over machine code.
On your own computer or on a lab computer, find the exact location (folder or
directory name) of

a. The sample file HelloPrinter. java, which you wrote with the editor

b. The Java program launcher java.exe or java

c. Thelibrary file rt.jar that contains the run-time library

What does this program print?

public class Test
{
pubTlic static void main(String[] args)
{
System.out.printin("39 + 3");
System.out.printin(39 + 3);
}

24 Chapter 1

Introduction

== R1.8 What does this program print? Pay close attention to spaces.

== R1.9

sn R1

= R1
sn R1

nnm R1

nnm R1

sn R1

sn R1

= R1

nnm R1

.10

a1
a2

13

14

15

.16

17

.18

public class Test

{
pubTlic static void main(String[] args)
{
System.out.print("Hello");
System.out.printin("World");
}
}
What is the compile-time error in this program?
public class Test
{
public static void main(String[] args)
{
System.out.printin("Hello", "World!™);
}
}

Write three versions of the HelToPrinter. java program that have different compile-
time errors. Write a version that has a run-time error.

How do you discover syntax errors? How do you discover logic errors?

Write an algorithm to settle the following question: A bank account starts out with
$10,000. Interest is compounded monthly at 6 percent per year (0.5 percent per
month). Every month, $500 is withdrawn to meet college expenses. After how many
years is the account depleted?

Consider the question in Exercise R1.12. Suppose the numbers ($10,000, 6 percent,
$500) were user selectable. Are there values for which the algorithm you developed
would not terminate? If so, change the algorithm to make sure it always terminates.

In order to estimate the cost of painting a house, a painter needs to know the surface
area of the exterior. Develop an algorithm for computing that value. Your inputs are
the width, length, and height of the house, the number of windows and doors, and
their dimensions. (Assume the windows and doors have a uniform size.)

You want to decide whether you should drive your car to work or take the train.
You know the one-way distance from your home to your place of work, and the
fuel efficiency of your car (in miles per gallon). You also know the one-way price of
a train ticket. You assume the cost of gas at $4 per gallon, and car maintenance at 5
cents per mile. Write an algorithm to decide which commute is cheaper.

You want to find out which fraction of your car’s use is for commuting to work,

and which is for personal use. You know the one-way distance from your home to
work. For a particular period, you recorded the beginning and ending mileage on the
odometer and the number of work days. Write an algorithm to settle this question.

In How To 1.1, you made assumptions about the price of gas and annual usage to
compare cars. Ideally, you would like to know which car is the better deal without
making these assumptions. Why can’t a computer program solve that problem?

The value of 7 can be computed according to the following formula:
b3 1 1 1 1
_=1__+___+__...
4 35 7 9

== R1.19

= Business R1.20

Programming Exercises 25

Werite an algorithm to compute 7. Because the formula is an infinite series and an
algorithm must stop after a finite number of steps, you should stop when you have
the result determined to six significant digits.

Suppose you put your younger brother in charge of backing up your work. Write a
set of detailed instructions for carrying out his task. Explain how often he should do
it, and what files he needs to copy from which folder to which location. Explain how
he should verify that the backup was carried out correctly.

Imagine that you and a number of friends go to a luxury restaurant, and when you
ask for the bill you want to split the amount and the tip (15 percent) between all.
Write pseudocode for calculating the amount of money that everyone has to pay.
Your program should print the amount of the bill, the tip, the total cost, and the
amount each person has to pay. It should also print how much of what each person
pays is for the bill and for the tip.

PROGRAMMING EXERCISES

= P1.1

un P1.2
an P1.3

=n P1.4

= P1.5

=nn P1.6

un P1.7

=n P1.8

Write a program that prints a greeting of your choice, perhaps in a language other
than English.

Write a program that prints the sum of the first ten positive integers, 1 + 2 + ... + 10.

Write a program that prints the product of the first ten positive integers, 1 x 2 x ... x
10. (Use * to indicate multiplication in Java.)

Write a program that prints the balance of an account after the first, second, and
third year. The account has an initial balance of $1,000 and earns 5 percent interest
per year.

Write a program that displays your name inside a box on the screen, like this:
Do your best to approximate lines with characters such as | - +.

Werite a program that prints your name in large letters, such as

dededed

Write a program that prints a face similar to (but different from) the following:

/1117

+ +

(] oo])

Write a program that prints an imitation of a Piet Mondrian painting. (Search the
Internet if you are not familiar with his paintings.) Use character sequences such as
@@@ or ::: to indicate different colors, and use - and | to form lines.

26 Chapter 1 Introduction

»n P1.9 Write a program that prints a house that looks exactly like the following:

snn P1.10 Write a program that prints an animal speaking a greeting, similar to (but different
from) the following:

NN
C“7) / Hello \'
(-) < Junior |
| 1| \ Coder!/
D -

» P1.11 Write a program that prints three items, such as the names of your three best friends
or favorite movies, on three separate lines.

s P1.12 Write a program that prints a poem of your choice. If you don’t have a favorite
prog P P Yy y
poem, search the Internet for “Emily Dickinson” or “e e cummings”.

us P1.13 Write a program that prints the United States flag, using * and = characters.

»s P1.14 Type in and run the following program:

import javax.swing.JOptionPane;

public class DialogViewer

{
pubTlic static void main(String[] args)
{
JOptionPane.showMessageDialog(null, "Hello, World!");
}
}

Then modify the program to show the message “Hello, your name!”.

»s P1.15 Type in and run the following program:

import javax.swing.JOptionPane;

public class DialogViewer

{
pubTlic static void main(String[] args)
{
String name = JOptionPane.showInputDialog("What is your name?");
System.out.printin(name);
}
}

Then modify the program to print “Hello, name!”, displaying the name that the user
typed in.

snn P1.16 Modify the program from Exercise P1.15 so that the dialog continues with the mes-
sage “My name is Hal! What would you like me to do?” Discard the user’s input and
display a message such as

I'm sorry, Dave. I'm afraid I can't do that.

Replace Dave with the name that was provided by the user.

Answers to Self-Check Questions 27

»s P1.17 Typein and run the following program:

import java.net.URL;
import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class Test

{
public static void main(String[] args) throws Exception
{
URL imagelLocation = new URL(
"http://horstmann.com/javadeveryone/duke.gif");
JOptionPane.showMessageDialog(null, "Hello", "Title",
JOptionPane.PLAIN_MESSAGE, new ImageIcon(imagelLocation));
}
}

Then modify it to show a different greeting and image.

= Business P1.18 Write a program that prints a two-column list of your friends’ birthdays. In the
first column, print the names of your best friends; in the second column, print their

birthdays.

= Business P1.19 In the United States there is no federal sales tax, so every state may impose its own
sales taxes. Look on the Internet for the sales tax charged in five U.S. states, then
write a program that prints the tax rate for five states of your choice.

Sales Tax Rates

Alaska: 0%
Hawaii: 4%

= Business P1.20 To speak more than one language is a valuable skill in the labor market today. One of
the basic skills is learning to greet people. Write a program that prints a two-column
list with the greeting phrases shown in the following table; in the first column, print
the phrase in English, in the second column, print the phrase in a language of your
choice. If you don’t speak any language other than English, use an online translator
or ask a friend.

List of Phrases to Translate
Good morning.
Itis a pleasure to meet you.
Please call me tomorrow.

Have a nice day!

ANSWERS TO SELF-CHECK QUESTIONS

1. A program that reads the data on the CD and 3. Nothing.

sends output to the speakers and the screen. 4. Insecondary storage, typically a hard disk.

2. A CD player can do one thing—play music

5. The central processing unit.
CDs. It cannot execute programs.

28

[=)]

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chapter 1 Introduction

. Safety and portability.

No one person can learn the entire library —it
is too large.

. The answer varies among systems. A typical

answer might be /home/dave/cs1/he11o/Hello-
Printer.java or c:\Users\Dave\Workspace\hello\
HelloPrinter.java

You back up your files and folders.

. ChangeWor1d to your name (here, Dave):

System.out.printin("Hello, Dave!");

System.out.printin("H");

System.out.printin("e");
System.out.printin("1");
System.out.printIn("1");

System.out.printin("o");

No. The compiler would look for an
item whose name is He1lo. You need to
enclose Hel1o in quotation marks:

System.out.printin("Hello");
The printout is My Tucky number is12. It would
be a good idea to add a space after the is.

Hello

a blank line
World

This is a compile-time error. The compiler will
complain that it does not know the meanings
of the words Hel1lo and Wor1d.

This is a compile-time error. The compiler
will complain that System.out does not have a
method called printline.

This is a run-time error. It is perfectly legal to
give the name hello to a method, so the com-

piler won’t complain. But when the program
1s run, the virtual machine will look for a main
method and won’t find one.

Itis a run-time error. After all, the program
had been compiled in order for you to run it.

When a program has compiler errors, no class
file is produced, and there is nothing to run.

4 years:
0 10,000
1 12,000
2 14,400
317,280
4 20,736

21.

22.

23.

24.

25.

Is the number of minutes at most 300?
a. If so, the answer is $29.95 x 1.125 = $33.70.
b. If not,

1. Compute the difference: (number of
minutes) — 300.

2. Multiply that difference by 0.45.

3. Add $29.95.

4. Multiply the total by 1.125. That is the

ANSwer.

No. The step If it is more attractive than the "best

so far" is not executable because there is no
objective way of deciding which of two photos
1s more attractive.

Pick the first photo and call it “the wost expensive so far".
For each photo in the sequence
If it is more expensive than “the wost expensive so far"
Discard "the wmost expensive so far".
Call this photo “the wost expensive so far",
The photo called “the most expensive so far" is the most
expensive photo in the sequence.

The first black marble that is preceded by a

white one is marked in blue:
0e0ee

Switching the two yields
00000

The next black marble to be switched is
00000

yielding

00000

The next steps are

(] [®@®])

00000

00000

Now the sequence is sorted.

The sequence doesn’t terminate. Consider the
input O@O®@O. The first two marbles keep
getting switched.

ETTYITS 2
FUNDAMENTAL
DATA TYPES

To declare and initialize variables
and constants

To understand the properties and limitations of integers and floating-point numbers
To appreciate the importance of comments and good code layout

To write arithmetic expressions and assignment statements

To create programs that read and process inputs, and display the results

To learn how to use the Java String type

CHAPTER CONTENTS

2.1 VARIABLES 30 Random Fact 2.1: The Pentium
Syntax 2.1: Variable Declaration 31 Floating-Point Bug 48
Syntax 2.2: Assignment 34 2.3 INPUT AND OUTPUT 48

Syntax 2.3: Constant Declaration 35

Common Error 2.1: Using Undeclared or
Uninitialized Variables 37

Programming Tip 2.1: Choose Descriptive
Variable Names 38

Common Error 2.2: Overflow 38

Syntax 2.5: Input Statement 49

Programming Tip 2.4: Use the API
Documentation 53

How To 2.1: Carrying out Computations 54

Worked Example 2.1: Computing the Cost

of Stamps @
Common Error 2.3: Roundoff Errors 38
Programming Tip 2.2: Do Not Use 2.4 PROBLEM SOLVING: FIRST
Magic Numbers 39 DO IT BY HAND 57
Special Topic 2.1: Numeric Types in Java 39 Worked Example 2.2: Computing Travel Time @

Special Topic 2.2: Big Numbers 40 2.5 STRINGS 59

2.2 ARITHMETIC 41 Special Topic 2.4: Instance Methods and

Syntax 2.4: Cast 44 Static Methods 64

Common Error 2.4: Unintended Special Topic 2.5: Using Dialog Boxes for
Integer Division 46 Input and Output 65

Common Error 2.5: Unbalanced Parentheses 46 Video Example 2.2: Computing Distances

Programming Tip 2.3: Spaces in Expressions 47 on Earth @&

Special Topic 2.3: Combining Assignment Random Fact 2.2: International Alphabets
and Arithmetic 47 and Unicode 66

Video Example 2.1: Using Integer Division &

Numbers and character strings (such as the ones on this
display board) are important data types in any Java program.
In this chapter, you will learn how to work with numbers
and text, and how to write simple programs that perform
useful tasks with them.

2.1 Variables

A variable is a
storage location
with a name.

30

When your program carries out computations, you will want to store values so that
you can use them later. In a Java program, you use variables to store values. In this
section, you will learn how to declare and use variables.

To illustrate the use of variables, we
will develop a program that solves the %
following problem. Soft drinks are sold =N
in cans and bottles. A store offers a six-
pack of 12-ounce cans for the same price
as a two-liter bottle. Which should you
buy? (Twelve fluid ounces equal approx-
imately 0.355 liters.)

In our program, we will declare vari-
ables for the number of cans per pack
and for the volume of each can. Then we

will compute the volume of a six-pack in What contains more soda? A six-pack of
liters and print out the answer. 12-ounce cans or a two-liter bottle?

2.1.1 Variable Declarations

The following statement declares a variable named cansPerPack:
int cansPerPack = 6;

A variable is a storage location in a computer program. Each variable has a name and
holds a value.

A variable is similar to a parking space in a parking garage. The parking space has
anidentifier (such as “J 053”), and it can hold a vehicle. A variable has a name (such as
cansPerPack), and it can hold a value (such as 6).

Like a variable in a computer
program, a parking space has
an identifier and a contents.

2.1 Variables 31

Syntax 2.1 Variable Declaration

Syntax typeName variableName = value;
or
typeName variableName;

See page 33 for rules and
examples of valid names.

Types introduced in

; A variable declaration ends
this chapter are \ int cansPerPack = 6; — with a sewicolon.

the number types
int and double \
;pﬁgihizs)t ring fype o Supplying an initial value is optional,
(page 59). Use a descriptive but it is usually a good idea.
q variable nawe. //a’r\ See page 37.
See page 28.

When declaring a When declaring a variable, you usually want to initialize it. That is, you specify the

variable, you value that should be stored in the variable. Consider again this variable declaration:
usually specify an

initial value int cansPerPack = 6;
The variable cansPerPack is initialized with the value 6.

When declaring a Like a parking space that is restricted to a certain type of vehicle (such as a compact

variable, you also car, motorcycle, or electric vehicle), a variable in Java stores data of a specific type.
Specilfv the type of Java supports quite a few data types: numbers, text strings, files, dates, and many oth-
its values.

ers. You must specify the type whenever you declare a variable (see Syntax 2.1).

The cansPerPack variable is an integer, a whole number without a fractional part. In
Java, this type is called int. (See the next section for more information about number
types in Java.)

Note that the type comes before the variable name:

int cansPerPack = 6;
After you have declared and initialized a variable, you can use it. For example,

int cansPerPack = 6;
System.out.println(cansPerPack);
int cansPerCrate = 4 * cansPerPack;

Table 1 shows several examples of variable
declarations.

Each parking space is suitable for a particular type of vehicle,
just as each variable holds a value of a particular type.

32 Chapter 2 Fundamental Data Types

Table 1 Variable Declarations in Java

Variable Name

int cans = 6;

int total = cans + bottles;

® bottles

= 1;

® int volume = "2";

int cansPerPack;

int dollars, cents;

Use the int type
for numbers that
cannot have a
fractional part.

De

Comment

clares an integer variable and initializes it with 6.

The initial value need not be a fixed value. (Of course, cans and

bot

Err

tles must have been previously declared.)

or: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable —see Section 2.1.4.

Error: You cannot initialize a number with a string.

De

clares an integer variable without initializing it. This can be a

cause for errors—see Common Error 2.1 on page 37.

De

clares two integer variables in a single statement. In this book, we

will declare each variable in a separate statement.

2.1.2 Number Types

In Java, there are several different types of numbers. You use the int type to denote a
whole number without a fractional part. For example, there must be an integer num-

ber of cans in any pack of cans—you cannot have a fraction of a can.

When a fractional part is required (such as in the number 0.335), we use floating-
point numbers. The most commonly used type for floating-point numbers in Java is
called doubTe. (If you want to know the reason, read Special Topic 2.1 on page 39.) Here

is the declaration of a floating-point variable:

doubTle canVolume = 0.335;

Number

0.5
1.0

1E6

2.96E-2

@ 100,000
@ 312

Type
int
int
int

double

double

double

double

Table 2 Number Literals in Java
Comment
An integer has no fractional part.
Integers can be negative.
Zero 1s an integer.
A number with a fractional part has type doubTe.
An integer with a fractional part .0 has type doubTe.

A number in exponential notation: 1 x 10% or 1000000.
Numbers in exponential notation always have type double.

Negative exponent: 2.96 x 1072 =2.96 /100 =0.0296
Error: Do not use a comma as a decimal separator.

Error: Do not use fractions; use decimal notation: 3.5

Use the double
type for floating-
point numbers.

By convention,
variable names
should start with a
lowercase letter.

Variable Name

canVolumel

® can volume
® double
® T1tr/f1.0z

2.1 Variables 33

When a value such as 6 or 0.335 occurs in a Java program, it is called a number literal.
If a number literal has a decimal point, it is a floating-point number; otherwise, it is an
integer. Table 2 shows how to write integer and floating-point literals in Java.

2.1.3 Variable Names

When you declare a variable, you should pick a name that explains its purpose. For
example, it is better to use a descriptive name, such as canvolume, than a terse name,
such as cv.

In Java, there are a few simple rules for variable names:

1. Variable names must start with a letter or the underscore (_) character, and the
remaining characters must be letters, numbers, or underscores. (Technically,
the § symbol is allowed as well, but you should not use it—it is intended for
names that are automatically generated by tools.)

2. You cannot use other symbols such as ? or %. Spaces are not permitted inside
names either. You can use uppercase letters to denote word boundaries, as in
cansPerpPack. This naming convention is called camel
case because the uppercase letters in the middle of the
name look like the humps of a camel.)

3. Variable names are case sensitive, that is, canVolume and
canvolume are different names.

4. You cannot use reserved words such as double or class
as names; these words are reserved exclusively for their
special Java meanings. (See Appendix C for a listing of all reserved words in

Java.)

It is a convention among Java programmers that variable names should start with a
lowercase letter (such as canvolume) and class names should start with an uppercase
letter (such as He1loPrinter). That way, it is easy to tell them apart.

Table 3 shows examples of legal and illegal variable names in Java.

Table 3 Variable Names in Java
Comment
Variable names consist of letters, numbers, and the underscore character.

In mathematics, you use short variable names such as x or y. This is legal in Java, but not
very common, because it can make programs harder to understand (see Programming Tip
2.1 on page 38).

Caution: Variable names are case sensitive. This variable name is different from canvolume,
and it violates the convention that variable names should start with a lowercase letter.

Error: Variable names cannot start with a number.
Error: Variable names cannot contain spaces.
Error: You cannot use a reserved word as a variable name.

Error: You cannot use symbols such as / or.

34 Chapter 2 Fundamental Data Types

An assignment
statement stores a
new value in a
variable, replacing
the previously
stored value.

ANIMATION
Variable Initialization
and Assignment

[1)

The assignment
operator = does not
denote mathematical
equality.

Syntax 2.2

2.1.4 The Assignment Statement

You use the assignment statement to place a new value into a variable. Here is an
example:

cansPerPack = 8;

The left-hand side of an assignment statement consists of a variable. The right-hand
side is an expression that has a value. That value is stored in the variable, overwriting
its previous contents.

There is an important difference between a variable declaration and an assignment

statement:

. Variable declaration
int cansPerPack = 6;

cansPerPack = 8: Assignwment statement

The first statement is the declaration of cansPerPack. It is an instruction to create a
new variable of type int, to give it the name cansPerPack, and to initialize it with 6. The
second statement is an assignment statement: an instruction to replace the contents of
the existing variable cansPerPack with another value.

The = sign doesn’t mean that the left-hand side is equal to the right-hand side. The
expression on the right is evaluated, and its value is placed into the variable on the left.

Do not confuse this assignment operation with the = used in algebra to denote
equality. The assignment operator is an instruction to do something —namely, place a
value into a variable. The mathematical equality states that two values are equal.

For example, in Java, it is perfectly legal to write

totalVolume = totalVolume + 2;
It means to look up the value stored in the variable totalvolume, add 2 to it, and place
the result back into totalvolume. (See Figure 1.) The net effect of executing this state-
ment is to increment totalVolume by 2. For example, if totalVolume was 2.13 before

execution of the statement, it is set to 4.13 afterwards. Of course, in mathematics it
would make no sense to write that x = x + 2. No value can equal itself plus 2.

Assignment

Syntax variableName = value;

This is an initialization doubTe total = 0;
of a new variable,
NOT an assignment.

This is an assignment.

total = bottles * BOTTLE_VOLUME;
_ J

The nawe of a previously

~
defined variable The expression that replaces the previous value

total

total + cans * CAN_VOLUME;

The same name
can occur on both sides.
See Figure 1.

totalVolume =

You cannot change
the value of a
variable that is
defined as final.

2.1 Variables 35

(2]

2.13 totalVolume = 4.13
‘>—.\\\ totalVolume + 2

totalVolume + 2
4.13

Figure 1 Executing the Assignment totalVolume = totalVolume + 2

2.1.5 Constants

When a variable is defined with the reserved word final, its value can never change.
Constants are commonly written using capital letters to distinguish them visually
from regular variables:

final double BOTTLE_VOLUME =

Itis good programming style to use named constants in your program to explain the
meanings of numeric values. For example, compare the statements

double totalVolume = bottles * 2;
and
double totalVolume = bottles * BOTTLE_VOLUME;

A programmer reading the first statement may not understand the significance of the
number 2. The second statement, with a named constant, makes the computation
much clearer.

Syntax 2.3 Constant Declaration

Syntax final typeName variableName = expression;

_Th‘,j final reser\{ed word final double CAN_VOLUME = 0.355; // Litersina 12-ounce can
indicates that this value ~_
cannot be modified. This comwment explains how

Use uppercase letters for constants. the value for the constant
was determined.

2.1.6 Comments

As your programs get more complex, you should add comments, explanations for
human readers of your code. For example, here is a comment that explains the value
used in a variable initialization:

final double CAN_VOLUME = 0.355; // Litersin a 12-ounce can

This comment explains the significance of the value 0.355 to a human reader. The
compiler does not process comments at all. It ignores everything from a // delimiter
to the end of the line.

36 Chapter 2 Fundamental Data Types

Use comments to add
explanations for
humans who read
your code. The
compiler ignores
comments.

Itis a good practice to provide comments. This helps programmers who read your
code understand your intent. In addition, you will find comments helpful when you
review your own programs.

You use the // delimiter for short comments. If you have a longer comment,
enclose it between /* and */ delimiters. The compiler ignores these delimiters and
everything in between. For example,

%

There are approximately 0.335 liters in a 12-ounce can because one ounce
equals 0.02957353 liter; see The International Systems of Units (SI) - Conversion
Factors for General Use (NIST Special Publication 1038).

>':/

Finally, start a comment that explains the purpose of a program with the /#** delimiter
instead of /*. Tools that analyze source files rely on that convention. For example,

This program computes the volume (in liters) of a six-pack of soda cans.

%

The following program shows the use of variables, constants, and the assignment
statement. The program displays the volume of a six-pack of cans and the total vol-
ume of the six-pack and a two-liter bottle. We use constants for the can and bottle
volumes. The totalVolume variable is initialized with the volume of the cans. Using an
assignment statement, we add the bottle volume. As you can see from the program
output, the six-pack of cans contains over two liters of soda.

section_1/Volumel.java

1 Vi

2 This program computes the volume (in liters) of a six-pack of soda
3 cans and the total volume of a six-pack and a two-liter bottle.

4 :’:/

5 public class Volumel

6 {

7 public static void main(String[] args)

8 {

9 int cansPerPack = 6;

10 final double CAN_VOLUME = 0.355; // Liters in a 12-ounce can
11 doubTe totalVolume = cansPerPack * CAN_VOLUME;

12

13 System.out.print("A six-pack of 12-ounce cans contains ");
14 System.out.print(totalVolume);

15 System.out.printIn(" Titers.");

16

17 final double BOTTLE_VOLUME = 2; // Two-liter bottle

18

19 totalVolume = totalVolume + BOTTLE_VOLUME;
20
21 System.out.print("A six-pack and a two-Titer bottle contain ");
22 System.out.print(totalVolume);
23 System.out.printIn(" Titers.");
24 }
25 }

Program Run

A six-pack of 12-ounce cans contains 2.13 Titers.
A six-pack and a two-liter bottle contain 4.13 Titers.

Practice It

Common Error 2.1

4

2.1 Variables 37

Just as a television commentator explains the news,
you use comments in your program to explain its behavior.

. Declare a variable suitable for holding the number of bottles in a case.
. What is wrong with the following variable declaration?

int ounces per liter = 28.35

. Declare and initialize two variables, unitPrice and quantity, to contain the unit

price of a single bottle and the number of bottles purchased. Use reasonable
initial values.

. Use the variables declared in Self Check 3 to display the total purchase price.

5. Some drinks are sold in four-packs instead of six-packs. How would you change

9.

the Volumel.java program to compute the total volume?

. What is wrong with this comment?

double canVolume = 0.355; /* Litersina 12-ounce can //

Suppose the type of the cansPerpPack variable in Volumel.java was changed from int
to doubTe. What would be the effect on the program?

. Why can’t the variable totalVolume in the Volumel.java program be declared as

final?

How would you explain assignment using the parking space analogy?

Now you can try these exercises at the end of the chapter: R2.1,R2.2, P2.1.

Using Undeclared or Uninitialized Variables

You must declare a variable before you use it for the first time. For example, the following
sequence of statements would not be legal:

double canVolume = 12 * literPerOunce; // ERROR: TiterPerOunce is not yet declared
double TiterPerOunce = 0.0296;

In your program, the statements are compiled in order. When the compiler reaches the first
statement, it does not know that 1iterPerOunce will be declared in the next line, and it reports
an error. The remedy is to reorder the declarations so that each variable is declared before it is
used.

38 Chapter 2 Fundamental Data Types

Programming Tip 2.1

Common Error 2.2

4

Common Error 2.3

4

A related error is to leave a variable uninitialized:

int bottles;
int bottleVolume = bottles * 2; // ERROR: bottles is not yet initialized

The Java compiler will complain that you are using a variable that has not yet been given a
value. The remedy is to assign a value to the variable before it is used.

Choose Descriptive Variable Names

We could have saved ourselves a lot of typing by using shorter variable names, as in
double cv = 0.355;

Compare this declaration with the one that we actually used, though. Which one is easier to
read? There is no comparison. Just reading canvolume is a lot less trouble than reading cv and
then figuring out it must mean “can volume”.

In practical programming, this is particularly important when programs are written by
more than one person. It may be obvious to yox that cv stands for can volume and not cur-
rent velocity, but will it be obvious to the person who needs to update your code years later?
For that matter, will you remember yourself what cv means when you look at the code three
months from now?

Overflow

Because numbers are represented in the computer with a limited number of digits, they cannot
represent arbitrary numbers.

The int type has a limited range: It can represent numbers up to a little more than two bil-
lion. For many applications, this is not a problem, but you cannot use an int to represent the
world population.

If a computation yields a value that is outside the int range, the result overflows. No error is
displayed. Instead, the result is truncated, yielding a useless value. For example,

int fiftyMillion = 50000000;
System.out.printIn(100 * fiftyMillion); // Expected: 5000000000

displays 705032704.
In situations such as this, you can switch to double values. However, read Common Error
2.3 for more information about a related issue: roundoff errors.

Roundoff Errors

Roundoff errors are a fact of life when calculating with floating-point numbers. You probably
have encountered that phenomenon yourself with manual calculations. If you calculate 1/3 to
two decimal places, you get 0.33. Multiplying again by 3, you obtain 0.99, not 1.00.

In the processor hardware, numbers are represented in the binary number system, using
only digits 0 and 1. As with decimal numbers, you can get roundoff errors when binary digits
are lost. They just may crop up at different places than you might expect.

Programming Tip 2.2

Special Topic 2.1

h.?érze'

2.1 Variables 39

Here is an example:

double price = 4.35;

doubTe quantity = 100;

double total = price * quantity; // Should be 100 * 4.35 = 435
System.out.printIn(total); // Prints 434.99999999999999

In the binary system, there is no exact representation for 4.35, just as there is no exact repre-
sentation for 1/3 in the decimal system. The representation used by the computer is just a
little less than 4.35, so 100 times that value is just a little less than 435.

You can deal with roundoff errors by rounding to the nearest integer (see Section 2.2.5) or
by displaying a fixed number of digits after the decimal separator (see Section 2.3.2).

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example,

totalVolume = bottles * 2;

Why 2? Are bottles twice as voluminous as cans? No, the reason is that every bottle contains 2
liters. Use a named constant to make the code self-documenting:

final double BOTTLE_VOLUME = 2;
totalVolume = bottles * BOTTLE_VOLUME;

There is another reason for using named constants. Suppose cir-
cumstances change, and the bottle volume is now 1.5 liters. If
you used a named constant, you make a single change, and you
are done. Otherwise, you have to look at every value of 2 in your
program and ponder whether it meant a bottle volume, or some-
thing else. In a program that is more than a few pages long, that
is incredibly tedious and error-prone.

We prefer programs that

Even the most reasonable cosmic constant is going to change are easy to understand
one day. You think there are seven days per week? Your cus- over those that appear
tomers on Mars are going to be pretty unhappy about yoursilly to work by magic.

prejudice. Make a constant
final int DAYS_PER_WEEK = 7;

Numeric Types in Java

In addition to the int and double types, Java has several other numeric types.

Java has two floating-point types. The float type uses half the storage of the double type
that we use in this book, but it can only store about 7 decimal digits. (In the computer, num-
bers are represented in the binary number system, using digits 0 and 1.) Many years ago, when
computers had far less memory than they have today, float was the standard type for ﬂoatmg—
point computations, and programmers would indulge in the luxury of “double precision”
only when they needed the additional digits. Today, the float type is rarely used.

By the way, these numbers are called “floating-point” because of their internal representa-
tion in the computer. Consider numbers 29600, 2.96, and 0.0296. They can be represented in
a very similar way: namely, as a sequence of the significant digits—296—and an indication of
the position of the decimal point. When the values are multiplied or divided by 10, only the

40 Chapter 2 Fundamental Data Types

position of the decimal point changes; it “floats”. Computers use base 2, not base 10, but the
principle is the same.

In addition to the int type, Java has integer types byte, short, and long. Their ranges are
shown in Table 4. (Their strange-looking limits are related to powers of 2, another conse-
quence of the fact that computers use binary numbers.)

Table 4 Java Number Types
Type Description Size

int The integer type, with range 4 bytes
—2,147,483,648 (Integer . MIN_VALUE) . . . 2,147,483,647
(Integer.MAX_VALUE, about 2.14 billion)

byte The type describing a single byte consisting of 8 bits, 1 byte
with range -128...127

short The short integer type, with range -32,768 . .. 32,767 2 bytes

Tong The long integer type, with about 19 decimal digits 8 bytes

double The double-precision floating-point type, 8 bytes

with about 15 decimal digits and a range of about +10°%
float The single-precision floating-point type, 4 bytes
with about 7 decimal digits and a range of about +10°8

char The character type, representing code units in the 2 bytes
Unicode encoding scheme (see Random Fact 2.2)

Special Topic 2.2 Big Numbers

If you want to compute with really large numbers, you can use big number objects. Big num-
ber objects are objects of the BigInteger and BigDecimal classes in the java.math package. Unlike
the number types such as int or double, b1g number objects have essentially no limits on their
size and precision. However, computations with big number ob]ects are much slower than
those that involve number types. Perhaps more importantly, you can’t use the familiar arith-
metic operators such as (+ - *) with them. Instead, you have to use methods called add, sub-
tract, and multiply. Here is an example of how to create a BigInteger object and how to call the
multiply method:

BigInteger oneHundred = new BigInteger("100");
BigInteger fiftyMillion = new BigInteger("50000000");
System.out.printIn(oneHundred.multiply(fiftyMillion)); // Prints 5000000000

The BigDecimal type carries out floating-point computations without roundoff errors. For
example,

BigDecimal price = new BigDecimal("4.35");
BigDecimal quantity = new BigDecimal("100");
BigDecimal total = price.multiply(quantity);
System.out.printin(total); // Prints 435.00

2.2 Arithmetic 41

2.2 Arithmetic

Mixing integers and
floating-point values
in an arithmetic
expression yields a
floating-point value.

The ++ operator adds
1 to a variable; the --
operator subtracts 1.

In the following sections, you will learn how to carry out arithmetic calculations
in Java.

2.2.1 Arithmetic Operators

Java supports the same four basic arithmetic operations as a calculator—addition,
subtraction, multiplication, and division—but it uses different symbols for multipli-
cation and division.

You must write a * b to denote multiplication. Unlike in mathematics, you cannot
write a b, a - b, or a x b. Similarly, division is always indicated with a /, never a + or a

fraction bar.
a+b

For example, becomes (a + b) / 2.

The combination of variables, literals, operators, and/or method calls is called an
expression. For example, (a + b) / 2 is an expression.

Parentheses are used just as in algebra: to indicate in which order the parts of the
expression should be computed. For example, in the expression (a + b) / 2, the sum
a + bis computed first, and then the sum is divided by 2. In contrast, in the expression

a+b/2

only bis divided by 2, and then the sum of aand b / 2 is formed. As in regular algebraic
notation, multiplication and division have a higher precedence than addition and sub-
traction. For example, in the expression a + b / 2, the / is carried out first, even though
the + operation occurs further to the left.

If you mix integer and floating-point values in an arithmetic expression, the result
is a floating-point value. For example, 7 + 4.0 is the floating-point value 11.0.

2.2.2 Increment and Decrement

Changing a variable by adding or subtracting 1 is so common that there is a special
shorthand for it. The ++ operator increments a variable—see Figure 2:

counter++; // Adds 1 to the variable counter
Similarly, the -- operator decrements a variable:

counter--; // Subtracts 1 from counter

o 4

counter = 3 —— counter =
A\\\ counter + 1

counter + 1

Figure 2 Incrementing a Variable

42 Chapter2 Fun

If both arguments
of / are integers,
the remainder

is discarded.

The % operator
computes the
remainder of an
integer division.

damental Data Types

2.2.3 Integer Division and Remainder

Division works as you would expect, as long as at least
one of the numbers involved is a floating-point number.

That s,

7.0 / 4.0
7/ 4.0
7.0/ 4

all yield 1.75. However, if both numbers are integers,
then the result of the division is always an integer, with
the remainder discarded. That is,

7/ 4 Integer division and the %

. operator yield the dollar and
evaluates to 1 because 7 divided by 4 is 1 with a remain- cgnt va/ué/s of a piggybank

der of 3 (which is discarded). This can be a source of full of pennies.
subtle programming errors—see Common Error 2.4.
If you are interested in the remainder only, use the % operator:

7% 4

is 3, the remainder of the integer division of 7 by 4. The % symbol has no analog in alge-
bra. It was chosen because it looks similar to /, and the remainder operation is related
to division. The operator is called modulus. (Some people call it modulo or mod.) It
has no relationship with the percent operation that you find on some calculators.

Hereisatypical use for the integer / and % operations. Suppose you have an amount
of pennies in a piggybank:

int pennies = 1729;

You want to determine the value in dollars and cents. You obtain the dollars through
an integer division by 100:

int dollars = pennies / 100; // Sets dollarsto 17
The integer division discards the remainder. To obtain the remainder, use the % operator:
int cents = pennies % 100; // Sets cents to 29

See Table 5 for additional examples.

Table 5 Integer Division and Remainder

(Wﬁiiris:s:c;gg) Value Comment
n % 10 9 n % 10 is always the last digit of n.
n/ 10 172 Thisis always n without the last digit.
n % 100 29 The last two digits of n.
n / 10.0 172.9 Because 10.0 is a floating-point number, the fractional part is not discarded.
-n % 10 -9 Because the first argument is negative, the remainder is also negative.
n%?2 1 n % 2is Qif nis even, 1 or—1 if nis odd.

The Java library
declares many
mathematical
functions, such as
Math.sqrt (square
root) and Math. pow

(raising to a power).

2.2 Arithmetic 43

2.2.4 Powers and Roots

In Java, there are no symbols for powers and roots. To compute them, you must call
methods. To take the square root of a number, you use the Math.sqrt method. For
example, \/x is written as Math.sqrt(x). To compute x”, you write Math. pow(x, n).

In algebra, you use fractions, exponents, and roots to arrange expressions in a
compact two-dimensional form. In Java, you have to write all expressions in a linear
arrangement. For example, the mathematical expression

bx(1+L)
100

Figure 3 shows how to analyze such an expression. Table 6 shows additional mathe-
matical methods.

becomes
b * Math.pow(l + r / 100, n)

b * Math.pow(1l + r / 100, n)
%(_J

100

n
Figure 3 bx(l+ L)

Analyzing an Expression

Table 6 Mathematical Methods

Method Returns
Math.sqrt(x) Square root of x (=0)
Math.pow(x, y) x” (x>0,0orx=0and y >0, orx <0and y is an integer)
Math.sin(x) Sine of x (x in radians)
Math.cos (x) Cosine of x
Math.tan(x) Tangent of x

Math.toRadians(x) Convertx degrees to radians (i.e., returns x - 71/180)
Math.toDegrees(x) Convertx radians to degrees (i.e., returns x - 180/7)
X

Math.exp(x) e

Math.log(x) Natural log (In(x), x > 0)

44 Chapter 2 Fundamental Data Types

You use a cast
(typeName) to
convert a value to a
different type.

Syntax 2.4

Table 6 Mathematical Methods

Method Returns
Math.10g10(x) Decimal log (logy (x), x > 0)
Math. round (x) Closest integer to x (as a Tong)

Math.abs (x) Absolute value | x|
Math.max(x, y) The larger of x and y
Math.min(x, y) The smaller of x and y

2.2.5 Converting Floating-Point Numbers to Integers

Occasionally, you have a value of type double that you need to convert to the type int.
Itis an error to assign a floating-point value to an integer:

doubTle balance = total + tax;
int dollars = balance; // Error: Cannot assign double to int

The compiler disallows this assignment because it is potentially dangerous:

 The fractional partis lost.

* The magnitude may be too large. (The largest integer is about 2 billion, but a
floating-point number can be much larger.)

You must use the cast operator (int) to convert a convert floating-point value to an

integer. Write the cast operator before the expression that you want to convert:

double balance = total + tax;
int dollars = (int) balance;

The cast (int) converts the floating-point value balance to an integer by discarding the
fractional part. For example, if balance is 13.75, then do11ars is set to 13.

When applying the cast operator to an arithmetic expression, you need to place the
expression inside parentheses:

int dollars = (int) (total + tax);

Cast

Syntax (typeName) expression

This is the type of the expression after casting.

(int) (balance * 100) Use parentheses here if
These parentheses are a / the cast is applied to an expression
part of the cast operator. with arithwmetic operators.

ONLINE EXAMPLE

&) Aprogram
demonstrating casts,
rounding, and the
% operator.

SELF CHECK

Practice It

2.2 Arithmetic 45

Discarding the fractional part is not always appropriate. If you want to round a
floating-point number to the nearest whole number, use the Math. round method. This
method returns a Tong integer, because large floating-point numbers cannot be stored
inan int.

Tong rounded = Math.round(balance);

If balance is 13.75, then rounded is set to 14.
If you know that the result can be stored in an int and does not require a Tong, you
can use a cast:

int rounded = (int) Math.round(balance);

Table 7 Arithmetic Expressions

Mathematical Java
. . Comments
Expression Expression
x+y x+y) /2 The parentheses are required;
2 X +y / 2 computes x + 2
2
xy X ¥y /2 Parentheses are not required; operators with
) the same precedence are evaluated left to right.

(7)" Math.pow(l + r / 100, n) UseMath.pow(x, n) to computex”.

100

[2 412 Math.sqrt(a * a + b * b) a * ais simpler than Math.pow(a, 2).

i+j+k G+3+k /3.0 If 7,7, and k are integers, using a denominator
3 of 3.0 forces floating-point division.
g Math.PI Math.PI is a constant declared in the Math class.

10. A bank account earns interest once per year. In Java, how do you compute the
interest earned in the first year? Assume variables percent and balance of type
double have already been declared.

11. InJava, how do you compute the side length of a square whose area is stored in
the variable area?

12. The volume of a sphere is given by

4
V=
3
If the radius is given by a variable radius of type double, write a Java expression

for the volume.
13. What is the value of 1729 / 10 and 1729 % 10?
14. Ifnisapositive number, whatis (n / 10) % 10?

Now you can try these exercises at the end of the chapter: R2.3,R2.5, P2.4, P2.25.

46 Chapter 2 Fundamental Data Types

Common Error 2.4

Common Error 2.5

Unintended Integer Division

It is unfortunate that Java uses the same symbol, namely /, for both integer and floating-point
division. These are really quite different operations. It is a common error to use integer divi-
sion by accident. Consider this segment that computes the average of three integers.

int scorel = 10;
int score2 = 4;
int score3 = 9;

double average = (scorel + score2 + score3) / 3; // Error
System.out.printin("Average score: " + average); // Prints 7.0, not 7.666666666666667

What could be wrong with that? Of course, the average of scorel, score2, and score3 is

scorel+score2+score3

3

Here, however, the / does not mean division in the mathematical sense. It denotes integer divi-
sion because both scorel + score2 + score3 and 3 are integers. Because the scores add up to 23,
the average is computed to be 7, the result of the integer division of 23 by 3. That integer 7 is
then moved into the floating-point variable average. The remedy is to make the numerator or
denominator into a floating-point number:

double total = scorel + score2 + score3;
double average = total / 3;

or

double average = (scorel + score2 + score3) / 3.0;

Unbalanced Parentheses

Consider the expression
(@+b)*t/2* Q-1

What is wrong with it? Count the parentheses. There are three (and two). The parenthe-
ses are unbalanced. This kind of typing error is very common with complicated expressions.
Now consider this expression.

(@+b)y*t) / @* @A-1

This expression has three (and three), but it still is not correct. In the middle of the
expression,

@+b)*t)/ @* Q-1
t
there is only one (but two), which is an error. In the middle of an expression, the count of (
must be greater than or equal to the count of), and at the end of the expression the two counts
must be the same.

Here is a simple trick to make the counting easier without using
pencil and paper. It is difficult for the brain to keep two counts
simultaneously. Keep only one count when scanning the expres-
sion. Start with 1 at the first opening parenthesis, add 1 whenever
you see an opening parenthesis, and subtract one whenever you
see a closing parenthesis. Say the numbers aloud as you scan the

Programming Tip 2.3

Special Topic 2.3

VIDEO EXAMPLE 2.1 Using Integer Division

PLUS

2.2 Arithmetic 47

expression. If the count ever drops below zero, or is not zero at the end, the parentheses are
unbalanced. For example, when scanning the previous expression, you would mutter

@+b)*t) / @* Q-1
1 0 -1

and you would find the error.

Spaces in Expressions

It is easier to read

x1 = (-b + Math.sqrt(b * b - 4 * a * ¢)) / (2 * a);
than

x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

Simply put spaces around all operators + - * / % =. However, don’t put a space after a unary
minus: a — used to negate a single quantity, such as -b. That way, it can be easily distinguished
from a binary minus, asina - b.

It is customary not to put a space after a method name. That is, write Math.sqrt(x) and not
Math.sqrt (x).

Combining Assignment and Arithmetic

In Java, you can combine arithmetic and assignment. For example, the instruction
total += cans;
is a shortcut for
total = total + cans;
Similarly,
total *= 2;
is another way of writing
total = total * 2;

Many programmers find this a convenient shortcut. If you like it, go ahead and use it in your
own code. For simplicity, we won’t use it in this book, though.

A punch recipe calls for a given amount of orange soda. In this
Video Example, you will see how to compute the required number
of 12-ounce cans, using integer division.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

48 Chapter 2 Fundamental Data Types

In 1994, Intel Corporation released what
was then its most powerful processor, the
Pentium. Unlike previous generations of its processors, it
had a very fast floating-point unit. Intel’s goal was to com-
pete aggressively with the makers of higher-end processors
for engineering workstations. The Pentium was a huge suc-
cess immediately.

In the summer of 1994, Dr. Thomas Nicely of Lynchburg
College in Virginia ran an extensive set of computations
to analyze the sums of reciprocals of certain sequences of
prime numbers. The results were not always what his the-
ory predicted, even after he took into account the inevitable
roundoff errors. Then Dr. Nicely noted that the same pro-
gram did produce the correct results when running on the
slower 486 processor that preceded the Pentium in Intel’s
lineup. This should not have happened. The optimal round-
off behavior of floating-point calculations has been stan-
dardized by the Institute for Electrical and Electronic Engi-
neers (IEEE) and Intel claimed to adhere to the IEEE standard
in both the 486 and the Pentium processors. Upon further
checking, Dr. Nicely discovered that indeed there was a very
small set of numbers for which the product of two num-
bers was computed differently on the two processors. For
example,

4,195,835 — ((4,195,835/3,145,727) x 3,145,727

is mathematically equal to 0, and it did compute as 0 on a
486 processor. On his Pentium processor the result was
256.

As it turned out, Intel had independently discovered
the bug in its testing and had started to produce chips that
fixed it. The bug was caused by an error in a table that was
used to speed up the floating-point multiplication algorithm
of the processor. Intel determined that the problem was
exceedingly rare. They claimed that under normal use, a
typical consumer would only notice the problem once every
27,000 years. Unfortunately for Intel, Dr. Nicely had not
been a normal user.

2.3 Input and Output

Random Fact 2.1 The Pentium Floating-Point Bug

Now Intel had a real problem on its hands. It figured that
the cost of replacing all Pentium processors that it had sold
so far would cost a great deal of money. Intel already had
more orders for the chip than it could produce, and it would
be particularly galling to have to give out the scarce chips
as free replacements instead of selling them. Intel’s man-
agement decided to punt on the issue and initially offered
to replace the processors only for those customers who
could prove that their work required absolute precision in
mathematical calculations. Naturally, that did not go over
well with the hundreds of thousands of customers who had
paid retail prices of $700 and more for a Pentium chip and
did not want to live with the nagging feeling that perhaps,
one day, their income tax program would produce a faulty
return.

Ultimately, Intel caved in to public demand and replaced
all defective chips, at a cost of about 475 million dollars.

Pentium FDIV error

1.333840000
1.333820000
1.333800000
1.333780000
s‘ 1.333760000
1.333740000
1.333720000
1.333700000:

1.333680000 0803145727+

29 1.10

28 e o
S5 5
S

4195835

g3
=)

+

This graph shows a set of numbers for which the original
Pentium processor obtained the wrong quotient.

In the following sections, you will see how to read user input and how to control the
appearance of the output that your programs produce.

2.3.1 Reading Input

You can make your programs more flexible if you ask the program user for inputs
rather than using fixed values. Consider, for example, a program that processes prices

A supermarket
scanner reads bar
codes. The Java
Scanner reads
numbers and text.

Java classes are
grouped into
packages. Use the
import statement
to use classes
from packages.

Syntax 2.5

2.3 Inputand Output 49

and quantities of soda containers. Prices and quantities are likely to fluctuate. The
program user should provide them as inputs.

When a program asks for user input, it should first print a message that tells the
user which input is expected. Such a message is called a prompt.

System.out.print("Please enter the number of bottles: "); // Display prompt

Use the print method, not printin, to display the prompt. You want the input to
appear after the colon, not on the following line. Also remember to leave a space after
the colon.

Because output is sent to System.out, you might think that you use System.in for
input. Unfortunately, it isn’t quite that simple. When Java was first designed, not
much attention was given to reading keyboard input. It was assumed that all pro-
grammers would produce graphical user interfaces with text fields and menus.
System.in was given a minimal set of features and must be combined with other classes
to be useful.

To read keyboard input, you use a class called Scanner. You obtain a Scanner object
by using the following statement:

Scanner in = new Scanner(System.in);

You will learn more about objects and classes in Chapter 8. For now, simply include
this statement whenever you want to read keyboard input.

When using the Scanner class, you need to carry out another step: import the class
from its package. A package is a collection of classes with a related purpose. All
classes in the Java library are contained in packages. The System class belongs to the
package java.lang. The Scanner class belongs to the package java.util.

Only the classes in the java.lang package are automatically available in your pro-
grams. To use the Scanner class from the java.uti1 package, place the following decla-
ration at the top of your program file:

import java.util.Scanner;
Once you havea scanner, you use its nextInt method to read an integer value:

System.out.print("Please enter the number of bottles: ");
int bottles = in.nextInt();

Input Statement

Include this line so you can
use the Scanner class.
—

Create a Scanner object
to read keyboard input. Scanner in = new Scanner(System.in);

Display a prompt in the console window. — éystem out.print("

Define a variable to hold the input valve.

import java.util.Scanner;

Pon't use printin here.

Please enter the number of bottles: ");
— int bottles = in.nextInt();

\ The program waits for user input,
then places the input into the variable.

50 Chapter 2 Fundamental Data Types

Use the Scanner class
to read keyboard
inputina

console window.

Use the printf
method to specify
how values should
be formatted.

When the nextInt method is called, the program waits until the user types a number
and presses the Enter key. After the user supplies the input, the number is placed into
the bottles variable, and the program continues.

To read a floating-point number, use the nextDouble method instead:

System.out.print("Enter price: ");
double price = in.nextDouble();

2.3.2 Formatted Output

When you print the result of a computation, you often want to control its appear-
ance. For example, when you print an amount in dollars and cents, you usually want
it to be rounded to two significant digits. That is, you want the output to look like

Price per liter: 1.22
instead of
Price per Titer: 1.215962441314554
The following command displays the price with two digits after the decimal point:
System.out.printf("%.2f", price);
You can also specify a field width:
System.out.printf("%10.2f", price);

The price is printed using ten characters: six spaces followed by the four characters
1.22.
o 2|2

The construct %10.2f is called a format specifier: it describes how a value should be for-
matted. The letter f at the end of the format specifier indicates that we are displaying a
floating-point number. Use d for an integer and s for a string; see Table 8 for examples.

Table 8 Format Specifier Examples

Format String Sample Output Comments

"%d" 24 Use d with an integer.

"%5d" 24 Spaces are added so that the field width is 5.
"Quantity:%5d" Quantity: 24 Characters inside a format string but outside a

format specifier appear in the output.

"% 1.21997 Use f with a floating-point number.
"%. 2f" 1.22 Prints two digits after the decimal point.
"%7 . 2f" 1.22 Spaces are added so that the field width is 7.
"%s" Hello Use s with a string.

"%d %.2f" 24 1.22 You can format multiple values at once.

2.3 Inputand Output 51

a7

You use the printf method to line |
up your output in neat columns. e e oS, i

:f""_f—_vt%_/ﬁ{_. —
o b

T = e
))

— | Rz | foz
B lak. | ra
1_‘_";:'(' - .. e

2oy Lrrr

A format string contains format specifiers and literal characters. Any characters that
are not format specifiers are printed verbatim. For example, the command

System.out.printf("Price per Titer:%10.2f", price);
prints
Price per Tliter: 1.22

You can print multiple values with a single call to the printf method. Here is a typical
example:

System.out.printf("Quantity: %d Total: %10.2f", quantity, total);

The printf wmethod does not

width 10 start a new line here.
A
a N\
Q uanti ¢ty : 2 4 T o t a 1 : L7129
No field width was specified, Two digits after
$0 ho padding added the decimal point

The printf method, like the print method, does not start a new line after the output.
If you want the next output to be on a separate line, you can call System.out.print1n().
Alternatively, Section 2.5.4 shows you how to add a newline character to the format
string.

Our next example program will prompt for the price of a six-pack and the volume
of each can, then print out the price per ounce. The program puts to work what you
just learned about reading input and formatting output.

section_3/Volume2.java

public static void main(String[] args)

{

1 import java.util.Scanner;

2

3 /':’f':'\‘

4 This program prints the price per ounce for a six-pack of cans.
5 */

6 public class Volume2

7 {

8

9

52 Chapter 2 Fundamental Data Types

10 // Read price per pack

11

12 Scanner in = new Scanner(System.in);

13

14 System.out.print("Please enter the price for a six-pack: ");
15 double packPrice = in.nextDouble();

16

17 // Read can volume

18

19 System.out.print("Please enter the volume for each can (in ounces): ");
20 double canVolume = in.nextDouble();

21

22 // Compute pack volume

23

24 final double CANS_PER_PACK = 6;

25 doubTe packVolume = canVolume * CANS_PER_PACK;

26

27 // Compute and print price per ounce

28

29 double pricePerOunce = packPrice / packVolume;

30

31 System.out.printf("Price per ounce: %8.2f", pricePerOunce);
32 System.out.printin();

33 }

34 }

Program Run

Please enter the price for a six-pack: 2.95
Please enter the volume for each can (in ounces): 12
Price per ounce: 0.04

15. Write statements to prompt for and read the user’s age using a Scanner variable
named in.

16. What is wrong with the following statement sequence?

System.out.print("Please enter the unit price: ");
double unitPrice = in.nextDouble();
int quantity = in.nextInt();

17. What is problematic about the following statement sequence?

System.out.print("Please enter the unit price: ");
double unitPrice = in.nextInt();

18. What is problematic about the following statement sequence?

System.out.print("Please enter the number of cans");
int cans = in.nextInt();

19. Whatis the output of the following statement sequence?

int volume = 10;
System.out.printf("The volume is %5d", volume);

20. Using the printf method, print the values of the integer variables bottles and cans
so that the output looks like this:

Bottles: 8
Cans: 24

The numbers to the right should line up. (You may assume that the numbers
have at most 8 digits.)

2.3 Inputand Qutput 53

Practice It Now you can try these exercises at the end of the chapter: R2.10, P2.6, P2.7.

Programming Tip 2.4 Use the APl Documentation

The class.es and methods of the Java lib.rary are listed i‘n th'e APIdoc- 1. api (sl
umentation. The APIis the “application programming interface”. programming Inter-
A programmer who uses the Java classes to put together a computer face) documentation
program (or application) is an application programmer. That’s you. lists the classes and
In contrast, the programmers who designed and implemented the Jrzsg}?gjr;?fthe
library classes (such as Scanner) are system programmers. v

You can find the API documentation at http://download.oracle.com/javase/7/docs/api. The
API documentation describes all classes in the Java library —there are thousands of them. For-
tunately, only a few are of interest to the beginning programmer. To learn more about a class,
click on its name in the left hand column. You can then find out the package to which the class
belongs, and which methods it supports (see Figure 4). Click on the link of a method to get a
detailed description.

Appendix D contains an abbreviated version of the API documentation.

) Scanner (Java Platform SE 7) - Mozilla Firefox

Fichier Edition Affichage Historique Marque-pages Qutils Aide

-@ @ LEJ http://download.oracle.com/javase/7/docs/api/ V| W v
javax.net ~ . [T—
javax.net.ssl Overview Package | e Tree Deprecated Index Help Standard Ed. T
javax.print =

Javax.print.affribute Prev Class Next Class Frames No Frames

javax.print.attribute.st

javax.print.event Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

javax.rmi _ _

javax.rmi.CORBA java.util

javax.rmi.ssl

javax script Class Scanner

|_iavay sacoritv auth
| €

java.lang.Object

RunTimeCperations [* java.util.Scanner
RuntimeOperationsE
RuntimePermission All Implemented Interfaces:
gﬁjgemiaﬁow Closeable, AutoCloseable, lterator<String=
esu
SafeVarargs
g:gplel‘dodel public final class Scanner
SasiClient extends Object
SasiClientFactory implements Iterator<String=, Closeable
SaslException
SasiServer A simple text scanner which can parse primitive types and strings using regular expressions.
SaslServerFactory o)) o _
Savepoint A 5canner breaks its input into tokens using a delimiter pattern, which by default matches
SAXException whitespace. The resulting tokens may then be converted into values of different types using
SAXNotRecognizedE the various next methods.
SAXNotS rtedE:
SAXF'Eolrs:EpEE?epetionx For example, this code allows a user to read a number from System. in:
gﬁﬁ:;:s:mmw Scanner sc = new Scanner(System.in);
SAXResult int i = sc.nextInt();
SAXSource
SAXTransformerFach

As another example, this code allows Long types to be assigned from entries in a file
ScatteringByteChann myMNumbe rs:

|__SrhadilanEvartitars .
| < > [< g

Figure 4 The API Documentation of the Standard Java Library

54 Chapter 2 Fundamental Data Types

HOW TO 2.1

Step 1

Step 2

Step 3

Carrying out Computations

Many programming problems require arithmetic computations. This How To shows you
how to turn a problem statement into pseudocode and, ultimately, a Java program.

For example, suppose you are asked to write a program that simulates a vending machine.
A customer selects an item for purchase and inserts a bill into the vending machine. The vend-
ing machine dispenses the purchased item and gives change. We will assume that all item prices
are multiples of 25 cents, and the machine gives all change in dollar coins and quarters.

Your task is to compute how many coins of each type to return.

Understand the problem: What are the inputs? What are the desired outputs?

In this problem, there are two inputs:
¢ The denomination of the bill that the customer inserts
 The price of the purchased item

There are two desired outputs:

e The number of dollar coins that the machine returns

® The number of quarters that the machine returns

Work out examples by hand.

This is a very important step. If you can’t compute a couple of solutions by hand, it’s unlikely
that you’ll be able to write a program that automates the computation.

Let’s assume that a customer purchased an item that cost $2.25 and inserted a $5 bill. The
customer is due $2.75, or two dollar coins and three quarters, in change.

That is easy for you to see, but how can a Java program come to the same conclusion? The
key is to work in pennies, not dollars. The change due the customer is 275 pennies. Dividing
by 100 yields 2, the number of dollars. Dividing the remainder (75) by 25 yields 3, the number
of quarters.

Write pseudocode for computing the answers.

In the previous step, you worked out a specific instance of the problem. You now need to
come up with a method that works in general.

Given an arbitrary item price and payment, how can you compute the coins due? First,
compute the change due in pennies:

change due = 100 x bill value - itew price in pennies
To get the dollars, divide by 100 and discard the remainder:
dollar coins = change due / 100 (without remainder)

The remaining change due can be computed in two ways. If you are familiar with the modulus
operator, you can simply compute

change due = change dve Z 100

Alternatively, subtract the penny value of the dollar coins from the change due:
change due = change due - 100 x dollar coins

To get the quarters due, divide by 25:

quarters = change dve / 29

Step 4

Step 5

Step 6

Step 7

2.3 Inputand Qutput 55

Declare the variables and constants that you need, and specify their types.

Here, we have five variables:

® billvalue

® ditemPrice

® changeDue

® dollarCoins

® quarters

Should we introduce constants to explain 100 and 25 as PENNIES_PER_DOLLAR and PENNIES_PER_
QUARTER? Doing so will make it easier to convert the program to international markets, so we
will take this step.

It is very important that changeDue and PENNIES_PER_DOLLAR are of type int because the com-
putation of do11arCoins uses integer division. Similarly, the other variables are integers.

Turn the pseudocode into Java statements.

If you did a thorough job with the pseudocode, this step should be easy. Of course, you have
to know how to express mathematical operations (such as powers or integer division) in Java.

changeDue = PENNIES_PER_DOLLAR * billvValue - itemPrice;
dollarCoins = changeDue / PENNIES_PER_DOLLAR;
changeDue = changeDue % PENNIES_PER_DOLLAR;

quarters = changeDue / PENNIES_PER_QUARTER;

Provide input and output.
Before starting the computation, we prompt the user for the bill value and item price:

System.out.print("Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): ");
billvalue = in.nextInt();

System.out.print("Enter item price in pennies: ");

itemPrice = in.nextInt();

When the computation is finished, we display the result. For extra credit, we use the printf
method to make sure that the output lines up neatly.

System.out.printf("Dollar coins: %6d", dollarCoins);
System.out.printf("Quarters: %6d", quarters);

Provide a class with a main method.

Your computation needs to be placed into a class. Find an appropriate name for the class that
describes the purpose of the computation. In our example, we will choose the name Vending-
Machine.

Inside the class, supply amain method.

A vending machine takes bills
and gives change in coins.

56 Chapter 2 Fundamental Data Types

In the main method, you need to declare constants and variables (Step 4), carry out compu-
tations (Step 5), and provide input and output (Step 6). Clearly, you will want to first get the
input, then do the computations, and finally show the output. Declare the constants at the
beginning of the method, and declare each variable just before it is needed.

Here is the complete program, how_to_1/VendingMachine.java:

import java.util.Scanner;

Vi
This program simulates a vending machine that gives change.
*/
pubTic class VendingMachine
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
final int PENNIES_PER_DOLLAR = 100;
final int PENNIES_PER_QUARTER = 25;
System.out.print("Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): ");
int billValue = in.nextInt();
System.out.print("Enter item price in pennies: ");
int itemPrice = in.nextInt();
// Compute change due
int changeDue = PENNIES_PER_DOLLAR * billvalue - itemPrice;
int dollarCoins = changeDue / PENNIES_PER_DOLLAR;
changeDue = changeDue % PENNIES_PER_DOLLAR;
int quarters = changeDue / PENNIES_PER_QUARTER;
// Print change due
System.out.printf("Dollar coins: %6d", dollarCoins);
System.out.printin();
System.out.printf("Quarters: %6d", quarters);
System.out.printin();
}
}

Program Run

Enter bill value (1 = $1 bill, 5 = $5 bill, etc.): 5
Enter item price in pennies: 225

Dollar coins: 2

Quarters: 3

WORKED EXAMPLE 2.1 Computing the Cost of Stamps

3 This Worked Example uses arithmetic functions to simulate a stamp vending machine.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

2.4 Problem Solving: First Do It By Hand 57

2.4 Problem Solving: First Do It By Hand

Pick concrete values
for a typical situation
to use in a hand
calculation.

ONLINE EXAMPLE

& A program that
implements this
algorithm.

A very important step for developing an algorithm is to first carry out the computa-
tions by hand. If you can’t compute a solution yourself, it’s unlikely that you’ll be
able to write a program that automates the computation.

To illustrate the use of hand calculations, consider the following problem.

A row of black and white tiles needs to be placed along a wall. For aesthetic rea-
sons, the architect has specified that the first and last tile shall be black.

Your task is to compute the number of tiles needed and the gap at each end, given
the space available and the width of each tile.

|<— Total width [

To make the problem more concrete, let’s assume the following dimensions:

e Total width: 100 inches
e Tile width: 5 inches

The obvious solution would be to fill the space with 20 tiles, but that would not
work —the last tile would be white.

Instead, look at the problem this way: The first tile must always be black, and then
we add some number of white/black pairs:

HEE RN

The first tile takes up 5 inches, leaving 95 inches to be covered by pairs. Each pair is
10 inches wide. Therefore the number of pairs is 95 / 10 = 9.5. However, we need to
discard the fractional part since we can’t have fractions of tile pairs.

Therefore, we will use 9 tile pairs or 18 tiles, plus the initial black tile. Altogether,
we require 19 tiles.

The tiles span 19 x 5 = 95 inches, leaving a total gap of 100 —19 x 5 =5 inches.

The gap should be evenly distributed at both ends. At each end, the gap is
(100-19 x 5) /2 = 2.5 inches.

This computation gives us enough information to devise an algorithm with arbi-
trary values for the total width and tile width.

nuwmber of pairs = integer part of (total width - tile width) / (Z x tile width)
nuwmber of files = 1 + Z x number of pairs
gap at each end = (total width - number of tiles x tile width) / 2

As you can see, doing a hand calculation gives enough insight into the problem that it
becomes easy to develop an algorithm.

58 Chapter 2 Fundamental Data Types

N

-~

]

Practice It

WORKED EXAMPLE 2.2 Computing Travel Time

23.

24.

. Translate the pseudocode for computing the number of tiles and the gap width

into Java.

. Suppose the architect specifies a pattern with black, gray, and white tiles, like

this:

Again, the first and last tile should be black. How do you need to modify the
algorithm?

A robot needs to tile a floor with alternating black and white tiles. Develop
an algorithm that yields the color (0 for black, 1 for white), given the row and

column number. Start with specific values for the row and column, and then
generalize.

For a particular car, repair and maintenance costs in year 1 are estimated at $100;
in year 10, at $1,500. Assuming that the repair cost increases by the same amount

every year, develop pseudocode to compute the repair cost in year 3 and then
generalize to year n.

. The shape of a bottle is approximated by two cylinders of radius r{ and , and

heights b and h,, joined by a cone section of height ;.

Using the formulas for the volume of a cylinder, V = 7r2h, and a cone section,

(712 +nr, + rzz)h

3 b
develop pseudocode to compute the volume of the bottle. Using an actual bottle
with known volume as a sample, make a hand calculation of your pseudocode.

V=r

Now you can try these exercises at the end of the chapter: R2.15, R2.17, R2.18.

In this Worked Example, we develop a hand calculation to compute
the time that a robot requires to retrieve an item from rocky terrain.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

2.5 Strings 59

2.5 Strings

Strings are sequences
of characters.

The Tength method
yields the number
of characters in

a string.

Use the + operator to
concatenate strings;
that is, to put them
together to yield a
longer string.

Many programs process text, not numbers. Text
consists of characters: letters, numbers, punc-
tuation, spaces, and so on. A string is a sequence
of characters. For example, the string "Harry" is a
sequence of five characters.

2.5.1 The String Type

You can declare variables that hold strings.
String name = "Harry";

We distinguish between string variables (such as the variable name declared above) and
string literals (character sequences enclosed in quotes, such as "Harry"). A string vari-
able is simply a variable that can hold a string, just as an integer variable can hold an
integer. A string literal denotes a particular string, just as a number literal (such as 2)
denotes a particular number.

The number of characters in a string is called the lengrh of the string. For exam-
ple, the length of "Harry" is 5. You can compute the length of a string with the Tength
method.

int n = name.length(Q);

A string of length 0 is called the empry string. It contains no characters and is written
aS nn .

2.5.2 Concatenation

Given two strings, such as "Harry" and "Morgan", you can concatenate them to one
long string. The result consists of all characters in the first string, followed by all
characters in the second string. In Java, you use the + operator to concatenate two
strings.

For example,

String fName = "Harry";

String TName = "Morgan";

String name = fName + 1Name;

results in the string
"HarryMorgan"
What if you’d like the first and last name separated by a space? No problem:

String name = fName + + IName;

This statement concatenates three strings: fName, the string literal " ", and 1Name. The
result is

"Harry Morgan"

When the expression to the left or the right of a + operator is a string, the other one
is automatically forced to become a string as well, and both strings are concatenated.

60 Chapter 2 Fundamental Data Types

Whenever one of

the arguments of the
+ operator is a string
the other argument is
converted to

a string.

Use the next method
of the Scanner class
to read a string
containing a

single word.

For example, consider this code:

String jobTitle = "Agent";
int employeeld = 7;
String bond = jobTitle + employeeld;

Because jobTitle is a string, employeeld is converted from the integer 7 to the string "7".
Then the two strings "Agent" and "7" are concatenated to form the string "Agent7".

This concatenation is very useful for reducing the number of System.out.print
instructions. For example, you can combine

System.out.print("The total is ");
System.out.printin(total);

to the single call

System.out.printIn("The total is " + total);

The concatenation "The total is " + total computes a single string that consists of the
string "The total is ", followed by the string equivalent of the number total.

2.5.3 String Input

You can read a string from the console:

System.out.print("Please enter your name: ");
String name = in.next();

When a string is read with the next method, only one word is read. For example, sup-
pose the user types

Harry Morgan

as the response to the prompt. This input consists of two words. The call in.next(
yields the string "Harry". You can use another call to in.next) to read the second word.

2.5.4 Escape Sequences

To include a quotation mark in a literal string, precede it with a backslash (\), like this:
"He said \"Hello\""

The backslash is not included in the string. It indicates that the quotation mark that
follows should be a part of the string and not mark the end of the string. The sequence
\"is called an escape sequence.

To include a backslash in a string, use the escape sequence \\, like this:

"C:\\Temp\\Secret.txt"

Another common escape sequence is \n, which denotes a newline character. Print-
ing a newline character causes the start of a new line on the display. For example, the
statement

System.out.print("*\n**\n***\n");

prints the characters

on three separate lines.

String positions are
counted starting
with 0.

Use the substring
method to extract a
part of a string.

2.5 Strings 61

You often want to add a newline character to the end of the format string when
you use System.out.printf:

System.out.printf("Price: %10.2f\n", price);

2.5.5 Strings and Characters

Strings are sequences of Unicode characters (see Random {3y’ !.] |
Fact 2.2). In Java, a character is a value of the type char. WJ O l Rj U
Characters have numeric values. You can find the values R
of the characters that are used in Western European lan- A string is a sequence of
guages in Appendix A. For example, if you look up the characters.
value for the character 'H', you can see that is actually
encoded as the number 72.

Character literals are delimited by single quotes, and you should not confuse them
with strings.

R
LA

* 'H'isacharacter, a value of type char.
* "H"isastring containing a single character, a value of type String.

The charAt method returns a char value from a string. The first string position is
labeled O, the second one 1, and so on.

H a r
4

The position number of the last character (4 for the string "Harry") is always one less
than the length of the string.
For example, the statement

String name = "Harry";
char start = name.charAt(0);
char Tast = name.charAt(4);

sets start to the value 'H' and T1ast to the value 'y'.

2.5.6 Substrings

Once you have a string, you can extract substrings by using the substring method.

The method call
str.substring(start, pastEnd)

returns a string that is made up of the characters in the string str, starting at posi-
tion start, and containing all characters up to, but not including, the position pastEnd.
Here is an example:

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "Hello"

The substring operation makes a string that consists of the first five characters taken
from the string greeting.

He 1l 1 o , Wor 1 d!
o1 2 3 4 5 6 7 8 9 10 11 12

62 Chapter 2 Fundamental Data Types

Let’s figure out how to extract the substring "Wor1d". Count characters starting at 0,
not 1. You find that w has position number 7. The first character that you don’t want,
1, is the character at position 12. Therefore, the appropriate substring command is

String sub2 = greeting.substring(7, 12);

5
f—)%
Hel1lo, W oi/ri 1l d'!

01 2 3 4 5 677 8 9 10 11712

It is curious that you must specify the position of the first character that you do want
and then the first character that you don’t want. There is one advantage to this setup.
You can easily compute the length of the substring: It is pastEnd - start. For example,
the string "wor1d" has length 12 -7 =5.

If you omit the end position when calling the substring method, then all characters
from the starting position to the end of the string are copied. For example,

String tail = greeting.substring(7); // Copies all characters from position 7 on

sets tail to the string "World!".
Following is a simple program that puts these concepts to work. The program asks
for your name and that of your significant other. It then prints out your initials.
The operation first.substring(0, 1) makes a .
string consisting of one character, taken from the
start of first. The program does the same for the
second. Then it concatenates the resulting one-
character strings with the string literal "&" to get
a string of length 3, the initials string. (See

Figure5.)
first =R o d o 1 f o
01 2 3 4 5 6
second = 'S a 1 1 vy
o1 2 3 4
initials = [R & S
0o 1 2
Initials are formed from the first
Figure 5 Building the initials String letter of each name.

section_5/Initials.java

1 import java.util.Scanner;

Scanner in = new Scanner(System.in);

2

3 /**

4 This program prints a pair of initials.

5 %

6 public class Initials

7 {

8 public static void main(String[] args)
9 {

0

1

2.5 Strings 63

12 // Get the names of the couple

13

14 System.out.print("Enter your first name: ");
15 String first = in.next(Q);

16 System.out.print("Enter your significant other's first name: ");
17 String second = in.next();

18

19 // Compute and display the inscription

20

21 String initials = first.substring(0, 1)

22 + "&" + second.substring(0, 1);

23 System.out.printin(initials);

24 }

25 }

Program Run

Enter your first name: Rodolfo
Enter your significant other's first name: Sally

R&S

Statement

string str = "Ja";
str = str + "va";

System.out.printin("Please"

+ " enter your name: ");

team = 49 + "ers"

String first = in.next();
String last = in.next();
(User input: Harry Morgan)

String greeting = "H & S";
int n = greeting.length();

String str = "Sally";
char ch = str.charAt(1);

String str = "Sally";
String str2 = str.substring(l, 4);

String str = "Sally";
String str2 = str.substring(l);

String str = "Sally";
String str2 = str.substring(l, 2);

String last = str.substring(
str.length() - 1);

Result

stris set to "Java"

Prints

Please enter your name:

team 1s set to "49ers"

first contains "Harry"
last contains "Morgan"

nissetto>5

chissetto 'a'

str2is set to "al1"

str2issetto "ally"

str2issetto"a

last is set to the string
containing the last
character in str

Table 9 String Operations

Comment

When applied to strings,

+denotes concatenation.

Use concatenation to break up strings
that don’t fit into one line.

Because "ers" is a string, 49 is converted
to a string.

The next method places the next word
into the string variable.

Each space counts as one character.

This is a char value, not a String. Note
that the initial position is 0.

Extracts the substring starting at
position 1 and ending before position 4.

If you omit the end position, all
characters from the position until the
end of the string are included.

Extracts a String of length
1; contrast with str.charAt(1).

The last character has position
str.length() - 1.

64 Chapter 2 Fundamental Data Types

Practice It

Special Topic 2.4

26. Whatis the length of the string "Java Program"?

27. Consider this string variable.
String str = "Java Program";
Give a call to the substring method that returns the substring "gram".

28. Use string concatenation to turn the string variable str from Self Check 27 into
"Java Programming".

29. What does the following statement sequence print?

String str = "Harry";

int n = str.length(Q);

String mystery = str.substring(0, 1) + str.substring(n - 1, n);
System.out.println(mystery);

30. Givean input statement to read a name of the form “John Q. Public”.

Now you can try these exercises at the end of the chapter: R2.7, R2.11, P2.15, P2.23.

Instance Methods and Static Methods

In this chapter, you have learned how to read, process, and print numbers and strings. Many of
these tasks involve various method calls. You may have noticed syntactical differences in these
method calls. For example, to compute the square root of a number num, you call Math. sqrt (num),
but to compute the length of a string str, you call str.length(). This section explains the rea-
sons behind these differences.

The Java language distinguishes between values of primitive types and objects. Numbers
and characters, as well as the values false and true that you will see in Chapter 3, are primitive.
All other values are objects. Examples of objects are

* astring such as "Hello".
e aScanner object obtained by calling in = new Scanner(System.in).

® System.inand System.out.

In Java, each object belongs to a class. For example,
o All strings are objects of the String class.
* A scanner object belongs to the Scanner class.

e System.out is an object of the PrintStream class. (It is useful to know this so that you can
look up the valid methods in the APT documentation; see Programming Tip 2.4 on page 53.)

A class declares the methods that you can use with its objects. Here are examples of methods
that are invoked on objects:

"Hello".substring(0, 1)
in.nextDouble()
System.out.printin("Hello")

A method is invoked with the dot notation: the object is followed by the name of the method,
and the method is followed by parameters enclosed in parentheses.

The wethod is This is the These parameters are
invoked on this object. nawe of the method. inputs to the method.
AN N\ /

System.out.printIn("Hello")

You cannot invoke methods on numbers. For example, the call 2.sqrt() would be an error.

Special Topic 2.5

ONLINE EXAMPLE

@ Acomplete program
that uses option
panes for input
and output.

VIDEO EXAMPLE 2.2 Computing Distances on Earth

PLUS

2.5 Strings 65

InJava, classes can declare methods that are nor invoked on objects. Such methods are called
static methods. (The term “static” is a historical holdover from the C and C++ programming
languages. It has nothing to do with the usual meaning of the word.) For example, the Math
class declares a static method sqrt. You call it by giving the name of the class and method, then
the name of the numeric input: Math.sqrt(2).

The nawe of the class\ /The nawe of the static method
Math.sqrt(2)
In contrast, a method that is invoked on an object is called an instance method. As a rule of
thumb, you use static methods when you manipulate numbers. You use instance methods

when you process strings or perform input/output. You will learn more about the distinction
between static and instance methods in Chapter 8.

Using Dialog Boxes for Input and Output

Most program users find the console window rather old-fashioned. The easiest alternative is
to create a separate pop-up window for each input.

Iz‘ Enter price:
[

An Input Dialog Box

Call the static showInputDialog method of the JOptionPane class, and supply the string that
prompts the input from the user. For example,

String input = JOptionPane.showInputDialog("Enter price:");

That method returns a String object. Of course, often you need the input as a number. Use the
Integer.parselnt and Double.parseDouble methods to convert the string to a number:

double price = Double.parseDouble(input);
You can also display output in a dialog box:

JOptionPane.showMessageDialog(null, "Price: " + price);

In this Video Example, you will see how to write a program that
computes the distance between any two points on Earth.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

66 Chapter 2 Fundamental Data Types

2/

The English alpha-
bet is pretty simple:
upper- and lowercase a to z. Other
European languages have accent marks
and special characters. For example,

German has three so-called umlaut
characters, 4, 0, U, and a double-s char-
acter B. These are not optional frills;
you couldn’t write a page of German
text without using these characters
a few times. German keyboards have
keys for these characters.

The German Keyboard Layout

Many countries don’t use the Roman
script at all. Russian, Greek, Hebrew,

CHAPTER SUMMARY

Arabic, and Thai letters, to name just a
few, have completely different shapes.
To complicate matters, Hebrew and
Arabic are typed from right to left. Each
of these alphabets has about as many
characters as the English alphabet.

Hebrew, Arabic, and English

The Chinese languages as well as
Japanese and Korean use Chinese char-
acters. Each character represents an
idea or thing. Words are made up of
one or more of these ideographic char-
acters. Over 70,000 ideographs are
known.

Starting in 1988, a consortium of
hardware and software manufacturers
developed a uniform encoding scheme

Declare variables with appropriate names and types.

e A variable is a storage location with a name.

® When declaring a variable, you usually specify an

initial value.

® When declaring a variable, you also specify the type
of its values.

e Use the doubTe type for floating-point numbers.
* By convention, variable names should start with a lowercase letter.

e Anassignment statement stores a new value in a variable, replacing
the previously stored value.

Random Fact 2.2 International Alphabets and Unicode

called Unicode that is capable of
encoding text in essentially all written
languages of the world. An early ver-
sion of Unicode used 16 bits for each
character. The Java char type corre-
sponds to that encoding.

Today Unicode has grown to a
21-bit code, with definitions for over
100,000 characters. There are even
plans to add codes for extinct lan-
guages, such as Egyptian hieroglyph-
ics. Unfortunately, that means that a
Java char value does not always cor-
respond to a Unicode character. Some
characters in languages such as Chi-
nese or ancient Egyptian occupy two
char values.

B P 23k

Domestic Arrivals

;lil_
Inrl Hk Macao, Taiwan Amvals

B“"_
%

Departures e

_%‘ f?‘\

(.

The Chinese Script

e Use the int type for numbers that cannot have a fractional part.

® The assignment operator = does 7ot denote mathematical equality.

Chapter Summary 67

® You cannot change the value of a variable that is defined as final.

e Use comments to add explanations for humans who read your
code. The compiler ignores comments.

Write arithmetic expressions in Java.

* Mixing integers and floating-point values in an arithmetic expression yields a
floating-point value.

* The ++ operator adds 1 to a variable; the -- operator subtracts 1.
e If both arguments of / are integers, the remainder is discarded.

* The % operator computes the remainder of an integer division.

® The Javalibrary declares many mathematical functions, such as Math.sqrt (square
root) and Math. pow (raising to a power).

* You use a cast (typeName) to convert a value to a different type.

Write programs that read user input and print formatted output.

® Javaclasses are grouped into packages. Use the import statement to use classes
from packages.

e Use the Scanner class to read keyboard input in a console window.

e Use the printf method to specify how values should be
formatted.

- - et S5

e el o [reofad? Lpad] o
e T (o | ixnf J#\-ALC‘JII
Lo o o= iy

e The API (Application Programming Interface)

'_ - ol et /-f :u-r»j j—«/!
documentation lists the classes and methods of the oy el F b
AP |

Javalibrary. - v o ot e

Carry out hand calculations when developing an algorithm.

* DPick concrete values for a typical situation to use in a hand calculation.

Write programs that process strings.

e Strings are sequences of characters.

® The Tength method yields the number of characters in
astring.

® Use the + operator to concatenate strings; that is, to put them together to yield a
longer string.

* Whenever one of the arguments of the + operator is a string, the other argument is
converted to a string.

e Use the next method of the Scanner class to read a string containing
asingle word.

e String positions are counted starting with 0.
e Use the substring method to extract a part of a string.

68 Chapter 2 Fundamental Data Types

STANDARD LIBRARY ITEMS INTRODUCED IN THIS CHAPTER

java.io.PrintStream max java.math.BigDecimal
printf min add
java.lang.Double pow multiply
parseDouble round subtract
java.lang.Integer sin java.math.BigInteger
MAX_VALUE sqrt add
MIN_VALUE tan multiply
parselnt toDegrees subtract
java.lang.Math toRadians java.util.Scanner
PI java.lang.String next
abs charAt nextDouble
cos length nextInt
exp substring javax.swing.JOptionPane
Tog java.lang.System showInputDialog
Togl0 in showMessageDialog

REVIEW EXERCISES

= R2.1 What is the value of mystery after this sequence of statements?

int mystery = 1;
mystery = 1 - 2 * mystery;
mystery = mystery + 1;

= R2.2 What is wrong with the following sequence of statements?

int mystery = 1;
mystery = mystery + 1;
int mystery = 1 - 2 * mystery;

=x R2.3 Write the following mathematical expressions in Java.

[
o + Vgt + 5 8t

S:
P (n11+-n12)
YRS
FV = PV. 1+N
100

c= \/42 +b% — 2abcosy

== R2.4 Write the following Java expressions in mathematical notation.
a.dm =m* (Math.sqrt(1 + v / ¢) / Math.sqrt(1 - v / ©) - 1);
b. volume = Math.PI * r * r * h;
C. volume = 4 * Math.PI * Math.pow(r, 3) / 3;
d. z = Math.sqrt(x * x +y * y);

»n R2.5 What are the values of the following expressions? In each line, assume that

2.5;
-1.5;

doubTe x
double y

int m

18;

int n = 4;

a. X
b.m
C. 5
d.1

+n*y-(X+n)*y
/n+m%n

*x-n/5
-Q-@aQ-a-a-nm»N

e. Math.sqrt(Math.sqrt(n))

Review Exercises 69

» R2.6 What are the values of the following expressions, assuming thatnis 17 and mis 18?

a. n
b.n

/ 10 + n % 10
%2 +m%2

C. (m+n) /2
d.(m+n) /2.0

e. (i
f. @

nt) (0.5 * (m + n))
nt) Math.round(0.5 * (m + n))

un R2.7 What are the values of the following expressions? In each line, assume that

String s

"Hello";

String t = "World";

a. S.
b.s.
C. S.
d.s
e. t

Tength() + t.length()

substring(l, 2)

substring(s.length() / 2, s.length(Q))
+ t

+S

= R2.8 Find atleast five compile-time errors in the following program.

public class HasErrors

{

public static void main();

{

}

System.out.print(Please enter two numbers:)
X = in.readDouble;
y = in.readDouble;
System.out.printline("The sum is

+ X +Y);

ux R2.9 Find three run-time errors in the following program.

public class HasErrors

{

public static void main(String[] args)

{

int x = 0;
int y = 0;
Scanner in = new Scanner("System.in");
System.out.print("Please enter an integer:");

X = in.readInt();

System.out.print("Please enter another integer: ");
X = in.readInt();
System.out.printin("The sum 1is

+ X +Y);

70 Chapter 2 Fundamental Data Types

= R2.10

= R2.11

= R2.12

= R2.13

=n R2.14

=nm R2.15

= R2.16

un R2,17

=nnm R2.18

Consider the following code segment.

double purchase = 19.93;
doubTe payment = 20.00;
double change = payment - purchase;
System.out.printin(change);
The code segment prints the change as 0.07000000000000028. Explain why. Give a

recommendation to improve the code so that users will not be confused.

Explain the differences between 2, 2.0, '2', "2", and "2.0".

Explain what each of the following program segments computes.
a. X = 2;
Yy =X + X
b.s = "2";
t=5+5;

Write pseudocode for a program that reads a word and then prints the first character,
the last character, and the characters in the middle. For example, if the input is Harry,
the program printsH y arr.

Write pseudocode for a program that reads a name (such as Harold James Morgan) and
then prints a monogram consisting of the initial letters of the first, middle, and last
name (such as HM).

Write pseudocode for a program that computes the first and last digit of a num-
ber. For example, if the input is 23456, the program should print 2 and 6. Hint: %,
Math.logl0

Modify the pseudocode for the program in How To 2.1 so that the program gives
change in quarters, dimes, and nickels. You can assume that the price is a multiple of
5 cents. To develop your pseudocode, first work with a couple of specific values.

A cocktail shaker is composed of three cone sections.

Using realistic values for the radii and heights, compute the total
volume, using the formula given in Self Check 25 for a cone section.
Then develop an algorithm that works for arbitrary dimensions.

You are cutting off a piece of pie like this, where c is the length of the
straight part (called the chord length) and 4 is the height of the piece.

. . p
There is an approximate formula for the area: A = —Cb * o
c

Programming Exercises 71

However, b is not so easy to measure, whereas the diameter d of a pie is usually
well-known. Calculate the area where the diameter of the pie is 12 inches and the
chord length of the segment is 10 inches. Generalize to an algorithm that yields the
area for any diameter and chord length.

= R2.19 The following pseudocode describes how to obtain the name of a day, given the day
number (0 = Sunday, 1 = Monday, and so on.)

Declare a string called names containing “SunMonTveWedThuFriSat".
Compute the starting position as 3 x the day number.
Extract the substring of names at the starting position with length 3.

Check this pseudocode, using the day number 4. Draw a diagram of the string that is
being computed, similar to Figure 5.

sun R2.20 The following pseudocode describes how to swap two letters in a word.

We are given a siring str and two positions i and j. (i comes before j)

Set first to the substring from the start of the string to the last position before i.

Set widdle to the substring from positionsi+ 1 toj- 1.

Set last to the substring from position j + 1 o the end of the string.

Concatenate the following five strings: first, the string containing just the character at position j,
widdle, the string containing just the character at position i, and last.

Check this pseudocode, using the string "Gateway" and positions 2 and 4. Draw a
diagram of the string that is being computed, similar to Figure 5.

== R2.21 How do you get the first character of a string? The last character? How do you
remove the first character? The last character?
mum R2.22 Write a program that prints the values

3 * 1000 * 1000 * 1000
3.0 * 1000 * 1000 * 1000

Explain the results.
= R2.23 This chapter contains a number of recommendations regarding variables and con-

stants that make programs easier to read and maintain. Briefly summarize these
recommendations.

PROGRAMMING EXERCISES

= P2.1 Write a program that displays the dimensions of a letter-size (8.5 x 11 inches) sheet
of paper in millimeters. There are 25.4 millimeters per inch. Use constants and com-
ments in your program.

» P2.2 Write a program that computes and displays the perimeter of a letter-size (8.5 x 11
inches) sheet of paper and the length of its diagonal.

» P2.3 Write a program that reads a number and displays the square, cube, and fourth
power. Use the Math. pow method only for the fourth power.
»n P2.4 Write a program that prompts the user for two integers and then prints
* Thesum

e The difference

72 Chapter 2 Fundamental Data Types

The product

The average

The distance (absolute value of the difference)
* The maximum (the larger of the two)
* The minimum (the smaller of the two)
Hint: The max and min functions are declared in the Math class.

ux P2.5 Enhance the output of Exercise P2.4 so that the numbers are properly aligned:

Sum: 45
Difference: -5
Product: 500
Average: 22.50
Distance: 5
Maximum: 25
Minimum: 20

sn P2.6 Write a program that prompts the user for a measurement in meters and then con-
verts it to miles, feet, and inches.
®» P2.7 Write a program that prompts the user for a radius and then prints
* The area and circumference of a circle with that radius
* The volume and surface area of a sphere with that radius
sn P2.8 Write a program that asks the user for the lengths of the sides of a rectangle. Then
print
* The area and perimeter of the rectangle
* Thelength of the diagonal (use the Pythagorean theorem)
= P2.9 Improve the program discussed in How To 2.1 to allow input of quarters in addition

to bills.
snn P2.10 Write a program that helps a person decide whether to buy a hybrid car. Your
program’s inputs should be:
* The cost of a new car .: Unleaded Super
* The estimated miles driven per year ' P‘lu'_s_m Unleaded

* The estimated gas price

The efficiency in miles per gallon
* The estimated resale value after 5 years

Compute the total cost of owning the car for
five years. (For simplicity, we will not take the
cost of financing into account.) Obtain
realistic prices for a new and used hybrid

and a comparable car from the Web. Run your program twice, using today’s gas
price and 15,000 miles per year. Include pseudocode and the program runs with your
assignment.

»n P2.11 Write a program that asks the user to input
* The number of gallons of gas in the tank
 The fuel efficiency in miles per gallon
* The price of gas per gallon

= P2.12

smn P2.13

un P2.14

= P2.15

=m P2.16

un P2.17

Programming Exercises 73

Then print the cost per 100 miles and how far the car can go with the gas in the tank.

File names and extensions. Write a program that prompts the user for the drive letter
(C), the path (\windows\Systen), the file name (Readme), and the extension (txt). Then
print the complete file name C:\Windows\System\Readme. txt. (If you use UNIX or a
Macintosh, skip the drive name and use / instead of \ to separate directories.)

Write a program that reads a number between 1,000 and 999,999 from the user,
where the user enters a comma in the input. Then print the number without a
comma. Here is a sample dialog; the user input is in color:

Please enter an integer between 1,000 and 999,999: 23,456

23456
Hint: Read the input as a string. Measure the length of the string. Suppose it contains
n characters. Then extract substrings consisting of the first 7 — 4 characters and the
last three characters.

Werite a program that reads a number between 1,000 and 999,999 from the user and
prints it with a comma separating the thousands. Here is a sample dialog; the user
inputis in color:

Please enter an integer between 1000 and 999999: 23456
23,456

Printing a grid. Write a program that prints the following grid to play tic-tac-toe.

+—F — + — +
1 1 | 1

+--+
I
+--+
I
+--+
|
+--+

1 1] 1
+—+ — + — +

Of course, you could simply write seven statements of the form
System.out.printIn("+--+--+--+");

You should do it the smart way, though. Declare string variables to hold two kinds
of patterns: a comb-shaped pattern and the bottom line. Print the comb three times
and the bottom line once.

Write a program that reads in an integer and breaks it into a sequence of individual
digits. For example, the input 16384 is displayed as

16384

You may assume that the input has no more than five digits and is not negative.

Write a program that reads two times in mlhtary format (0900 1730) and prints the
number of hours and minutes between the two times. Here is a sample run. User
input s in color.

Please enter the first time: 0900

Please enter the second time: 1730
8 hours 30 minutes

Extra credit if you can deal with the case where the first time is later than the second:

Please enter the first time: 1730
Please enter the second time: 0900
15 hours 30 minutes

74 Chapter 2 Fundamental Data Types

snn P2.18

un P2,19

am P2.20

un P2.21

Writing large letters. A large letter H can be produced like this:

It can be declared as a string literal like this:
final string LETTER_H = "* #\n¥ ®\p¥#xxi\n* \np* *\n";
(The \n escape sequence denotes a “newline” character that causes subsequent

characters to be printed on a new line.) Do the same for the lettersE, L, and 0. Then
write the message

in large letters.

Write a program that transforms numbers 1,2, 3, ..., 12
into the Corresponding month names January, February,
March, ..., December. Hint: Make a very long string "January
February March ...", in which you add spaces such that each
month name has the same length. Then use substring to
extract the month you want.

Write a program that prints a Christmas tree:

Remember to use escape sequences.

Easter Sunday is the first Sunday after the first full moon of spring. To compute
the date, you can use this algorithm, invented by the mathematician Carl Friedrich
Gauss in 1800:

1. Letybethe year (such as 1800 or 2001).

Divide y by 19 and call the remainder a. Ignore the quotient.

Divide y by 100 to get a quotient b and a remainder c.

Divide b by 4 to get a quotient d and a remainder e.

Divide 8 * b + 13 by 25 to get a quotient g. Ignore the remainder.

Divide19 * a + b - d - g + 15 by 30 to get a remainder h. Ignore the quotient.
Divide c by 4 to get a quotient j and a remainder k.

Divide a + 11 * h by 319 to get a quotient m. Ignore the remainder.

©®® NAW A WN

Divide2 * e + 2 * j - k - h + m + 32 by 7 to get a remainder r. Ignore the
quotient.

= m Business P2.22

== Business P2.23

== Business P2.24

= n Business P2.25

= Business P2.26

Programming Exercises 75

10. Divide h - m + r + 90 by 25 to get a quotient n. Ignore the remainder.
11. Divideh - m + r + n + 19 by 32 to get a remainder p. Ignore the quotient.

Then Easter falls on day p of month n. For example, if y is 2001:

a==6 h =18 n=4
b=20,c=1 j=0, k=1 p =15
d=5,e=0 m=0
g==56 r==6

Therefore, in 2001, Easter Sunday fell on April 15. Write a program that prompts the
user for a year and prints out the month and day of Easter Sunday.

The following pseudocode describes how a bookstore computes the price of an
order from the total price and the number of the books that were ordered.

Read the total book price and the number of books.

Compute the tax (7.9 percent of the total book price).

Compute the shipping charge (¢Z per book).

The price of the order is the sum of the total book price, the tax, and the shipping charge.
Print the price of the order.

Translate this pseudocode into a Java program.

The following pseudocode describes how to turn a string containing a ten-digit
phone number (such as "4155551212") into a more readable string with parentheses
and dashes, like this: " (415) 555-1212".

Take the substring consisting of the first three characters and surround it with “(" and ") . This is the
area code.

Concatenate the area code, the substring consisting of the next three characters, a hyphen, and the
substring consisting of the last four characters. This is the formatted number.

Translate this pseudocode into a Java program that reads a telephone number into a
string variable, computes the formatted number, and prints it.

The following pseudocode describes how to extract the dollars and cents from a
price given as a floating-point value. For example, a price 2.95 yields values 2 and 95
for the dollars and cents.

Assign the price to an integer variable dollars.
Multiply the difference price - dollars by 100 and add 0.5.
Assign the result to an integer variable cents.

Translate this pseudocode into a Java program. Read a price and print the dollars and
cents. Test your program with inputs 2.95 and 4.35.

Giving change. Implement a program that directs a cashier
how to give change. The program has two inputs: the
amount due and the amount received from the customer.
Display the dollars, quarters, dimes, nickels, and pennies
that the customer should receive in return. In order to avoid
roundoff errors, the program user should supply both
amounts in pennies, for example 274 instead of 2.74.

An online bank wants you to create a program that shows prospective customers
how their deposits will grow. Your program should read the initial balance and the

76 Chapter 2 Fundamental Data Types

= Business P2.27

= Science P2.28

== Science P2.29

=nn Science P2.30

annual interest rate. Interest is compounded monthly. Print out the balances after the
first three months. Here is a sample run:

Initial balance: 1000
Annual interest rate in percent: 6.0

After first month: 1005.00
After second month: 1010.03
After third month: 1015.08

A video club wants to reward its best members with a discount based on the mem-
ber’s number of movie rentals and the number of new members referred by the
member. The discount is in percent and is equal to the sum of the rentals and the
referrals, but it cannot exceed 75 percent. (Hint: Math.min.) Write a program Discount-
Calculator to calculate the value of the discount.

Here is a sample run:

Enter the number of movie rentals: 56
Enter the number of members referred to the video club: 3
The discount 1is equal to: 59.00 percent.

Consider the following circuit.

Write a program that reads the resistances of the three resistors and computes the
total resistance, using Ohm’s law.

The dew point temperature T can be calculated (approximately) from the relative
humidity RH and the actual temperature 7 by

o b-f(T,RH)
4" a— f(T,RH)
f(T,RH) = “'TT +In(RH)

wherea=17.27 and b =237.7° C.

Write a program that reads the relative humidity (between 0 and 1) and the tem-
perature (in degrees C) and prints the dew point value. Use the Java function 1og to
compute the natural logarithm.

The pipe clip temperature sensors shown here are robust sensors that can be clipped
directly onto copper pipes to measure the temperature of the liquids in the pipes.

snn Science P2.31

Programming Exercises 77

t .
Y - \\\
.)
N f
3 /
/

Each sensor contains a device called a thermistor. Thermistors are semiconductor
devices that exhibit a temperature-dependent resistance described by:

1 1
i
R=Rye \I T

where R is the resistance (in Q) at the temperature 7 (in °K), and R is the resistance
(in Q) at the temperature T} (in °K). B is a constant that depends on the material used
to make the thermistor. Thermistors are specified by providing values for Ry, T,

and .
The thermistors used to make the pipe clip temperature sensors have Ry = 1075 Q at
Ty=285°C,and =3969 °K. (Notice that § has units of °K. Recall that the tempera-
ture in °K is obtained by adding 273 to the temperature in °C.) The liquid tempera-
ture, in °C, is determined from the resistance R, in Q, using

T

r-— Pl 5y
R
Toln| — |+
o' RO ﬂ

\

Write a Java program that prompts the user for the thermistor resistance R and prints
a message giving the liquid temperature in °C.

The circuit shown below illustrates some impor-
tant aspects of the connection between a power
company and one of its customers. The customer is
represented by three parameters, V,, P, and pf. V, is
the voltage accessed by plugging into a wall outlet =N
Customers depend on having a dependable value .

of V,in order for their appliances to work prop- : .
erly. Accordingly, the power company regulates
the value of V, carefully. P describes the amount of
power used by the customer and is the primary factor in determining the customer’s
electric bill. The power factor, pf, is less familiar. (The power factor is calculated as
the cosine of an angle so that its value will always be between zero and one.) In this
problem you will be asked to write a Java program to investigate the significance of
the power factor.

o AAAY
R=10Q +
1 V.= 120 Vems 200V
s £ pf=06
R=10Q _
AN O
Power Power Customer

Company Lines

78 Chapter 2 Fundamental Data Types

smn Science P2.32

= Science P2.33

In the figure, the power lines are represented, somewhat simplistically, as resistances
in Ohms. The power company is represented as an AC voltage source. The source
voltage, V;, required to provide the customer with power P at voltage V, can be
determined using the formula

o (o

(V, has units of Vrms.) This formula indicates that the value of V; depends on the
value of pf. Write a Java program that prompts the user for a power factor value and
then prints a message giving the corresponding value of V, using the values for P, R,
and V, shown in the figure above.

Consider the following tuning circuit connected to an antenna, where Cis a variable
capacitor whose capacitance ranges from C,;;, to C ...

Antenna

A

2r

The tuning circuit selects the frequency f = . To design this circuit for a given

frequency, take C = /C, . C_ . and calculate the required inductance L from f and

2r
C. Now the circuit can be tuned to any frequency in the range f.. = ———— to
Py y Ireq y &€ Jmin \/T

Werite a Java program to design a tuning circuit for a given frequency, using a variable
capacitor with given values for C,;, and C,,,. (A typical inputis f = 16.7 MHz,
Cinin =14 pE and C,,,, = 365 pE.) The program should read in f (in Hz), C,,;, and
Cinax (in F), and print the required inductance value and the range of frequencies to
which the circuit can be tuned by varying the capacitance.

According to the Coulomb force law, the electric force between two charged
particles of charge Q and Q, Coulombs, that are a distance r meters apart, is

Q1 Rl Newtons, where € = 8.854 x 10712 Farads/meter. Write a program
4rmer

that calculates the force on a pair of charged particles, based on the user input of Q
Coulombs, Q, Coulombs, and r meters, and then computes and displays the electric
force.

F =

ANSWERS TO SELF-CHECK QUESTIONS

10.
11.
12.

13.
14.

15.

16.

. One possible answer is

int bottlesPerCase = 8;

You may choose a different variable name or a
different initialization value, but your variable
should have type int.

. There are three errors:

= You cannot have spaces in variable names.

= The variable type should be double because
it holds a fractional value.

= There is a semicolon missing at the end of
the statement.

double unitPrice = 1.95;
int quantity = 2;

System.out.print("Total price: ");
System.out.printIn(unitPrice * quantity);

Change the declaration of cansPerpack to

int cansPerPack = 4;

. You need to use a */ delimiter to close a com-

ment that begins with a /#:

double canVolume = 0.355;
/* Liters in a 12-ounce can */

. The program would compile, and it would

display the same result. However, a person
reading the program might find it confusing
that fractional cans are being considered.

Its value is modified by the assignment
statement.

. Assignment would occur when one car is

replaced by another in the parking space.
double interest = balance * percent / 100;
double sideLength = Math.sqrt(area);

4 * PI * Math.pow(radius, 3) / 3

or (4.0 / 3) * PI * Math.pow(radius, 3),
but not (4 / 3) * PI * Math.pow(radius, 3)
172and 9

It is the second-to-last digit of n. For example,
if n1s 1729, thenn / 101s 172, and (n / 10) % 10
1s 2.

System.out.print("How old are you? ");

int age = in.nextInt();

There is no prompt that alerts the program
user to enter the quantity.

17.

18.

19.

20.

21.

22.

23.

Answers to Self-Check Questions 79

The second statement calls nextInt, not next-
Double. If the user were to enter a price such as
1.95, the program would be terminated with an
“input mismatch exception”.

There is no colon and space at the end of the
prompt. A dialog would look like this:

Please enter the number of cans6
The total volume is 10

There are four spaces between is and 10. One
space originates from the format string (the

space between s and %), and three spaces are
added before 10 to achieve a field width of 5.

Here is a simple solution:

System.out.printf("Bottles: %8d\n", bottles);
System.out.printf("Cans: %8d\n", cans);
Note the spaces after Cans:. Alternatively,
you can use format specifiers for the strings.
You can even combine all output into a single
statement:

System.out.printf("%-9s%8d\n%-9s%8d\n",
"Bottles: ", bottles, "Cans:", cans);
int pairs = (totalWidth - tileWidth)

/ (2 * tileWidth);
int tiles = 1 + 2 * pairs;
double gap = (totalWidth -

tiles * tileWidth) / 2.0;
Be sure that pairs is declared as an int.

Now there are groups of four tiles (gray/
white/gray/black) following the initial black
tile. Therefore, the algorithm is now

nuwber of groups = integer part of (total width - tile width) /
(4 x tile width)
nuwber of tiles = 1 + 4 x nuwmber of groups

The formula for the gap is not changed.

Clearly, the answer depends only on whether
the row and column numbers are even or odd,
so let’s first take the remainder after divid-
ing by 2. Then we can enumerate all expected
answers:

Row%2Z Column%Z Color
0 0 0
0 1 1
1 0 1
1 1 0

80 Chapter 2 Fundamental Data Types

24.

25.

In the first three entries of the table, the color
is simply the sum of the remainders. In the
fourth entry, the sum would be 2, but we want
a zero. We can achieve that by taking another
remainder operation:

color = ((row % Z) + (column % 2)) % 2

In nine years, the repair costs increased by
$1,400. Therefore, the increase per year is
$1,400/9 =$156. The repair cost in year 3
would be $100 + 2 x $156 = $412. The repair
costin year his $100 +n x $156. To avoid
accumulation of roundoff errors, it is actually
a good idea to use the original expression that
yielded $156, that is,

Repair cost inyear n=100+nx 1400/ 9

The pseudocode follows easily from the
equatlons:

bottom volume = 7w x 1% x by

top volume = 0 X rz% x hy

widdle volume = T x (r'lZ *ryxrgt rzz) xhy /7 3
total volume = bottom volume * top volume * widdle volume

26.

27.
28.
29.
30.

Measuring a typical wine bottle yields
r =3.6,7y=1.2,hy =15 hy=7,h3=6
(all in centimeters). Therefore,
bottom volume = 610.73

top volume =31.67

middle volume = 135.72

total volume =778.12

The actual volume is 750 ml, which is close
enough to our computation to give confidence
that it is correct.

The length is 12. The space counts as a
character.

str.substring(8, 12) or str.substring(8)
str = str + "ming";
Hy

String first = in.nextQ);
String middle = in.next(Q);
String Tast = in.next();

EETTYETS 3
DECISIONS

CHAPTER GOALS

To implement decisions using if
statements

To compare integers, floating-point numbers, and strings
To write statements using the Boolean data type

To develop strategies for testing your programs

To validate user input

CHAPTER CONTENTS

3.1 THEIF STATEMENT 82 3.4 NESTED BRANCHES 100
Syntax 3.1: if Statement 84 Programming Tip 3.5: Hand-Tracing 103
Programming Tip 3.1: Brace Layout 86 Common Error 3.4: The Dangling else Problem 104
Programming Tip 3.2: Always Use Braces 86 Special Topic 3.4: Enumeration Types 105
Common Error 3.1: A Semicolon After the Video Example 3.1: Computing the Plural of an

if Condition 86 English Word @

Programming Tip 3.3: Tabs 87

3.5 PROBLEM SOLVING: FLOWCHARTS 105
Special Topic 3.1: The Conditional Operator 87

Programming Tip 3.4: Avoid 3.6 PROBLEM SOLVING: TEST CASES 108
Duplication in Branches 88 Programming Tip 3.6: Make a Schedule and Make
3.2 COMPARING NUMBERS Time for Unexpected Problems 109
AND STRINGS 88 Special Topic 3.5: Logging 110
Syntax 3.2: Comparisons 89 3.7 BOOLEAN VARIABLES
Common Error 3.2: Exact Comparison of AND OPERATORS 111
Floating-Point Numbers 91 Common Error 3.5: Combining Multiple
CommonError 3.3: Using==to Compare Strings 92 Relational Operators 113
Special Topic 3.2: Lexicographic Ordering Common Error 3.6: Confusing && and ||
of Strings 92 Conditions 114
How To 3.1: Implementing an if Statement 93 Special Topic 3.6: Short-Circuit Evaluation of
Worked Example 3.1: Extracting the Middle @ Boolean Operators 114
Random Fact 3.1: The Denver Airport Luggage Special Topic 3.7: De Morgan’s Law 115

Handling System 95 3.8 APPLICATION: INPUT VALIDATION 116

3.3 MULTIPLE ALTERNATIVES 96 Video Example 3.2: The Genetic Code 4]
Special Topic 3.3: The switch Statement 99 Random Fact 3.2: Artificial Intelligence 119

One of the essential features of computer programs is
their ability to make decisions. Like a train that changes
tracks depending on how the switches are set, a program
can take different actions depending on inputs and other
circumstances.

In this chapter, you will learn how to program simple and
complex decisions. You will apply what you learn to the
task of checking user input.

3.1 The if Statement

—— The if statement is used to implement a decision (see Syntax 3.1). When a condition is
allows a program to fulfilled, one set of statements is executed. Otherwise, another set of statements is
carry out different executed.
?ﬁ;'zgfucizzef”tﬂ?g;; Here is an example using the if statement: In
to be processed. many countries, the number 13 is considered
unlucky. Rather than offending superstitious ten-
ants, building owners sometimes skip the thir-
teenth floor; floor 12 is immediately followed by
floor 14. Of course, floor 13 is not usually left
empty or, as some conspiracy theorists believe,
filled with secret offices and research labs. It is
simply called floor 14. The computer that controls
the building elevators needs to compensate for
this foible and adjust all floor numbers above 13.
Let’s simulate this process in Java. We will ask
the user to type in the desired floor number and
then compute the actual floor. When the input is
above 13, then we need to decrement the input to
obtain the actual floor. For example, if the user ~ This elevator panel “skips” the
. . . thirteenth floor. The floor is not
provides an input of 20, the program determines actually missing—the computer
the actual floor as 19. Otherwise, we simply use 44t controls the elevator adjusts
the supplied floor number. the floor numbers above 13.

int actualFloor;

if (floor > 13)

{
actualFloor = floor - 1;
}
else
{
actualFloor = floor;
}

The flowchart in Figure 1 shows the branching behavior.
In our example, each branch of the if statement contains a single statement. You
caninclude as many statements in each branch as you like. Sometimes, it happens that

82

3.1 The if Statement 83

Condition
No else branch
True False True False
floor > 132 floor > 13?
actualFloor = actualFloor = actualFloor--
floor - 1 floor
Figure 1 Figure 2
Flowchart for if Statement Flowchart for if Statement with No else Branch

there is nothing to do in the e1se branch of the statement. In that case, you can omit it
entirely, such as in this example:

int actualFloor = floor;
if (floor > 13)

{
actualFloor--;

} // No else needed
See Figure 2 for the flowchart.

Anif statement is like a fork in
the road. Depending upon a
decision, different parts of the
program are executed.

84 Chapter 3 Decisions

Syntax 3.1

if Statement

Syntax if (condition) if (condition)

Statements

}

Braces are not required
if the branch contains a

single statewment, but it's if (floor > 13)

good to always use them. {
_&_See page 86. actualFloor
3
else
{
actualFloor
Owit the e1se branch }

if there is nothing to do.

Lining up braces

£

{ statements, }

else { statements, }

A condition that is true or false.
Often uses relational operators:
== l= < <= > >=(See page 89.)

floor - 1;]\

floor;

Don't put a sewicolon here!

;i,T\ See page $6.

If the condition is true, the statement(s)
in this branch are executed in sequence;
if the condition is false, they are skipped.

If the condition is false, the statement(s)
in this branch are executed in sequence;
if the condition is true, they are skipped.

is a good idea.
See page 86.

The following program puts the if statement to work. This program asks for the
desired floor and then prints out the actual floor.

section_1/ElevatorSimulation.java

1 import java.util.Scanner;

2

3 Vi

4 This program simulates an elevator panel that skips the 13th floor.
5 */

6 public class ElevatorSimulation

7 {

8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Floor: ");

12 int floor = in.nextInt();

13

14 // Adjust floor if necessary

15

16 int actualFloor;

17 if (floor > 13)

18 {

19 actualFloor = floor - 1;
20 }
21 else
22 {

3.1 The if Statement 85

23 actualFloor = floor;
24 }

26 System.out.printin("The elevator will travel to the actual floor
27 + actualFloor);

Program Run

Floor: 20
The elevator will travel to the actual floor 19

1. In some Asian countries, the number 14 is considered unlucky. Some building
owners play it safe and skip borh the thirteenth and the fourteenth floor. How
would you modify the sample program to handle such a building?

2. Consider the following if statement to compute a discounted price:
if (originalPrice > 100)

{

discountedPrice = originalPrice - 20;
}
else
{

discountedPrice = originalPrice - 10;
}

What is the discounted price if the original price is 95? 100? 105?
3. Compare this if statement with the one in Self Check 2:
if (originalPrice < 100)

{

discountedPrice = originalPrice - 10;
}
else
{

discountedPrice = originalPrice - 20;
}

Do the two statements always compute the same value? If not, when do the
values differ?

4. Consider the following statements to compute a discounted price:

discountedPrice = originalPrice;
if (originalPrice > 100)
{

discountedPrice = originalPrice - 10;

}
What is the discounted price if the original price is 95? 100? 105?

5. The variables fuelAmount and fuelCapacity hold the actual amount of fuel and the
size of the fuel tank of a vehicle. If less than 10 percent is remaining in the tank, a
status light should show a red color; otherwise it shows a green color. Simulate
this process by printing out either "red" or "green".

Practice It Now you can try these exercises at the end of the chapter: R3.5, R3.6, P3.31.

86 Chapter 3 Decisions

Programming Tip 3.1

Programming Tip 3.2

Common Error 3.1

™

Brace Layout

The compiler doesn’t care where you place
braces. In this book, we follow the simple rule
of making { and } line up.

if (floor > 13)
{

floor--;

}

This style makes it easy to spot matching
braces. Some programmers put the opening
brace on the same line as the if:

if (floor > 13) { Properly lining up your code makes your pro-
floor--; grams easier to read.
}

This style makes it harder to match the braces, but it saves a line of code, allowing you to view
more code on the screen without scrolling. There are passionate advocates of both styles.

It is important that you pick a layout style and stick with it consistently within a given
programming project. Which style you choose may depend on your personal preference or a
coding style guide that you need to follow.

Always Use Braces

When the body of an 1 f statement consists of a single statement, you need not use braces. For
example, the following is legal:

if (floor > 13)
floor--;

However, it is a good idea to always include the braces:

if (floor > 13)
{

floor--;

}

The braces make your code easier to read. They also make it easier for you to maintain the
code because you won’t have to worry about adding braces when you add statements inside
an if statement.

A Semicolon After the if Condition

The following code fragment has an unfortunate error:

if (floor > 13) ; // ERROR
{

floor--;

}

There should be no semicolon after the if condition. The compiler interprets this statement as
follows: If floor is greater than 13, execute the statement that is denoted by a single semicolon,
that is, the do-nothing statement. The statement enclosed in braces is no longer a part of the if

Programming Tip 3.3

Special Topic 3.1

3.1 The if Statement 87

statement. It is always executed. In other words, even if the value of floor is not above 13, it is
decremented.

Tabs

Block-structured code has the property that nested statements are indented by one or more
levels:

pubTic class ElevatorSimulation

{

| public static void main(String[] args)

| {

| | int floor;

| .

| | if (floor > 13)

[] {

[| | floor--; You use

[} the Tab key

[to move the

| 3 cursor to the next
[I indentation level.
0 1 2 3 Indentation level

How do you move the cursor from the leftmost column to the appropriate indentation level?
A perfectly reasonable strategy is to hit the space bar a sufficient number of times. With most
editors, you can use the Tab key instead. A tab moves the cursor to the next indentation level.
Some editors even have an option to fill in the tabs automatically.

While the Tab key is nice, some editors use tab characters for alignment, which is not so
nice. Tab characters can lead to problems when you send your file to another person or a
printer. There is no universal agreement on the width of a tab character, and some software
will ignore tab characters altogether. It is therefore best to save your files with spaces instead of
tabs. Most editors have a setting to automatically convert all tabs to spaces. Look at the docu-
mentation of your development environment to find out how to activate this useful setting.

The Conditional Operator

Java has a conditional operator of the form
condition ? value| : value,

The value of that expression is either value; if the test passes or value, if it fails. For example,
we can compute the actual floor number as
actualFloor = floor > 13 ? floor - 1 : floor;
which is equivalent to
if (floor > 13) { actualFloor = floor - 1; } else { actualFloor = floor; }
You can use the conditional operator anywhere that a value is expected, for example:
floor));

We don’t use the conditional operator in this book, but it is a convenient construct that you
will find in many Java programs.

System.out.printin("Actual floor: " + (floor > 13 ? floor - 1 :

88 Chapter 3 Decisions

Programming Tip 3.4

Avoid Duplication in Branches

Look to see whether you duplicate code in each branch. If so, move it out of the if statement.
Here is an example of such duplication:

if (floor > 13)

{

actualFloor = floor - 1;

System.out.printIn("Actual floor: " + actualFloor);
}
else
{

actualFloor = floor;

System.out.printIn("Actual floor: " + actualFloor);
}

The output statement is exactly the same in both branches. This is not an error —the program
will run correctly. However, you can simplify the program by moving the duplicated state-
ment, like this:

if (floor > 13)

{
actualFloor = floor - 1;
}
else
{
actualFloor = floor;
}

n

System.out.printIn("Actual floor: " + actualFloor);

Removing duplication is particularly important when programs are maintained for a long
time. When there are two sets of statements with the same effect, it can easily happen that a
programmer modifies one set but not the other.

3.2 Comparing Numbers and Strings

Use relational
operators

(< <= > >= == |=2)

to compare numbers.

Every if statement contains a condi-
tion. In many cases, the condition
involves comparing two values. For
example, in the previous examples we
tested floor > 13. The comparison > is
called a relational operator. Java has
six relational operators (see Table 1).

As you can see, only two Java rela-
tional operators (> and <) look as you
would expect from the mathematical
notation. Computer keyboards do not
have keys for 2, <, or =, but the >=, <=,
and != operators are easy to remember
because they look similar. The == opera-

e - In Java, you use a relational operator to check
tor is initially confusing to most new- whether one value is greater than another.

comers to Java.

3.2 Comparing Numbers and Strings 89

Table 1 Relational Operators

Java Math Notation Description
> > Greater than
>= = Greater than or equal
< < Less than
<= < Less than or equal
== = Equal
les = Not equal

In Java, = already has a meaning, namely assignment. The == operator denotes equality
testing:

floor = 13; // Assign 13 to floor
if (floor == 13) // Test whether floor equals 13

You must remember to use == inside tests and to use = outside tests.

Syntax 3.2 Comparisons

These quantities are compared.

floor > 13
Check that you have the right direction: gy
> lgreater) or < (less) One of: == != < <= > >= (See page 89.)
Check the boundary condition:
> lgreater) or >= (greater or equall? floor == 13
N\ Checks for equality.

String input;

Use ==, not =. -
if (input.equals("Y™))

N\ Use equals to compare sirings. (See page 92.)

double x; double y; final double EPSILON = 1E-14;
if (Math.abs(x - y) < EPSILON)

N

Checks that these floating-point numbers are very close.

ﬂfr\ See page 91.

90 Chapter 3 Decisions

ONLINE EXAMPLE

+) A program that
demonstrates
comparisons of

numbers and strings.

Do not use the ==

operator to compare

strings. Use the
equals method
instead.

® "10" > 5

The relational operators in Table 1 have a lower precedence than the arithmetic opera-
tors. That means, you can write arithmetic expressions on either side of the relational
operator without using parentheses. For example, in the expression

floor - 1 < 13

both sides (floor - 1and 13) of the < operator are evaluated, and the results are com-
pared. Appendix B shows a table of the Java operators and their precedence.

To test whether two strings are equal to each other, you must use the method called
equals:

if (stringl.equals(string2)) .
Do not use the == operator to compare strings. The comparison
if (stringl == string2) // Not useful

has an unrelated meaning. It tests whether the two strings are stored in the same loca-

tion. You can have strings with identical contents stored in different locations, so this

test never makes sense in actual programming; see Common Error 3.3 on page 92.
Table 2 summarizes how to compare values in Java.

Table 2 Relational Operator Examples

Expression Value Comment

<=4 true 3 is less than 4; <= tests for “less than or equal”.

=< 4 Error The “less than or equal” operator is <=, not =<.
The “less than” symbol comes first.

> 4 false > isthe opposite of <=.

<4 false Theleft-hand side must be strictly smaller than
the right-hand side.

<=4 true Both sides are equal; <= tests for “less than or
equal”.

=5-2 true == tests for equality.

I=5-1 true 1= tests for inequality. It is true that 3 is not 5 — 1.

=6/2 Error Use == to test for equality.

.0 / 3.0 == 0.333333333 false Although the values are very close to one

another, they are not exactly equal. See Common
Error 3.2 on page 91.

Error You cannot compare a string to a number.

"Tomato".substring(0, 3).equals("Tom™) true Always use the equals method to check whether

two strings have the same contents.

"Tomato".substring(0, 3) == ("Tom") false Never use == to compare strings; it only checks

whether the strings are stored in the same
location. See Common Error 3.3 on page 92.

Practice It

Common Error 3.2

¥

3.2 Comparing Numbers and Strings 91

6. Which of the following conditions are true, provided ais 3 and b is 4?
a.a+1l<=b
b.a+1>=b

c.a+1l!=b

7. Give the opposite of the condition
floor > 13
8. What is the error in this statement?

if (scoreA = scoreB)
{

System.out.printin("Tie");
}

9. Supply a condition in this i statement to test whether the user entered a Y:

System.out.printin("Enter Y to quit.");
String input = in.next(Q);

if (0.
{

System.out.printin("Goodbye.");
}

10. How do you test that a string str is the empty string?

Now you can try these exercises at the end of the chapter: R3.4,R3.7, P3.18.

Exact Comparison of Floating-Point Numbers

Floating-point numbers have only a limited precision, and cal-
culations can introduce roundoff errors. You must take these
inevitable roundoffs into account when comparing floating-
point numbers. For example, the following code multiplies the
square root of 2 by itself. Ideally, we expect to get the answer 2:

double r = Math.sqrt(2.0);
if (r * r ==2.0)

{

System.out.println("Math.sqrt(2.0) squared is 2.0"); Take limited precision into
} account when comparing
else floating-point numbers.
{

System.out.printin("Math.sqrt(2.0) squared is not 2.0 but "

+r*or);
}
This program displays

Math.sqrt(2.0) squared is not 2.0 but 2.00000000000000044

It does not make sense in most circumstances to compare floating-point numbers exactly.
Instead, we should test whether they are close enough. That is, the magnitude of their differ-
ence should be less than some threshold. Mathematically, we would write that x and y are close
enough if

lx—y|<e

92 Chapter 3 Decisions

Common Error 3.3

4

Special Topic 3.2

for a very small number, e. ¢ is the Greek letter epsilon, a letter used to denote a very small
quantity. It is common to set & to 1071* when comparing double numbers:

final double EPSILON = 1E-14;
double r = Math.sqrt(2.0);
if (Math.abs(r * r - 2.0) < EPSILON)
{
System.out.printin("Math.sqrt(2.0) squared is approximately 2.0");
}

Using == to Compare Strings
If you write
if (nickname == "Rob")

then the test succeeds only if the variable nickname refers to the exact same location as the string
literal "Rob". The test will pass if a string variable was initialized with the same string literal:

String nickname = "Rob";

if (nickname == "Rob") // Test is true

However, if the string with the letters R o b has been assembled in some other way, then the test

will fail:

String name = "Robert";
String nickname = name.substring(0, 3);

if (nickname == "Rob") // Test is false

In this case, the substring method produces a string in a different memory location. Even
though both strings have the same contents, the comparison fails.

You must remember never to use == to compare strings. Always use equals to check whether
two strings have the same contents.

Lexicographic Ordering of Strings

If two strings are not identical to each other, you still
may want to know the relationship between them. The
compareTo method compares strings in “lexicographic”
order. This ordering is very similar to the way in which
words are sorted in a dictionary. If

stringl.compareTo(string2) < 0

then the string stringl comes before the string string2
in the dictionary. For example, this is the case if stringl
is "Harry", and string2 is "He110". If

To see which of two terms comes

. first in the dictionary, consider the
then stringl comes after string2 in dictionary order. first letter in which they differ.

Finally, if

stringl.compareTo(string2) > 0

stringl.compareTo(string2) ==

then stringl and string2 are equal.

3.2 Comparing Numbers and Strings 93

There are a few technical differences between the ordering in a

.. . . . The compareTo
dictionary and the lexicographic ordering in Java. In Java: g

method compares
e All uppercase letters come before the lowercase letters. For stringsin
example, "7 comes before "a". lexicographic order.

e The space character comes before all printable characters.
* Numbers come before letters.
e For the ordering of punctuation marks, see Appendix A.

When comparing two strings, you compare the first letters of each
word, then the second letters, and so on, until one of the strings ends
or you find the first letter pair that doesn’t match. c ar t
If one of the strings ends, the longer string is considered the
“larger” one. For example, compare "car" with "cart". The first
three letters match, and we reach the end of the first string. There- € '@ 't
fore "car" comes before "cart" in lexicographic ordering. e
When you reach a mismatch, the string containing the “larger” ~ Letters chomes
character is considered “larger”. For example, let’s compare "cat" match - before t
with "cart". The first two letters match. Because t comes after r, the Lexicographic
string "cat" comes after "cart" in the lexicographic ordering. Ordering

HOW TO 3.1 Implementing an if Statement

This How To walks you through the process of implementing an if statement. We will illus-
trate the steps with the following example problem:

The university bookstore has a Kilobyte Day sale every October 24, giving an 8 percent
discount on all computer accessory purchases if the price is less than $128, and a 16 percent
discount if the price is at least $128. Write a program that asks the cashier for the original price
and then prints the discounted price.

Step 1 Decide upon the branching condition.

In our sample problem, the obvious choice for the
condition is:

original price < 1287

That is just fine, and we will use that condition in
our solution.

But you could equally well come up with a
correct solution if you choose the opposite condi-
tion: Is the original price at least $128? You might
choose this condition if you put yourself into the Sales discounts are often higher for
position of a shopper who wants to know when expensive products. Use the if statement
the bigger discount applies. to implement such a decision.

Step 2 Give pseudocode for the work that needs to be
done when the condition is true.

In this step, you list the action or actions that are taken in the “positive” branch. The details
depend on your problem. You may want to print a message, compute values, or even exit the
program.

94 Chapter 3 Decisions

Step 3

Step 4

Step 5

Step 6

Step 7

In our example, we need to apply an 8 percent discount:

discounted price = 0.92 x original price
Give pseudocode for the work (if any) that needs to be done when the condition is 7ot true.

What do you want to do in the case that the condition of Step 1 is not satisfied? Sometimes,
you want to do nothing at all. In that case, use an if statement without an e1se branch.

In our example, the condition tested whether the price was less than $128. If that condition
is not true, the price is at least $128, so the higher discount of 16 percent applies to the sale:

discounted price = 0.84 x original price
Double-check relational operators.

First, be sure that the test goes in the right direction. It is a common error to confuse > and <.
Next, consider whether you should use the < operator or its close cousin, the <= operator.

What should happen if the original price is exactly $128? Reading the problem carefully, we
find that the lower discount applies if the original price is less than $128, and the higher dis-
countapplies when it is at least $128. A price of $128 should therefore nor fulfill our condition,
and we must use <, not <=.

Remove duplication.

Check which actions are common to both branches, and move them outside. (See Program-
ming Tip 3.4 on page 88.)
In our example, we have two statements of the form

discounted price = ___ x original price

They only differ in the discount rate. It is best to just set the rate in the branches, and to do the
computation afterwards:

If original price < 128
discount rate = 0.92
Else
discount rate = 0.84
discounted price = discount rate x original price

Test both branches.

Formulate two test cases, one that fulfills the condition of the if statement, and one that does
not. Ask yourself what should happen in each case. Then follow the pseudocode and act each
of them out.

In our example, let us consider two scenarios for the original price: $100 and $200. We
expect that the first price is discounted by $8, the second by $32.

When the original price is 100, then the condition 100 < 128 is true, and we get

discount rate = 0.92
discounted price = 0.92x 100 = 92

When the original price is 200, then the condition 200 < 128 is false, and

discount rate = 0.84
discounted price = 0.84 x 200 = 168

In both cases, we get the expected answer.
Assemble the i f statement in Java.

Type the skeleton

if O
{

}
else
{
}

3.2 Comparing Numbers and Strings

95

and fill itin, as shown in Syntax 3.1 on page 84. Omit the e1se branch if it is not needed.
In our example, the completed statement is

if (originalPrice < 128)

{
discountRate = 0.92;
}
else
{
@ The complete discountRate = 0.84;
program for }
calculating a discountedPrice = discountRate * originalPrice;

discounted price.

Making decisions is
an essential part of
any computer program. Nowhere is
this more obvious than in a computer
system that helps sort luggage at an
airport. After scanning the luggage
identification codes, the system sorts
the items and routes them to differ-
ent conveyor belts. Human operators
then place the items onto trucks. When
the city of Denver built a huge airport
to replace an outdated and congested
facility, the luggage system contractor
went a step further. The new system
was designed to replace the human
operators with robotic carts. Unfortu-
nately, the system plainly did not
work. It was plagued by mechanical
problems, such as luggage falling onto
the tracks and jamming carts. Equally
frustrating were the software glitches.
Carts would uselessly accumulate at
some locations when they were needed
elsewhere.

WORKED EXAMPLE 3.1 Extracting the Middle

c} This Worked Example shows how to extract the middle character froma ¢ r
string, or the two middle characters if the length of the string is even. 0

The airport had been scheduled
to open in 1993, but without a func-
tioning luggage system, the opening
was delayed for over a year while the
contractor tried to fix the problems.
The contractor never succeeded,
and ultimately a manual system was
installed. The delay cost the city and
airlines close to a billion dollars, and
the contractor, once the leading lug-
gage systems vendor in the United
States, went bankrupt.

Clearly, it is very risky to build a
large system based on a technology
that has never been tried on a smaller
scale. As robots and the software that
controls them get better over time,
they will take on a larger share of lug-
gage handling in the future. But it is
likely that this will happen in an incre-
mental fashion.

Random Fact 3.1 The Denver Airport Luggage Handling System

The Denver airport originally had a
fully automatic system for moving lug-
gage, replacing human operators with
robotic carts. Unfortunately, the sys-
tem never worked and was dismantled
before the airport was opened.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

96 Chapter 3 Decisions

3.3 Multiple Alternatives

Multiple if In Section 3.1, you saw how to program a two-way branch with an if statement. In

TR @ e many situations, there are more than two cases. In this section, you will see how to

combined to evaluate implement a decision with multiple alternatives.

complex decisions. For example, consider a program that displays the effect of an earthquake, as mea-
sured by the Richter scale (see Table 3).

The 1989 Loma Prieta
earthquake that
damaged the Bay

Table 3 Richter Scale

Bridge in San Francisco Value Effect
and destroyed many
buildings measured 7.1 8 Most structures fall

on the Richter scale. I
7 Many buildings destroyed

6 Many buildings considerably
damaged, some collapse

4.5 Damage to poorly constructed

buildings

The Richter scale is a measurement of the strength of an earthquake. Every step in
the scale, for example from 6.0 to 7.0, signifies a tenfold increase in the strength of the
quake.

In this case, there are five branches: one each for the four descriptions of damage,
and one for no destruction. Figure 3 shows the flowchart for this multiple-branch
statement.

You use multiple if statements to implement multiple alternatives, like this:

if (richter >= 8.0)

{

System.out.println("Most structures fall");

ANIMATION

, . }
Multiple Alternatives else if (richter >= 7.0)

f {
, ||l \ System.out.printin("Many buildings destroyed");

else if (richter >= 6.0)
{

System.out.printIn("Many buildings considerably damaged, some collapse™);

}
else if (richter >= 4.5)

{
System.out.printIn("Damage to poorly constructed buildings");

}

else

{
System.out.printin("No destruction of buildings");
}

As soon as one of the four tests succeeds, the effect is displayed, and no further tests
are attempted. If none of the four cases applies, the final else clause applies, and a
default message is printed.

Figure 3
Multiple Alternatives

richter = 8.0?

False

richter =7.0?

False

richter = 6.0?

False

richter =4.5?

False

No destruction
of buildings

True

True

True

True

3.3 Multiple Alternatives

Most
structures

fall

Many
buildings
destroyed

Many buildings
considerably
damaged,
some collapse

Damage to
poorly constructed
buildings

Here you must sort the conditions and test against the largest cutoff first.

Suppose we reverse the order of tests:

if (richter >= 4.5) // Tests in wrong order

{

System.out.printin("Damage to poorly constructed buildings");

}
else if (richter >= 6.0)

{

System.out.printIn("Many buildings considerably damaged, some collapse™);

}
else if (richter >= 7.0)

{

System.out.printin("Many buildings destroyed");

97

98 Chapter 3 Decisions

}
else if (richter >= 8.0)
{
System.out.println("Most structures fall");
}

. : This does not work. Suppose the value of richter is 7.1. That value is at least 4.5,
When using multiple R .
if statements, test matching the first case. The other tests will never be attempted.
general conditions The remedy is to test the more specific conditions first. Here, the condition
LSAmOICERecle richter >= 8.0 is more specific than the condition richter >= 7.0, and the condition
conditions.
richter >= 4.5 is more general (that is, fulfilled by more values) than either of the first
two.
In this example, it is also important that we use an if/else if/else sequence, not
just multiple independent if statements. Consider this sequence of independent tests.
if (richter >= 8.0) // Didn’t use else

{
System.out.println("Most structures fall");

if (richter >= 7.0)

{
System.out.printin("Many buildings destroyed");
}
if (richter >= 6.0)
{

System.out.printIn("Many buildings considerably damaged, some collapse™);

if (richter >= 4.5)
{
The complete System.out.println("Damage to poorly constructed buildings");
program for printing }
earthquake

descriptions. Now the alternatives are no longer exclusive. If richter is 7.1, then the last three tests

all match, and three messages are printed.

11. Inagame program, the scores of players A and B are stored in variables scoreA
and scoreB. Assuming that the player with the larger score wins, write an 1f/
else if/else sequence that prints out "A won", "B won", or "Game tied".

SELF CHECK

12. Write a conditional statement with three branches that sets s to 1 if x is positive,
to -1 if x is negative, and to 0 if x is zero.

13. How could you achieve the task of Self Check 12 with only two branches?

14. Beginners sometimes write statements such as the following:
if (price > 100)

{

discountedPrice = price - 20;
}
else if (price <= 100)
{

discountedPrice = price - 10;
}

Explain how this code can be improved.
15. Suppose the user enters -1 into the earthquake program. What is printed?

Practice It

Special Topic 3.3

3.3 Multiple Alternatives 99

16. Suppose we want to have the earthquake program check whether the user en-
tered a negative number. What branch would you add to the if statement, and
where?

Now you can try these exercises at the end of the chapter: R3.22, P3.9, P3.34.

The switch Statement

An if/else if/else sequence that compares a value against several alternatives can be imple-
mented as a switch statement. For example,

int digit = . . .;

switch (digit)

{
case 1: digitName = "one"; break;
case 2: digitName = "two"; break;
case 3: digitName = "three"; break;
case 4: digitName = "four"; break;
case 5: digitName = "five"; break;
case 6: digitName = "six"; break;
case 7: digitName = "seven"; break;
case 8: digitName = "eight"; break;

case 9: digitName = "nine"; break;

default: digitName = ""; break; The switch statement lets you choose
} from a fixed set of alternatives.

This is a shortcut for

int digit = . . .;

if (digit == 1) { digitName = "one"; }

else if (digit == 2) { digitName = "two"; }
else if (digit == 3) { digitName = "three"; }
else if (digit == 4) { digitName = "four"; }
else if (digit == 5) { digitName = "five"; }
else if (digit == 6) { digitName = "six"; }
else if (digit == 7) { digitName = "seven"; }
else if (digit == 8) { digitName = "eight"; }
else if (digit == 9) { digitName = "nine"; }
else { digitName = ""; }

It isn’t much of a shortcut, but it has one advantage—it is obvious that all branches test the
same value, namely digit.

The switch statement can be applied only in narrow circumstances. The values in the case
clauses must be constants. They can be integers or characters. As of Java 7, strings are permit-
ted as well. You cannot use a switch statement to branch on floating-point values.

Every branch of the switch should be terminated by a break instruction. If the break is miss-
ing, execution falls through to the next branch, and so on, until a break or the end of the switch
is reached. In practice, this fall-through behavior is rarely useful, but it is 2 common cause
of errors. If you accidentally forget a break statement, your program compiles but executes
unwanted code. Many programmers consider the switch statement somewhat dangerous and
prefer the i f statement.

We leave it to you to use the switch statement for your own code or not. At any rate, you
need to have a reading knowledge of switch in case you find it in other programmers’ code.

100 Chapter 3 Decisions

3.4 Nested Branches

When a decision
statement is
contained inside the
branch of another
decision statement,
the statements

are nested.

Nested decisions
are required for
problems that
have two levels of
decision making.

[
ANIMATION
Nested Branches

/1

It is often necessary to include an if statement inside another. Such an arrangement is
called a nested set of statements.

Here is a typical example: In the United States, different tax rates are used depend-
ing on the taxpayer’s marital status. There are different tax schedules for single and
for married taxpayers. Married taxpayers add their income together and pay taxes on
the total. Table 4 gives the tax rate computations, using a simplification of the sched-
ules in effect for the 2008 tax year. A different tax rate applies to each “bracket”. In
this schedule, the income in the first bracket is taxed at 10 percent, and the income in
the second bracket is taxed at 25 percent. The income limits for each bracket depend
on the marital status.

Table 4 Federal Tax Rate Schedule

If your status is Single and

if the taxable income is the tax is of the amount over
at most $32,000 10% $0
over $32,000 $3,200 + 25% $32,000
If your status is Married and
if the taxable income is the tax is of the amount over
at most $64,000 10% $0
over $64,000 $6,400 + 25% $64,000

Now compute the taxes due, given a marital status and an income figure. The key
point is that there are two levels of decision making. First, you must branch on the
marital status. Then, for each marital status, you must have another branch on income
level.

The two-level decision process is reflected in two levels of i statements in the pro-
gram at the end of this section. (See Figure 4 for a flowchart.) In theory, nesting can go
deeper than two levels. A three-level decision process (first by state, then by marital
status, then by income level) requires three nesting levels.

Computing income taxes requires -
multiple levels of decisions.

3.4 Nested Branches

Single? True income True 10%
< 32,000 bracket
False False
25%
bracket
income True 10%
< 64,000 bracket
False
25%
bracket

Figure 4 Income Tax Computation

section_4/TaxCalculator.java

1

import java.util.Scanner;

/'!‘::“:

This program computes income taxes, using a simplified tax schedule.

&

public class TaxCalculator

{

public static void main(String[] args)

{

final double RATE1l = 0.10;
final double RATE2 = 0.25;
final double RATEI1_SINGLE_LIMIT = 32000;
final double RATE1_MARRIED_LIMIT = 64000;

doubTe taxl
double tax2

0;
0;

// Read income and marital status

Scanner in = new Scanner(System.in);
System.out.print("Please enter your income: ");
double income = in.nextDouble();

System.out.print("Please enter s for single, m for married: ");

String maritalStatus = in.next();

// Compute taxes due

101

102 Chapter 3 Decisions

29 if (maritalStatus.equals("s"))

30 {

31 if (income <= RATE1_SINGLE_LIMIT)

32 {

33 taxl = RATEL * income;

34 }

35 else

36 {

37 taxl = RATE1l * RATE1_SINGLE_LIMIT;

38 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
39 }

40 }

41 else

42 {

43 if (income <= RATE1_MARRIED_LIMIT)

44 {

45 taxl = RATE1l * income;

46 }

47 else

48 {

49 taxl = RATE1l * RATE1_MARRIED_LIMIT;

50 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
51 }

52 }

53

54 double totalTax = taxl + tax2;

55

56 System.out.printIn("The tax is $" + totalTax);
57 }

58 1}

Program Run

Please enter your income: 80000
Please enter s for single, m for married: m
The tax is $10400

17. What is the amount of tax that a single taxpayer pays on an income of $32,000?
18. Would that amount change if the first nested if statement changed from
if (income <= RATE1 SINGLE_LIMIT)
to
if (income < RATE1_SINGLE_LIMIT)
19. Suppose Harry and Sally each make $40,000 per year. Would they save taxes if
they married?

20. How would you modify the TaxCalculator. java program in order to check that
the user entered a correct value for the marital status (i.e., s orm)?

21. Some people object to higher tax rates for higher incomes, claiming that you
might end up with less money after taxes when you get a raise for working hard.
What is the flaw in this argument?

Practice It Now you can try these exercises at the end of the chapter: R3.9, R3.21, P3.18, P3.21.

Programming Tip 3.5

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the tax program with the data
fromtheprogramrunonpage102.Inlines15and 16, taxland
tax2 are initialized to 0.

8 public static void main(String[] args)

Ig ! final double RATE1 = 0.10;

11 final double RATE2 = 0.25;

12 final double RATE1_SINGLE LIMIT = 32000;
13 final double RATEL_MARRIED_LIMIT = 64000;
:; double taxl

16 double tax2
17

0;
0;

In lines 22 and 25, income and maritalStatus are
initialized by input statements.

20 Scanner in = new Scanner(System.in);

21 System.out.print("Please enter your income: ");

22 double income = in.nextDouble();

23

24 System.out.print("Please enter s for single, m for married: ");

25 String maritalStatus = in.next();

3.4 Nested Branches 103

Hand-tracing helps you
understand whether a
program works correctly.

income

income

80000

Because maritalStatus is not "s", we move to the else branch of the outer if statement

(line 41).

29 if (maritalStatus.equals("s"))

30 {

31 if (income <= RATE1_SINGLE_LIMIT)

32 {

33 taxl = RATEL * income;

34 }

35 else

36 {

37 taxl = RATEL * RATEL_SINGLE_LIMIT;
38 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
39 }

40 }

141 else

42

Because incorme is not <= 64000, we move to the else branch of the inner if statement (line 47).

43 if (income <= RATE1l_MARRIED_LIMIT)

44 {

45 taxl = RATEL * income;

46 }

47 else

48 {

49 taxl = RATEL * RATE1 MARRIED_LIMIT;

50 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);

51 }

104 Chapter 3 Decisions

Common Error 3.4

'

The values of tax1 and tax2 are updated.

48 { income
49 taxl = RATEL * RATEL_MARRIED_LIMIT;
50 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT); 80000
51 }
52}
53

Their sum totalTax is computed and printed.

Then the program ends.

54 double totalTax = taxl + tax2; i warital total
55 Income status tax
56 System.out.printin("The tax is $" + totalTax);

57 } 80000 m

Because the program trace shows the expected
output ($10,400), it successfully demonstrated
that this test case works correctly.

The Dangling else Problem

When an i f statement is nested inside another 1 f statement, the following error may occur.

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA™))
if (state.equals("HI™))
shippingCharge = 10.00; // Hawaii is more expensive
else // Pitfall!
shippingCharge = 20.00; // As are foreign shipments

The indentation level seems to suggest that the else is grouped with the test country.
equals("USA™). Unfortunately, that is not the case. The compiler ignores all indentation and
matches the else with the preceding if. That is, the code is actually

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA™))
if (state.equals("HI™))
shippingCharge = 10.00; // Hawaii is more expensive
else // Pitfall!
shippingCharge = 20.00; // As are foreign shipments

That isn’t what you want. You want to group the else with the first if.
The ambiguous else is called a dangling else. You can avoid this pitfall if you always use
braces, as recommended in Programming Tip 3.2 on page 86:

double shippingCharge = 5.00; // $5 inside continental U.S.
if (country.equals("USA™))

{
if (state.equals("HI"))
{
shippingCharge = 10.00; // Hawaii is more expensive
}
}
else
{

shippingCharge = 20.00; // As are foreign shipments
}

Special Topic 3.4

VIDEO EXAMPLE 3.1 Computing the Plural of an English Word

PLUS

3.5 Problem Solving: Flowcharts 105

Enumeration Types

In many programs, you use variables that can hold one of a finite number of values. For exam-
ple, in the tax return class, the maritalStatus variable holds one of the values "s" or "m". If, due
to some programming error, the maritalStatus variable is set to another value (such as "d" or
"w"), then the programming logic may produce invalid results.

In a simple program, this is not really a problem. But as programs grow over time, and more
cases are added (such as the “married filing separately” status), errors can slip in. Java version
5.0 introduces a remedy: enumeration types. An enumeration type has a finite set of values,
for example

pubTic enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }

You can have any number of values, but you must include them all in the enum declaration.
You can declare variables of the enumeration type:

FilingStatus status = FilingStatus.SINGLE;

If you try to assign a value that isn’t a FilingStatus, such as 2 or "S", then the compiler reports
an error.
Use the == operator to compare enumeration values, for example:

if (status == FilingStatus.SINGLE) . . .
Place the enum declaration inside the class that implements your program, such as

pubTic class TaxReturn

{
public enum FilingStatus { SINGLE, MARRIED, MARRIED_FILING_SEPARATELY }
public static void main(String[] args)
{
}
}

The plural of apple is apples, but the plural of cherry is cherries. In
this Video Example, we develop an algorithm for computing the
plural of an English word.

3.5 Problem Solving: Flowcharts

Flow charts are made
up of elements for
tasks, input/output,
and decisions.

You have seen examples of flowcharts earlier in this chapter. A flowchart shows the
structure of decisions and tasks that are required to solve a problem. When you have
to solve a complex problem, it is a good idea to draw a flowchart to visualize the flow
of control.

The basic flowchart elements are shown in Figure 5.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

106 Chapter 3 Decisions

Figure 5
Flowchart Elements

Each branch of a
decision can contain
tasks and further
decisions.

Never point an
arrow inside
another branch.

T
Simple task Input/output Condition rue

False

The basic idea is simple enough. Link tasks and input/output boxes in the sequence in
which they should be executed. Whenever you need to make a decision, draw a dia-
mond with two outcomes (see Figure 6).

Each branch can contain a sequence of tasks and even additional decisions. If there
are multiple choices for a value, lay them out as in Figure 7.

There is one issue that you need to be aware of when drawing flowcharts. Uncon-
strained branching and merging can lead to “spaghetti code”, a messy network of
possible pathways through a program.

There is a simple rule for avoiding spaghetti code: Never point an arrow inside
another branch.

To understand the rule, consider this example: Shipping costs are $5 inside the
United States, except that to Hawaii and Alaska they are $10. International shipping
costs are also $10.

T
Choice 1 e
False
T
Choice 2 rue
False
Ti . True
Condition e Choice 3
False False

Figure 6 Flowchart with Two Outcomes Figure 7 Flowchart with Multiple Choices

3.5 Problem Solving: Flowcharts

You might start out with a flowchart like the following:

. True
Inside US?

False

Shipping T ippi
cost = $10 Continental US? ¢ fg;fr:gg

False

Now you may be tempted to reuse the “shipping cost = $10” task:

T
Inside US? e

False

Shipping Ti ippi
cost = $10 Continental US? rue 3};{’ Pz) lgg

False

107

Don’t do that! The red arrow points inside a different branch. Instead, add another

task that sets the shipping cost to $10, like this:

T
Inside US? rae

False

Shipping) True
cost = $10 Continental US?

False

Shipping Shipping
cost = $10 cost = $5

108 Chapter 3 Decisions

ONLINE EXAMPLE

A program to
compute shipping
costs.

SELF CHECK

Practice It

Not only do you avoid spaghetti code, but it is also a
better design. In the future it may well happen that the
cost for international shipments is different from that
to Alaska and Hawaii.

Flowcharts can be very useful for getting an intui-
tive understanding of the flow of an algorithm. How-
ever, they get large rather quickly when you add more
details. At that point, it makes sense to switch from

Spaghetti code has so many
flowcharts to pseudocode. pathways that it becomes

impossible to understand.

22. Draw a flowchart for a program that reads a value temp and prints “Frozen” if it
is less than zero.

23. Whatis wrong with the flowchart at right?
24. How do you fix the flowchart of

True

Self Check 23? Input < 0?
25. Draw a flowchart for a program that reads a
value x. If it is less than zero, print “Error”. False

Otherwise, print its square root.

26. Draw aflowchart for a program that reads a True
.. . « » Input > 100?
value temp. If it is less than zero, print “Ice”.
If it is greater than 100, print “Steam”. Oth-
erwise, print “Liquid”. False

Status = “OK” Status = “Error”

Now you can try these exercises at the end of the
chapter: R3.12,R3.13,R3.14.

3.6 Problem Solving: Test Cases

Each branch of your
program should

be covered by a
test case.

Consider how to test the tax computation program from Section 3.4. Of course,
you cannot try out all possible inputs of marital status and income level. Even if you
could, there would be no point in trying them all. If the program correctly computes
one or two tax amounts in a given bracket, then we have a good reason to believe that
all amounts will be correct.

You want to aim for complete coverage of all decision points. Here is a plan for
obtaining a comprehensive set of test cases:

e There are two possibilities for the marital status and two tax brackets for each
status, yielding four test cases.

* Testa handful of boundary conditions, such as an income that is at the boundary
between two brackets, and a zero income.

¢ Ifyouare responsible for error checking (which is discussed in Section 3.8), also
test an invalid input, such as a negative income.

Itis a good idea to
design test cases
before implementing
a program.

SELF CHECK

Practice It

Programming Tip 3.6

3.6 Problem Solving: Test Cases 109

Make a list of the test cases and the expected outputs:

Test Case Expected Quiput Comwment

30,000 s 3,000 107 bracket
72,000 s 13,200 3,200 + 25% of 40,000
50,000 wm 5,000 107 bracket
104,000 wm 16,400 6,400 + 257 of 40,000
32,000 s 3,200 boundary case
0 0 boundary case

When you develop a set of test cases, it is helpful to have a flowchart of your program
(see Section 3.5). Check off each branch that has a test case. Include test cases for the
boundary cases of each decision. For example, if a decision checks whether an input s
less than 100, test with an input of 100.

It is always a good idea to design test cases before starting to code. Working
through the test cases gives you a better understanding of the algorithm that you are
about to implement.

27. UsingFigure 1 on page 83 as a guide, follow the process described in Section 3.6 to
design a set of test cases for the ElevatorSimulation. java program in Section 3.1.

28. Whatisaboundary test case for the algorithm in How To 3.1 on page 93? Whatis
the expected output?

29. UsingFigure 3 on page 97 as a guide, follow the process described in Section 3.6 to
design a set of test cases for the EarthquakeStrength. java program in Section 3.3.

30. Suppose you are designing a part of a program for a medical ro-
bot that has a sensor returning an x- and y-location (measured in
cm). You need to check whether the sensor location is inside the
circle, outside the circle, or on the boundary (specifically, hav-
ing a distance of less than 1 mm from the boundary). Assume the
circle has center (0, 0) and a radius of 2 cm. Give a set of test cases.

Now you can try these exercises at the end of the chapter: R3.15, R3.16.

Make a Schedule and Make Time for Unexpected Problems

Commercial software is notorious for being delivered later than promised. For example,
Microsoft originally promised thatits Windows Vista operating system would be available late
in 2003, then in 2005, then in March 2006; it finally was released in January 2007. Some of the
early promises might not have been realistic. It was in Microsoft’s interest to let prospective
customers expect the imminent availability of the product. Had customers known the actual
delivery date, they might have switched to a different product in the meantime. Undeniably,
though, Microsoft had not anticipated the full complexity of the tasks it had set itself to solve.

Microsoft can delay the delivery of its product, but it is likely that you cannot. As a student
ora programmer, you are expected to manage your time Wlsely and to finish your assignments
on time. You can probably do simple programming exercises the night before the due date,
but an assignment that looks twice as hard may well take four times as long, because more
things can go wrong. You should therefore make a schedule whenever you start a program-
ming project.

110 Chapter 3 Decisions

Special Topic 3.5

First, estimate realistically how much time it “
will take you to: 3 N
* Design the program logic. {

e Develop test cases.

* Type the program in and fix syntax errors. Lo pre” N
i

Test and debug the program.

For example, for the income tax program I might

estimate an hour for the design; 30 minutes for | 3 P ”
developing test cases; an hour for data entry and f /’(|

fixing syntax errors; and an hour for testing and :
debugging. That is a total of 3.5 hours. If [work Make a schedule for your programming
two hours a day on this project, it will take me work and build in time for problems.
almost two days.

Then think of things that can go wrong. Your computer might break down. You might be
stumped by a problem with the computer system. (That is a particularly important concern
for beginners. It is very common to lose a day over a trivial problem just because it takes time
to track down a person who knows the magic command to overcome it.) As a rule of thumb,
double the time of your estimate. That is, you should start four days, not two days, before the
due date. If nothing went wrong, great; you have the program done two days early. When the
inevitable problem occurs, you have a cushion of time that protects you from embarrassment
and failure.

Logging

Sometimes you run a program and you are not sure where it spends its time. To get a printout
of the program flow, you can insert trace messages into the program, such as this one:

if (status == SINGLE)
{
System.out.printIn("status is SINGLE");

}

However, there is a problem with using System.out.println for trace messages. When you are
done testing the program, you need to remove all print statements that produce trace mes-
sages. If you find another error, however, you need to stick the print statements back in.

To overcome this problem, you should use the Logger class, which allows you to turn off the
trace messages without removing them from the program.

Instead of printing directly to System.out, use the global logger object that is returned
by the call Logger.getGlobal(). (Prior to Java 7, you obtained the global logger as
Logger.getLogger("global™).) Then call the info method:

Logger.getGlobal().info("status is SINGLE"); .
Logging messages can be

By default, the message is printed. But if you call deactivated when testing

Logger.getGlobal().setLevel(Level.OFF); is complete.

at the beginning of the main method of your program, all log message printing is suppressed.
Set the level to Level.INFO to turn logging of info messages on again. Thus, you can turn off
the log messages when your program works fine, and you can turn them back on if you find
another error. In other words, using Logger.getGlobal().info is just like System.out.println,
except that you can easily activate and deactivate the logging.

The Logger class has many other options for industrial-strength logging. Check out the API
documentation if you want to have more control over logging.

3.7 Boolean Variables and Operators 111

3.7 Boolean Variables and Operators

The Boolean type
boolean has two
values, false
and true.

A Boolean variable
is also called a flag
because it can be
either up (true) or
down (false).

Java has two Boolean
operators that
combine conditions:
&& (and) and | | (or).

Sometimes, you need to evaluate a logical condition in one part of a program and use
it elsewhere. To store a condition that can be true or false, you use a Boolean variable.
Boolean variables are named after the mathematician George Boole (1815-1864), a
pioneer in the study of logic.

In Java, the boolean data type has exactly two values, denoted false and true. These
values are not strings or integers; they are special values, just for Boolean variables.
Here is a declaration of a Boolean variable:

booTean failed = true;
You can use the value later in your program to make a decision:

if (failed) // Only executed if failed has been set to true
{

}

When you make complex decisions, you often need to combine Boolean values. An
operator that combines Boolean conditions is called a Boolean operator. In Java, the
&& operator (called and) yields true only when both conditions are true. The | | opera-
tor (called or) yields the result true if at least one of the conditions is true.

Suppose you write a program that processes temperature values, and you want
to test whether a given temperature corresponds to liquid water. (At sea level, water
freezes at 0 degrees Celsius and boils at 100 degrees.) Water is liquid if the tempera-
ture is greater than zero and less than 100:

if (temp > 0 && temp < 100) { System.out.printin("Liquid"); }

The condition of the test has two parts, joined by the & operator. Each part is a Bool-
ean value that can be true or false. The combined expression is true if both individual
expressions are true. If either one of the expressions is false, then the result is also false
(see Figure 8).

The Boolean operators & and | | have alower precedence than the relational opera-
tors. For that reason, you can write relational expressions on either side of the Bool-
ean operators without using parentheses. For example, in the expression

temp > 0 && temp < 100

the expressions temp > 0 and temp < 100 are evaluated first. Then the && operator com-
bines the results. Appendix B shows a table of the Java operators and their
precedence.

A B A&&B A B Al||B A TA
true true true true true true true false
true false false true false true false true
false true false false true true
false false false false false false

Figure 8 Boolean Truth Tables

112 Chapter 3 Decisions

At this geyser in Iceland,
you can see ice, liquid
water, and steam.

Conversely, let’s test whether water is nor liquid at a given temperature. That is the

@ Aprogram case when the temperature is at most 0 or at least 100. Use the | | (or) operator to com-
STl E e bine the expressions:
using Boolean
expressions. if (temp <= 0 || temp >= 100) { System.out.println("Not Tiquid"); }

Figure 9 shows flowcharts for these examples.
. - Sometimes you need to invert a condition with the nor Boolean operator. The
To invert a Condltlon,
use the ! (not) | operator takes a single condition and evaluates to true if that condition is false and to
operator. falseif the condition is true. In this example, output occurs if the value of the Boolean
variable frozen is false:

if (!frozen) { System.out.printin("Not frozen"); }

Table 5 illustrates additional examples of evaluating Boolean operators.

and or
False False False
Temperature Temperature Temperature
>0? <0? =100?
Both conditions True True True
must be true
At least
False ..
Temperature one condition
<100? must be true
True
Water is Water is
liquid not liquid

Figure 9 Flowcharts for and and or Combinations

Expression
0 < 200 && 200 < 100
0 < 200 || 200 < 100

0 <200 || 100 < 200

3.7 Boolean Variables and Operators 113

Table 5 Boolean Operator Examples

Value
false
true

true

0 <x& x <100 || x==-1 (0 < x & x < 100)

® 0<x <10

® Xx&y>0

1(0 < 200)

frozen ==

frozen ==

Practice It

Common Error 3.5

¥

0

true

false

31.

32.
33.

] x == -1

Error

Error

false

frozen

Ifrozen

34, What is the value of ! ! frozen?

Comment
Only the first condition is true.
The first condition is true.

The || is not a test for “either-or”. If both
conditions are true, the result is true.

The && operator has a higher precedence than the
| | operator (see Appendix B).

Error: This expression does not test whether x is
between 0 and 100. The expression 0 < xis a
Boolean value. You cannot compare a Boolean
value with the integer 100.

Error: This expression does not test whether x and
y are positive. The left-hand side of &&is an integer,
x, and the right-hand side, y > 0, is a Boolean value.
You cannot use && with an integer argument.

0 < 200 is true, therefore its negation is false.

There is no need to compare a Boolean variable
with true.

Itis clearer to use ! than to compare with false.

Suppose x and y are two integers. How do you test whether both of them are
Zero?

How do you test whether at least one of them is zero?
How do you test whether exactly one of them is zero?

35. What is the advantage of using the type boolean rather than strings "false"/"true"
or integers 0/1?

Now you can try these exercises at the end of the chapter: R3.29, P3.25, P3.27.

Combining Multiple Relational Operators

Consider the expression
if (0 <= temp <= 100) // Error

This looks just like the mathematical test 0 < temp < 100. But in Java, it is a compile-time error.
Let us dissect the condition. The first half, 0 <= temp, is a test with an outcome true or false.
The outcome of that test (true or false) is then compared against 100. This seems to make no

114 Chapter 3 Decisions

Common Error 3.6

'

Special Topic 3.6

sense. Is true larger than 100 or not? Can one compare truth values and numbers? In Java, you
cannot. The Java compiler rejects this statement.
Instead, use & to combine two separate tests:

if (0 <= temp && temp <= 100) .
Another common error, along the same lines, is to write
if (input == 1 || 2) . . . // Error

to test whether input is 1 or 2. Again, the Java compiler flags this construct as an error. You
cannot apply the | | operator to numbers. You need to write two Boolean expressions and join
them with the || operator:

if (input == 1 || input == 2) .

Confusing & and || Conditions

Itis a surprisingly common error to confuse and and or conditions. A value lies between 0 and
100 if it is at least O and at most 100. It lies outside that range if it is less than 0 or greater than
100. There is no golden rule; you just have to think carefully.

Often the and or or is clearly stated, and then it isn’t too hard to implement it. But some-
times the wording isn’t as explicit. It is quite common that the individual conditions are nicely
setapart in a bulleted list, but with little indication of how they should be combined. Consider
these instructions for filing a tax return. You can claim single filing status if any one of the fol-
lowing is true:

* You were never married.
® You were legally separated or divorced on the last day of the tax year.
* You were widowed, and did not remarry.

Since the test passes if any one of the conditions is true, you must combine the conditions with
or. Elsewhere, the same instructions state that you may use the more advantageous status of
married filing jointly if all five of the following conditions are true:

® Your spouse died less than two years ago and you did not remarry.
® You have a child whom you can claim as dependent.

e Thatchild lived in your home for all of the tax year.

® You paid over half the cost of keeping up your home for this child.
® You filed ajoint return with your spouse the year he or she died.

Because all of the conditions must be true for the test to pass, you must combine them with an
and.

Short-Circuit Evaluation of Boolean Operators

The && and | | operators are computed using short-circuit evaluation. R

In other words, logical expressions are evaluated from left to right, opgrat:rr; alrel

and evaluation stops as soon as the truth value is determined. When computed using

an & is evaluated and the first condition is false, the second condition short-circuit

is not evaluated, because it does not matter what the outcome of the evaluation: As soon
second test is. as the truth value is

F 1 d h . determined, no
or example, consider the expression further conditions

quantity > 0 & price / quantity < 10 are evaluated.

Special Topic 3.7

3.7 Boolean Variables and Operators 115

Suppose the value of quantity is zero. Then the test quantity > 0 fails, and the second test is not
attempted. That is just as well, because it is illegal to divide by zero.

Similarly, when the first condition of an || expression is true, then the remainder is not
evaluated because the result must be true.

This process is called short-circuit evaluation.

In a short circuit, electricity travels along the path of least
resistance. Similarly, short-circuit evaluation takes the fast-
est path for computing the result of a Boolean expression.

De Morgan’s Law

Humans generally have a hard time comprehending logical conditions with nor operators
applied to and/or expressions. De Morgan’s Law, named after the logician Augustus De Mor-
gan (1806-1871), can be used to simplify these Boolean expressions.

Suppose we want to charge a higher shipping rate if we don’t ship within the continental
United States.

if (!(country.equals("USA") && !state.equals("AK") && !state.equals("HI")))

{
shippingCharge = 20.00;

}

This test is a little bit complicated, and you have to think carefully through the logic. When it
is not true that the country is USA and the state is not Alaska and the state is not Hawaii, then
charge $20.00. Huh? It is not true that some people won’t be confused by this code.

The computer doesn’t care, but it takes human programmers to write and maintain the
code. Therefore, it is useful to know how to simplify such a condition.

De Morgan’s Law has two forms: one for the negation of an
and expression and one for the negation of an or expression: De Morgan’s law tells

(A & B) is the same as 1A || !B Zgg T?\gotnod?t?gsze &
(A || B is the same as 1A & 'B

Pay particular attention to the fact that the and and or operators are reversed by moving the
not inward. For example, the negation of “the state is Alaska or it is Hawaii”,

! (state.equals("AK") || state.equals("HI"))

is “the state is not Alaska and it is not Hawaii”:
Istate.equals("AK") && !state.equals("HI")

Now apply the law to our shipping charge computation:

I (country.equals("USA™)
&& !state.equals("AK")
&& !state.equals("HI"))

is equivalent to

Icountry.equals("USA™)
|| !!state.equals("AK™)
|| !!state.equals("HI"))

116 Chapter 3 Decisions

Because two ! cancel each other out, the result is the simpler test

Icountry.equals("USA™)
|| state.equals("AK")
|| state.equals("HI")
In other words, higher shipping charges apply when the destination is outside the United
States or to Alaska or Hawaii.
To simplify conditions with negations of and or or expressions, it is usually a good idea to
apply De Morgan’s Law to move the negations to the innermost level.

3.8 Application: Input Validation

An important application for the if statement is mput validation. Whenever
your program accepts user input, you need to make sure that the user-supplied
values are valid before you use them in your computations.

Consider our elevator simulation program. Assume that the elevator panel
has buttons labeled 1 through 20 (but not 13). The following are illegal inputs:

e The number 13

* Zero or anegative number

* A number larger than 20

Like a quality control worker, . > .
you want to make sure that e Aninput thatis not a sequence of digits, such as five

user input is correct before
processing it.

In each of these cases, we will want to give an error message and exit the
program.
It is simple to guard against an input of 13:

if (floor == 13)
{
}
Here is how you ensure that the user doesn’t enter a number outside the valid range:
if (floor <= 0 || floor > 20)
{
}

However, dealing with an input that is not a valid integer is a more serious problem.
When the statement

System.out.printIn("Error: There is no thirteenth floor.™");

System.out.printin("Error: The floor must be between 1 and 20.");

floor = in.nextInt();

is executed, and the user types in an input that is not an integer (such as five), then
Call the hasNextInt or
hasNextDouble the 1 integer variable floor is not set. Instead, a run-time exception occurs and the pro-
method to ensure gram is terminated. To avoid this problem, you should first call the hasNextInt method
;h:;;:'se:e)(t NPUtis which checks whether the next input is an integer. If that method returns true, you
can safely call nextInt. Otherwise, print an error message and exit the program.

if (in.hasNextInt())

{
int floor = in.nextInt();
Process the input value

}

3.8 Application: Input Validation 117
else
{

}
Here is the complete elevator simulation program with input validation:

System.out.printin("Error: Not an integer.");

section_8/ElevatorSimulation2.java
1 import java.util.Scanner;
/7’::’:

This program simulates an elevator panel that skips the 13th floor, checking for
input errors.

2

3

4

5

6 =/
7 public class ElevatorSimulation2
8

9

{
public static void main(String[] args)

10 {
11 Scanner in = new Scanner(System.in);
12 System.out.print("Floor: ");
13 if (in.hasNextInt())
14 {
15 // Now we know that the user entered an integer
16
17 int floor = in.nextInt();
18
19 if (floor == 13)
20 {
21 System.out.printIin("Error: There is no thirteenth floor.");
22 }
23 else if (floor <= 0 || floor > 20)
24 {
25 System.out.printin("Error: The floor must be between 1 and 20.");
26 }
27 else
28 {
29 // Now we know that the input is valid
30
31 int actualFloor = floor;
32 if (floor > 13)
33 {
34 actualFloor = floor - 1;
35 }
36
37 System.out.printin("The elevator will travel to the actual floor "
38 + actualFloor);
39 }
40 }
41 else
42 {
43 System.out.printin("Error: Not an integer.");
44 }
45 }
46 }

Program Run

Floor: 13
Error: There is no thirteenth floor.

118 Chapter 3 Decisions

36. IntheElevatorSimulation2 program, what is the output when the input is
a. 100?
b. -1?
c. 20?
d. thirteen?

37. Your task is to rewrite lines 19-26 of the ElevatorSimulation2 program so that
there is a single if statement with a complex condition. What is the condition?

if (0.0
{

}

38. Inthe Sherlock Holmes story “The Adventure of the Sussex Vampire”, the
inimitable detective uttered these words: “Matilda Briggs was not the name of
a young woman, Watson, ... It was a ship which is associated with the giant rat
of Sumatra, a story for which the world is not yet prepared.” Over a hundred
years later, researchers found giant rats in Western New Guinea, another part of
Indonesia.

System.out.printIn("Error: Invalid floor number");

Suppose you are charged with writing a program that processes rat weights. It
contains the statements

System.out.print("Enter weight in kg: ");

double weight = in.nextDouble();

What input checks should you supply?

When processing inputs, you want to reject values that are too large. But how large is too large?
These giant rats, found in Western New Guinea, are about five times the size of a city rat.

39. Run the following test program and supply inputs 2 and three at the prompts.
What happens? Why?

import java.util.Scanner

public class Test
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
System.out.print("Enter an integer: ");
int m = in.nextInt();
System.out.print("Enter another integer: ");
int n = in.nextInt();
System.out.printin(m +

+n);

}

Practice It Now you can try these exercises at the end of the chapter: R3.3, R3.32, P3.11.

VIDEO EXAMPLE 3.2 The Genetic Code

Watch this Video Example to see how to build a “decoder ring” for
the genetic code.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

When one wuses a
sophisticated com-
puter program such as a tax prepara-
tion package, one is bound to attribute
some intelligence to the computer.
The computer asks sensible questions
and makes computations that we find
a mental challenge. After all, if doing
one’s taxes were easy, we wouldn’t
need a computer to do it for us.

As programmers, however, we
know that all this apparent intelligence
is an illusion. Human programmers
have carefully “coached” the software
in all possible scenarios, and it simply
replays the actions and decisions that
were programmed into it.

Would it be possible to write com-
puter programs that are genuinely
intelligent in some sense? From the
earliest days of computing, there was
a sense that the human brain might
be nothing but an immense computer,
and that it might well be feasible to
program computers to imitate some
processes of human thought. Serious
research into artificial intelligence
began in the mid-1950s, and the first
twenty years brought some impres-
sive successes. Programs that play
chess—surely an activity that appears
to require remarkable intellectual pow-
ers—have become so good that they
now routinely beat all but the best
human players. As far back as 1975,
an expert-system program called
Mycin gained fame for being better in
diagnosing meningitis in patients than
the average physician.

However, there were serious set-
backs as well. From 1982 to 1992,
the Japanese government embarked
on a massive research project, funded
at over 40 billion Japanese yen. It was
known as the Fifth-Generation Project.
Its goal was to develop new hardware
and software to greatly improve the
performance of expert system soft-
ware. At its outset, the project created
fear in other countries that the Japa-
nese computer industry was about to
become the undisputed leader in the
field. However, the end results were
disappointing and did little to bring

3.8 Application: Input Validation

Random Fact 3.2 Artificial Intelligence

artificial
market.

From the very outset, one of the
stated goals of the Al community was
to produce software that could trans-
late text from one language to another,
for example from English to Russian.
That undertaking proved to be enor-
mously complicated. Human language
appears to be much more subtle and
interwoven with the human experi-
ence than had originally been thought.
Even the grammar-checking tools that
come with word-processing programs
today are more of a gimmick than a
useful tool, and analyzing grammar
is just the first step in translating
sentences.

The CYC (from encyclopedia) proj-
ect, started by Douglas Lenat in 1984,
tries to codify the implicit assump-
tions that underlie human speech and
writing. The team members started
out analyzing news articles and asked
themselves what unmentioned facts
are necessary to actually understand
the sentences. For example, consider
the sentence, “Last fall she enrolled in
Michigan State”. The reader automati-
cally realizes that “fall” is not related
to falling down in this context, but
refers to the season. While there is
a state of Michigan, here Michigan
State denotes the university. A priori,
a computer program has none of this

intelligence applications to

119

knowledge. The goal of the CYC proj-
ect is to extract and store the requi-
site facts—that is, (1) people enroll in
universities; (2) Michigan is a state; (3)
many states have universities named
X State University, often abbreviated
as X State; (4) most people enroll in
a university in the fall. By 1995, the
project had codified about 100,000
common-sense concepts and about
a million facts of knowledge relating
them. Even this massive amount of
data has not proven sufficient for use-
ful applications.

In recent years, artificial intelli-
gence technology has seen substantial
advances. One of the most astounding
examples is the outcome of a series
of “grand challenges” for autono-
mous vehicles posed by the Defense
Advanced Research Projects Agency
(DARPA). Competitors were invited to
submit a computer-controlled vehi-
cle that had to complete an obstacle
course without a human driver or
remote control. The first event, in
2004, was a disappointment, with
none of the entrants finishing the
route. In 2005, five vehicles com-
pleted a grueling 212 km course in the
Mojave desert. Stanford’s Stanley came
in first, with an average speed of 30
km/h.In 2007, DARPA moved the com-
petition to an “urban” environment, an
abandoned air force base. Vehicles
had to be able to
interact with each
other, following Cali-
fornia traffic laws. As
Stanford’s Sebastian
Thrun explained: “In
the last Grand Chal-
lenge, it didn’t really
matter whether an
obstacle was a rock
or a bush, because
either way you'd just
drive around it. The
current challenge is to
move from just sens-
ing the environment
to understanding it.”

Winner of the 2007 DARPA Urban Challenge

120 Chapter 3 Decisions

CHAPTER SUMMARY

Use the if statement to implement a decision.

® The if statement allows a program to carry out
different actions depending on the nature of the
data to be processed.

Implement comparisons of numbers and objects.

e Use relational operators (< <= > >= == I=) to compare numbers.
® Do notuse the == operator to compare strings. Use the equals method instead.
* The compareTo method compares strings in lexicographic order.

Implement complex decisions that require multiple if statements.

* Multiple if statements can be combined to evaluate complex decisions.

* When using multiple if statements, test general conditions after more specific
conditions.

Implement decisions whose branches require further decisions.

e When a decision statement is contained inside the branch of another decision
statement, the statements are nested.

o Nested dCCiSiOI’lS are required fOI' problems that have two levels Of decision
£ .'. = making-

Draw flowcharts for visualizing the control flow of a program.

e Flow charts are made up of elements for tasks,
input/output, and decisions. True

Condition
e Fach branch of a decision can contain tasks and further
decisions.

False

* Never point an arrow inside another branch.

Design test cases for your programs.

e Each branch of your program should be covered by a test case.
 Itisagoodidea to design test cases before implementing a program.

e Logging messages can be deactivated when testing is complete.

Review Exercises 121

Use the Boolean data type to store and combine conditions that can be true or false.

® The Boolean type boolean has two values, false and true.
e Java has two Boolean operators that combine conditions: & (and) and || (o7).
e To inverta condition, use the ! (not) operator.

* Thesand || operators are computed using short-circuit evaluation: As soon as
the truth value is determined, no further conditions are evaluated.

® De Morgan’s law tells you how to negate && and | | conditions.

Apply if statements to detect whether user input is valid.

e Call the hasNextInt or hasNextDouble method to ensure that the
next input is a number.

STANDARD LIBRARY ITEMS INTRODUCED IN THIS CHAPTER

java.lang.String java.util.logging.Level
equals INFO
compareTo OFF
java.util.Scanner java.util.logging.Logger
hasNextDouble getGlobal
hasNextInt info
setlLevel

REVIEW EXERCISES

= R3.1 What s the value of each variable after the if statement?

a.int n=1; int k = 2; int r = n;
if (k<n) {r=k;}

b.int n=1; int k = 2; int r;
if(n<k) {r=%k;?}
else { r=k +n; }

C. int n =1; int k = 2; int r = k;
if (r<k) {n=r;1}
else { k =n; }

d.int n=1; int k = 2; int r = 3;

if(r<n+k){r=2%n;}
else { k=2 *r; }

=n R3.2 Explain the difference between

s = 0;
if (x> 0) { s++; }
if (y > 0) { s++; }

and

s = 0;
if (x> 0) { s++; }
else if (y > 0) { s++; }

122 Chapter 3 Decisions

== R3.3

= R3.4

== R3.5

== R3.6

sm R3.7

= R3.8

Find the errors in the following i f statements.

a. if x > 0 then System.out.print(x);
b.if (1 + x > Math.pow(x, Math.sqrt(2)) {y =y + x; }
C if (x =1) { y++; }

d. x = in.nextInt();
if (in.hasNextInt())

{
sum = sum + X;
}
else
{
System.out.printIn("Bad input for x");
}

e. String letterGrade = "F";

if (grade >= 90) { letterGrade = "A"; }
if (grade >= 80) { letterGrade = "B"; }
if (grade >= 70) { letterGrade = "C"; }

if (grade >= 60) { letterGrade = "D"; }

What do these code fragments print?

a.intn=1;
intm= -1;
if (n < -m) { System.out.print(n); }
else { System.out.print(m); }

b.int n = 1;
int m = -1;
if (-n >= m) { System.out.print(n); }
else { System.out.print(m); }

C. double x = 0;
double y = 1;
if (Math.abs(x - y) < 1) { System.out.print(x); }
else { System.out.print(y); }

d. double x = Math.sqrt(2);
double y = 2;
if (x * x == y) { System.out.print(x); }
else { System.out.print(y); }

Suppose x and y are variables of type double. Write a code fragment that sets y to x if x
is positive and to 0 otherwise.

Suppose x and y are variables of type double. Write a code fragment that sets y to the
absolute value of x without calling the Math.abs function. Use an if statement.

Explain why it is more difficult to compare floating-point numbers than integers.
Werite Java code to test whether an integer n equals 10 and whether a floating-point
number x is approximately equal to 10.

Itis easy to confuse the = and == operators. Write a test program containing the
statement
if (floor = 13)

What error message do you get? Write another test program containing the
statement

count == 0;

What does your compiler do when you compile the program?

Review Exercises 123

== R3.9 Each square on a chess board can be described by a letter and number, such as g5 in
this example:

abcdef gh

8 8
7 7
6 6
5 ~—5
4 4
3 3
2 2
1 1

abcdef gh

The following pseudocode describes an algorithm that determines whether a square
with a given letter and number is dark (black) or light (white).

If the letter isana, ¢, e, or g
If the number is odd

color = "black"
Else

color = "white"

Else

If the nuwber is even

color = "black"
Else

color = "white"

Using the procedure in Programming Tip 3.5, trace this pseudocode with input g5.

== R3.10 Give a set of four test cases for the algorithm of Exercise R3.9 that covers all
branches.

=x R3.11 Inascheduling program, we want to check whether two appointments overlap. For
simplicity, appointments start at a full hour, and we use military time (with hours
0-24). The following pseudocode describes an algorithm that determines whether
the appointment with start time startl and end time end1 overlaps with the appoint-
ment with start time startZ and end time endZ.

If start1 » startZ

s = start1
Else
s = startZ
If end1 < end2
e = endl
Else
e = end2
Ifs<e
The appointwents overlap.
Else

The appointwments don't overlap.

Trace this algorithm with an appointment from 10-12 and one from 11-13, then with
an appointment from 10-11 and one from 12-13.

124 Chapter 3 Decisions

= R3.12
= R3.13
= R3.14
== R3.15
= R3.16
= R3.17

= R3.18

=x R3.19

=n R3.20

= R3.21

=n R3,22

= R3.23

=n R3.24

Draw a flow chart for the algorithm in Exercise R3.11.
Draw a flow chart for the algorithm in Exercise P3.17.
Draw a flow chart for the algorithm in Exercise P3.18.
Develop a set of test cases for the algorithm in Exercise R3.11.
Develop a set of test cases for the algorithm in Exercise P3.18.

Write pseudocode for a program that prompts the user for a month and day and
prints out whether it is one of the following four holidays:

* New Year’s Day (January 1)

Independence Day (July 4)
Veterans Day (November 11)
Christmas Day (December 25)

Write pseudocode for a program that assigns letter grades for a quiz, according to the
following table:

Score Grade

90-100 A
80-89 B
70-79 C
60-69 D

< 60 F

Explain how the lexicographic ordering of strings in Java differs from the order-
ing of words in a dictionary or telephone book. Hint: Consider strings such as 18N,
wiley.com, Century 21, and While-U-Wait.

Of the following pairs of strings, which comes first in lexicographic order?

a. "Tom", "Jerry"

b. "Tom", "Tomato"

c. "church", "Churchill"

d. "car manufacturer", "carburetor"
e. "Harry", "hairy"

f. "Java", " Car"

g. "Tom", "Tom"

h. "car", "Carl"

i. "car", "bar"

Explain the difference between an if/else if/else sequence and nested if statements.
Give an example of each.

Give an example of an if/else if/else sequence where the order of the tests does not
matter. Give an example where the order of the tests matters.

Rewrite the condition in Section 3.3 to use < operators instead of >= operators. What
is the impact on the order of the comparisons?

Give a set of test cases for the tax program in Exercise P3.22. Manually compute the
expected results.

Review Exercises 125

= R3.25 Make up a Java code example that shows the dangling e1se problem using the follow-
ing statement: A student with a GPA of at least 1.5, but less than 2, is on probation.
With less than 1.5, the student is failing.

sun R3.26 Complete the following truth table by finding the truth values of the Boolean
expressions for all combinations of the Boolean inputs p, g, and r.

p q r (p& q || !r I(p&& (q || 'r))
false false false
false false true
false true false

5 more combinations

sun R3.27 True orfalse? A && B is the same as B && A for any Boolean conditions A and B.

= R3.28 The “advanced search” feature of many search engines allows you to use Boolean
operators for complex queries, such as “(cats OR dogs) AND NOT pets”. Contrast
these search operators with the Boolean operators in Java.

== R3.29 Suppose the value of bis false and the value of x is 0. What is the value of each of the
following expressions?

a.b && x ==

b.b || x ==

C. 'lb&& x==0
d.!'b || x==0
e.b&&x!=0
f.b || x!=0
g.!b&& x !=0
h.!b || x =0

== R3.30 Simplify the following expressions. Here, b is a variable of type booTean.
a. b == true
b. b == false
C. b != true
d.b != false

sun R3.31 Simplify the following statements. Here, b is a variable of type boolean and n is a vari-
able of type int.
a.if (n==0) { b = true; } else { b = false; }
(Hint: What is the value of n == 0?)
b.if (n==0) { b =false; } else { b = true; }
C. b=false; if (n>1) { if (nh<2) {b=true; }}
d.if (n<1) {b=true; }else {b=n>2;1}

126 Chapter 3 Decisions

= R3.32

What is wrong with the following program?

System.out.print("Enter the number of quarters: ");
int quarters = in.nextInt();
if (in.hasNextInt())

{
total = total + quarters * 0.25;
System.out.printin("Total: " + total);
}
else
{
System.out.printin("Input error.");
}

PROGRAMMING EXERCISES

= P3.1

un P3.2

=n P3.3

un P3.4

=n P3.,5

=n P3.6

un P3.7

=n P3.8

Write a program that reads an integer and prints whether it is negative, zero, or
positive.

Write a program that reads a floating-point number and prints “zero” if the number
is zero. Otherwise, print “positive” or “negative”. Add “small” if the absolute value
of the number is less than 1, or “large” if it exceeds 1,000,000.

Write a program that reads an integer and prints how many digits the number has, by
checking whether the number is = 10, = 100, and so on. (Assume that all integers are
less than ten billion.) If the number is negative, first multiply it with —1.

Write a program that reads three numbers and prints “all the same” if they are all the
same, “all different” if they are all different, and “neither” otherwise.

Write a program that reads three numbers and prints “increasing” if they are in
increasing order, decreasmg if they are in decreasmg order, and “neither” other-
wise. Here, “increasing” means “strictly increasing”, with each value larger than its
predecessor. The sequence 3 4 4 would not be considered i increasing.

Repeat Exercise P3.5, but before reading the numbers, ask the user whether increas-
ing/decreasing should be “strict” or “lenient”. In lenient mode, the sequence 3 4 4 is
increasing and the sequence 4 4 4 is both increasing and decreasing.

Write a program that reads in three integers and prints “in order” if they are sorted in
ascending or descending order, or “not in order” otherwise. For example,
125 in order

152 not in order

521 in order

122 in order
Write a program that reads four integers and prints “two pairs” if the input consists
of two matching pairs (in some order) and “not two pairs” otherwise. For example,

1221 two pairs

1223 not two pairs
2222 two pairs

= P3.9

= P3.10

= P3.11

um P3,12

= P3.13

== P3.14

=n P3,15

=n P3.16

Programming Exercises 127

Write a program that reads a temperature value and the letter C for Celsius or F for
Fahrenheit. Print whether water is liquid, solid, or gaseous at the given temperature
at sea level.

The boiling point of water drops by about one degree centigrade for every 300
meters (or 1,000 feet) of altitude. Improve the program of Exercise 3.9 to allow the
user to supply the altitude in meters or feet.

Add error handling to Exercise P3.10. If the user does not enter a number when
expected, or provides an invalid unit for the altitude, print an error message and end
the program.

Write a program that translates a letter grade into a number grade. Letter grades are
A, B, C,D, and E possibly followed by + or —. Their numeric values are 4, 3, 2, 1, and
0. There is no F+ or F—. A + increases the numeric value by 0.3, a— decreases it by 0.3.
However, an A+ has value 4.0.

Enter a Tetter grade: B-
The numeric value is 2.7.

Write a program that translates a number between 0 and 4 into the closest letter
grade. For example, the number 2.8 (which might have been the average of several

grades) would be converted to B—. Break ties in favor of the better grade; for example
2.85 should be a B.

Werite a program that takes user input describing a playing card in the following
shorthand notation:

Ace
. 10 Card values
Jack

Queen

>

King
Diamonds
Hearts
Spades
Clubs

Your program should print the full description of the card. For example,

N »n T O XN O «w@ N

Enter the card notation: QS
Queen of Spades

Write a program that reads in three floating-point numbers and prints the largest of
the three inputs. For example:

Please enter three numbers: 4 9 2.5
The Targest number is 9.

Write a program that reads in three strings and sorts them lexicographically.

Enter three strings: Charlie Able Baker
Able

Baker

Charlie

128 Chapter 3 Decisions

un P3.17 When two points in time are compared, each given as hours (in military time, rang-
ing from 0 and 23) and minutes, the following pseudocode determines which comes
first.

If hour 1 < hourZ
time1 cowmes first.
Else if hour 1 and hourZ are the same
If wminutel < wminvteZ
time1 cowmes first.
Else if minvtel and wminvteZ are the same
time1 and timeZ are the same.
Else
timeZ comes first.
Else
timeZ cowmes first.

Write a program that prompts the user for two points in time and prints the time that
comes first, then the other time.

un P3.18 The following algorithm yields the season (Spring, Summer, Fall, or Winter) for a
given month and day.

If monthis 1, Z, or 3, season = "Winter"
Else if month is 4, 9, or 6, season = "Spring"
Else if monthis 7, 8, or 9, season = "Sumwer"
Else if monthis 10, 11, or 12, season = "Fall"
If month is divisible by 3 and day >= 21
If season is "Winter", season = "Spring"
Else if season is "Spring”, season = "Summer"
Else if season is "Summer", season = "Fall"
Else season = "Winter"

Write a program that prompts the user for a month
and day and then prints the season, as determined
by this algorithm.

un P3.19 Write a program that reads in two floating-point numbers and tests whether they are
the same up to two decimal places. Here are two sample runs.

Enter two floating-point numbers: 2.0 1.99998
They are the same up to two decimal places.
Enter two floating-point numbers: 2.0 1.98999
They are different.

snn P3.20 Write a program that prompts for the day and month of the user’s birthday and then
prints a horoscope. Make up fortunes for programmers, like this:

Please enter your birthday (month and day): 6 16

Cemini are experts at figuring out the behavior of complicated programs.

You feel where bugs are coming from and then stay one step ahead. Tonight,
your style wins approval from a tough critic.

Each fortune should contain the name of the astrological sign. (You will find the
names and date ranges of the signs at a distressingly large number of sites on the
Internet.)

Programming Exercises 129

un P3.21 The original U.S. income tax of 1913 was quite simple. The tax was
* 1 percent on the first $50,000.
* 2 percent on the amount over $50,000 up to $75,000.
* 3 percent on the amount over $75,000 up to $100,000.
* 4 percent on the amount over $100,000 up to $250,000.
* 5 percent on the amount over $250,000 up to $500,000.
* 6 percent on the amount over $500,000.

There was no separate schedule for single or married taxpayers. Write a program that
computes the income tax according to this schedule.

smm P3.22 Write a program that computes taxes for the following schedule.

If your status is Single and

if the taxable income is over but not over the tax is of the amount over
$0 $8,000 10% $0
$8,000 $32,000 $800 + 15% $8,000
$32,000 $4,400 +25% $32,000
If your status is Married and
if the taxable income is over but not over the tax is of the amount over
$0 $16,000 10% $0
$16,000 $64,000 $1,600 + 15% $16,000
$64,000 $8,800 +25% $64,000

wnn P3.23 The TaxCalculator. java program uses a simplified version of the 2008 U.S. income tax
schedule. Look up the tax brackets and rates for the current year, for both single and
married filers, and implement a program that computes the actual income tax.

wnn P3.24 Unit conversion. Write a unit conversion program that asks the users from which
unit they want to convert (fl. 0z, gal, oz, Ib, in, ft, mi) and to which unit they want to
convert (ml,], g, kg, mm, cm, m, km). Reject incompatible conversions (such as gal
— km). Ask for the value to be converted, then display the result:
Convert from? gal
Convert to? ml

Value? 2.5
2.5 gal = 9462.5 ml

= P3.25 Write a program that prompts the user to provide a single character from the alpha-
bet. Print Vowel or Consonant, depending on the user input. If the user input is
nota letter (between a and z or A and Z), or is a string of length > 1, print an error
message.

130 Chapter 3 Decisions

snn P3.26

um P3.27

snm P3.28

Roman numbers. Write a program that converts a positive integer into the Roman
number system. The Roman number system has digits

1

5

10

50

100

500

1,000

Numbers are formed according to the following rules:

200 X<

a. Only numbers up to 3,999 are represented.

b. As in the decimal system, the thousands, hundreds, tens, and ones are
expressed separately.

c. The numbers 1 to 9 are expressed as

I 1
I 2
111 3
v 4
A% 5
VI 6
VII 7
VIII 8
IX 9

Asyou cansee, anI precedinga V or X is subtracted from the value, and you
can never have more than three I’s in a row.

d. Tens and hundreds are done the same way, except that the letters X, L, C and C,
D, M are used instead of I, V, X, respectively.

Your program should take an input, such as 1978, and convert it to Roman numerals,
MCMLXXVIII.

Write a program that asks the user to enter a month (1 for January, 2 for February,
and so on) and then prints the number of days in the month. For February, print “28
or 29 days”.

Enter a month: 5
30 days

Do not use a separate if/else branch for each month. Use Boolean operators.

A year with 366 days is called a leap year. Leap years are necessary to keep the cal-
endar synchronized with the sun because the earth revolves around the sun once
every 365.25 days. Actually, that figure is not entirely precise, and for all dates after
1582 the Gregorian correction applies. Usually years that are divisible by 4 are leap
years, for example 1996. However, years that are divisible by 100 (for example, 1900)
are not leap years, but years that are divisible by 400 are leap years (for example,

Programming Exercises 131

2000). Write a program that asks the user for a year and computes whether that year
is a leap year. Use a single 1f statement and Boolean operators.

snn P3.29 French country names are feminine when they end with the letter e, masculine other-
wise, except for the following which are masculine even though they end with e:

* leBelize

e le Cambodge

* le Mexique

* le Mozambique
* leZaire

* le Zimbabwe

Write a program that reads the French name of a country and adds the article: le for
masculine or la for feminine, such as le Canada or la Belgique.

However, if the country name starts with a vowel, use I’; for example, I’ Afghanistan.
For the following plural country names, use les:

e les Etats-Unis

* les Pays-Bas

=== Business P3.30 Write a program to simulate a bank transaction. There are two bank accounts: check-
ing and savings. First, ask for the initial balances of the bank accounts; reject nega-
tive balances. Then ask for the transactions; options are deposit, withdrawal, and
transfer. Then ask for the account; options are checking and savings. Then ask for the
amount; reject transactions that overdraw an account. At the end, print the balances
of both accounts.

== Business P3.31 Write a program that reads in the name and salary of an employee. Here the salary
will denote an hourly wage, such as $9.25. Then ask how many hours the employee
worked in the past week. Be sure to accept fractional hours. Compute the pay. Any
overtime work (over 40 hours per week) is paid at 150 percent of the regular wage.
Print a paycheck for the employee.

== Business P3.32 When you use an automated teller machine (ATM) with your bank card, you need
to use a personal identification number (PIN) to access your account. If a user fails
more than three times when entering the PIN, the machine will block the card.
Assume that the user’s PIN is “1234” and write a program that asks the user for the
PIN no more than three times, and does the following:

e If the user enters the right number, print a message saying, “Your PIN is
correct”, and end the program.

e If the user enters a wrong number, print a message saying, “Your PIN is
incorrect” and, if you have asked for the PIN less than three times, ask for it
again.

e If the user enters a wrong number three times, print a message saying “Your
bank card is blocked” and end the program.

= Business P3.33 Calculating the tip when you go to a restaurant is not difficult, but your restaurant
wants to suggest a tip according to the service diners receive. Write a program that
calculates a tip according to the diner’s satisfaction as follows:

* Ask for the diners’ satisfaction level using these ratings: 1 = Totally satisfied,
2 = Satisfied, 3 = Dissatisfied.

132 Chapter 3 Decisions

If the diner is totally satisfied, calculate a 20 percent tip.

If the diner is satisfied, calculate a 15 percent tip.

If the diner is dissatisfied, calculate a 10 percent tip.
e Report the satisfaction level and tip in dollars and cents.

= Business P3.34 A supermarket awards coupons depending on how much a customer spends on
groceries. For example, if you spend $50, you will get a coupon worth eight percent
of that amount. The following table shows the percent used to calculate the coupon
awarded for different amounts spent. Write a program that calculates and prints the
value of the coupon a person can receive based on groceries purchased.

Here is a sample run:

Please enter the cost of your groceries: 14
You win a discount coupon of § 1.12. (8% of your purchase)

Money Spent Coupon Percentage
Less than $10 No coupon
From $10 to $60 8%
More than $60 to $150 10%
More than $150 to $210 12%
More than $210 14%

= Science P3.35 Write a program that prompts the user for a wavelength value and prints a descrip-
tion of the corresponding part of the electromagnetic spectrum, as given in the fol-
lowing table.

Electromagnetic Spectrum

Type Wavelength (m) Frequency (Hz)
Radio Waves >107! <3x10°
Microwaves 102 to 107! 3x10%t03 x 10!
Infrared 7x107 101073 3x 10 o4 x 101

Visible light 4x107t07x107 4x10*t07.5x 10

Ultraviolet 108t04x 1077 7.5x 10 t0 3 x 101©
X-rays 107 t0 1078 3x10'°t03 x 1017
Gamma rays <1071 >3x 10!

= Science P3.36 Repeat Exercise P3.35, modifying the program so that it prompts for the frequency
instead.

= n Science P3.37

= un Science P3.38

= Science P3.39

== Science P3.40

Programming Exercises 133

Repeat Exercise P3.35, modifying the program so that it first asks the user whether
the input will be a wavelength or a frequency.

A minivan has two sliding doors. Each door can be
opened by either a dashboard switch, its inside handle,
or its outside handle. However, the inside handles do not
work if a child lock switch is activated. In order for the
sliding doors to open, the gear shift must be in park, and
the master unlock switch must be activated. (This book’s
author is the long-suffering owner of just such a vehicle.)

Your task is to simulate a portion of the control software for the vehicle. The input is
a sequence of values for the switches and the gear shift, in the following order:

* Dashboard switches for left and right sliding door, child lock, and master
unlock (0 for off or 1 for activated)

¢ Inside and outside handles on the left and right sliding doors (0 or 1)
* The gear shift setting (one of PN D 123 R).

A typical input wouldbe 00010100 P.

Print “left door opens” and/or “right door opens™ as appropriate. If neither door
opens, print “both doors stay closed”.

Sound level L in units of decibel (dB) is determined by
L =201log;o(p/po)

where p is the sound pressure of the sound (in Pascals, abbreviated Pa), and pgis a
reference sound pressure equal to 20 x 107 Pa (where L is 0 dB). The following table
gives descriptions for certain sound levels.

Threshold of pain 130dB
Possible hearing damage 120dB
Jack hammer at 1 m 100 dB
Traffic on a busy roadway at 10m 90dB
Normal conversation 60dB
Calm library 30dB
Light leaf rustling 0dB

Write a program that reads a value and a unit, either dB or Pa, and then prints the
closest description from the list above.

The electric circuit shown below is designed to measure the temperature of the gas in
achamber.

R =750

o Voltmeter @

Vy=20V RSV,

134 Chapter 3 Decisions

snn Science P3.41

The resistor R represents a temperature sensor enclosed in the chamber. The resis-
tance R, in Q, is related to the temperature 7, in °C, by the equation

In this device, assume Ry = 100 Q and k& = 0.5. The voltmeter displays the value of the
voltage, V,, , across the sensor. This voltage V,, indicates the temperature, 7, of the
gas according to the equation

R_K _R Vi, _%
Tzz =

kR kV.-V k

min=12volts<V,, <
Vimax = 18 volts. Write a program that accepts a value of V,, and checks that it’s
between 12 and 18. The program should return the gas temperature in degrees
Celsius when V,, is between 12 and 18 and an error message when itisn’t.

Suppose the voltmeter voltage is constrained to the range V,

Crop damage due to frost is one of the many risks confronting farmers. The figure
below shows a simple alarm circuit designed to warn of frost. The alarm circuit uses
adevice called a thermistor to sound a buzzer when the temperature drops below
freezing. Thermistors are semiconductor devices that exhibit a temperature depen-
dent resistance described by the equation

where R is the resistance, in Q, at the temperature 7, in °K, and R is the resistance,
in Q, at the temperature 7, in°K. Bis a constant that depends on the material used to
make the thermistor.

9V

Thermistor

- Buzzer

+
Comparator

The circuit is designed so that the alarm will sound when
R, _ Ry
R+R, R;+R,

The thermistor used in the alarm circuit has Ry = 33,192 Q at T = 40 °C, and
B=3,310 °K. (Notice that has units of °K. The temperature in °K is obtained by
adding 273° to the temperature in °C.) The resistors R,, R3, and R4 have a resistance
of 156.3 kQ = 156,300 Q.

Werite a Java program that prompts the user for a temperature in °F and prints a
message indicating whether or not the alarm will sound at that temperature.

Answers to Self-Check Questions 135

= Science P3.42 A mass m = 2 kilograms is attached to the end of a rope of length » = 3 meters. The
mass is whirled around at high speed. The rope can withstand a maximum tension
of T'=60 Newtons. Write a program that accepts a rotation speed v and determines
whether such a speed will cause the rope to break. Hint: T = mv?/r.

= Science P3.43 A mass m is attached to the end of a rope of length = 3 meters. The rope can only
be whirled around at speeds of 1, 10, 20, or 40 meters per second. The rope can
withstand a maximum tension of 7'= 60 Newtons. Write a program where the user
enters the value of the mass 7, and the program determines the greatest speed at
which it can be whirled without breaking the rope. Hint: T = mv? /7.

== Science P3.44 The average person can jump off the ground
with a velocity of 7 mph without fear of leaving
the planet. However, if an astronaut jumps with
this velocity while standing on Halley’s Comet,
will the astronaut ever come back down? Create
a program that allows the user to input a launch
velocity (in mph) from the surface of Halley’s
Comet and determine whether a jumper will
return to the surface. If not, the program should
calculate how much more massive the comet
must be in order to return the jumper to the surface.

Hint: Escape velocity is v = 2G—M ,where G = 6.67 x 1071 !N m?/ke? is
P y escape R)

the gravitational constant, M = 1.3 x 1022kg is the mass of Halley’s comet, and

R =1.153 x 10°m is its radius.

ANSWERS TO SELF-CHECK QUESTIONS

1. Change the if statement to 7. floor <= 13
if (floor > 14) 8. The values should be compared with ==, not =.
{ . yn
actualFloor = floor - 2; 9. input.equals("Y")
} 10. str.equals("") or str.length() ==
2. 85.90. 85. 11. if (scoreA > scoreB)
3. The only difference is if originalPrice is 100. { .
. System.out.printIn("A won");
The statement in Self Check 2 sets discounted- } Y P
Price to 90; this one sets it to 80. else if (scoreA < scoreB)
{
4. 95.100.95. System.out.printIn("B won");
5. if (fuelAmount < 0.10 * fuelCapacity) }
{ else
System.out.printin("red"); {
} System.out.printIn("Game tied");
else }
{

. " " 12, if x>0) {s
. . 1 ; .
) System.out.printin("green") else if (x

<
else { s = 0;

=1; 1
0 {s=-1; 1}
}

6. (a)and (b) are both true, (c) is false.

136 Chapter 3 Decisions

13.

14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

You could first set s to one of the three values:
s = 0;

if x>0) {s=1;1}
else if (x <0) {s=-1; }

The if (price <= 100) can be omitted (leaving
just else), making it clear that the e1se branch
is the sole alternative.

No destruction of buildings.
Add a branch before the final else:

else if (richter < 0)

{

}
3200.

No. Then the computation is 0.10 x 32000 +
0.25 x (32000 — 32000).

No. Their individual tax is $5,200 each, and if
they married, they would pay $10,400. Actu-
ally, taxpayers in higher tax brackets (which
our program does not model) may pay higher
taxes when they marry, a phenomenon known
as the marriage penalty.

System.out.printIin("Error: Negative input");

Change else in line 41 to
else if (maritalStatus.equals("m"))
and add another branch after line 52:

else

{
System.out.printin(
"Error: marital status should be s or m.");

}

The higher tax rate is only applied on the
income in the higher bracket. Suppose you are
single and make $31,900. Should you try to
get a $200 raise? Absolutely: you get to keep
90 percent of the first $100 and 75 percent of
the next $100.

Read temp
True .
temp < 0? Print “Frozen”

False

The “True” arrow from the first decision
points into the “True” branch of the second
decision, creating spaghetti code.

24. Here is one solution. In Section 3.7, you will
see how you can combine the conditions for a
more elegant solution.

Input < 0?

False

Input > 100?

False

Status = “OK”

25.

Read x

x < 0?

False

Print VX

26.

Read temp

temp < 0?

False

temp > 100?

False

Print “Liquid”

True
Status = “Error”

True
Status = “Error”

True

Print “Error”

True

Print “Ice”

True .
Print “Steam”

27.

29.

30.

31.

32.
33.
34.
35.
36.

Test Expected
Case Output Comment
12 12 Below 13th floor
14 13 Above 13th floor
13 ? The specification is not clear— See

Section 3.8 for a version of this
program with error handling

A boundary test case is a price of $128. A 16
percent discount should apply because the
problem statement states that the larger dis-
count applies if the price is at least $128. Thus,
the expected output is $107.52.

Test Expected

Case Qutput Comment

9 Most structures fall

7.5 Many buildings destroyed

6.9 Many buildings ...
5 Pawmage to poorly...
3 No destruction...

8.0 Most structures fall ~ Boundary case. In this
program, boundary cases
are not as significant
because the behavior of
an earthquake changes
gradually.

-1 The specification is not

clear—see Self Check
16 for a version of this

program with error
handling.
Test Case Expected Qutput Comment
(0.9, 0.9) inside
(4, 2) outside
(0, 2) on the boundary Exactly on the boundary

(1.414, 1.414) on the boundary Close o the boundary

(0, 1.9) inside Not less than 1 mwm
frowm the boundary

(0, 2.1) outside Not less than 1 mm
frowm the boundary

x=08&&y==0

x==0|]y==

(x=0&y !=0) || (y=08& x I=0)
The same as the value of frozen.

You are guaranteed that there are no other
values. With strings or integers, you would
need to check that no values such as "maybe" or
—1 enter your calculations.

37.

38.
39.

40.

Answers to Self-Check Questions 137

(a) Error: The floor must be between 1 and 20.
(b) Error: The floor must be between 1 and 20.
(c)19 (d)Error: Not an integer.

floor == 13 || floor <=0 || floor > 20

Check for in.hasNextDouble(), to make sure a
researcher didn’t supply an input such as oh

my. Check for weight <= 0, because any rat must
surely have a positive weight. We don’t know
how giant a rat could be, but the New Guinea
rats weighed no more than 2 kg. A regular
house rat (rattus rattus) weighs up to 0.2 kg, so
we’ll say that any weight > 10 kg was surely an
input error, perhaps confusing grams and kilo-
grams. Thus, the checks are

if (in.hasNextDouble())

{
double weight = in.nextDouble();
if (weight < 0)
{
System.out.println(
"Error: Weight cannot be negative.");

3
else if (weight > 10)

{
System.out.printin(
"Error: Weight > 10 kg.");
}

else

Process valid weight.
}
}

else

}
}

The second input fails, and the program termi-
nates without printing anything.

System.out.print("Error: Not a number");

CHAPTER 4

LOOPS

CHAPTER GOALS

To implement while, for, and do loops
To hand-trace the execution of a program

To become familiar with common
loop algorithms

To understand nested loops

To implement programs that read and process data sets

To use a computer for simulations

CHAPTER CONTENTS

4.1 THE WHILE LOOP 140
Syntax 4.1: while Statement 141

Common Error 4.1: Don’t Think “Are We
There Yet?” 144

Common Error 4.2: Infinite Loops 145

Common Error 4.3: Off-by-One Errors 145

Random Fact 4.1: The First Bug 146

4.2 PROBLEM SOLVING:
HAND-TRACING 147

4.3 THE FORLOOP 150
Syntax 4.2: for Statement 152

Programming Tip 4.1: Use for Loops for Their
Intended Purpose Only 155

Programming Tip 4.2: Choose Loop Bounds That
Match Your Task 155

Programming Tip 4.3: Count Iterations 156
4.4 THEDO LOOP 156
Programming Tip 4.4: Flowcharts for Loops 157

4.5 APPLICATION: PROCESSING
SENTINEL VALUES 158

Special Topic 4.1: The Loop-and-a-Half Problem
and the break Statement 160

Special Topic 4.2: Redirection of Input
and Output 161

Video Example 4.1: Evaluating a Cell
Phone Plan @

4.6 PROBLEM SOLVING:
STORYBOARDS 162

4.7 COMMON LOOP ALGORITHMS 165
How To 4.1: Writing a Loop 169
Worked Example 4.1: Credit Card Processing &

4.8 NESTED LOOPS 172

Worked Example 4.2: Manipulating the Pixels
inan Image @

4.9 APPLICATION: RANDOM NUMBERS
AND SIMULATIONS 176

Special Topic 4.3: Drawing Graphical Shapes 179

Video Example 4.2: Drawing a Spiral &

Random Fact 4.2: Software Piracy 182

activities in the real world.

4.1 Thewhile Loop

In this section, you will learn about loop statements that
repeatedly execute instructions until a goal has been
reached.

Recall the investment problem from Chapter 1. You
put $10,000 into a bank account that earns 5 percent inter-
est per year. How many years does it take for the account
balance to be double the original investment?

In Chapter 1 we developed the following algorithm for
this problem:

In a loop, a part of a program is repeated over and over,
until a specific goal is reached. Loops are important for
calculations that require repeated steps and for processing
input consisting of many data items. In this chapter, you will
learn about loop statements in Java, as well as techniques
for writing programs that process input and simulate

Because the interest
earned also earns interest,
a bank balance grows
exponentially.

Start with a year value of 0, a column for the interest, and a balance of ¢10,000.

interest balance
€10,000

Repeat the following steps while the balance is less than ¢20,000.
Add 1 to the year value.
Compute the interest as balance x 0.09 (i.e., percent interest).
Add the interest to the balance.

Report the final year value as the answer.

You now know how to declare and update the variables in Java. What you don’t yet
know is how to carry out “Repeat steps while the balance is less than $20,000”.

In a particle accelerator, subatomic particles
traverse a loop-shaped tunnel multiple times,
gaining the speed required for physical experiments.
Similarly, in computer science, statements in a

loop are executed while a condition is true.

140

4.1 The while Loop 141
Figure 1 Flowchart of awhile Loop
balance < False
TARGET?
A loop executes In.]'awa, the while statement implements such a True
instructions repetition (see Syntax 4.1). It has the form
repeatedly while a . ..
condition is true. while (condition) Increment
{ year
Statements
}
Aslong as the condition remains true, the statements Calewl
N) .
inside the while statement are executed. These state- 1.&2;:;

ments are called the body of the while statement.

In our case, we want to increment the year coun-
ter and add interest while the balance is less than the
target balance of $20,000:

while (balance < TARGET)
{

Add interest
to balance

year++;
double interest = balance * RATE / 100;
balance = balance + interest;

}

A while statement is an example of a loop. If you draw a flowchart, the flow of execu-
tion loops again to the point where the condition is tested (see Figure 1).

Syntax 4.1

while Statement

Syntax while (condition)

Statements

}

This variable is declared outside the loop

and updated in the loop. e B AT

errors in the loop condition.

;‘lqr\ See page 145.

double balance = 0;
If the condition

never becomes false, : Don't put a semicolon here!
an infinite loop oceurs. ;
;&T\ See page 145. while (balance < TARGET)

;l;r\ See page 86.
{

.] These statewents
o ble i i / double interest = ba'!ance * I.(ATE / 100; :|/ are executed while
. is varial e.ls cre'a're balance = balance + interest; the condition is true.
in each loop iteration. 1

Braces are not required if the body contains
a single statewment, but it’s good fo always use them.

iSee page 36.

Lining up braces
is a good idea.
See page $6.

142 Chapter4 Loops

Figure 2
Execution of the
DoubleInvestment
Loop

When you declare a variable inside the loop body, the variable is created for each
iteration of the loop and removed after the end of each iteration. For example, con-
sider the interest variable in this loop:

while (balance < TARGET)

{ A new interest variable
year++; is created in each iteration.
doubTe interest = balance * RATE / 100;
balance = balance + interest;

} // dinterest no longer declared here

In contrast, the balance and years variables were declared outside the loop body. That
way, the same variable is used for all iterations of the loop.

o Check the loop condition The condition is true
while (balance < TARGET)

{

balance = 10000 year++;

double interest = balance * RATE / 100;

YREr = 0 balance = balance + interest;

o Execute the statements in the loop
while (balance < TARGET)

{
balance = 10500 year++;
double interest = balance * RATE / 100;
Vel = 1 balance = balance + interest;
}
interest = 500
o Check the loop condition again The condition is still true
while (balance < TARGET)
{
balance = 10500 year++;
double interest = balance * RATE / 100;
PRI = 1 balance = balance + interest;
}
o After 15 iterations The condition is
while (balance < TARGET) no longer true
{
balance = 20789.28 year++;

double interest = balance * RATE / 100;

15 balance = balance + interest;

year

o Execute the statement following the loop
while (balance < TARGET)

balance = 20789.28 {
year++;
year = 15 double interest = ba?ance * RATE / 100;
balance = balance + interest;
}

System.out.println(year);

4.1 The while Loop 143

Here is the program that solves the investment problem. Figure 2 illustrates the pro-
gram’s execution.

section_1/Doublelnvestment.java
/-,"c-,“:

This program computes the time required to double an investment.

1

2

3 2

4 public class DoubleInvestment

5 {

6 public static void main(String[] args)
7

8

9

{

final double RATE = 5;

final double INITIAL_BALANCE = 10000;
10 final double TARGET = 2 * INITIAL_BALANCE;
11
12 doubTle balance = INITIAL_BALANCE;
13 int year = 0;
14
15 // Count the years required for the investment to double
16
17 while (balance < TARGET)
18 {
19 year++;
20 doubTle interest = balance * RATE / 100;
21 balance = balance + interest;
22 }
23
24 System.out.printIn("The investment doubled after "
25 + year + " years.");
26 }
27 }

Program Run

The investment doubled after 15 years.

1. How many years does it take for the investment to triple? Modify the program
and run it.

2. If the interest rate is 10 percent per year, how many years does it take for the
investment to double? Modify the program and run it.

3. Modify the program so that the balance after each year is printed. How did you
do that?

4. Suppose we change the program so that the condition of the while loop is
while (balance <= TARGET)
What is the effect on the program? Why?

5. What does the following loop print?

int n = 1;
while (n < 100)
{
=2%n
System.out.print(n + " ");
}

Practice It Now you can try these exercises at the end of the chapter: R4.1, R4.5, P4.14.

144 Chapter 4 Loops

Table 1 while Loop Examples

Loop Output Explanation

i =0; sum = 0; 11 When sumis 10, the loop condition is

while (sum < 10) 23 false, and the loop ends.

{ 36
++; sum = sum + i; 4 10
Print i and sum;

}

i =0; sum = 0; 1-1 Because sumnever reaches 10, this is an

while (sum < 10) 2 -3 “infinite loop” (see Common Error 4.2

{ 3 -6 on page 145).
++; sum = sum - i; 4 -10
Print i and sum;

}

i = 0; sum = 0; (No output) The statement sum < 0 is false when the

while (sum < 0) condition is first checked, and the loop

{ is never executed.
++; sum = sum - i;

Print i and sum;

}

i =0; sum = 0; (No output) The programmer probably thought,

while (sum >= 10) “Stop when the sum is at least 10.”

{ However, the loop condition controls
i++; sum = sum + 1i; when the loop is executed, not when it
Print i and sum; ends (see Common Error 4.1 on

} page 144).

i =0; sum = 0; (No output, program Note the semicolon before the {.

while (sum < 10) ; does not terminate) This loop has an empty body. It runs

{ forever, checking whether sum < 0 and
i++; sum = sum + 1; doing nothing in the body.

Print i and sum;

}

Colarne (S AL 1 Don’t Think “Are We There Yet?”

When doing something repetitive, most of us want to know when
we are done. For example, you may think, “I want to get at least
$20,000,” and set the loop condition to

balance >= TARGET

But the while loop thinks the opposite: How long am I allowed to
keep going? The correct loop condition is

while (balance < TARGET)

In other words: “Keep atit while the balance is less than the target.”

When writing a loop condition, don’t ask, “Are we there yet?”
The condition determines how long the loop will keep going.

Common Error 4.2

Common Error 4.3

4.1 The while Loop 145

Infinite Loops

A very annoying loop error is an infinite loop: a loop that
runs forever and can be stopped only by killing the program
or restarting the computer. If there are output statements
in the program, then reams and reams of output flash by on
the screen. Otherwise, the program just sits there and hangs,
seeming to do nothing. On some systems, you can kill a hang-
ing program by hitting Ctrl + C. On others, you can close the
window in which the program runs.

A common reason for infinite loops is forgetting to update
the variable that controls the loop:

int year = 1;

while (year <= 20) Like this hamster who can’t
{ stop running in the treadmill,
double interest = balance * RATE / 100; an infinite loop never ends.

balance = balance + interest;

}

Here the programmer forgot to add a year++ command in the loop. As a result, the year always
stays at 1, and the loop never comes to an end.

Another common reason for an infinite loop is accidentally incrementing a counter that
should be decremented (or vice versa). Consider this example:

int year = 20;

while (year > 0)

{
doubTe interest = balance * RATE / 100;
balance = balance + interest;
year++;

}

The year variable really should have been decremented, not incremented. This is a common
error because incrementing counters is so much more common than decrementing that your
fingers may type the ++ on autopilot. As a consequence, year is always larger than 0, and the
loop never ends. (Actually, year may eventually exceed the largest representable positive inte-
ger and wrap around to a negative number. Then the loop ends—of course, with a completely
wrong result.)

Off-by-One Errors

Consider our computation of the number of years that are required to double an investment:

int year = 0;
while (balance < TARGET)

{
year++;
balance = balance * (1 + RATE / 100);
}
System.out.printIn("The investment doubled after "

+ year + " years.");

Should year start at 0 or at 1? Should you test for balance < TARGET or for balance <= TARGET? It is
easy to be off by one in these expressions.

146 Chapter 4 Loops

Some people try to solve off-by-one errors by randomly inserting +1 or -1 until the pro-
gram seems to work —a terrible strategy. It can take a long time to compile and test all the vari-
ous possibilities. Expending a small amount of mental effort is a real time saver.

Fortunately, off-by-one errors are easy to avoid, simply by

thinking through a couple of test cases and using the information
from the test cases to come up with a rationale for your decisions.
Should year start at 0 or at 1? Look at a scenario with simple val-
ues: an initial balance of $100 and an interest rate of 50 percent. After
year 1, the balance is $150, and after year 2 it is $225, or over $200. So
the investment doubled after 2 years. The loop executed two times,

An off-by-one error is
a common error
when programming
loops. Think through
simple test cases

to avoid this type

of error.

incrementing year each time. Hence year must start at 0, notat 1.

balance

100

4150

2125

In other words, the balance variable denotes the balance after the end of the year. At the outset,
the balance variable contains the balance after year 0 and not after year 1.

Next, should you use a < or <= comparison in the test? This is harder to figure out, because
it is rare for the balance to be exactly twice the initial balance. There is one case when this
happens, namely when the interest is 100 percent. The loop executes once. Now year is 1, and
balance is exactly equal to 2 * INITIAL_BALANCE. Has the investment doubled after one year? It
has. Therefore, the loop should not execute again. If the test condition is balance < TARGET, the
loop stops, as it should. If the test condition had been balance <= TARGET, the loop would have
executed once more.

In other words, you keep adding interest while the balance has not yer doubled.

According to legend,
the first bug was
found in the Mark Il, a huge electrome-
chanical computer at Harvard Univer-
sity. It really was caused by a bug—a
moth was trapped in a relay switch.

Actually, from the note that the
operator left in the log book next to
the moth (see the photo), it appears as
if the term “bug” had already been in
active use at the time.

The First Bug

Random Fact 4.1 The First Bug

The pioneering computer scientist
Maurice Wilkes wrote, “Somehow, at
the Moore School and afterwards, one
had always assumed there would be
no particular difficulty in getting pro-

o L "“}]
j/de _lerf“! Cosin e
1Say B : .ﬁ
B g 4 ﬁ:%'
]’-—’lr_JY Ak—{"\ | 1
r@:"wv 7 Brs, ok 5 ol ;
1vs cleard Lo |

grams right. | can remember the exact
instant in time at which it dawned on
me that a great part of my future life
would be spent finding mistakes in my
own programs.”

P -

.ixPc_ (Sl’ht.c.li‘\-:\.l\]

\iulw 4'70 ({24.'\3_! B
\e l\)-\ n F2la 9z

3
Se _-1 bu{1 innfx {eun_;L.

4.2 Problem Solving: Hand-Tracing 147

4.2 Problem Solving: Hand-Tracing

Hand-tracing is a
simulation of code
execution in which
you step through
instructions and
track the values of
the variables.

In Programming Tip 3.5, you learned about the method of hand-tracing. When you
hand-trace code or pseudocode, you write the names of the variables on a sheet of
paper, mentally execute each step of the code and update the variables.

It is best to have the code written or printed on a sheet of paper. Use a marker,
such as a paper clip, to mark the current line. Whenever a variable changes, cross out
the old value and write the new value below. When a program produces output, also
write down the output in another column.

Consider this example. What value is displayed?

int n = 1729;

int sum = 0;
while (n > 0)

{
int digit = n % 10;
sum = sum + digit;
n=n/10;

}

System.out.printIn(sum);

There are three variables: n, sum, and digit.

n Sum digit

The first two variables are initialized with 1729 and 0 before the loop is entered.

int n = 1729;
=D 1int sum = 0;
while (n > 0)

{
int digit = n % 10;
sum = sum + digit;
n=n/10;

}

System.out.printTn(sum);

Because n is greater than zero, enter the loop. The variable digit is set to 9 (the remain-
der of dividing 1729 by 10). The variable sumis setto 0+ 9 = 9.

int n = 1729;
int sum = 0;
while (n > 0)
{

int digit = n % 10;
o sum = sum + digit;
n=n/10;

}

System.out.printIn(sum);

148 Chapter4 Loops

Finally, n becomes 172. (Recall that the remainder in the division 1729 / 10 is dis-
carded because both arguments are integers.)
Cross out the old values and write the new ones under the old ones.

int n = 1729;

int sum = 0;

while (n > 0)

{
int digit = n % 10;
sum = sum + digit;

[@amin) n=n/10;
}

System.out.printTn(sum);

Now check the loop condition again.

int n = 1729;
int sum = 0;
C—> while (n > 0)

{
int digit = n % 10;
sum = sum + digit;
n=n/10;

}

System.out.printTn(sum);

Because n is still greater than zero, repeat
the loop. Now digit becomes 2, sumis set
to9+2=11,andnissetto 17.

Repeat the loop once again, setting digit
to7,sunto11+7=18,andnto 1.

Enter the loop for one last time. Now
digitis set to 1, sumto 19, and n becomes
zero.

[
ANIMATION
Tracing a Loop

[}

Hand-tracing can
help you understand
how an unfamiliar
algorithm works.

Hand-tracing can
show errors in code
or pseudocode.

SELF CHECK

4.2 Problem Solving: Hand-Tracing 149

int n = 1729;
int sum = 0;

C—> while (n > 0)
{ Because n equals zero,

int digit = n % 10; this condition is not true.
sum = sum + digit;
n=n/10;

}

System.out.println(sum);

The condition n > 0is now false. Continue with the statement after the loop.

int n = 1729;

int sum = 0;

while (n > 0)

{
int digit = n % 10;
sum = sum + digit;
n=n/ 10;

}

CC—> System.out.printin(sum);

This statement is an output statement. The value that is output is the value of sum,
which is 19.

Of course, you can get the same answer by just running the code. However, hand-
tracing can give you an insight that you would not get if you simply ran the code.
Consider again what happens in each iteration:

e We extract the last digit of n.
e We add that digit to sum.
o We strip the digit off n.

In other words, the loop forms the sum of the digits in n. You now know what the
loop does for any value of n, not just the one in the example. (Why would anyone
want to form the sum of the digits? Operations of this kind are useful for checking
the validity of credit card numbers and other forms of ID numbers—see Exercise
P4.32)

Hand-tracing does not just help you understand code that works correctly. It is
a powerful technique for finding errors in your code. When a program behaves in a
way that you don’t expect, get out a sheet of paper and track the values of the vari-
ables as you mentally step through the code.

You don’t need a working program to do hand-tracing. You can hand-trace
pseudocode. In fact, it is an excellent idea to hand-trace your pseudocode before you
go to the trouble of translating it into actual code, to confirm that it works correctly.

6. Hand-trace the following code, showing the value of n and the output.

int n = 5;
while (n >= 0)
{
n--;
System.out.print(n);
}

150 Chapter4 Loops

Practice It

7.

10.

Hand-trace the following code, showing the value of n and the output. What
potential error do you notice?

int n=1;

while (n <= 3)

{
System.out.print(n + ", ");
N++;

}

Hand-trace the following code, assuming that ais 2 and n is 4. Then explain what
the code does for arbitrary values of aand n.

int r = 1;

int i = 1;

while (i <= n)

{
r=r*

it

a;

}
Trace the following code. What error do you observe?
int n = 1;
while (n != 50)
{
System.out.printin(n);
n=n+ 10;
}
The following pseudocode is intended to count the number of digits in the
number n:

count = 1

temp = n

while (tewp > 10)
Increment count.
Divide tewp by 10.0.

Trace the pseudocode for n =123 and n= 100. What error do you find?

Now you can try these exercises at the end of the chapter: R4.3, R4.6.

4.3 The for Loop

It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

The for loop is
used when a

value runs from a
starting point to an
ending point with a
constant increment
or decrement.

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{

System.out.printin(counter);

counter++; // Update the counter

}

Because this loop type is so common, there is a special form for it, called the for loop
(see Syntax 4.2).

4.3 TheforlLoop 151

for (int counter = 1; counter <= 10; counter++)
{

System.out.printin(counter);

}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance
reaches the target. Another commonly used term
for a count-controlled loop is definite. You know
from the outset that the loop body will be executed
a definite number of times; ten times in our example.
In contrast, you do not know how many iterations
it takes to accumulate a target balance. Such aloop is
called indefinite.

The for loop neatly groups the initialization, con-
dition, and update expressions together. However, it You can visualize the for loop as
is important to realize that these expressions are not an orderly sequence of steps.
executed together (see Figure 3).

1
ANIMATION
The for Loop

e The initialization is executed once, before the loop is entered. @)
, IL} \ * The condition is checked before each iteration. € @
e The update is executed after each iteration.)

o Initialize counter for (int counter = 1; counter <= 10; counter++)

{

System.out.printin(counter);
counter = 1 }

e Check condition for (int counter = 1; counter <= 10; counter++)

{

System.out.printin(counter);
counter = 1 1

0 Execute loop body for (int counter = 1; counter <= 10; counter++)

{

System.out.println(counter);
counter = 1 3

o Update counter for (int counter = 1; counter <= 10; counter++)

{

counter = 2 }

System.out.printin(counter);

e Check condition again for (int counter = 1; counter <= 10; counter++)

{
Figure 3 System.out.printin(counter);
Execution of a counter = 2 }

for Loop

152 Chapter4 Loops

Syntax 4.2 for Statement
Syntax for (nitialization; condition; update)
statements
}
These three
expressions should be related.
q See page 199.
This initialization The condition is This vpdate is
happens once checked before executed after
before the loop staris. each iteration. each iteration,
for (int i = 5; i <= 10; i++)
{
The variable i is sum = sum + i; This loop executes 6 fimes.
defined only in this for loop. } ﬁ See page 196.
See page 193.
A for loop can count down instead of up:
for (int counter = 10; counter >= 0; counter--) . . .
The increment or decrement need not be in steps of 1:
for (int counter = 0; counter <= 10; counter = counter + 2) . . .
See Table 2 for additional variations.
So far, we have always declared the counter variable in the loop initialization:
for (int counter = 1; counter <= 10; counter++)
{
}
// counter no longer declared here
Table 2 for Loop Examples
Loop Values of i Comment
for (i = 0; 1 <= 5; i++) 012345 Note that the loop is executed 6 times. (See
Programming Tip 4.3 on page 156.)
for (i = 5; 1 >=0; i--) 543210 Use i-- for decreasing values.
for 1 =0; <9 1i=1+2) 02468 Usei =i + 2 forastep size of 2.
for (i =0; 4 !=9;i=1+2) 02468101214 ... You can use < or <= instead of !=to avoid
(infinite loop) this problem.
for (i =1; 1 <=20; 1 =1 *2) 124816 You can specify any rule for modifying 1,
such as doubling it in every step.
for (i = 0; 1 < str.lengthQ); i++) 012...untilthelastvalid Intheloop body, use the expression

index of the string str str.charAt(i) to get the ith character.

4.3 Theforloop 153

Such a variable is declared for all iterations of the loop, but you cannot use it after the
loop. If you declare the counter variable before the loop, you can continue to use it
after the loop:

int counter;
for (counter = 1; counter <= 10; counter++)

{

// counter still declared here

Here is a typical use of the for loop. We want to print the balance of our savings
account over a period of years, as shown in this table:

Year Balance

1 10500.00
year = 1

2 11025.00

3 11576.25

4 12155.06

5 12762.82

False
year =< nyears?

The for loop pattern applies because the variable
year starts at 1 and then moves in constant incre-

e True
ments until it reaches the target:
for (int year = 1; year <= nyears; year++) Update balance;
Print year and
Update balance. b a}fame
Print year and balance.
}
Following is the complete program. Figure 4
shows the corresponding flowchart.
year++

Figure 4 Flowchart of a for Loop

section_3/InvestmentTable.java

1 import java.util.Scanner;

2
3 /xx
4 This program prints a table showing the growth of an investment.
5 %
6 public class InvestmentTable
7 {
8 public static void main(String[] args)
9 {
10 final double RATE = 5;
11 final doubTe INITIAL_BALANCE = 10000;

154 Chapter4 Loops

12 doubTle balance = INITIAL_BALANCE;

13

14 System.out.print("Enter number of years: ");
15 Scanner in = new Scanner(System.in);

16 int nyears = in.nextInt();

17

18 // Print the table of balances for each year

19

20 for (int year = 1; year <= nyears; year++)
21 {

22 double interest = balance * RATE / 100;
23 balance = balance + interest;

24 System.out.printf("%4d %10.2f\n", year, balance);
25 }

26 }

27 1}

Program Run

Enter number of years: 10
1 10500.00
11025.00
11576.25
12155.06
12762.82
13400.96
14071.00
14774.55
15513.28
16288.95

O O oONO UL WN

=

Another common use of the for loop is to traverse all characters of a string:

for (int i = 0; i < str.length(Q); i++)
{

char ch = str.charAt(i);

Process ch
}

Note that the counter variable i starts at 0, and the loop is terminated when i reaches
the length of the string. For example, if str has length 5, 1 takes on the values 0, 1, 2, 3,
and 4. These are the valid positions in the string.

AANMATTALD 11. Write the for loop of the InvestmentTable.java program as awhile loop.
‘ 12. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)

{

}

13. Write a for loop that prints all even numbers between 10 and 20 (inclusive).

System.out.printin(n);

14. Write a for loop that computes the sum of the integers from 1 to n.

15. How would you modify the for loop of the InvestmentTable.java program to
print all balances until the investment has doubled?

Practice It Now you can try these exercises at the end of the chapter: R4.4, R4.10, P4.8, P4.13.

Programming Tip 4.1

Programming Tip 4.2

4.3 TheforLoop 155

Use for Loops for Their Intended Purpose Only

A for loop is an idiom for a loop of a particular form. A value runs from the start to the end,
with a constant increment or decrement.

The compiler won’t check whether the initialization, condition, and update expressions are
related. For example, the following loop is legal:

// Confusing—unrelated expressions
for (System.out.print("Inputs: "); in.hasNextDouble(); sum = sum + Xx)

{

x = in.nextDouble();

}

However, programmers reading such a for loop will be confused because it does not match
their expectations. Use awhile loop for iterations that do not follow the for idiom.

You should also be careful not to update the loop counter in the body of a for loop. Con-
sider the following example:

for (int counter = 1; counter <= 100; counter++)

{
if (counter % 10 == 0) // Skip values that are divisible by 10
{
counter++; // Bad style—you should not update the counter in a for loop
3
System.out.printin(counter);
}

Updating the counter inside a for loop is confusing because the counter is updated again at the
end of the loop iteration. In some loop iterations, counter is incremented once, in others twice.
This goes against the intuition of a programmer who sees a for loop.

If you find yourself in this situation, you can either change from a for loop to awhile loop,
or implement the “skipping” behavior in another way. For example:

for (int counter = 1; counter <= 100; counter++)

{
if (counter % 10 != 0) // Skip values that are divisible by 10
{
System.out.printin(counter);
}
}

Choose Loop Bounds That Match Your Task

Suppose you want to print line numbers that go from 1 to 10. Of course, you will use a loop:
for (int i =1; i <= 10; i++)

The values for i are bounded by the relation 1 < i< 10. Because there are < on both bounds, the
bounds are called symmetric.
When traversing the characters in a string, it is more natural to use the bounds

for (int i = 0; i < str.length(Q); i++)

In this loop, i traverses all valid positions in the string. You can access the ith character as str.
charAt(i). The values for i are bounded by 0 <1 < str.length(), with a < to the leftand a < to the
right. That is appropriate, because str.length() is not a valid position. Such bounds are called
asymmetric.

In this case, it is not a good idea to use symmetric bounds:

for (int i = 0; i <= str.length() - 1; i++) // Use < instead

The asymmetric form is easier to understand.

156 Chapter4 Loops

Programming Tip 4.3

Count Iterations

Finding the correct lower and upper bounds for an iteration can be confusing. Should you
startat O or at 1? Should you use <= b or < b as a termination condition?

Counting the number of iterations is a very useful device for better understanding a loop.
Counting is easier for loops with asymmetric bounds. The loop

for (int i = a; 1 < b; i++)
is executed b - a times. For example, the loop traversing the characters in a string,
for (int i = 0; i < str.lengthQ); i++)

runs str.length() times. That makes perfect sense, because there are str.length() characters in
astring.
The loop with symmetric bounds,

for (int i = a; 1 <= b; i++)

is executed b - a + 1 times. That “+1” is the source of many programming errors.

For example,

for (int i = 0; i <= 10; i++)
runs 11 times. Maybe that is what you want; if not, start at 1 or use < 10.

One way to visualize this “+1” error is
by looking at a fence. Each section has one
fence post to the left, and there is a final post
on the right of the last section. Forgetting to
count the last value is often called a “fence
posterror”.

How many posts do you need for a fence
with four sections? It is easy to be “off by one”
with problems such as this one.

4.4 The do Loop

The do loop is
appropriate when
the loop body
must be executed
at least once.

ONLINE EXAMPLE

A program to
illustrate the use of
the do loop for input
validation.

Sometimes you want to execute the body of aloop at least once and perform the loop
test after the body is executed. The do loop serves that purpose:

do
{

Statements

a/hi le (condition);

The body of the do loop is executed first, then the condition is tested.

Some people call such a loop a post-test loop because the condition is tested after
completing the loop body. In contrast, while and for loops are pre-test loops. In those
loop types, the condition is tested before entering the loop body.

A typical example for a do loop is input validation. Suppose you ask a user to enter
a value < 100. If the user doesn’t pay attention and enters a larger value, you ask
again, until the value is correct. Of course, you cannot test the value until the user has
entered it. This is a perfect fit for the do loop (see Figure 5):

Practice It

Programming Tip 4.4

16.

17.

18.

19.

20.

Figure 5 Flowchart of a do Loop

int value;

do

{
System.out.print("Enter an integer < 100: ");
value = in.nextInt();

}

while (value >= 100);

Suppose that we want to check for inputs that are
at least 0 and at most 100. Modify the do loop for
this check.

Rewrite the input check do loop using awhile loop.
What is the disadvantage of your solution?

Suppose Java didn’t have a do loop. Could you
rewrite any do loop as awhile loop?

Write a do loop that reads integers and computes
their sum. Stop when reading the value 0.

4.4 Thedoloop 157

Prompt user
to enter
a value < 100

Copy the input
to value

True
value = 100?

False

Write a do loop that reads integers and computes their sum. Stop when reading a
zero or the same value twice in a row. For example, if the inputis 12 3 4 4, then

the sum is 14 and the loop stops.

Now you can try these exercises at the end of the chapter: R4.9, R4.16, R4.17.

Flowcharts for Loops

In Section 3.5, you learned how to use flowcharts to visualize the flow of control in a program.
There are two types of loops that you can include in a flowchart; they correspond to a while
loop and a do loop in Java. They differ in the placement of the condition—either before or after
the loop body.

Fal
Condition? ase

True

Loop body True

Loop body

Condition?

False

As described in Section 3.5, you want to avoid “spaghetti code” in your flowcharts. For loops,
that means that you never want to have an arrow that points inside a loop body.

158 Chapter4 Loops

4.5 Application: Processing Sentinel Values

A sentinel value
denotes the end of a
data set, but it is not
part of the data.

In this section, you will learn how to write loops that read and process a sequence of
input values.

Whenever you read a sequence of inputs, you
need to have some method of indicating the end
of the sequence. Sometimes you are lucky and no
input value can be zero. Then you can prompt the
user to keep entering numbers, or 0 to finish the
sequence. If zero is allowed but negative numbers
are not, you can use —1 to indicate termination.

Such a value, which is not an actual input,
but serves as a signal for termination, is called a
sentinel.

Let’s put this technique to work in a program
that computes the average of a set of salary values.
In our sample program, we will use -1 as a sentinel.
An employee would surely not work for a negative
salary, but there may be volunteers who work for
free.

Inside the loop, we read an input. If the input is
not—1, we process it. In order to compute the aver- In the military, a sentinel guards

age, we need the total sum of all salaries, and the @ border or passage. In computer
number of inputs science, a sentinel value denotes

the end of an input sequence or the

salary = in.nextDouble(); border between input sequences.
if (salary != -1)
{

sum = sum + salary;
count++;

}
We stay in the loop while the sentinel value is not detected.

while (salary != -1)
{

}

There is just one problem: When the loop is entered for the first time, no data value
has been read. We must make sure to initialize salary with some value other than the
sentinel:

double salary = 0;
// Any value other than -1 will do

After the loop has finished, we compute and print the average. Here is the complete
program:
section_5/SentinelDemo.java

import java.util.Scanner;

/'k',“:

This program prints the average of salary values that are terminated with a sentinel.

ViHhWN=

You can use a
Boolean variable to
control a loop. Set
the variable before
entering the loop,
then set it to the
opposite to leave
the loop.

4.5 Application: Processing Sentinel Values

6 public class SentinelDemo

7 {

public static void main(String[] args)

{

double sum = 0;

int count = 0;

double salary = 0;

System.out.print("Enter salaries, -1 to finish: ");
Scanner in = new Scanner(System.in);

// Process data until the sentinel is entered

while (salary != -1)
{
salary = in.nextDouble();
if (salary != -1)
{
sum = sum + salary;
count++;
}
}

// Compute and print the average

if (count > 0)
{

doubTe average = sum / count;

System.out.printin("Average salary: " + average);
}
else
{
System.out.printin("No data");
}

Program Run

Enter salaries, -1 to finish: 10 10 40 -1
Average salary: 20

159

Some programmers don’t like the “trick” of initializing the input variable with a value
other than the sentinel. Another approach is to use a Boolean variable:

System.out.print("Enter salaries, -1 to finish: ");
boolean done = false;
while (!done)

{
value = in.nextDouble();
if (value == -1)
{
done = true;
}
else
Process valve.
}
}

Special Topic 4.1 on page 160 shows an alternative mechanism for leaving such aloop.

160 Chapter4 Loops

Now consider the case in which any number (positive, negative, or zero) can be
an acceptable input. In such a situation, you must use a sentinel that is not a number
(such as the letter QQ). As you have seen in Section 3.8, the condition

in.hasNextDouble()

is false if the next input is not a floating-point number. Therefore, you can read and
process a set of inputs with the following loop:
System.out.print("Enter values, Q to quit: ");

while (in.hasNextDouble())
{

value = in.nextDouble();
Process valve.

21. What does the SentinelDemo.java program print when the user immediately types
-1 when prompted for a value?

22. Why does the SentinelDemo.java program have rwo checks of the form

salary != -1

23. What would happen if the declaration of the salary variable in SentinelDemo. java
was changed to

double salary = -1;

24. Inthe last example of this section, we prompt the user “Enter values, Q to quit.”
What happens when the user enters a different letter?

25. What is wrong with the following loop for reading a sequence of values?

System.out.print("Enter values, Q to quit: ");
do

double value = in.nextDouble();
sum = sum + value;
count++;

}

while (in.hasNextDouble());

Practice It Now you can try these exercises at the end of the chapter: R4.13, P4.27, P4.28.

Special Topic 4.1 The Loop-and-a-Half Problem and the break Statement

Consider again this loop for processing inputs until a sentinel value has been reached:

boolean done = false;

while (!done)

{
double value = in.nextDouble();
if (value == -1)

{

done = true;
}
else
{

Process valve.
}

Special Topic 4.2

VIDEO EXAMPLE 4.1 Evaluating a Cell Phone Plan

PLUS

4.5 Application: Processing Sentinel Values 161

The actual test for loop termination is in the middle of the loop, not at the top. This is called a
loop and a half because one must go halfway into the loop before knowing whether one needs
to terminate.

As an alternative, you can use the break reserved word.

while (true)

{
double value = in.nextDouble();
if (value == -1) { break; }
Process valve.

}

The break statement breaks out of the enclosing loop, independent of the loop condition.
When the break statement is encountered, the loop is terminated, and the statement following
the loop is executed.

In the loop-and-a-half case, break statements can be beneficial. Butitis difficult to lay down
clear rules as to when they are safe and when they should be avoided. We do not use the break
statement in this book.

Redirection of Input and Output

Consider the SentinelDemo program that computes the average . directi

value of an input sequence. If you use such a program, then itis ~ USe Input redirection to
N . . read input from a file.

quite likely that you already have the values ina file, and it seems j5e output redirection to

a shame that you have to type them all in again. The command capture program output

line interface of your operating system provides a way to linka inafile.

file to the input of a program, as if all the characters in the file had

actually been typed by a user. If you type

java SentinelDemo < numbers.txt

the program is executed, but it no longer expects input from the keyboard. All input com-
mands get their input from the file numbers. txt. This process is called input redirection.

Input redirection is an excellent tool for testing programs. When you develop a program
and fix its bugs, it is boring to keep entering the same input every time you run the program.
Spend a few minutes putting the inputs into a file, and use redirection.

You can also redirect output. In this program, that is not terribly useful. If you run

java SentinelDemo < numbers.txt > output.txt
the file output. txt contains the input prompts and the output, such as

Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Enter salaries, -1 to finish: Enter salaries, -1 to finish:
Average salary: 15

However, redirecting output is obviously useful for programs that produce lots of output.
You can format or print the file containing the output.

In this Video Example, you will learn how to design a
program that computes the cost of a cell phone plan
from actual usage data.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

162 Chapter 4 Loops

4.6 Problem Solving: Storyboards

A storyboard consists
of annotated
sketches for each
step in an action
sequence.

Developing a
storyboard helps you
understand the
inputs and outputs
that are required for
a program.

Figure 6
Storyboard for the
Design of a Web
Application

When you design a program that interacts with a user, you need to make a plan for
that interaction. What information does the user provide, and in which order? What
information will your program display, and in which format? What should happen
when there is an error? When does the program quit?

This planning is similar to the development of a movie or a computer game, where
storyboards are used to plan action sequences. A storyboard is made up of panels that
show a sketch of each step. Annotations explain what is happening and note any spe-
cial situations. Storyboards are also used to develop software—see Figure 6.

Making a storyboard is very helpful when you begin designing a program. You
need to ask yourself which information you need in order to compute the answers
that the program user wants. You need to decide how to present those answers. These
are important considerations that you want to settle before you design an algorithm
for computing the answers.

Let’s look at a simple example. We want to write a program that helps users with
questions such as “How many tablespoons are in a pint?” or “How many inches are
30 centimeters?”

What information does the user provide?

* The quantity and unit to convert from
 The unit to convert to

What if there is more than one quantity? A user may have a whole table of centimeter
values that should be converted into inches.

What if the user enters units that our program doesn’t know how to handle, such
as angstrom?

What if the user asks for impossible conversions, such as inches to gallons?

Back Back Back Still $0

Dtwmrvatonsuss
TR i g,
e o o g e
IRy ih 24

o b g kit

Slide 20

Idon't getit Slide 18

4.6 Problem Solving: Storyboards 163

Let’s get started with a storyboard panel. It is a good idea to write the user inputs in
adifferent color. (Underline them if you don’t have a color pen handy.)

Converting a Sequence of Values

What unit do you want to convert from? cwm
What unit do you want to convert to? in
Enter values, terminated by zero ———— Allows conversion of multiple values

30

30em=11.81in

100 T Format wmakes clear what got converted
100 cwm = 39.37 in

0

What unit do you want to convert from?

The storyboard shows how we deal with a potential confusion. A user who wants to
know how many inches are 30 centimeters may not read the first prompt carefully
and specify inches. But then the output is “30 in = 76.2 cm”, alerting the user to the
problem.

The storyboard also raises an issue. How is the user supposed to know that “cm”
and “in” are valid units? Would “centimeter” and “inches” also work? What happens
when the user enters a wrong unit? Let’s make another storyboard to demonstrate
error handling.

Handling Unknown Units (needs improvement)

What unit do you want to convert from? cwm
What unit do you want to convert 07 inches
Sorry, unknown unit.

What unit do you want to convert to? inch
Sorry, unknown unit.

What unit do you want fo convert to? grrr

To eliminate frustration, it is better to list the units that the user can supply.

Frowm unit (in, £f, mi, mw, cm, w, kwm, 0z, Ib, g, kg, tsp, thsp, pint, gal): cw
To unit: in
T No need to list the units again

We switched to a shorter prompt to make room for all the unit names. Exercise R4.21
explores a different alternative.

There is another issue that we haven’t addressed yet. How does the user quit the
program? The first storyboard suggests that the program will go on forever.

We can ask the user after seeing the sentinel that terminates an input sequence.

164 Chapter4 Loops

Exiting the Program

From unit (in, ft, mi, mm, cm, wm, kw, oz, Ib, g, kg, tsp, thsp, pint, gal): cm
To unit: in

Enter values, terminated by zero

30

30cm=11.811in

0

____— Sentinel triggers the prompt to exit
More conversions (y, n)? n

(Program exits)

As you can see from this case study, a storyboard is essential for developing a work-
ing program. You need to know the flow of the user interaction in order to structure
your program.

26. Provide a storyboard panel for a program that reads a number of test scores and
prints the average score. The program only needs to process one set of scores.
Don’t worry about error handling.

SELF CHECK

27. Google has a simple interface for converting units. You just type the question,
and you get the answer.

C()Ugle |Huw many inches in 30 cm [Search | asvances soarn

web B Show options... Results 1 - 10 of about 4,130,000 for How many Inches In 30 cm. (0.24 seconds)

&7 30 centimeters = 11.8110236 inches

More about calculator,

Make storyboards for an equivalent interface in a Java program. Show a scenario
in which all goes well, and show the handling of two kinds of errors.

28. Consider a modification of the program in Self Check 26. Suppose we want to
drop the lowest score before computing the average. Provide a storyboard for
the situation in which a user only provides one score.

29. What is the problem with implementing the following storyboard in Java?

Cowputing Multiple Averages

Enter scores: 90 80 90 100 80
The average is 88

Enter scores: 100 70 70 100 80
The average is 88
Enter scores: -1
(Program exits)

-1 is used as a sentinel to exit the program

30. Produce astoryboard for a program that compares the growth of a $10,000
investment for a given number of years under two interest rates.

Practice It Now you can try these exercises at the end of the chapter: R4.21, R4.22, R4.23.

4.7 Common Loop Algorithms 165

4.7 Common Loop Algorithms

To compute an
average, keep a
total and a count
of all values.

To count values that
fulfill a condition,
check all values and
increment a counter
for each match.

In the following sections, we discuss some of the most common algorithms that are
implemented as loops. You can use them as starting points for your loop designs.

4.7.1 Sum and Average Value

Computing the sum of a number of inputs is a very common task. Keep a running
total, a variable to which you add each input value. Of course, the total should be
initialized with O.

double total = 0;
while (in.hasNextDouble())

double input = in.nextDouble();
total = total + input;
}

Note that the total variable is declared outside the loop. We want the loop to update
a single variable. The input variable is declared inside the loop. A separate variable is
created for each input and removed at the end of each loop iteration.

To compute an average, count how many values you have, and divide by the count.
Be sure to check that the count is not zero.

double total = 0;
int count = 0;
while (in.hasNextDouble())

double input = in.nextDouble();
total = total + input;
count++;

}

double average = 0;

if (count > 0)

{

average = total / count;

}

4.7.2 Counting Matches

You often want to know how many values fulfill a particular condition. For example,
you may want to count how many spaces are in a string. Keep a counter, a variable
that is initialized with 0 and incremented whenever there is a match.

int spaces = 0;
for (int i = 0; i < str.length(Q); i++)
{

char ch = str.charAt(i);

if (ch=="")

{

spaces++;
}

}

For example, if stris "My Fair Lady", spaces is incremented twice (when i is 2 and 7).

166 Chapter4 Loops

Note that the spaces variable is declared outside the loop. We want the loop to
update a single variable. The ch variable is declared inside the loop. A separate variable
is created for each iteration and removed at the end of each loop iteration.

This loop can also be used for scanning inputs. The following loop reads text, a
word at a time, and counts the number of words with at most three letters:

int shortWords = 0;

while (in.hasNext())

{
String input = in.next(Q);
if (input.length() <= 3)
{

}

shortWords++;

In a loop that counts matches,
a counter is incremented
whenever a match is found.

4.7.3 Finding the First Match

o When you count the values that fulfill a condition, you need to look at all values.
If your goal is to find
amatch, exitthe loop ~ However, if your task is to find a match, then you can stop as soon as the condition is
when the match fulfilled.
is found. Here is a loop that finds the first space in a string. Because we do not visit all ele-
ments in the string, awhile loop is a better choice than a for loop:

boolean found = false;

char ch = '?';

int position = 0;

while (!found && position < str.length())

! ch = str.charAt(position);
if (ch == " ') { found = true; }
else { position++; }

}

If a match was found, then found is true, ch is
the first matching character, and position is
the index of the first match. If the loop did
not find a match, then found remains false
after the end of the loop.

Note that the variable ch is declared out-
side the while loop because you may want to
use the input after the loop has finished. If it
had been declared inside the loop body, you when searching, you look at items until a
would not be able to use it outside the loop. match is found.

To find the largest
value, update the
largest value seen so
far whenever you see
a larger one.

4.7 Common Loop Algorithms 167

4.7.4 Prompting Until a Match is Found

In the preceding example, we searched a string for a character that matches a condi-
tion. You can apply the same process to user input. Suppose you are asking a user to
enter a positive value < 100. Keep asking until the user provides a correct input:

boolean valid = false;
doubTe input = 0;
while (!valid)
{
System.out.print("Please enter a positive value < 100: ");
input = in.nextDouble();
if (0 < input && input < 100) { valid = true; }
else { System.out.printin("Invalid input."); }
}

Note that the variable input is declared ouzside the while loop because you will want to
use the input after the loop has finished.

4.7.5 Maximum and Minimum

To compute the largest value in a sequence, keep a variable that stores the largest ele-
ment that you have encountered, and update it when you find a larger one.

doubTe Targest = in.nextDouble();
while (in.hasNextDouble())

doubTe input = in.nextDouble();
if (input > largest)
{
Targest = input;
}
}

This algorithm requires that there is at least one input.
To compute the smallest value, simply reverse the comparison:

double smallest = in.nextDouble();
while (in.hasNextDouble())

{
double input = in.nextDouble();
if (input < smallest)
{
smallest = input;
}
}

To find the height of the tallest bus rider,
remember the largest value so far, and
update it whenever you see a taller one.

168 Chapter4 Loops

To compare adjacent
inputs, store the
preceding input in

a variable.

ONLINE EXAMPLE
& A program using

common loop

algorithms.

SELF CHECK

4.7.6 Comparing Adjacent Values

When processing a sequence of values in a loop, you sometimes need to compare a
value with the value that just preceded it. For example, suppose you want to check
whether a sequence of inputs contains adjacent duplicates suchas17 29 94 9.

How can you compare the current input B
with the preceding one? At any time, input >

Now you face a challenge. Consider the typical loop for reading a value:

double input;
while (in.hasNextDouble())
{

input = in.nextDouble();

B , ry
vf‘

contains the current input, overwriting the
previous one.

The answer is to store the previous input,

like this: : -
double input = 0; When comparing adjacent values, store
while (in.hasNextDouble()) the previous value in a variable.
{

double previous = input;
input = in.nextDouble();
if (input == previous)

{
}

System.out.printin("Duplicate input");

}

One problem remains. When the loop is entered for the first time, input has not yet
been read. You can solve this problem with an initial input operation outside the loop:

31.

32.
33.

34.

doubTle input = in.nextDouble();
while (in.hasNextDouble())
{
double previous = input;
input = in.nextDouble();
if (input == previous)

{
}

System.out.printIn("Duplicate input™);

What total is computed when no user input is provided in the algorithm in
Section 4.7.1?

How do you compute the total of all positive inputs?

What are the values of position and ch when no match is found in the algorithm
in Section 4.7.3?

What is wrong with the following loop for finding the position of the first space
in a string?

boolean found = false;

for (int position = 0; !found & position < str.length(); position++)

{

Practice It

HOW TO 4.1

Step 1

4.7 Common Loop Algorithms 169

char ch = str.charAt(position);
if (ch == "' ") { found = true; }
}

35. How do you find the position of the last space in a string?

36. What happens with the algorithm in Section 4.7.5 when no input is provided at
all? How can you overcome that problem?

Now you can try these exercises at the end of the chapter: P4.5, P4.9, P4.10.

Writing a Loop

This How To walks you through the process of implementing a
loop statement. We will illustrate the steps with the following
example problem:

Read twelve temperature values (one for each month), and dis-
play the number of the month with the highest temperature. For
example, according to http://worldclimate.com, the average maxi-
mum temperatures for Death Valley are (in order by month, in
degrees Celsius):

18.2 22.6 26.4 31.1 36.6 42.2 45.7 44.5 40.2 33.1 24.2 17.6

In this case, the month with the highest temperature (45.7 degrees
Celsius) is July, and the program should display 7.

Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
e Reading another item.

e Updating a value (such as a bank balance or total).

* Incrementing a counter.

If you can’t figure out what needs to go inside the loop, start by writing down the steps that
you would take if you solved the problem by hand. For example, with the temperature reading
problem, you might write

Read first value.

Read second value.

If second value is higher than the first, set highest temperature to that value, highest month to Z.

Read next value.

If value is higher than the first and second, set highest temperature to that value, highest month to 3.

Read next value.

If value is higher than the highest temperature seen so far, set highest temperature to that valve,
highest month to 4.

Now look at these steps and reduce them to a set of uniform actions that can be placed into the
loop body. The first action is easy:

Read next value.

The next action is trickier. In our description, we used tests “higher than the first”, “higher
than the first and second”, “higher than the highest temperature seen so far”. We need to settle
on one test that works for all iterations. The last formulation is the most general.

170 Chapter4 Loops

Step 2

Step 3

Step 4

Similarly, we must find a general way of setting the highest month. We need a variable that
stores the current month, running from 1 to 12. Then we can formulate the second loop action:

If value is higher than the highest temperature, set highest temperature to that value,
highest wonth to current wonth.

Altogether our loop is

Repeat
Read next value.
If value is higher than the highest temperature,
set highest temperature to that value,
set highest month to current month.
Increment current month.

Specify the loop condition.

What goal do you want to reach in your loop? Typical examples are
e Hasa counter reached its final value?

* Have you read the last input value?

* Hasavalue reached a given threshold?

In our example, we simply want the current month to reach 12.
Determine the loop type.

We distinguish between two major loop types. A count-controlled loop is executed a defi-
nite number of times. In an event-controlled loop, the number of iterations is not known in
advance—the loop is executed until some event happens.

Count-controlled loops can be implemented as for statements. For other loops, consider
the loop condition. Do you need to complete one iteration of the loop body before you can
tell when to terminate the loop? In that case, choose a do loop. Otherwise, use awhile loop.

Sometimes, the condition for terminating a loop changes in the middle of the loop body. In
that case, you can use a Boolean variable that specifies when you are ready to leave the loop.
Follow this pattern:

boolean done = false;
while (!done)
{
Do some work.
If all work has been completed

{
done = true;
}
else
{
Do wore work.
}

}

Such a variable is called a flag.
In summary,

* If you know in advance how many times a loop is repeated, use a for loop.
e If the loop body must be executed at least once, use a do loop.
* Otherwise, use awhile loop.

In our example, we read 12 temperature values. Therefore, we choose a for loop.
Set up variables for entering the loop for the first time.

List all variables that are used and updated in the loop, and determine how to initialize them.
Commonly, counters are initialized with 0 or 1, totals with Q.

Step 5

Step 6

Step 7

4.7 Common Loop Algorithms 171

In our example, the variables are

current month
highest value
highest month

We need to be careful how we set up the highest temperature value. We can’t simply set it to
0. After all, our program needs to work with temperature values from Antarctica, all of which
may be negative.
A good option is to set the highest temperature value to the first input value. Of course,
then we need to remember to read in only 11 more values, with the current month starting at 2.
We also need to initialize the highest month with 1. After all, in an Australian city, we may
never find a month that is warmer than January.

Process the result after the loop has finished.

In many cases, the desired result is simply a variable that was updated in the loop body. For
example, in our temperature program, the result is the highest month. Sometimes, the loop
computes values that contribute to the final result. For example, suppose you are asked to
average the temperatures. Then the loop should compute the sum, not the average. After the
loop has completed, you are ready to compute the average: divide the sum by the number of
inputs.

Here is our complete loop.

Read first value; store as highest valuve.
highest wmonth = 1
For current month from Z to 12
Read next value.
If value is higher than the highest value
Set highest value to that value.
Set highest month to current month.

Trace the loop with typical examples.

Hand trace your loop code, as described in Section 4.2. Choose example values that are not too
complex—executing the loop 3-5 times is enough to check for the most common errors. Pay
special attention when entering the loop for the first and last time.

Sometimes, you want to make a slight modification to make tracing feasible. For example,
when hand-tracing the investment doubling problem, use an interest rate of 20 percent rather
than 5 percent. When hand-tracing the temperature loop, use 4 data values, not 12.

Let’s say the dataare 22.6 36.6 44.5 24.2. Here is the walkthrough:

current month | current value | highest month | highest value

X 12%
z 3676 L 3676
2 445 3 445

4 4.1

The trace demonstrates that highest month and highest valve are properly set.
Implement the loop in Java.

Here’s the loop for our example. Exercise P4.4 asks you to complete the program.

double highestValue;
highestValue = in.nextDouble();
int highestMonth = 1;

172 Chapter4 Loops

WORKED EXAMPLE 4.1 Credit Card Processing

c} This Worked Example uses a loop to remove spaces from a

for (int currentMonth = 2; currentMonth <= 12; currentMonth++)
{
double nextValue = in.nextDouble();
if (nextValue > highestValue)
{
highestValue = nextValue;
highestMonth = currentMonth;
}
}
System.out.printIn(highestMonth);

credit card number.

4.8 Nested Loops

When the body of a
loop contains
another loop, the
loops are nested. A
typical use of nested
loops is printing a
table with rows

and columns.

In Section 3.4, you saw how to nest two if statements. Similarly, complex iterations
sometimes require a nested loop: a loop inside another loop statement. When pro-
cessing tables, nested loops occur naturally. An outer loop iterates over all rows of the
table. An inner loop deals with the columns in the current row.

In this section you will see how to printa table. For simplicity, we will simply print
the powers of x, x”, as in the table at right.

Here is the pseudocode for printing the table:

X 1 X 2 X 3 X4
Print table header.
For x from 1 0 10 1 1 1 1
Pr!n'r table 'row.) 4 g 16
Print new line.

How do you print a table row? You need to print a
value for each exponent. This requires a second loop.

Fornfrom"HM 10 100 1000 10000
Print x".

This loop must be placed inside the preceding loop. We say that the inner loop is
nested inside the outer loop.

The hour and minute displays in a digital clock are an
example of nested loops. The hours loop 12 times, and
for each hour, the minutes loop 60 times.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

Figure 7
Flowchart of a Nested Loop

4.8 Nested Loops

x=1
This loop is nested
False <107 in the outer loop.

True R

False n<d?

True
Print x7
Print new line

n++

x++

173

There are 10 rows in the outer loop. For each x, the program prints four columns
in the inner loop (see Figure 7). Thus, a total of 10 x 4 = 40 values are printed.
Following is the complete program. Note that we also use loops to print the table
header. However, those loops are not nested.

section_8/PowerTable.java

/'.’r‘,’r

*/

This program prints a table of powers of x.

public class PowerTable

{

public static void main(String[] args)

{

final int NMAX =
final double XMAX =

// Print table header

10;

for (int n = 1; n <= NMAX; n++)

{

System.out.printf("%10d", n);

}

System.out.printin();

174 Chapter4 Loops

for (int n = 1; n <= NMAX; n++)
{
System.out.printf("%10s", "x ");

}
System.out.printin();

// Print table body

for (double x = 1; x <= XMAX; X++)
{
// Print table row

for (int n = 1; n <= NMAX; n++)
{
System.out.printf("%10.0f", Math.pow(x, n));

}
System.out.printin();

Program Run

37.

38.
39.
40.

41.

1 2 3 4
X X X X
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561
10 100 1000 10000

Why is there a statement System.out.printn(); in the outer loop but not in the
inner loop?

0 55

How would you change the program to display all powers from x” to x
If you make the change in Self Check 38, how many values are displayed?
What do the following nested loops display?

for (int i = 0; 1 < 3; i++)

{

for (int j = 0; j < 4; j++)

{

System.out.print(i + j);

}

System.out.println();
}
Write nested loops that make the following pattern of brackets:
(e
(100110

(1100

4.8 Nested Loops 175
Practice It Now you can try these exercises at the end of the chapter: R4.27, P4.19, P4.21.

Table 3 Nested Loop Examples

Nested Loops Output Explanation
for (i = 1; i <= 3; i++) ok Prints 3 rows of 4
{ ok asterisks each.

for (G = 1; j <= 4; j++) { Print "} s
System.out.println(Q);

}
for (i =1; i <= 4; i++) Hk Prints 4 rows of 3
{ Hokk asterisks each.
for (G = 1; j <= 3; j++) { Print "s" } s
System.out.printinQ); P
}
for (i =1; i <= 4; i++) * Prints 4 rows of
{ o lengths 1, 2, 3, and 4.

for (= 1; j <= 1; j++) { Print "s" } s
System.out.println(Q;

}
for (i =1; 1 <= 3; i++) — Prints asterisks in
{ S even columns,
for (3 = 1; j <= 5; j++) —Ho dashes in odd
{ columns.
if (5 %2 ==0) { Print "*" }
else { Print "-" }
}
System.out.println(Q);
}
for (i =1; 1 <= 3; i++) * % o Prints a
{ % checkerboard
for (G = 1; j <= 5; j++) 3 K pattern.

{
if (% 2==73%2) {Print "=" }
else { Print " " }

b

System.out.printin();

WORKED EXAMPLE 4.2 Manipulating the Pixels in an Image

This Worked Example shows how to use nested loops for
manipulating the pixels in an image. The outer loop tra-
verses the rows of the image, and the inner loop accesses
each pixel of a row.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

176 Chapter4 Loops

4.9 Application: Random Numbers
and Simulations

In a simulation, you
use the computer to
simulate an activity.

You can introduce
randomness by

calling the random
number generator.

A simulation program uses the computer to simulate an activity in the real world (or
an imaginary one). Simulations are commonly used for predicting climate change,
analyzing traffic, picking stocks, and many other applications in science and busi-
ness. In many 51mulat1ons, one or more loops are used to modify the state of a system
and observe the changes. You will see examples in the following sections.

4.9.1 Generating Random Numbers

Many events in the real world are difficult to predict with absolute precision, yet we
can sometimes know the average behavior quite well. For example, a store may know
from experience that a customer arrives every five minutes. Of course, that is an aver-
age—customers don’t arrive in five minute intervals. To accurately model customer
traffic, you want to take that random fluctuation into account. Now, how can you
run such a simulation in the computer?

The Java library has a random number generator, which produces numbers that
appear to be completely random. CallingMath. random() yields a random floating-point
number thatis = 0 and < 1. Call Math. random() again, and you get a different number.

The following program calls Math. random() ten times.

section_9_1/RandomDemo.java
/',"c',"c

This program prints ten random numbers between 0 and 1.

1

2

3

4 public class RandomDemo

5 {

6 public static void main(String[] args)
7

8

9

{
for (int i =1; i <= 10; i++)
{
10 double r = Math.random();
11 System.out.printin(r);
12 }
13 }

Program Run

0.6513550469421886
0.920193662882893
0.6904776061289993
0.8862828776788884
0.7730177555323139
0.3020238718668635
0.0028504531690907164
0.9099983981705169
0.1151636530517488
0.1592258808929058

4.9 Application: Random Numbers and Simulations 177

Actually, the numbers are not completely random. They are drawn from sequences
of numbers that don’t repeat for a long time. These sequences are actually computed
from fairly simple formulas; they just behave like random numbers (see Exercise
P4.25). For that reason, they are often called pseudorandom numbers.

4.9.2 Simulating Die Tosses

In actual applications, you need to transform the output from
the random number generator into different ranges. For exam-
ple, to simulate the throw of a die, you need random integers
between 1 and 6.

Here is the general recipe for computing random integers
between two bounds a and b. As you know from Program-
ming Tip 4.3 onpage 156, thereareb - a + 1values betweenaand
b, including the bounds themselves. First compute

(int) (Math.random() * (b - a + 1))

to obtain a random integer between O and b - a, then add a, yielding a random value
between aand b:

int r = (int) (Math.random() * (b - a + 1)) + a;

Here is a program that simulates the throw of a pair of dice:

section_9_2/Dice.java
/s‘:s‘c

This program simulates tosses of a pair of dice.

1

2

3

4 public class Dice

5 {

6 public static void main(String[] args)
7

8

9

{

for (int i = 1; 1 <= 10; i++)

{
10 // Generate two random numbers between 1 and 6
11
12 int d1 = (int) (Math.random() * 6) + 1;
13 int d2 = (int) (Math.random() * 6) + 1;
14 System.out.printin(dl + " " + d2);
15 }
16 System.out.println();
17 }
18 }

Program Run

=

Voo bR VTNV
NWRMADNRNR

178 Chapter4 Loops

4.9.3 The Monte Carlo Method

The Monte Carlo method is
an ingenious method for find-
ing approximate solutions to
problems that cannot be pre-
cisely solved. (The method is
named after the famous casino in
Monte Carlo.) Here is a typical
example. It is difficult to com-
pute the number 7, but you can
approximate it quite well with
the following simulation.

Simulate shooting a dart into a square surrounding a circle of radius 1. That is easy:
generate random x and y coordinates between—1 and 1.

If the generated point lies inside the circle, we count 5
it as a hit. That is the case when x? + y* = 1. Because our
shots are entirely random, we expect that the ratio of hits
/ tries is approximately equal to the ratio of the areas of
the circle and the square, that is, 7 / 4. Therefore, our
estimate for 7 is 4 x hits / tries. This method yields an
estimate for 7, using nothing but simple arithmetic.

To generate a random floating-point value between -1
and 1, you compute:

double r = Math.random(); // O<r<1
double x = -1 +2 *r; //-1=sx<1

As r ranges from O (inclusive) to 1 (exclusive), x ranges from —1 + 2 x 0 = -1 (inclusive)
to-1+2x 1 =1 (exclusive). In our application, it does not matter that x never reaches
1. The points that fulfill the equation x =1 lie on a line with area 0.

Here is the program that carries out the simulation:

section_9_3/MonteCarlo.java
/7’:7‘:

This program computes an estimate of pi by simulating dart throws onto a square.

1

2

3 %*

4 public class MonteCarlo

5 {

6 public static void main(String[] args)
7

8

9

{

final int TRIES = 10000;
10 int hits = 0;
11 for (int i = 1; i <= TRIES; i++)
12 {
13 // Generate two random numbers between -1 and 1
14
15 double r = Math.random();
16 double x = -1 + 2 * r; // Between -1 and 1
17 r = Math.random();
18 double y = -1 + 2 * r;

Practice It

Special Topic 4.3

4.9 Application: Random Numbers and Simulations 179

// Check whether the point lies in the unit circle

if (x*x+y*y<=1){ hits++; }
3

The ratio hits / tries is approximately the same as the ratio
circle area / square area = pi / 4

5':/

doubTe piEstimate = 4.0 * hits / TRIES;

System.out.printIin("Estimate for pi: " + piEstimate);

Program Run

42,
43,
44,
45.

46.

Estimate for pi: 3.1504

How do you simulate a coin toss with the Math. random() method?
How do you simulate the picking of a random playing card?
Why does the loop body in Dice. java call Math. random() twice?

In many games, you throw a pair of dice to get a value between 2 and 12. Whatis
wrong with this simulated throw of a pair of dice?

int sum = (int) (Math.random() * 11) + 2;

How do you generate a random floating-point number = 0 and < 100?

Now you can try these exercises at the end of the chapter: R4.28, P4.7, P4.24.

Drawing Graphical Shapes

In Java, it is easy to produce simple drawings such as the
one in Figure 8. By writing programs that draw such pat-

terns, you can practice programming loops. For now, we
give you a program outline into which you place your
drawing code. The program outline also contains the
necessary code for displaying a window containing your
drawing. You need not look at that code now. It will be
discussed in detail in Chapter 10.

Your drawing instructions go inside the draw method:

public class TwoRowsOfSquares

{

public static void draw(Graphics g)

{
Prawing instructions Figure 8 Two Rows of Squares

}

}

When the window is shown, the draw method is called, and your drawing instructions will be
executed.

180 Chapter4 Loops

The draw method receives an object of type Graphics. The Graphics object has methods for
drawing shapes. It also remembers the color that is used for drawing operations. You can think
of the Graphics object as the equivalent of System.out for drawing shapes instead of printing
values.

Table 4 shows useful methods of the Graphics class.

Table 4 Graphics Methods

Method Result Notes

g.drawRect(x, y, width, height) (x, y) is the top left corner.

g.drawOval(x, y, width, height)

(x, y) is the top left corner
of the box that bounds the
ellipse. To draw a circle, use
the same value for width

and height.

g.fil1Rect(x, y, width, height) The rectangle is filled in.

width, height) ‘ The oval is filled in.

g.fill0val(x, vy

(x1, y1) and (x2, y2) are
the endpoints.

g.drawLine(x1, yl, x2, y2)

g.drawString("Message", x, Yy) (x, y) is the basepoint.

Basepoint Baseline
g.setColor(color) From now on, Use Color.RED, Color.GREEN,
draw or fill methods Color.BLUE, and so on. (See
will use this color. Table 10.1 for a complete

list of predefined colors.)

The program below draws the squares shown in Figure 8. When you want to produce your
own drawings, make a copy of this program and modify it. Replace the drawing tasks in the
draw method. Rename the class (for example, Spiral instead of TwoRowsOfSquares).

special_topic_3/TwoRowsOfSquares.java

import java.awt.Color;

import java.awt.Graphics;
import javax.swing.JFrame;
import javax.swing.JComponent;

/'!‘::“:

This program draws two rows of squares.

&

public class TwoRowsOfSquares

{

CVENOUVIAWN=

4.9 Application: Random Numbers and Simulations 181

11 public static void draw(Graphics g)

12 {

13 final int width = 20;

14 g.setColor(Color.BLUE);

15

16 // Top row. Note that the top left corner of the drawing has coordinates (0, 0)
17 int x = 0;

18 inty = 0;

19 for (int i = 0; i < 10; i4++)

20 {

21 g.fillRect(x, y, width, width);

22 X =X + 2 * width;

23 }

24 // Second row, offset from the first one

25 X = width;

26 y = width;

27 for (int i = 0; 1 < 10; i++)

28 {

29 g.fillRect(x, y, width, width);

30 X = X + 2 * width;

31 }

32 }

33

34 public static void main(String[] args)

35 {

36 // Do not look at the code in the main method
37 // Your code will go into the draw method above
38

39 JFrame frame = new JFrame();

40

41 final int FRAME_WIDTH = 400;

42 final int FRAME_HEIGHT = 400;

43

44 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
45 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
46

47 JComponent component = new JComponent()

48 {

49 pubTic void paintComponent(Graphics graph)
50 {

51 draw(graph);

52 }

53 b

54

55 frame.add(component);

56 frame.setVisible(true);

57 }

58 1}

VIDEO EXAMPLE 4.2 Drawing a Spiral

m In this Video Example, you will see how to develop a program

PLUS that draws a spiral.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

182 Chapter4 Loops

.

As you read this, you
will have written a few
computer programs and experienced
firsthand how much effort it takes to
write even the humblest of programs.
Writing a real software product, such
as a financial application or a computer
game, takes a lot of time and money.
Few people, and fewer companies, are
going to spend that kind of time and
money if they don’t have a reasonable
chance to make more money from their
effort. (Actually, some companies give
away their software in the hope that
users will upgrade to more elaborate
paid versions. Other companies give
away the software that enables users to
read and use files but sell the software
needed to create those files. Finally,
there are individuals who donate their
time, out of enthusiasm, and produce
programs that you can copy freely.)
When selling software, a company
must rely on the honesty of its cus-
tomers. It is an easy matter for an
unscrupulous person to make copies
of computer programs without paying
for them. In most countries that is ille-
gal. Most governments provide legal
protection, such as copyright laws and
patents, to encourage the develop-
ment of new products. Countries that
tolerate widespread piracy have found

CHAPTER SUMMARY

Random Fact 4.2 Software Piracy

that they have an ample cheap supply
of foreign software, but no local man-
ufacturers willing to design good soft-
ware for their own citizens, such as
word processors in the local script or
financial programs adapted to the local
tax laws.

When a mass market for software
first appeared, vendors were enraged
by the money they lost through piracy.
They tried to fight back by various
schemes to ensure that only the legiti-
mate owner could use the software,
such as dongles—devices that must
be attached to a printer port before
the software will run. Legitimate users
hated these measures. They paid for
the software, but they had to suffer
through inconveniences, such as hav-
ing multiple dongles stick out from
their computer. In the United States,
market pressures forced most vendors
to give up on these copy protection
schemes, but they are still common-
place in other parts of the world.

Because it is so easy and inexpen-
sive to pirate software, and the chance
of being found out is minimal, you
have to make a moral choice for your-
self. If a package that you would really
like to have is too expensive for your
budget, do you steal it, or do you stay

Explain the flow of execution in a loop.

* A loop executes instructions repeatedly while a

condition is true.

* Anoff-by-one error is a common error when

programming loops. Think through simple test

cases to avoid this type of error.

honest and get by with a more afford-
able product?

Of course, piracy
is not limited to
software. The same
issues arise for other
digital products as
well. You may have
had the opportunity
to obtain copies of
songs or movies
without payment. Or you may have
been frustrated by a copy protec-
tion device on your music player that
made it difficult for you to listen to
songs that you paid for. Admittedly,
it can be difficult to have a lot of sym-
pathy for a musical ensemble whose
publisher charges a lot of money for
what seems to have been very little
effort on their part, at least when
compared to the effort that goes into
designing and implementing a soft-
ware package. Nevertheless, it seems
only fair that artists and authors
receive some compensation for their
efforts. How to pay artists, authors,
and programmers fairly, without
burdening honest customers, is an
unsolved problem at the time of this
writing, and many computer scientists
are engaged in research in this area.

Use the technique of hand-tracing to analyze the behavior of a program.

* Hand-tracing is a simulation of code execution in which you step
through instructions and track the values of the variables.

® Hand-tracing can help you understand how an unfamiliar algo-

rithm works.

e Hand-tracing can show errors in code or pseudocode.

Chapter Summary 183

Use for loops for implementing count-controlled loops.

® The for loop is used when a value runs from a starting point to an ending point
with a constant increment or decrement.

Choose between the while loop and the do loop.
* The doloop is appropriate when the loop body must be executed at least once.
Implement loops that read sequences of input data.
A sentinel value denotes the end of a data set, but it is not part of

the data.

® You can use a Boolean variable to control aloop. Set the variable
to true before entering the loop, then set it to false to leave the
loop.

e Use input redirection to read input from a file. Use output
redirection to capture program output in a file.

Use the technique of storyboarding for planning user interactions.

* A storyboard consists of annotated sketches for each step in an action sequence.
* Developing a storyboard helps you understand the inputs and outputs that are
required for a program.

Know the most common loop algorithms.

* To compute an average, keep a total and a count of all values.

e To count values that fulfill a condition, check all values and increment a counter
for each match.

* Ifyour goalis to find a match, exit the loop when the match is found.

* To find the largest value, update the largest value seen so far whenever you see a
larger one.

* To compare adjacent inputs, store the preceding input in a variable.
Use nested loops to implement multiple levels of iteration.

® When the body of aloop contains another loop, the loops are nested. A typical
use of nested loops is printing a table with rows and columns.

Apply loops to the implementation of simulations.

* Inasimulation, you use the computer to simulate an activity.

* You can introduce randomness by calling the random number
generator.

184 Chapter4 Loops

STANDARD LIBRARY ITEMS INTRODUCED IN THIS CHAPTER

java.awt.Color

java.awt.Graphics
drawLine
drawOval
drawRect
drawString
setColor

REVIEW EXERCISES

= R4.1 Write awhile loop that prints

java.lang.Math
random

a. All squares less than n. For example, if nis 100, print 0 14 9 16 25 36 49 64 81.

b. All positive numbers that are divisible by 10 and less than n. For example, if n is
100, print 1020 30 40 50 60 70 80 90

c. All powers of two less than n. For example, if nis 100, print 12 4 8 16 32 64.

=n R4.2 Write a loop that computes

a. The sum of all even numbers between 2 and 100 (inclusive).

b. The sum of all squares between 1 and 100 (inclusive).

c. The sum of all odd numbers between a and b (inclusive).

d. The sum of all odd digits of n. (For example, if nis 32677, the sum would
be3 +7+7=17.)

= R4.3 Provide trace tables for these loops.

a.int i = 0; int j = 10; int n = 0;
while (i < j) { i++; j--; n++; }

b.

int i = 0; int j = 0; int n = 0;
while (i < 10) { i++; n=n+ 1 + j; j++; }

. int i = 10; int j = 0; int n = 0;

while (i > 0) { i--; j++; n=n+1 - J; }

.int i = 0; int j = 10; int n = 0;

while (i '=3) {i=1+2;J=3-2; nt+; }

= R4.4 What do these loops print?

ad.
. for

moono

for

for

. for
. for

for

(int
(int
(int
(int
(int
(int

T T [

1; i < 10;
1; i < 10;
10; i > 1;
0; i < 10;
1; i < 10;
1; i < 10;

i++) { System.out.print(i + " "); }
i += 2) { System.out.print(i + " ")
i--) { System.out.print(i + " "); }
i++) { System.out.print(i + " "); }
i=1*%2) { System.out.print(i + " "); }

it4) { if (i % 2 == 0) { System.out.print(i + " "); } }

.

= R4.5 Whatis an infinite loop? On your computer, how can you terminate a program that
executes an infinite loop?

= R4.6 Write a program trace for the pseudocode in Exercise P4.6, assuming the input val-

uesare47-2-50.

sm R4.7

= R4.8

= R4.9

= R4.10

=n R4.11

= R4.12

= R4.13

=n R4.14

Review Exercises 185

What is an “off-by-one” error? Give an example from your own programming
experience.

What is a sentinel value? Give a simple rule when it is appropriate to use a numeric
sentinel value.

Which loop statements does Java support? Give simple rules for when to use each
loop type.

How many iterations do the following loops carry out? Assume that i is not
changed in the loop body.

a. for (int i =1; i <= 10; i++) . . .

b. for (int 1 =0; i < 10; i++) . . .

c. for (int i =10; i > 0; i--) . . .

d. for (int i = -10; i <= 10; i++) . . .

e. for (int i =10; 1 >= 0; i+ . . .

f. for (int i =-10; i <=10; i=1+2) ...

g. for (int i = -10; i <=10; i =1 +3) . . .

Write pseudocode for a program that prints a calendar such as the following:
Su M T WTh F Sa

1 2 3 4

5 6 7 8 91011

12 13 14 15 16 17 18

19 20 21 22 23 24 25
26 27 28 29 30 31

Write pseudocode for a program that prints a Celsius/Fahrenheit conversion table
such as the following:

Celsius | Fahrenheit

________ o
0 | 32

10 | 50

20 | 68

100 | 212

Write pseudocode for a program that reads a student record, consisting of the stu-
dent’s first and last name, followed by a sequence of test scores and a sentinel of —1.
The program should print the student’s average score. Then provide a trace table for
this sample input:

Harry Morgan 94 71 86 95 -1

Write pseudocode for a program that reads a sequence of student records and prints
the total score for each student. Each record has the student’s first and last name,
followed by a sequence of test scores and a sentinel of —1. The sequence is terminated
by the word END. Here is a sample sequence:

Harry Morgan 94 71 86 95 -1

Sally Lin 99 98 100 95 90 -1
END

Provide a trace table for this sample input.

186 Chapter4 Loops

= R4.15 Rewrite the following for loop into awhile loop.

int s = 0;
for (int i =1; i <= 10; i++)
{

s =5+ 1;

}

= R4.16 Rewrite the following do loop into awhile loop.

int n = in.nextInt();
double x = 0;
double s;
do
{
s=1.0/ (1 +n *n);
n++;
X=X+ S;
}
while (s > 0.01);

= R4.17 Provide trace tables of the following loops.

a. int s = 1;
int n = 1;
while (s <10) { s=s +n; }
n++;
b. int s = 1;
for (intn=1; n<5; n++) { s=s+n; }
C. int s = 1;
int n = 1;
do
{
S =5+ n;
n++;

}
while (s < 10 * n);

= R4.18 What do the following loops print? Work out the answer by tracing the code, not by
using the computer.

a.int s = 1;
for (int n=1; n <= 5; n++)
{
S =5+ n;
System.out.print(s + " ");
}
b.int s = 1;
for (int n = 1; s <= 10; System.out.print(s + " "))
{
n=n+2;
S =5+ n;
}
C. int s = 1;
int n;
for (n =1; n <= 5; n++)

System.out.print(s + +n);

Review Exercises 187

» R4.19 What do the following program segments print? Find the answers by tracing the

== R4.20

= R4.21

= R4.22

= R4.23

= R4.24

=n R4.25

= R4.26

code, not by using the computer.

a.intn=1;
for (int i =2; 1 <5; i++) {n=n+1;}
System.out.print(n);

b. int i;
double n =1/ 2;
for (i =2; i <=5; i++) {n=n+ 1.0/ 1; }
System.out.print(i);

C. double x = 1;

double y = 1;

int i = 0;

do

{
y = /2
X=X+ Y;
i+

}

while (x < 1.8);
System.out.print(i);
d. double x = 1;
double y = 1;
int i = 0;
while (y >= 1.5)
{
X=X/ 2;
y=X+y;
++;
}

System.out.print(i);

Give an example of a for loop where symmetric bounds are more natural. Give an
example of a for loop where asymmetric bounds are more natural.

Add a storyboard panel for the conversion program in Section 4.6 on page 162 that
shows a scenario where a user enters incompatible units.

In Section 4.6, we decided to show users alist of all valid units in the prompt. If the
program supports many more units, this approach is unworkable. Give a storyboard
panel that illustrates an alternate approach: If the user enters an unknown unit, a list
of all known units is shown.

Change the storyboards in Section 4.6 to support a menu that asks users whether
they want to convert units, see program help, or quit the program. The menu should
be displayed at the beginning of the program, when a sequence of values has been
converted, and when an error is displayed.

Draw a flow chart for a program that carries out unit conversions as described in
Section 4.6.

In Section 4.7.5, the code for finding the largest and smallest input initializes the
Targest and smallest variables with an input value. Why can’t you initialize them
with zero?

What are nested loops? Give an example where a nested loop is typically used.

188 Chapter4 Loops

us R4.27 The nested loops

for (int i = 1; i <= height; i++)

{
for (int j = 1; j <= width; j++) { System.out.print("*"); }
System.out.printin();

}

display a rectangle of a given width and height, such as

Write a single for loop that displays the same rectangle.

== R4.28 Suppose you design an educational game to teach children how to read a clock. How
do you generate random values for the hours and minutes?

snn R4.29 Inatravel simulation, Harry will visit one of his friends that are located in three
states. He has ten friends in California, three in Nevada, and two in Utah. How do
you produce a random number between 1 and 3, denoting the destination state, with
a probability that is proportional to the number of friends in each state?

PROGRAMMING EXERCISES

= P4.1 Write programs with loops that compute
a. The sum of all even numbers between 2 and 100 (inclusive).
b. The sum of all squares between 1 and 100 (inclusive).
c. All powers of 2 from 2° up to 2%°.
d. The sum of all odd numbers between a and b (inclusive), where a and b are
mputs.
e. The sum of all odd digits of an input. (For example, if the input is 32677, the
sumwouldbe3+7+7=17.)
un P4.2 Write programs that read a sequence of integer inputs and print
a. The smallest and largest of the inputs.
b. The number of even and odd inputs.

c. Cumulative totals. For example, if the inputis 1 7 2 9, the program should print
181019.

d. All adjacent duplicates. For example, if the inputis 1334556 6 6 2, the
program should print 3 5 6.
us P4.3 Write programs that read a line of input as a string and print
a. Only the uppercase letters in the string.
b. Every second letter of the string.
c. The string, with all vowels replaced by an underscore.
d. The number of vowels in the string.
e. The positions of all vowels in the string.

»s P4.4 Complete the program in How To 4.1 on page 169. Your program should read twelve
temperature values and print the month with the highest temperature.

um P4,5

= P4.6

unnm P4.7

= P4.8

=n P4.9

= P4.10

Programming Exercises 189

Write a program that reads a set of floating-point values. Ask the user to enter the
values, then print

e theaverage of the values.

e the smallest of the values.

e thelargest of the values.

e the range, that is the difference between the smallest and largest.
Of course, you may only prompt for the values once.
Translate the following pseudocode for finding the minimum value from a set of
Inputs into a Java program.

Set a Boolean variable “first" to true.
While another value has been read successfully
If first is true
Set the minimum to the value.
Set first to false.
Else if the value is less than the minimum
Set the minimum to the value.
Print the minimum.

Translate the following pseudocode for randomly permuting the characters in a
string into a Java program.

Read a word.

Repeat word.length() times
Pick a randow position i in the word, but not the last position.
Pick a randow position j > i in the word.
Swap the letters at positions j and i.

Print the word.

To swap the letters, construct substrings as follows:

first i middle j Tast
Then replace the string with
first + word.charAt(j) + middle + word.charAt(i) + last
Write a program that reads a word and prints each character of the word on a sepa-
rate line. For example, if the user provides the input "Harry", the program prints
H

a
r
r
y
Write a program that reads a word and prints the word in reverse. For example, if the

user provides the input "Harry", the program prints
yrraH
Write a program that reads a word and prints the number of vowels in the word. For

this exercise, assume thata e i o u y are vowels. For example, if the user provides the
input "Harry", the program prints 2 vowels.

190 Chapter4 Loops

wun P4,11 Write a program that reads a word and prints the number of syllables in the word.
For this exercise, assume that syllables are determined as follows: Each sequence of
adjacent vowels a e i o u y, except for the last e in a word, is a syllable. However, if
that algorithm yields a count of O, change it to 1. For example,

Word Syllables

Harry 2
hairy 2
hare 1
the 1

wnn P4.12 Write a program that reads a word and prmts all substrings, sorted by length. For
example, if the user provides the input "rum", the program prints

ru
um
rum

= P4.13 Write a program that prints all powers of 2 from 2° up to 2%°.

un P4.14 Write a program that reads a number and prints all of its binary digits: Print the
remainder number % 2, then replace the number with number / 2. Keep going until the
number is 0. For example, if the user provides the input 13, the output should be

1

0
1
1

wn P4.15 Mean and standard deviation. Write a program that reads a set of floating-point data
values. Choose an appropriate mechanism for prompting for the end of the data set.

When all values have been read, print out the count of the values, the average, and
the standard deviation. The average of a data set {xy, ..., x,}is ¥ = Xx; /n, where
Yx; = x; +...+ x, is the sum of the input values. The standard deviation is

However, this formula is not suitable for the task. By the time the program has
computed X, the individual x; are long gone. Until you know how to save these
values, use the numerically less stable formula

25 - %(in)z

n—1

You can compute this quantity by keeping track of the count, the sum, and the sum
of squares as you process the input values.

un P4,16

unn P4.17

snn P4.18

= P4.19

un P4.20

Programming Exercises 191

The Fibonacci numbers are defined by the sequence

fi=1
f2:1
f; = f;—l + f;—Z

Reformulate that as

foldl = 1;

fold2 = 1;

fnew = foldl + fold2;
After that, discard fo1d2, which is no longer needed, and set fold2 to fold1 and fold1 to
fnew. Repeat an appropriate number of times.

Fibonacci numbers describe the
growth of a rabbit population.

Implement a program that prompts the user for an integer 7 and prints the nth
Fibonacci number, using the above algorithm.

Factoring of integers. Write a program that asks the user for an integer and then
prints out all its factors. For example, when the user enters 150, the program should
print

2

3
5
5

Prime numbers. Write a program that prompts the user for an integer and then prints
out all prime numbers up to that integer. For example, when the user enters 20, the
program should print

2
3
5
7
11
13
17
19

Recall that a number is a prime number if it is not divisible by any number except 1
and itself.
Write a program that prints a multiplication table, like this:

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30

10 20 30 40 50 60 70 80 90 100

Write a program that reads an integer and displays, using asterisks, a filled and hol-
low square, placed next to each other. For example if the side length is 5, the program

192 Chapter 4 Loops

um P4.21

unm P4.22

um P4.23

um P4.24

Write a program that reads an integer and displays, using asterisks, a filled diamond
of the given side length. For example, if the side length is 4, the program should dis-

play

The game of Nim. This is a well-known game with a number of variants. The fol-
lowing variant has an interesting winning strategy. Two players alternately take
marbles from a pile. In each move, a player chooses how many marbles to take. The
player must take at least one but at most half of the marbles. Then the other player
takes a turn. The player who takes the last marble loses.

Write a program in which the computer plays against a human opponent. Generate a
random integer between 10 and 100 to denote the initial size of the pile. Generate a
random integer between 0 and 1 to decide whether the computer or the human takes
the first turn. Generate a random integer between 0 and 1 to decide whether the
computer plays smart or stupid. In stupid mode the computer simply takes a random
legal value (between 1 and #/2) from the pile whenever it has a turn. In smart mode
the computer takes off enough marbles to make the size of the pile a power of two
minus 1 —thatis, 3,7, 15,31, or 63. That is always a legal move, except when the size
of the pile is currently one less than a power of two. In that case, the computer makes
arandom legal move.

You will note that the computer cannot be beaten in smart mode when it has the first
move, unless the pile size happens to be 15, 31, or 63. Of course, a human player who
has the first turn and knows the winning strategy can win against the computer.

The Drunkard’s Walk. A drunkard in a grid of streets randomly picks one of four
directions and stumbles to the next intersection, then again randomly picks one of
four directions, and so on. You might think that on average the drunkard doesn’t
move very far because the choices cancel each other out, but that is actually not the
case.

Represent locations as integer pairs (x, y). Implement the drunkard’s walk over 100
intersections, starting at (0, 0), and print the ending location.

The Monty Hall Paradox. Marilyn vos Savant described the following problem
(loosely based on a game show hosted by Monty Hall) in a popular magazine: “Sup-
pose you’re on a game show, and you’re given the choice of three doors: Behind one
door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who
knows what’s behind the doors, opens another door, say No. 3, which has a goat.
He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to
switch your choice?”

Ms. vos Savant proved that it is to your advantage, but many of her readers, includ-
ing some mathematics professors, disagreed, arguing that the probability would not
change because another door was opened.

Your task is to simulate this game show. In each iteration, randomly pick a door
number between 1 and 3 for placing the car. Randomly have the player pick a door.
Randomly have the game show host pick a door having a goat (but not the door that

= P4.25

un P4.26

Programming Exercises 193

the player picked). Increment a counter for strategy 1 if the player wins by switching
to the host’s choice, and increment a counter for strategy 2 if the player wins by
sticking with the original choice. Run 1,000 iterations and print both counters.

A simple random generator is obtained by the formula
Toew = (a AT b)%m

and then setting 7,4 to 7,y If 72 is chosen as 232, then you can compute

Toew = 4" Tod T 0

new

because the truncation of an overflowing result to the int type is equivalent to
computing the remainder.

Write a program that asks the user to enter a seed value for 4. (Such a value is often
called a seed). Then print the first 100 random integers generated by this formula,
using = 32310901 and & = 1729.

The Buffon Needle Experiment. The following experiment was devised by Comte
Georges-Louis Leclerc de Buffon (1707-1788), a French naturalist. A needle of
length 1 inch is dropped onto paper that is ruled with lines 2 inches apart. If the
needle drops onto a line, we count it as a hiz. (See Figure 9.) Buffon discovered that
the quotient tries/hits approximates .

Figure 9
The Buffon Needle Experiment

For the Buffon needle experiment, you must generate two random numbers: one to
describe the starting position and one to describe the angle of the needle with the
x-axis. Then you need to test whether the needle touches a grid line.

Generate the lower point of the needle. Its x-coordinate is irrelevant, and you may
assume its y-coordinate yj,, to be any random number between 0 and 2. The angle o
between the needle and the x-axis can be any value between 0 degrees and 180
degrees (wradians). The upper end of the needle has y-coordinate

yhigh =Vow T sinor

The needle is a hit if yp;gp is at least 2, as shown in Figure 10. Stop after 10,000 tries
and print the quotient ries/ bits. (ThlS program is not suitable for computing the
value of 7. You need 7 in the computation of the angle.)

Figure 10
A Hit in the Buffon Needle Experiment 0

194 Chapter4 Loops

== Business P4.27 Currency conversion. Write a program
that first asks the user to type today’s
price for one dollar in Japanese yen,
then reads U.S. dollar values and
converts each to yen. Use 0 as a sentinel.

== Business P4.28 Write a program that first asks the user g SINGAPORE
to type in today’s price of one dollar % HONG KONG
in Japanese yen, then reads U.S. dollar
values and converts each to Japanese
yen. Use 0 as the sentinel value to denote the end of dollar inputs. Then the program
reads a sequence of yen amounts and converts them to dollars. The second sequence
is terminated by another zero value.

== Business P4.29 Your company has shares of stock it would like to sell when their value exceeds a
certain target price. Write a program that reads the target price and then reads the
current stock price until it is at least the target price. Your program should use a
Scanner to read a sequence of double values from standard input. Once the minimum
is reached, the program should report that the stock price exceeds the target price.

== Business P4.30 Write an application to pre-sell a limited number of cinema tickets. Each buyer can
buy as many as 4 tickets. No more than 100 tickets can be sold. Implement a pro-
gram called TicketSeller that prompts the user for the desired number of tickets and
then displays the number of remaining tickets. Repeat until all tickets have been
sold, and then display the total number of buyers.

== Business P4.31 You need to control the number of people who can be in an oyster bar at the same
time. Groups of people can always leave the bar, but a group cannot enter the bar
if they would make the number of people in the bar exceed the maximum of 100
occupants. Write a program that reads the sizes of the groups that arrive or depart.
Use negative numbers for departures. After each input, display the current number
of occupants. As soon as the bar holds the maximum number of people, report that
the bar is full and exit the program.

=uu Business P4.32 Credit Card Number Check. The last digit of a credit card number is the check
digit, which protects against transcription errors such as an error in a single digit or
switching two digits. The following method is used to verify actual credit card num-
bers but, for simplicity, we will describe it for numbers with 8 digits instead of 16:

e Starting from the rightmost digit, form the sum of every other digit. For
example, if the credit card number is 4358 9795, then you form the sum
5+7+8+3=23.

* Double each of the digits that were not included in the preceding step. Add all
digits of the resulting numbers. For example, with the number given above,
doubling the digits, starting with the next-to-last one, yields 18 18 10 8. Adding
all digits in these values yields 1+ 8+ 1+ 8+ 1+ 0+ 8 =27.

e Add the sums of the two preceding steps. If the last digit of the result is 0, the
number 1s valid. In our case, 23 + 27 = 50, so the number is valid.

Write a program that implements this algorithm. The user should supply an 8-digit
number, and you should print out whether the number is valid or not. If it is not
valid, you should print the value of the check digit that would make it valid.

n = Science P4.33

== Science P4.34

Programming Exercises 195

In a predator-prey simulation, you compute the populations of predators and prey,
using the following equations:

prey, .4 = prey, X (1 +A-Bx predn)
pred, | = pred, x (1 -C+Dx preyn)

Here, A is the rate at which prey birth exceeds natural
death, B is the rate of predation, C'is the rate at which
predator deaths exceed births without food, and D repre-
sents predator increase in the presence of food.

Write a program that prompts users for these rates, the
initial population sizes, and the number of periods. Then
print the populations for the given number of periods. As
inputs, try A =0.1, B=C=0.01, and D = 0.00002 with
initial prey and predator populatlons of 1,000 and 20.

Projectile flight. Suppose a cannonball is propelled stralght into the air with a starting
velocity 20 Any calculus book will state that the position of the ball after z seconds is
s(t) = -1 gt + vyt, where g =981 m/s? is the gravitational force of the earth. No
calculus fextbook ever mentions why someone would want to carry out such an
obviously dangerous experiment, so we will do it in the safety of the computer.

In fact, we will confirm the theorem
from calculus by a simulation. In our I \
simulation, we will consider how the
ball moves in very short time intervals
At. In a short time interval the velocity v
is nearly constant, and we can compute
the distance the ball moves as As = vAr.
In our program, we will simply set

const double DELTA_T = 0.01;
and update the position by
s =5+ Vv ¥ DELTA_T;

The velocity changes constantly —in fact, it is reduced by the gravitational force of
the earth. In a short time interval, Av = —gAr, we must keep the velocity updated as

vV =V - g * DELTA_T;
In the next iteration the new velocity is used to update the distance.

Now run the simulation until the cannonball falls back to the earth. Get the initial
velocity as an input (100 m/s is a good value). Update the position and velocity 100
times per second, but print out the position only every full second. Also printout the
values from the exact formula s(z) = —% gt? + vyt for comparison.

Note: You may wonder whether there is a benefit to this simulation when an exact
formula is available. Well, the formula from the calculus book is 7ot exact. Actually,
the gravitational force diminishes the farther the cannonball is away from the surface
of the earth. This complicates the algebra sufficiently that it is not possible to give an
exact formula for the actual motion, but the computer simulation can simply be
extended to apply a variable gravitational force. For cannonballs, the calculus-book
formula is actually good enough, but computers are necessary to compute accurate
trajectories for higher-flying objects such as ballistic missiles.

196 Chapter4 Loops

snn Science P4.35

= Science P4.36

snn Science P4.37

A simple model for the hull of a ship is given by

2 2
B 2x z
=3 (F) 1‘(7)

where B is the beam, L is the length, and 7 is the draft. (Note: There are two values of
y for each x and z because the hull is symmetric from starboard to port.)

The cross-sectional area at a point x is called the “section” in nauti-
cal parlance. To compute it, let z go from 0 to -7 in 7 increments,
each of size T/n. For each value of z, compute the value for y.
Then sum the areas of trapezoidal strips. At right are the strips
wheren =4.

Write a program that reads in values for B, L, T, x, and » and then
prints out the cross-sectional area at x.

Radioactive decay of radioactive materials can be mod-
eled by the equation A = Aye(1°82%) \where A is the
amount of the material at time t, Ay is the amount at
time 0, and 5 is the half-life.

Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A / Ay in a patient
body every hour for 24 hours after receiving a dose.

The photo at left shows an electric device called a “transformer”. Transformers are
often constructed by wrapping coils of wire around a ferrite core. The figure below
illustrates a situation that occurs in various audio devices such as cell phones and
music players. In this circuit, a transformer is used to connect a speaker to the output
of an audio amplifier.

Ry=20Q

1:n
(;Vs=40V %H Rs=8Q

Amplifier Transformer Speaker

s Graphics P4.38

= Graphics P4.39

= nn Graphics P4.40

n s Graphics P4.41

= nn Graphics P4.42

Programming Exercises 197

The symbol used to represent the transformer is intended to suggest two coils of
wire. The parameter 7 of the transformer is called the “turns ratio” of the trans-
former. (The number of times that a wire is wrapped around the core to form a coil is
called the number of turns in the coil. The turns ratio is literally the ratio of the
number of turns in the two coils of wire.)

When designing the circuit, we are concerned primarily with the value of the power
delivered to the speakers—that power causes the speakers to produce the sounds we
want to hear. Suppose we were to connect the speakers directly to the amplifier
without using the transformer. Some fraction of the power available from the
amplifier would get to the speakers. The rest of the available power would be lost in
the amplifier itself. The transformer is added to the circuit to increase the fraction of
the amplifier power that is delivered to the speakers.

The power, P,, delivered to the speakers is calculated using the formula

2
a
Po=R|———
n“Ry + R,

Write a program that models the circuit shown and varies the turns ratio from 0.01 to
2 1n 0.01 increments, then determines the value of the turns ratio that maximizes the
power delivered to the speakers.

Write a program to plot the following face.

Write a graphical application that displays a checkerboard with 64 squares, alternat-
ing white and black.

Write a graphical application that draws a spiral, such as the following:

[El

It is easy and fun to draw graphs of curves with the Java graphics library. Simply
draw 100 line segments joining the points (x, f(x)) and (x + d, f(x + d)), where x
ranges from x;, t0 Xy and d = (x, . —x,.)/100.

Draw the curve f(x) = 0.00005x> — 0.03x? + 4x + 200, where x ranges from 0 to
400 in this fashion.

Draw a picture of the “four-leaved rose” whose equation in polar coordinates is
r = cos(20). Let 6 go from 0 to 2rin 100 steps. Each time, compute r and then
compute the (x,y) coordinates from the polar coordinates by using the formula

x =7r-cos(@),y = r-sin(0)

198 Chapter4 Loops

ANSWERS TO SELF-CHECK QUESTIONS

10.

. 23 years.
. 7/ years.
. Add astatement

System.out.printin(balance);

as the last statement in the while loop.

. The program prints the same output. This is

because the balance after 14 years is slightly
below $20,000, and after 15 years, it is slightly
above $20,000.

248163264 128

Note that the value 128 is printed even though
itis larger than 100.

n output
5

4 4

3 3

2 2

+ 1

6 0
-1 -1

n output
r 1,

2z 1, 2,
3 1, 2, 3,
4

There is a comma after the last value. Usually,
commas are between values only.

S do A NH S
v N =

This is an infinite loop. n is never equal to 50.

count tewmp
1 123
z 12.3

3 1.23

11.

12.
13.

14.

15.

16.

17.

This yields the correct answer. The number
123 has 3 digits.

count tewp
1 100
z 10.0

This yields the wrong answer. The number 100
also has 3 digits. The loop condition should
have been

while (temp >= 10)

int year = 1;
while (year <= nyears)
{
double interest = balance * RATE / 100;
balance = balance + interest;
System.out.printf("%4d %10.2f\n",
year, balance);
year++;
}
11 numbers: 109876543210
for (inti=10; 1 <=20;i=1+2)
{
System.out.printin(i);
}
int sum = 0;
for (int 1 = 1; 1 <= n; i++)
{
sum = sum + 1i;
}

for (int year = 1;
balance <= 2 * INITIAL_BALANCE; year++)

However, it is best not to use a for loop in this
case because the loop condition does not relate
to the year variable. A while loop would be a
better choice.

do
{
System.out.print(
"Enter a value between 0 and 100: ");
value = in.nextInt();

while (value < 0 || value > 100);

int value = 100;

while (value >= 100)

{
System.out.print("Enter a value < 100: ");
value = in.nextInt();

}

18.

19.

20.

21.
22.

23.

24.

25.

26.

Here, the variable value had to be initialized
with an artificial value to ensure that the loop
is entered at least once.

Yes. The do loop
do { body } while (condition);
is equivalent to this while loop:

boolean first = true;
while (first || condition)

body;

first = false;

}

int x;

int sum = 0;

do

{
X = in.nextInt();
sum = sum + X;

}
while (x !'= 0);

int x = 0;
int previous;
do

{

previous = X;
X = in.nextInt();
sum = sum + X;

while (x != 0 && previous != x);
No data

The first check ends the loop after the sentinel
has been read. The second check ensures that
the sentinel is not processed as an input value.

The while loop would never be entered. The
user would never be prompted for input.
Because count stays 0, the program would then
print "No data".

The nextDouble method also returns false.

A more accurate prompt would have been:
“Enter values, a key other than a digit to quit.”
But that might be more confusing to the pro-
gram user who would need now ponder which
key to choose.

If the user doesn’t provide any numeric input,
the first call to in.nextDouble) will fail.

Computing the average

Enter scores, Q to quit: 90 80 90 100 80 Q
The average is 88
(Program exits)

27.

28.

29.

30.

31.
32.

33.

Answers to Self-Check Questions 199

Simple conversion

Only one value can be converted

Your conversion question: How many in are 30 cwm

30em=1181in % in h .
(Program exits) _——— Run program again for another question

Unknown unit

Your conversion question: How many inches are 30 cm?

Unknown unit: inches

Known units are in, ft, mi, mw, cw, m, kw, oz, Ib, g, kg, tsp, thsp, pint, gal
(Prograwm exits)

Program doesn’t understand question syntax

Your conversion question: What is an angstrom?
Please formulate your question as “How many (unit) are (valve) (unit)?"
(Prograwm exits)

One score is not enough

Enter scores, Q to quit: 90 Q
Error: At least two scores are required.
(Prograw exits)

It would not be possible to implement this
interface using the Java features we have cov-
ered up to this point. There is no way for the
program to know when the first set of inputs
ends. (When you read numbers with value =
in.nextDouble(), it is your choice whether to put
them on a single line or multiple lines.)

Comparing two interest rates

First interest rate in percent: 5
Second interest rate in percent: 10

Years: 5

Year 5% 107

o toooan tonungo [e et e
1 10500.00 11000.00

Z 11025.00 12100.00

3 1157625 13310.00

4 12195.06 14641.00

5 1276287 16105.10

The total is zero.

double total = 0;
while (in.hasNextDouble())
{

double input = in.nextDouble();

if Cinput > 0) { total = total + input; }
}
position is str.length() and chis unchanged
from its initial value, '?'. Note that ch must

200 Chapter4 Loops

34.

35.

36.

37.

38.

be initialized with some value—otherwise the
compiler will complain about a possibly unini-
tialized variable.

The loop will stop when a match is found, but

you cannot access the match because neither
position nor ch are defined outside the loop.

Start the loop at the end of string:

boolean found = false;
int i = str.length(Q) - 1;
while (!found && i >= 0)

{
char ch = str.charAt(i);
if (ch == " ") { found = true; }
else { i--; }

3

The 1nitial call to in.nextDouble() fails, termi-
nating the program. One solution is to do all
input in the loop and introduce a Boolean vari-
able that checks whether the loop is entered for
the first time.
double input = 0;
boolean first = true;
while (in.hasNextDouble())
{

double previous = input;

input = in.nextDouble();

if (first) { first = false; }

else if (input == previous)

{

System.out.printIn("Duplicate input");

}
}

All values in the inner loop should be dis-
played on the same line.

Change lines 13, 18, and 30 to for (int n = 0;
n <= NMAX; n++). Change NMAX to 5.

39.

40.

41.

42.

43.

44.

45.

46.

60: The outer loop is executed 10 times, and
the inner loop 6 times.

0123
1234
2345
for (int i =1; 1 <=3; i++)
{
for (int j = 1; j <= 4; j++)
{
System.out.print("[]1");
}
System.out.printin();
3

Compute (int) (Math.random() * 2), and use 0
for heads, 1 for tails, or the other way around.

Compute (int) (Math.random() * 4) and asso-
ciate the numbers 0. .. 3 with the four suits.
Then compute (int) (Math.random() * 13) and
associate the numbers 0. .. 12 with Jack, Ace, 2
... 10, Queen, and King.

We need to call it once for each die. If we
printed the same value twice, the die tosses
would not be independent.

The call will produce a value between 2 and
12, but all values have the same probability.
When throwing a pair of dice, the number 7 is
six times as likely as the number 2. The correct
formula s

int sum = (int) (Math.random() * 6) + (int)
(Math.random() * 6) + 2;

Math.random() * 100.0

CHAPTER

5
METHODS

CHAPTER GOALS

To be able to implement methods

To become familiar with the concept of
parameter passing

To develop strategies for decomposing
complex tasks into simpler ones

To be able to determine the scope of a variable

To learn how to think recursively (optional)

CHAPTER CONTENTS

5.1

5.2 IMPLEMENTING METHODS 204
Syntax 5.1: Static Method Declaration 205
Programming Tip 5.1: Method Comments 207

METHODS AS BLACK BOXES 202

5.3 PARAMETER PASSING 207

Programming Tip 5.2: Do Not Modify Parameter
Variables 209

Common Error 5.1: Trying to Modify
Arguments 209

5.4 RETURN VALUES 210
Common Error 5.2: Missing Return Value 212
How To 5.1: Implementing a Method 212

Worked Example 5.1: Generating Random
Passwords @

5.5 METHODS WITHOUT
RETURN VALUES 214

5.6 PROBLEM SOLVING: REUSABLE
METHODS 215

5.7 PROBLEM SOLVING: STEPWISE
REFINEMENT 218
Programming Tip 5.3: Keep Methods Short 223
Programming Tip 5.4: Tracing Methods 223
Programming Tip 5.5: Stubs 224
Worked Example 5.2: Calculating a
Course Grade @

5.8 VARIABLE SCOPE 225

Video Example 5.1: Debugging &

5.9 RECURSIVE METHODS
(OPTIONAL) 228

How To 5.2: Thinking Recursively 231

Random Fact 5.1: The Explosive Growth of
Personal Computers 232

Video Example 5.2: Fully Justified Text @

A method packages a computation consisting of multiple
steps into a form that can be easily understood and reused.
(The person in the image to the left is in the middle of
executing the method “make espresso”.)

In this chapter, you will learn how to design and implement
your own methods. Using the process of stepwise refine-
ment, you will be able to break up complex tasks into sets
of cooperating methods.

5.1 Methods as Black Boxes

A method is a
named sequence
of instructions.

202

A method is a sequence of instructions with a name. You have already encountered
several methods. For example, the Math.pow method, which was introduced in Chapter
2, contains instructions to compute a power x”’. Moreover, every Java program has a
method called main.

You call a method in order to execute its instructions. For example, consider the
following program fragment:

public static void main(String[] args)

{
double result = Math.pow(2, 3);

}

By using the expression Math.pow(2, 3), main calls the Math.pow method, asking it to
compute 2°. The instructions of the Math.pow method execute and compute the result.
The Math.pow method returns its result back to main, and the main method resumes exe-
cution (see Figure 1).

main

Pass 2 and 3 to

Math.pow
Math.pow
Compute 2°
Pass result
to caller
Use result

Figure 1 Execution Flow During a Method Call

Arguments are
supplied when a
method is called.

The return value is
the result that the

method computes.

5.1 Methods as Black Boxes 203

Figure 2
The Math.pow Method
as a Black Box

Arguments
2,3

Return value

When another method calls the Math.pow method, it provides “inputs”, such as the
values 2 and 3 in the call Math.pow(2, 3). These values are called the arguments of the
method call. Note that they are not necessarily inputs provided by a human user.
They are simply the values for which we want the method to compute a result. The
“output” that the Math.pow method computes is called the return value.

Methods can receive multiple arguments, but they return only one value. Itis also
possible to have methods with no arguments. An example is the Math. random method
that requires no argument to produce a random number.

The return value of a method is returned to the calling method, where it is pro-
cessed according to the statement containing the method call. For example, suppose
your program contains a statement

doubTle result = Math.pow(2, 3);

When the Math.pow method returns its result, the return value is stored in the
variable result.

Do not confuse returning a value with producing program output. If you want
the return value to be printed, you need to add a statement such as System.out.
print(result).

At this point, you may wonder how the Math pow method performs its job. For
example, how does Math.pow compute that 27 is 82 By multiplying 2 x 2 x 2? With
logarithms? Fortunately, as a user of the method, you don’t need to know how the
method is implemented. You just need to know the specification of the method: If you
provide arguments x and y, the method returns x”. Engineers use the term black box
for a device with a given specification but unknown implementation. You can think
of Math.pow as a black box, as shown in Figure 2.

When you design your own methods, you will want to make them appear as black
boxes to other programmers. Those programmers want to use your methods without
knowing what goes on inside. Even if you are the only person working on a program,
making each method into a black box pays off: there are fewer details that you need to
keep in mind.

Although a thermostat is usually white, you
can think of it as a “black box”. The input is the
desired temperature, and the output is a signal
to the heater or air conditioner.

204 Chapter 5 Methods

Practice It

1. Consider the method call Math.pow(3, 2). What are the arguments and return
values?

2. What is the return value of the method call Math.pow(Math.pow(2, 2), 2)?

3. TheMath.ceil method in the Java standard library is described as follows: The
method receives a single argument a of type double and returns the smallest doubTe
value = a that is an integer. What is the return value of Math.cei1(2.3)?

4. Itis possible to determine the answer to Self Check 3 without knowing how the
Math.ceil method is implemented. Use an engineering term to describe this
aspect of the Math.ceil method.

Now you can try these exercises at the end of the chapter: R5.3, R5.6.

5.2 Implementing Methods

When declaring a
method, you provide
a name for the
method, a variable
for each argument,
and a type for

the result.

In this section, you will learn how to implement a
method from a given specification. We will use a very
simple example: a method to compute the volume of a
cube with a given side length.

The cubeVolume method uses a given side
length to compute the volume of a cube.

When writing this method, you need to

* Pick a name for the method (cubevolume).

* Declare a variable for each argument (double sideLength). These variables are called
the parameter variables.

e Specify the type of the return value (doubTe).

e Add the public static modifiers. We will discuss the meanings of these modifiers
in Chapter 8. For now, you should simply add them to your methods.

Put all this information together to form the first line of the method’s declaration:
public static double cubeVolume(double sidelLength)

This line is called the header of the method. Next, specify the body of the method.

The body contains the variable declarations and statements that are executed when
the method is called.

The volume of a cube of side length s is s x s x s. However, for greater clarity, our
parameter variable has been called sideLength, not s, so we need to compute sideLength
* sideLength * sidelLength.

We will store this value in a variable called volume:

double volume = sidelLength * sidelLength * sidelLength;
In order to return the result of the method, use the return statement:

return volume;

5.2

Implementing Methods 205

The return statement gives the
method’s result to the caller.

The body of a method is enclosed in braces. Here is the complete method:

public static double cubeVolume(double sidelLength)

{
double volume = sidelLength * sidelLength * sidelLength;
return volume;

}

Let’s put this method to use. We’ll supply a main method that calls the cubevolume
method twice.

public static void main(String[] args)

{
double resultl = cubeVolume(2);
double result2 = cubeVolume(10);
System.out.printIn("A cube with side length 2 has volume " + resultl);
System.out.printIin("A cube with side length 10 has volume " + result2);
}

When the method is called with different arguments, the method returns different
results. Consider the call cubevolume(2). The argument 2 corresponds to the sideLength
parameter variable. Therefore, in this call, sideLength is 2. The method computes

Syntax 5.1 Static Method Declaration
Syntax public static returnType methodName(parameterType parameterName, . . .)
method body
}
Type of return value Type of parameter variable
Nawe of wmethod Nawe of parameter variable
pubTic static double cubeVolume(double sidelLength)

Method body, double volume = sidelLength * sideLength * sideLength;
exec'md"”he" return volume;
wethod is called. |

return statement

exits wethod and

returns result.

206 Chapter 5 Methods

sideLength * sideLength * sideLength, or2 * 2 * 2. When the method is called with a dif-
ferent argument, say 10, then the method computes 10 * 10 * 10.

Now we combine both methods into a test program. Note that both methods are
contained in the same class. Also note the comment that describes the behavior of the
cubeVolume method. (Programming Tip 5.1 describes the format of the comment.)

section_2/Cubes.java
/:‘::“:

1

2 This program computes the volumes of two cubes.
3 &

4 public class Cubes

5 {

6 public static void main(String[] args)

7 {

8 double resultl = cubeVolume(2);

9 double result2 = cubeVolume(10);

10 System.out.printIn("A cube with side Tlength 2 has volume " + resultl);
11 System.out.printIin("A cube with side length 10 has volume " + result2);
12 }

13

'|4 /7‘::‘:

15 Computes the volume of a cube.

16 @param sideLength the side length of the cube

17 @return the volume

18 */

19 public static double cubeVolume(double sidelLength)

20 {

21 double volume = sideLength * sideLength * sidelLength;

22 return volume;

23 }

24 3}

Program Run

A cube with side length 2 has volume 8
A cube with side length 10 has volume 1000

5. What is the value of cubevolume(3)?
6. What is the value of cubevolume(cubeVolume(2))?

7. Provide an alternate implementation of the body of the cubevolume method by
calling the Math.pow method.

8. Declare a method squareArea that computes the area of a square of a given side
length.
9. Consider this method:

public static int mystery(int x, int y)
{
double result = (x +y) / (y - X);
return result;

}
What is the result of the call mystery(2, 3)?

Practice It Now you can try these exercises at the end of the chapter: R5.1,R5.2, 5.5, P5.22.

Programming Tip 5.1

5.3 Parameter Passing 207

Method Comments

Whenever you write a method, you should comment its behavior. Comments are for human
readers, not compilers. The Java language provides a standard layout for method comments,
called the javadoc convention, as shown here:
Vit
Computes the volume of a cube.
@param sidelength the side length of the cube
@return the volume

Method comments
explain the purpose
of the method, the
meaning of the

*/ parameter variables

pubTic static double cubeVolume(double sideLength) and return value, as

{ well as any special
double volume = sidelLength * sidelLength * sidelength; requirements.
return volume;

}

Comments are enclosed in /#* and */ delimiters. The first line of the comment describes the
purpose of the method. Each @param clause describes a parameter variable and the @return
clause describes the return value.

Note that the method comment does not document the implementation (how the method
carries out its work) but rather the design (what the method does). The comment allows other
programmers to use the method as a “black box”.

5.3 Parameter Passing

Parameter variables
hold the arguments
supplied in the
method call.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

In this section, we examine the mechanism of parameter passing more closely. When

a method is called, variables are created for receiving the method’s arguments. These

variables are called parameter variables. (Another commonly used term is formal

parameters.) The values that are supplied to the method when it is called are the

arguments of the call. (These values are also commonly called the actual param-

eters.) Each parameter variable is initialized with the corresponding argument.
Consider the method call illustrated in Figure 3:

double resultl = cubeVolume(2);

pielfruit)

208 Chapter5 Methods

c Method call

resultl =
double resultl = cubeVolume(2);
sidelLength =
e Initializing method parameter variable resultl =
double resultl = cubeVolume(2);
sideLength = 2
0 About to return to the caller resultl =
. . . ideLength =
double volume = sidelLength * sidelLength * sidelLength; St 2
return volume;
volume = 8
o After method call resultl = g

double resultl = cubeVolume(2);

Figure 3 Parameter Passing

The parameter variable sideLength of the cubevolume method is created when the

method is called. @)

® The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. @)

ANIMATION
Parameter Passing e The method computes the expression sideLength * sideLength * sideLength, which
, M \ has the value 8. That value is stored in the variable volume. €)
Il . . .
i e The method returns. All of its variables are removed. The return value is trans-

ferred to the caller, that is, the method calling the cubevolume method. The caller
puts the return value in the resultl variable. @)

Now consider what happens in a subsequent call, cubeVolume(10). A new parameter
variable is created. (Recall that the previous parameter variable was removed when
the first call to cubeVolume returned.) It is initialized with 10, and the process repeats.
After the second method call is complete, its variables are again removed.

AANMATILD 10. What does this program print? Use a diagram like Figure 3 to find the answer.
- public static double mystery(int x, int y)
{
double z = x + y;
z=2z/2.0;
return z;
}
public static void main(String[] args)

{

int a = 5;
int b = 7;

5.3 Parameter Passing 209

System.out.printin(mystery(a, b));
}

11. What does this program print? Use a diagram like Figure 3 to find the answer.
public static int mystery(int x)

{
inty =x*x;
return y;
}
public static void main(String[] args)
{
int a = 4;

System.out.printin(mystery(a + 1));
}

12. What does this program print? Use a diagram like Figure 3 to find the answer.

public static int mystery(int n)
{

n++;

n++;

return n;

}

public static void main(String[] args)

{
int a = 5;
System.out.printin(mystery(a));
}

Practice It Now you can try these exercises at the end of the chapter: R5.5, R5.14, P5.8.

Programming Tip 5.2 Do Not Modify Parameter Variables

In Java, a parameter variable is just like any other variable. You can modify the values of the
parameter variables in the body of a method. For example,

public static int totalCents(int dollars, int cents)

{
cents = dollars * 100 + cents; // Modifies parameter variable
return cents;

}

However, many programmers find this practice confusing (see Common Error 5.1). To avoid
the confusion, simply introduce a separate variable:

pubTic static int totalCents(int dollars, int cents)
{

int result = dollars * 100 + cents;

return result;

CoianeT S 5 Trying to Modify Arguments

. The following method contains a common error: trying to modify an argument.

pubTic static int addTax(double price, double rate)
{
double tax = price * rate / 100;
price = price + tax; // Has no effect outside the method

210 Chapter5 Methods

return tax;

}
Now consider this call:

double total = 10;
addTax(total, 7.5); // Does not modify total

When the addTax method is called, price is set to 10. Then price is changed to 10.75. When the
method returns, all of its parameter variables are removed. Any values that have been assigned

to them are simply forgotten. Note that total is not changed. In Java, a method can never
change the contents of a variable that was passed as an argument.

5.4 Return Values

The return statement
terminates a method
call and yields the
method result.

You use the return statement to specify the result of a method. In the preceding exam-
ples, each return statement returned a variable. However, the return statement can
return the value of any expression. Instead of saving the return value in a variable and
returning the variable, it is often possible to eliminate the variable and return a more
complex expression:

public static double cubeVolume(double sidelLength)
{

}

When the return statement is processed, the method exits immediately. Some
programmers find this behavior convenient for handling exceptional cases at the
beginning of the method:

return sidelLength * sideLength * sidelLength;

pubTic static double cubeVolume(double sidelLength)

{
if (sideLength < 0) { return 0; }
// Handle the regular case

}

If the method is called with a negative value for sideLength, then the method returns 0
and the remainder of the method is not executed. (See Figure 4.)

True

ext 13A sidelLength <0? return 0
Newark Airport
> = Elizabeth Seaport

: . 4
o Fale

volume =
sidelLength x
sidelLength x
sidelLength

l NEXT EXIT 3 MILES

THRU TRAFFIC i

return volume

Figure 4 A return Statement Exits a Method Immediately

&) A program showing a
method with multiple
return statements.

SELF CHECK

Practice It

5.4 Return Values 211

Every branch of a method needs to return a value. Consider the following incor-

rect method:

public static double cubeVolume(double sidelLength)
{
if (sideLength >= 0)
{
return sideLength * sideLength * sidelLength;
} // Error—no return value if sideLength < 0

The compiler reports this as an error. A correct implementation is:

public static double cubeVolume(double sidelLength)

{
if (sideLength >= 0)
{
return sidelLength * sideLength * sidelLength;
}
else
{
return 0;
}
}

Many programmers dislike the use of multiple return statements in a method. You
can avoid multiple returns by storing the method result in a variable that you return
in the last statement of the method. For example:

13.

14.

15.

public static double cubeVolume(double sidelLength)

{
doubTle volume;
if (sideLength >= 0)
{
volume = sidelLength * sidelLength * sidelLength;
}
else
{
volume = 0;
}
return volume;
}

Suppose we change the body of the cubevolume method to

if (sideLength <= 0) { return 0; }

return sidelLength * sideLength * sidelLength;

How does this method differ from the one described in this section?

What does this method do?

public static boolean mystery (int n)
{
if (n % 2 == 0) { return true };
else { return false; }

}
Implement the mystery method of Self Check 14 with a single return statement.

Now you can try these exercises at the end of the chapter: R5.13, P5.20.

212 Chapter 5 Methods

e S0 52 Missing Return Value

4

HOW TO 5.1

Step 1

Step 2

Itis a compile-time error if some branches of a method return a value and others do not. Con-
sider this example:

public static int sign(double number)

{

if (number < 0) { return -1; }

if (number > 0) { return 1; }

// Error: missing return value if number equals 0
}

This method computes the sign of a number: —1 for negative numbers and +1 for positive num-
bers. If the argument is zero, however, no value is returned. The remedy is to add a statement
return 0; to the end of the method.

Implementing a Method

A method is a computation that can be used multiple
times with different arguments, either in the same pro-
gram or in different programs. Whenever a computa-
tion is needed more than once, turn it into a method.
To illustrate this process, suppose that you are help-
ing archaeologists who research Egyptian pyramids.
You have taken on the task of writing a method that
determines the volume of a pyramid, given its height

and base length.

Describe what the method should do.

Provide a simple English description, such as “Compute the volume of a pyramid whose base
1s a square.”

>«

Determine the method’s “inputs”.

Makealist of all the parameters that can vary. It is common for begin- - T —
ners to implement methods that are overly specific. For example, you that can be reused
may know that the great pyramid of Giza, the largest of the Egyptian into methods.
pyramids, has a height of 146 meters and a base length of 230 meters.
You should ot use these numbers in your calculation, even if the original problem only asked
about the great pyramid. It is just as easy—and far more useful —to write a method that com-
putes the volume of any pyramid.
In our case, the parameters are the pyramid’s height and base length. At this point, we have
enough information to document the method:
/**
Computes the volume of a pyramid whose base is a square.
@param height the height of the pyramid
@param baselength the length of one side of the pyramid’s base
@return the volume of the pyramid

*/

Step 3

Step 4

Step 5

Step 6

ONLINE EXAMPLE

@ The program for
calculating a
pyramid’s volume.

5.4 Return Values 213

Determine the types of the parameter variables and the return value.

The height and base length can both be floating-point numbers. Therefore, we will choose the
type double for both parameter variables. The computed volume is also a floating-point num-
ber, yielding a return type of doubTe. Therefore, the method will be declared as

pubTic static double pyramidVolume(double height, double baselLength)
Write pseudocode for obtaining the desired result.

In most cases, a method needs to carry out several steps to find the desired answer. You may
need to use mathematical formulas, branches, or loops. Express your method in pseudocode.
An Internet search yields the fact that the volume of a pyramid is computed as

voluwe = 1/3 x height x base area
Because the base is a square, we have
base area = base length x base length

Using these two equations, we can compute the volume from the arguments.
Implement the method body.

In our example, the method body is quite simple. Note the use of the return statement to
return the result.

pubTic static double pyramidVolume(double height, double baselLength)
{

double baseArea = baselength * baselength;
return height * baseArea / 3;
}

Test your method.

After implementing a method, you should test it in isolation. Such a test is called a unit test.
Work out test cases by hand, and make sure that the method produces the correct results.

For example, for a pyramid with height 9 and base length 10, we expect the area to be 1/3 x 9 x
100 = 300. If the height is 0, we expect an area of 0.

public static void main(String[] args)

{
System.out.printin("Volume: " + pyramidVolume(9, 10));
System.out.printIn("Expected: 300");
System.out.printIn("Volume: " + pyramidVolume(0, 10));
System.out.printin("Expected: 0");

}

The output confirms that the method worked as expected:

Volume: 300

Expected: 300

Volume: 0

Expected: 0

WORKED EXAMPLE 5.1 Generating Random Passwords

&

e

This Worked Example creates a method that generates
passwords of a given length with at least one digit and
one special character.

@ Available online in WileyPLUS and at www.wiTey.com/college/horstmann.

214 Chapter 5 Methods

5.5 Methods Without Return Values

Use a return type of
void to indicate that a
method does not
return a value.

ONLINE EXAMPLE

@ Acomplete program
demonstrating the
boxString method.

Sometimes, you need to carry out a
sequence of instructions that does
not yield a value. If that instruction
sequence occurs multiple times, you
will want to package it into a method.
In Java, you use the return type void to
indicate the absence of a return value.

Here is a typical example: Your task
is to print a string in a box, like this:

Avoid method returns no value, but it can
produce output.

However, different strings can be substituted for Hello. A method for this task can be
declared as follows:

pubTic static void boxString(String contents)

Now you develop the body of the method in the usual way, by formulating a general
method for solving the task.

Print a line that contains the - character n + Z times, where n is the length of the string.
Print a line containing the contents, surrounded with a ! to the left and right.
Print another line containing the - character n + Z times.

Here is the method implementation:

/:‘::‘:
Prints a string in a box.
@param contents the string to enclose in a box
*/
public static void boxString(String contents)
{
int n = contents.length();
for (int i =0; i <n + 2; i++) { System.out.print("-"); }
System.out.printin();
System.out.printin("!" + contents + "!");
for (int i =0; i <n + 2; i++) { System.out.print("-"); }
System.out.printin();
}

Note that this method doesn’t compute any value. It performs some actions and then
returns to the caller.

Because there is no return value, you cannot use boxString in an expression. You
can call

boxString("Hello");
but not
result = boxString("Hell0"); // Error: boxString doesn’t return a result.

If you want to return from a void method before reaching the end, you use a return
statement without a value. For example,

public static void boxString(String contents)
{

SELF CHECK

Practice It

16.

17.

18.

19.

20.

5.6 Problem Solving: Reusable Methods 215

int n = contents.length(Q);
if (n==0)
{

return; // Return immediately

}

How do you generate the following printout, using the boxString method?

What is wrong with the following statement?
System.out.print(boxString("Hell0"));
Implement a method shout that prints a line consisting of a string followed by

three exclamation marks. For example, shout("He110") should print Hello!!!. The
method should not return a value.

How would you modify the boxString method to leave a space around the string

that is being boxed, like this:

The boxString method contains the code for printing a line of - characters twice.
Place that code into a separate method printLine, and use that method to simplify
boxString. What is the code of both methods?

Now you can try these exercises at the end of the chapter: R5.4, P5.25.

5.6 Problem Solving: Reusable Methods

Eliminate replicated
code or pseudocode
by defining a method.

You have used many methods from the standard Java library. These methods have
been provided as a part of the Java platform so that programmers need not recre-
ate them. Of course, the Java library doesn’t cover every conceivable need. You will
often be able to save yourself time by designing your own methods that can be used
for multiple problems.

When you write nearly identical code or pseudocode multiple times, either in the

same program or in separate programs, consider introducing a method. Here is a typ-
ical example of code replication:

int hours;

do

{
System.out.print("Enter a value between 0 and 23: ");
hours = in.nextInt();

}

while (hours < O || hours > 23);

216 Chapter 5 Methods

Design your methods
to be reusable.
Supply parameter
variables for the
values that can vary
when the method

is reused.

int minutes;

do

{
System.out.print("Enter a value between 0 and 59: ");
minutes = in.nextInt();

}

while (minutes < 0 || minutes > 59);

This program segment reads two variables, making sure that each of them is within a

certain range. It is easy to extract the common behavior into a method:
/w‘::‘:

Prompts a user to enter a value up to a given maximum until the user
provides a valid input.

@param high the largest allowable input

@return the value provided by the user (between 0 and high, inclusive)

7':/
public static int readIntUpTo(int high)
{
int input;
Scanner in = new Scanner(System.in);
do
{
System.out.print("Enter a value between 0 and " + high + ": ");
input = in.nextInt();
}
while (input < O || input > high);
return input;
}

Then use this method twice:

int hours = readIntUpTo(23);
int minutes = readIntUpTo(59);

We have now removed the replication of the loop—it only occurs once, inside the

method.

Note that the method can be reused in other programs that need to read integer
values. However, we should consider the possibility that the smallest value need not

always be zero.
Here is a better alternative:

/7‘:7‘:
Prompts a user to enter a value within a given range until the user
provides a valid input.
@param Tow the smallest allowable input
@param high the largest allowable input
@return the value provided by the user (between Tow and high, inclusive)

7‘:/
public static int readIntBetween(int low, int high)
{

int input;

Scanner in = new Scanner(System.in);

do

{

System.out.print("Enter a value between " + Tow + " and " + high + ": ");
input = in.nextInt();

}

while (input < Tow || input > high);

return input;

5.6 Problem Solving: Reusable Methods 217

When carrying out the same task
multiple times, use a method.

In our program, we call

&» A complete program
demonstrating the

readIntBetween Another program can call
method.

int hours = readIntBetween(0, 23);

int month = readIntBetween(1l, 12);

In general, you will want to provide parameter variables for the values that vary when
amethod is reused.

21. Consider the following statements:

int totalPennies = (int) Math.round(100 * total) % 100;
int taxPennies = (int) Math.round(100 * (total * taxRate)) % 100;

Introduce a method to reduce code duplication.
22. Consider this method that prints a page number on the left or right side of a

page:

if (page % 2 == 0) { System.out.printin(page); }

else { System.out.printin("

+ page); }
Introduce a method with return type boolean to make the condition in the if
statement easier to understand.

23. Consider the following method that computes compound interest for an
account with an initial balance of $10,000 and an interest rate of 5 percent:
public static double balance(int years) { return 10000 * Math.pow(1.05, years); }
How can you make this method more reusable?

24. The comment explains what the following loop does. Use a method instead.

// Counts the number of spaces
int spaces = 0;
for (int i = 0; i < input.lengthQ); i++)
{
if (input.charAt(i) == ' ') { spaces++; }
}
25. In Self Check 24, you were asked to implement a method that counts spaces.
How can you generalize it so that it can count any character? Why would you
want to do this?

Practice It Now you can try these exercises at the end of the chapter: R5.7, P5.21.

218 Chapter5 Methods

5.7 Problem Solving: Stepwise Refinement

One of the most powerful strategies for
Use the process of . R)
stepwise refinement problem solving is the process of stepwise
to decompose refinement. To solve a difficult task, break
copeleaeeil e it down into simpler tasks. Then keep break-
simpler ones.

ing down the simpler tasks into even simpler

ones, until you are left with tasks that you

know how to solve.

Now apply this process to a problem of
everyday life. You get up in the morning and
simply must get coffee. How do you get cof-
fee? You see whether you can get someone
else, such as your m_other or mate, to bring A production process is broken down
you some. If that fails, you must make coffee. into sequences of assembly steps.

Yes Can you No
ask someone

Get ?
coffee
Ask for Make Yes Do you No
coffee coffee have instant
coffee?
Make Brew
instant el
coffee
Do you
R have a micro- . Add water
Boil
wave? to coffee
water maker
Fill cup Fill kettle Mix water Add filter
with water with water B A —— to coffee
coffee maker Add coffee
= beans to
ut cup . :
in micro- Brmg.to Grind el
wave a boil coffee
beans Grind
60 sec.
3Hegt Add coffee
. beans to
filter
Figure 5
Flowchart of Turn coffee
maker on

Coffee-Making
Solution

When you discover
that you need a
method, write a
description of the
parameter variables
and return values.

A method may
require simpler
methods to carry
out its work.

5.7 Problem Solving: Stepwise Refinement 219

How do you make coffee? If there is instant coffee available, you can make instant coffee.
How do you make instant coffee? Simply boil water and mix the boiling water with the
instant coffee. How do you boil water? If there is a microwave, then you fill a cup
with water, place it in the microwave and heat it for three minutes. Otherwise, you fill
a kettle with water and heat it on the stove until the water comes to a boil. On the
other hand, if you don’t have instant coffee, you must brew coffee. How do you brew
coffee? You add water to the coffee maker, put in a filter, grind coffee, put the coffee in
the filter, and turn the coffee maker on. How do you grind coffee? You add coffee
beans to the coffee grinder and push the button for 60 seconds.

Figure 5 shows a flowchart view of the coffee-making solution. Refinements are
shown as expanding boxes. In Java, you implement a refinement as a method. For
example, a method brenCoffee would call grindCoffee, and brewCoffee would be called
from a method makeCoffee.

Let us apply the process of stepwise refine-
ment to a programming problem. When print-
ing a check, it is customary to write the check
amount both as a number (“$274.15”) and as a
text string (“two hundred seventy four dollars
and 15 cents”). Doing so reduces the recipient’s
temptation to add a few digits in front of the
amount.

For a human, this isn’t particularly difficult,
but how can a computer do this? There is no
built-in method that turns 274 into "two hundred seventy four". We need to program
this method. Here is the description of the method we want to write:

/7'::‘:

Turns a number into its English name.

@param number a positive integer < 1,000

@return the name of number (e.g., “two hundred seventy four”)
>':/

public static String intName(int number)

How can this method do its job? Consider a simple case first. If the number is between
1 and 9, we need to compute "one" ... "nine". In fact, we need the same computation
again for the hundreds (two hundred). Any time you need something more than once, it
is a good idea to turn that into a method. Rather than writing the entire method, write
only the comment:

k]

Turns a digit into its English name.
@param digit an integer between 1 and 9
@return the name of digit (“one” ... “nine”)
7':/
public static String digitName(int digit)

Numbers between 10 and 19 are special cases. Let’s have a separate method teenName

non non

that converts them into strings "eleven", "twelve", "thirteen", and so on:

/:‘::‘:
Turns a number between 10 and 19 into its English name.
@param number an integer between 10 and 19
@return the name of the number (“ten” . .. “nineteen”)
*/

public static String teenName(int number)

220 Chapter5 Methods

T
ANIMATION
Tracing a Method

[

Next, suppose that the number is between 20 and 99. The name of such a number has
two parts, such as "seventy four". We need a way of producing the first part, "twenty",
"thirty", and so on. Again, we will put that computation into a separate method:

Gives the name of the tens part of a number between 20 and 99.

@param number an integer between 20 and 99

@return the name of the tens part of the number (“twenty” ... “ninety”)
% //

public static String tensName(int number)

Now let us write the pseudocode for the intName method. If the number is between
100 and 999, then we show a digit and the word "hundred" (such as "two hundred").
We then remove the hundreds, for example reducing 274 to 74. Next, suppose the
remaining part is at least 20 and at most 99. If the number is evenly divisible by 10,
we use tensName, and we are done. Otherwise, we print the tens with tensName (such as
"seventy") and remove the tens, reducing 74 to 4. In a separate branch, we deal with
numbers that are at between 10 and 19. Finally, we print any remaining single digit
(such as "four").

part = nuwmber (The part that still needs to be converted)

u

nawme = " (The name of the number)

If part >= 100
nawe = nawe of hundreds in part + " hundred"
Rewmove hundreds from part.

If part »>= 20
Append tensNawme(part) to name.
Rewove tens from part.

Else if part >= 10
Append teenName(part) to name.
part=0

If (part > 0)
Append digitName(part) to name.

Translating the pseudocode into Java is straightforward. The result is shown in the
source listing at the end of this section.

Note how we rely on helper methods to do much of the detail work. Using the
process of stepwise refinement, we now need to consider these helper methods.

Let’s start with the digitName method. This method is so simple to implement that
pseudocode is not really required. Simply use an if statement with nine branches:

public static String digitName(int digit)
{

if (digit == 1) { return "one" };

if (digit == 2) { return "two" };

}

The teenName and tensName methods are similar.

5.7 Problem Solving: Stepwise Refinement 221

This concludes the process of stepwise refinement. Here is the complete program:

section_7/IntegerName.java
1 import java.util.Scanner;

/7“:7‘:

This program turns an integer into its English name.

%

2
3
4
5
6 public class IntegerName
7
8
9

{

public static void main(String[] args)

{
10 Scanner in = new Scanner(System.in);
11 System.out.print("Please enter a positive integer < 1000: ");
12 int input = in.nextInt();
13 System.out.printIn(intName(input));
14 }
15
16 VA
17 Turns a number into its English name.
18 @param number a positive integer < 1,000
19 @return the name of the number (e.g. “two hundred seventy four™)
20 */
21 public static String intName(int number)
22 {
23 int part = number; // The part that still needs to be converted
24 String name = ""; // The name of the number
25
26 if (part >= 100)
27 {
28 name = digitName(part / 100) + " hundred";
29 part = part % 100;
30 }
31
32 if (part >= 20)
33 {
34 name = name + " " + tensName(part);
35 part = part % 10;
36
37 else if (part >= 10)
38 {
39 name = name + " " + teenName(part);
40 part = 0;
41 }
42
43 if (part > 0)
44 {
45 name = name + " " + digitName(part);
46 }
47
48 return name;
49 3
50
51 /a‘:*
52 Turns a digit into its English name.
53 @param digit an integer between 1 and 9
54 @return the name of digit (“one” ... “nine”

55 */

222 Chapter 5 Methods

56 public static String digitName(int digit)
57 {

58 if (digit == 1) { return "one"; }

59 if (digit == 2) { return "two"; }

60 if (digit == 3) { return "three"; }

61 if (digit == 4) { return "four"; }

62 if (digit == 5) { return "five"; }

63 if (digit == 6) { return "six"; }

64 if (digit == 7) { return "seven"; }

65 if (digit == 8) { return "eight"; }

66 if (digit == 9) { return "nine"; }

67 return "";

68 }

69

70 [**

71 Turns a number between 10 and 19 into its English name.
72 @param number an integer between 10 and 19
73 @return the name of the given number (“ten” . .. “nineteen”)
74 */

75 public static String teenName(int number)
76 {

77 if (number == 10) { return "ten"; }

78 if (number == 11) { return "eleven"; }
79 if (number == 12) { return "twelve"; }
80 if (number == 13) { return "thirteen"; }
81 if (number == 14) { return "fourteen"; }
82 if (number == 15) { return "fifteen"; }
83 if (number == 16) { return "sixteen"; }
84 if (number == 17) { return "seventeen"; }
85 if (number == 18) { return "eighteen"; }
86 if (number == 19) { return "nineteen"; }
87 return "";

88 }

89

90 /a‘:*

91 Gives the name of the tens part of a number between 20 and 99.
92 @param number an integer between 20 and 99
93 @return the name of the tens part of the number (“twenty” . . . “ninety”)
94 */

95 public static String tensName(int number)
96 {

97 if (number >= 90) { return "ninety"; }
98 if (number >= 80) { return "eighty"; }
99 if (number >= 70) { return "seventy"; }
100 if (number >= 60) { return "sixty"; }
101 if (number >= 50) { return "fifty"; }
102 if (number >= 40) { return "forty"; }
103 if (number >= 30) { return "thirty"; }
104 if (number >= 20) { return "twenty"; }
105 return "";
106
107 }

Program Run

Please enter a positive integer < 1000: 729
seven hundred twenty nine

Practice It

Programming Tip 5.3

Programming Tip 5.4

9

5.7 Problem Solving: Stepwise Refinement 223

26. Explain how you can improve the intName method so that it can handle argu-
ments up to 9999.

27. Why does line 40 set part = 0?

28. What happens when you call intName (0) ? How can you change the intName
method to handle this case correctly?

29. Trace the method call intName(72), as described in Programming Tip 5.4.

30. Use the process of stepwise refinement to break down the task of printing the
following table into simpler tasks.

o= fommmm e +
[I | i
e Tt +
[1] 1]
[2] 8 |
| 20 | 8000 |
N fommmm e +

Now you can try these exercises at the end of the chapter: R5.12, P5.11, P5.24.

Keep Methods Short

There is a certain cost for writing a method. You need to design, code, and test the method.
The method needs to be documented. You need to spend some effort to make the method
reusable rather than tied to a specific context. To avoid this cost, it is always tempting just to
stuff more and more code in one place rather than going through the trouble of breaking up
the code into separate methods. It is quite common to see inexperienced programmers pro-
duce methods that are several hundred lines long.

As a rule of thumb, a method that is so long that its code will not fit on a single screen in
your development environment should probably be broken up.

Tracing Methods

When you design a complex method, it is a good idea to carry out a manual walkthrough
before entrusting your program to the computer.

Take an index card, or some other piece of paper, and write down the method call that you
want to study. Write the name of the method and the names and values of the parameter vari-

ables, like this:

intNawe(number = 416)

Then write the names and initial values of the method variables. Write them in a table, because
you will update them as you walk through the code.

intNawe(number = 416)
part nawme

416

224 Chapter 5 Methods

Programming Tip 5.5

We enter the tes